1
|
Adams L, Li X, Burchmore R, Goodwin RJA, Wall DM. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001504. [PMID: 39392674 PMCID: PMC11469068 DOI: 10.1099/mic.0.001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
Collapse
Affiliation(s)
- Lauren Adams
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xiang Li
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard Burchmore
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| | - Richard J. A. Goodwin
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Daniel M. Wall
- School of Infection and Immunology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
2
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
3
|
Joon A, Chandel S, Ghosh S. Enteroaggregative Escherichia coli induced activation of epidermal growth factor receptor contributes to IL-8 secretion by cultured human intestinal epithelial cells. Microbes Infect 2023; 25:105166. [PMID: 37290638 DOI: 10.1016/j.micinf.2023.105166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) has been identified as a new enteropathogen that causes acute and chronic diarrhea in children and travelers. One defining aspect of EAEC-pathogenesis is the induction of an inflammatory response in intestinal epithelium. In this study, we have found that EAEC-induced EGFR activation in human small intestinal and colonic epithelial was attenuated in the presence of a specific inhibitor of EGFR (Tyrphostin AG1478). Further, the aggregative stacked-brick type of adherence of this organism to both the cell lines and this pathogen-induced cytoskeletal rearrangement of these cells was also reduced in the presence of Tyrphostin AG1478. Moreover, EAEC-induced activation of downstream effectors (ERK-1/2, PI3K and Akt) of EGFR mediated cell signaling pathways were found to be suppressed in the presence of EGFR inhibitor. A decrease in IL-8 response in EAEC infected both the cell types were also noted in the presence of specific inhibitors of these downstream effectors, transcription factors and Tyrphostin AG1478. We propose that EAEC-induced activation of EGFR is quintessential for stacked-brick adherence of EAEC to human intestinal epithelial cells, their cytoskeletal rearrangements and stimulation of ERK-1/2 and PI3K/Akt mediated signal transduction pathways, resulting in the activation of NF-κB, AP-1, STAT-3 and finally IL-8 secretion by these cells.
Collapse
Affiliation(s)
- Archana Joon
- Department of Experimental Medicine and Biotechnology; Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Shipra Chandel
- Department of Experimental Medicine and Biotechnology; Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology; Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
4
|
Sharma B, Modgil V, Mahindroo J, Kumar A, Kaur V, Narayan C, Verma R, Mohan B, Taneja N. Are non-lactose-fermenting Escherichia coli important diarrhoeal pathogens in children and adults? Access Microbiol 2023; 5:acmi000459.v3. [PMID: 37601441 PMCID: PMC10436021 DOI: 10.1099/acmi.0.000459.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/02/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Diarrhoeagenic Escherichia coli (DEC) remains one of the major causes of acute diarrhoea episodes in developing countries. The percentage of acute diarrhoea cases caused by DEC is 30-40 % in these countries. Approximately 10% of E. coli isolates obtained from stool specimens have been reported to be non-lactose-fermenting (NLF). The available literature is sparse regarding the pathogenicity of NLF E. coli causing infectious diarrhoea. Aim We aimed to elucidate the importance of NLF E. coli in causing diarrhoea in both adults and children by detecting various DEC pathotypes among NLF E. coli in stool samples taken from gastroenteritis cases. Material and Methods A total of 376 NLF E. coli isolates from 3110 stool samples from diarrhoea/gastroenteritis patients were included in the study. Up to three NLF colonies that were not confirmed as Vibrio cholerae , Aeromonas spp., Salmonella spp. or Shigella spp., but were identified as E. coli using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), were carefully picked up from each MacConkey agar plate and then meticulously streaked onto freshly prepared, sterilized nutrient agar plates, and biochemical reactions were conducted. Multiplex PCR was conducted for the EAEC, EPEC, ETEC and EHEC pathotypes and PCR for the ipaH gene was conducted for EIEC. The disc diffusion method was used for antibiotic sensitivity testing. Results Using multiplex PCR and ipaH PCR, a total of 63 pathotypes of DEC were obtained, with EAEC being the most predominant (n=31) followed by EIEC (n=22), EPEC (n=8) and ETEC (n=2). To further differentiate EIEC from Shigella , additional biochemical tests were performed, including acetate utilization, mucate and salicin fermentation, and aesculin hydrolysis. Antimicrobial susceptibility testing (AST) showed that maximum resistance was seen against ciprofloxacin (82.5 %) followed by ampicillin (77.8 %) and cotrimoxazole (68.2 %), and minimum resistance was seen against ertapenem (4.8 %). Conclusion In our study two pathotypes (EAEC, EIEC) were predominant among NLF E. coli and these were not only important aetiological agents in children, but also in adults. Our study also sheds light on the epidemiology of EIEC, which is one of the most neglected DEC pathotypes, as hardly any microbiological laboratories process NLF E. coli for EIEC.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Bathinda, India
| | - Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Mahindroo
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Kumar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Varpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandradeo Narayan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritu Verma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Sauvaitre T, Van Landuyt J, Durif C, Roussel C, Sivignon A, Chalancon S, Uriot O, Van Herreweghen F, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. Role of mucus-bacteria interactions in Enterotoxigenic Escherichia coli (ETEC) H10407 virulence and interplay with human microbiome. NPJ Biofilms Microbiomes 2022; 8:86. [PMID: 36266277 PMCID: PMC9584927 DOI: 10.1038/s41522-022-00344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Josefien Van Landuyt
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Charlène Roussel
- Université Laval, Nutrition and Functional Foods Institute (INAF), 2440 Bd Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63000, Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Florence Van Herreweghen
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Chuang ST, Chen CT, Hsieh JC, Li KY, Ho ST, Chen MJ. Development of Next-Generation Probiotics by Investigating the Interrelationships between Gastrointestinal Microbiota and Diarrhea in Preruminant Holstein Calves. Animals (Basel) 2022; 12:ani12060695. [PMID: 35327091 PMCID: PMC8944458 DOI: 10.3390/ani12060695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present study investigated the relationship between gastrointestinal microbiota and diarrhea in preruminant calves by using immune-related markers and further isolating specific bacterial strains, enriched in clinically healthy individuals, for potential next-generation probiotics. The gathering of microbiomic data strongly indicated the possible beneficial effects of Bifidobacterium longum subsp. longum. With further screening and isolating with immunomodulatory and antagonistic effects, two Bifidobacterium longum subsp. longum strains might be expected to emerge as next-generation probiotics. The finding here might provide a solution for preventing gastrointestinal disorders for preruminant calves without sustained periods of administration through inhibiting the infectious bacteria, immunomodulatory effect and possible modulating microbiota. Abstract (1) Background: We aimed to isolate and identify potential next-generation probiotics (NGP) by investigating the interrelationships between gastrointestinal microbiota and diarrhea in preruminant Holstein calves. (2) Material and methods: Twenty preruminant Holstein calves were divided into healthy and diarrheic groups after the combination outcomes of veterinary diagnosis and fecal scores. The fecal microbiome, plasma cytokines, plasma immunoglobulin (Ig) G and haptoglobin were analyzed. The potential probiotic bacteria were identified by comparing the microbiota difference between healthy and diarrheic calves and correlation analysis with fecal scores and inflammatory markers. The identified bacteria were also isolated for further evaluation for antimicrobial activities and immunoregulatory effects. (3) Results: Microbiota analysis suggested that Ruminococcaceae_UCG_014, Bifidobacterium and Pseudoflavonifractor positively correlated with bovine IgG and negatively correlated with fecal score; inflammatory factors, bovine HP, and IL-8 were classified as beneficial bacteria contributing to the health of the calves. The alternation of gut microbial composition also induced changes in the functional gene enrichment of gut microbiota in calves. The gathering of microbiomic data strongly indicated the possible beneficial effects of Bifidobacterium longum subsp. longum, expected to develop as NGP. After isolation and evaluation of the potential functionality in vitro, two specific bifidobacterial strains demonstrated antimicrobial activities and immunoregulatory effects. (4) Conclusions: The results provide a new probiotic searching approach for preventing gastrointestinal disorders in preruminant calves. Further animal study is necessary to verify the results.
Collapse
Affiliation(s)
- Shih-Te Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Chien-Ting Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-T.C.); (J.-C.H.); (K.-Y.L.)
| | - Jui-Chun Hsieh
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-T.C.); (J.-C.H.); (K.-Y.L.)
| | - Kuan-Yi Li
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-T.C.); (J.-C.H.); (K.-Y.L.)
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600355, Taiwan;
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106037, Taiwan; (C.-T.C.); (J.-C.H.); (K.-Y.L.)
- Correspondence: ; Tel.:+886-2-33664169
| |
Collapse
|
7
|
Rajan A, Robertson MJ, Carter HE, Poole NM, Clark JR, Green SI, Criss ZK, Zhao B, Karandikar U, Xing Y, Margalef-Català M, Jain N, Wilson RL, Bai F, Hyser JM, Petrosino J, Shroyer NF, Blutt SE, Coarfa C, Song X, Prasad BVV, Amieva MR, Grande-Allen J, Estes MK, Okhuysen PC, Maresso AW. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathog 2020; 16:e1008851. [PMID: 32986782 PMCID: PMC7553275 DOI: 10.1371/journal.ppat.1008851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.
Collapse
Affiliation(s)
- Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Matthew J. Robertson
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
| | - Hannah E. Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Nina M. Poole
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zachary K. Criss
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Mar Margalef-Català
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Nikhil Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Fan Bai
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Noah F. Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Cristian Coarfa
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - BV Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pablo C. Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
8
|
Haarmann N, Berger M, Kouzel IU, Mellmann A, Berger P. Comparative virulence characterization of the Shiga toxin phage-cured Escherichia coli O104:H4 and enteroaggregative Escherichia coli. Int J Med Microbiol 2018; 308:912-920. [DOI: 10.1016/j.ijmm.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 12/26/2022] Open
|
9
|
Enterotoxigenic Escherichia coli Flagellin Inhibits TNF-Induced NF-κB Activation in Intestinal Epithelial Cells. Pathogens 2017; 6:pathogens6020018. [PMID: 28513540 PMCID: PMC5488652 DOI: 10.3390/pathogens6020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/02/2017] [Accepted: 05/14/2017] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes childhood diarrhea in developing countries. ETEC strains produce the heat-labile enterotoxin (LT) and/or heat-stable enterotoxins (ST) and encode a diverse set of colonization factors used for adherence to intestinal epithelial cells. We previously found that ETEC secretes a heat-stable protein we designated as ETEC Secreted Factor (ESF) that inhibits the extent of NF-κB activation normally induced by tumor necrosis factor alpha (TNF). Here we fractionated ETEC supernatants using fast protein liquid chromatography (FPLC) and determined that ETEC flagellin was necessary and sufficient to protect IκBα from degradation in response to TNF stimulation. These data suggest a potentially novel mechanism by which ETEC may evade the host innate immune response by down-regulating NF-κB-dependent host responses.
Collapse
|
10
|
Dubreuil JD. Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2017; 36:75-90. [PMID: 28785529 PMCID: PMC5510153 DOI: 10.12938/bmfh.16-030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
The concept of certain microorganisms conferring direct benefits to the host relates to the term "probiotic". Probiotics are microorganisms, bacteria, or yeast that when administered orally in sufficient quantity can counteract the effect of pathogenic microorganisms. The gastrointestinal (GI) tract is the site where probiotics are believed to play the most important role. The proposed effects of probiotics include antagonism of pathogens, interference with adherence, competition for nutrients, enterotoxin inactivation, modulation of the immune response, and strengthening of the intestinal barrier. From birth to postweaning, piglets are very sensitive to gut colonisation by pathogens. Enterotoxigenic Escherichia coli represents one of the most common agents of swine diarrhoea. The enterotoxins produced by this E. coli virotype are responsible for the loss of electrolytes and water observed following infection. This review addresses more specifically the studies done during the last 10 years deciphering the molecular mechanisms at play between host cell and probiotic interactions in the swine GI tract.
Collapse
Affiliation(s)
- Jean Daniel Dubreuil
- Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
11
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8. Appl Microbiol Biotechnol 2016; 100:311-22. [PMID: 26481623 DOI: 10.1007/s00253-015-7053-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.
Collapse
|
13
|
Sanchez-Villamil J, Tapia-Pastrana G, Navarro-Garcia F. Pathogenic Lifestyles of E. coli Pathotypes in a Standardized Epithelial Cell Model Influence Inflammatory Signaling Pathways and Cytokines Secretion. Front Cell Infect Microbiol 2016; 6:120. [PMID: 27774437 PMCID: PMC5054702 DOI: 10.3389/fcimb.2016.00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory response is key for the host defense against diarrheagenic Escherichia coli and contributes to the pathogenesis of the disease but there is not a comparative study among different diarrheagenic pathotypes. We analyzed the inflammatory response induced by five diarrheagenic pathotypes in a HT-29 cell infection model. The model was unified to reproduce the pathogenesis of each pathotype. To compare the inflammatory responses we evaluated: (i) nuclear NF-κB and ERK1/2 translocation by confocal microscopy; (ii) kinetics of activation by each pathway detecting p65 and ERK1/2 phosphorylation by Western blotting; (iii) pathways modulation through bacterial infections with or without co-stimulation with TNF-α or EGF; (iv) cytokine profile induced by each pathotype with and without inhibitors of each pathway. EHEC but mainly EPEC inhibited translocation and activation of p65 and ERK1/2 pathways, as well as cytokines secretion; inhibition of p65 and ERK1/2 phosphorylation prevailed in the presence of TNF-α and EGF, respectively. Intracellular strains, EIEC/Shigella flexneri, caused a strong translocation, activation, and cytokines secretion but they could not inhibit TNF-α and EGF stimulation. ETEC and mainly EAEC caused a moderate translocation, but a differential activation, and high cytokines secretion; interestingly TNF-α and EGF stimulation did no modify p65 and ERK1/2 activation. The use of inhibitors of NF-κB and/or ERK1/2 showed that NF-κB is crucial for cytokine induction by the different pathotypes; only partially depended on ERK1/2 activation. Thus, in spite of their differences, the pathotypes can also be divided in three groups according to their inflammatory response as those (i) that inject effectors to cause A/E lesion, which are able to inhibit NF-κB and ERK1/2 pathways, and cytokine secretion; (ii) with fimbrial adherence and toxin secretion with a moderate inhibition of both pathways but high cytokines secretion through autocrine cytokine regulation; and (iii) the intracellular bacteria that induce the highest pathways activation and cytokines secretion by using different activation mechanisms. This study provides a comprehensive analysis of how the different pathogenesis schemes of E. coli pathotypes manipulate inflammatory signaling pathways, which leads to a specific proinflammatory cytokine secretion in a cell model infection that reproduce the hallmarks of infection of each pathotype.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Gabriela Tapia-Pastrana
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
14
|
Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2016; 2. [PMID: 26104460 DOI: 10.1128/microbiolspec.ehec-0008-2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.
Collapse
|
15
|
Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli. Microb Pathog 2015; 85:44-9. [PMID: 26057827 DOI: 10.1016/j.micpath.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.
Collapse
|
16
|
Colostrum whey down-regulates the expression of early and late inflammatory response genes induced byEscherichia coliandSalmonella entericaTyphimurium components in intestinal epithelial cells. Br J Nutr 2014; 113:200-11. [DOI: 10.1017/s0007114514003481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pathogenic invasion byEscherichia coliandSalmonellaeremains a constant threat to the integrity of the intestinal epithelium and can rapidly induce inflammatory responses. At birth, colostrum consumption exerts numerous beneficial effects on the properties of intestinal epithelial cells and protects the gastrointestinal tract of newborns from pathogenic invasion. The present study aimed to investigate the effect of colostrum on the early and late inflammatory responses induced by pathogens. The short-term (2 h) and long-term (24 h) effects of exposure to heat-killed (HK)E. coliandSalmonella entericaTyphimurium on gene expression in the porcine intestinal epithelial cell (IPEC-J2) model were first evaluated by microarray and quantitative PCR analyses. Luciferase assays were performed using a NF-κB-luc reporter construct to investigate the effect of colostrum whey treatment on the activation of NF-κB induced by HK bacteria. Luciferase assays were also performed using NF-κB-luc, IL-8-luc and IL-6-luc reporter constructs in human colon adenocarcinoma Caco-2/15 cells exposed to dose–response stimulations with HK bacteria and colostrum whey. Bovine colostrum whey treatment decreased the expression of early and late inflammatory genes induced by HK bacteria in IPEC-J2, as well as the transcriptional activation of NF-κB-luc induced by HK bacteria. Unlike that with colostrum whey, treatment with other milk fractions failed to decrease the activation of NF-κB-luc induced by HK bacteria. Lastly, the reduction of the HK bacteria-induced activation of NF-κB-luc, IL-8-luc and IL-6-luc by colostrum whey was dose dependent. The results of the present study indicate that bovine colostrum may protect and preserve the integrity of the intestinal mucosal barrier in the host by controlling the expression levels of early and late inflammatory genes following invasion by enteric pathogens.
Collapse
|
17
|
Saha DR, Guin S, Krishnan R, Nag D, Koley H, Shinoda S, Ramamurthy T. Inflammatory diarrhea due to enteroaggregative Escherichia coli: evidence from clinical and mice model studies. Gut Pathog 2013; 5:36. [PMID: 24294997 PMCID: PMC4176733 DOI: 10.1186/1757-4749-5-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/27/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This study was conducted to determine the role of enteroaggregative Escherichia coli (EAEC) in inflammatory diarrhea among hospitalized patients in Kolkata. The inflammatory pathogenesis of EAEC was established in mice model and histopathological studies. Presence of fecal leucocytes (FLCs) can be suspected for EAEC infection solely or as a mixed with other enteric pathogens. METHODS Active surveillance was conducted for 2 years on 2 random days per week with every 5th patient admitted to the Infectious Diseases Hospital (IDH). Diarrheal samples were processed by conventional culture, microscopy, ELISA and molecular methods. Two EAEC isolated as sole pathogens were examined in mice after induced intestinal infection. The intestinal tissue samples were processed to analyze the histological changes. RESULTS Of the 2519 samples screened, fecal leucocytes, erythrocytes and occult blood were detected in 1629 samples. Most of the patients had acute watery diarrhea (75%) and vomiting (78%). Vibrio cholerae O1 was the main pathogen in patients of 5-10 years age group (33%). Shigellosis was more in children from 2-5 years of age (19%), whereas children <2 years appeared to be susceptible for infection caused by EAEC (16%). When tested for the pathogenicity, the EAEC strains colonized well and caused inflammatory infection in the gut mucosa of BALB/C mice. CONCLUSION This hospital-based surveillance revealed prevalence of large number of inflammatory diarrhea. EAEC was the suspected pathogen and <2 years children appeared to be the most susceptible age group. BALB/C mice may be a suitable animal model to study the EAEC-mediated pathogenesis.
Collapse
Affiliation(s)
- Dhira Rani Saha
- Division of Histology & Electron microscopy, National Institute of Cholera and Enteric Diseases, P-33, C,I,T Road, Scheme XM, Beliaghata, Kolkata 700 010, West Bengal, India.
| | | | | | | | | | | | | |
Collapse
|
18
|
Chougule P, Herlenius G, Hernandez NM, Patil PB, Xu B, Sumitran-Holgersson S. Isolation and characterization of human primary enterocytes from small intestine using a novel method. Scand J Gastroenterol 2012; 47:1334-43. [PMID: 22943429 PMCID: PMC3490477 DOI: 10.3109/00365521.2012.708940] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cell culture studies of enterocytes are important in many fields. However, there are difficulties in obtaining cell lines from adult human intestine, such as microbial contamination of cultures from the tissue samples, short life span of enterocytes, overgrowth of mesenchymal cells, etc. Various model used to obtain adult intestinal cell lines are very complex requiring use of feeder layer or gel matrices. The aim of this study was to establish a novel method for the simple and reproducible isolation of human enterocytes. Enterocytes were isolated from SI samples (n = 5) obtained from cadaveric donors using a mechanical procedure, and separation with immunomagnetic beads coated with anti-EpCAM antibodies. Light and electron microscopy, flow cytometry and immunocytochemistry techniques were used to characterize the isolated cells. Immunohistochemical staining of normal SB biopsies confirmed that the cell cultures maintained an in vivo phenotype as reflected in cytokeratin expression CK18, CK20 and expression of intestine-specific markers such as sucrase isomaltase and maltase glucoamylase. Furthermore, the cells strongly expressed TLR-5, 6, 7, 8 and 10 and several molecules such as CD40, CD86, CD44, ICAM-1 and HLA-DR which are important in triggering cell-mediated immune responses. This novel technique provides a unique in vitro system to study the biology of enterocytes in normal conditions as well as to study inflammatory processes in various small bowel disorders.
Collapse
Affiliation(s)
- Priti Chougule
- Laboratory for Transplantation and Regenerative Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gustaf Herlenius
- Transplant Institute at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nidia Maritza Hernandez
- Laboratory for Transplantation and Regenerative Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pradeep B Patil
- Laboratory for Transplantation and Regenerative Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Xu
- Laboratory for Transplantation and Regenerative Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suchitra Sumitran-Holgersson
- Laboratory for Transplantation and Regenerative Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Estrada-Garcia T, Navarro-Garcia F. Enteroaggregative Escherichia coli pathotype: a genetically heterogeneous emerging foodborne enteropathogen. ACTA ACUST UNITED AC 2012; 66:281-98. [PMID: 22775224 DOI: 10.1111/j.1574-695x.2012.01008.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/28/2022]
Abstract
Until now, a common feature that defines the enteroaggregative Escherichia coli (EAEC) strains is the ability to produce a 'stacked-brick' appearance on epithelial cells, but it does not distinguish between pathogenic and nonpathogenic strains. Numerous adhesins, toxins, and proteins associated with virulence have been described, as well as multiple factors contributing to EAEC-induced inflammation. None of these factors are found in all EAEC isolates, and no single factor has ever been implicated in EAEC virulence. The European outbreak of Shiga-toxin-producing EAEC raises its pathogenic potential and interest on finding the true pathogenic factors that may define this pathotype. EAEC were first associated with persistent diarrhea in infants from developing countries, since then they have increasingly been linked as a cause of acute and persistent diarrhea in young infants and children in developing and industrialized countries, individuals infected with human immunodeficiency virus, as a cause of acute diarrhea in travelers from industrialized regions, and with foodborne outbreaks. A major effect of EAEC infection is on the malnourished children in developing countries. Here, we will discuss the EAEC public health relevance and their complexity because of the strain heterogeneity regarding their pathogenesis, identification, diagnosis, lineage, epidemiology, and clinical manifestations.
Collapse
Affiliation(s)
- Teresa Estrada-Garcia
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del IPN, México DF, Mexico
| | | |
Collapse
|
20
|
Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with enterotoxigenic Escherichia coli. PLoS One 2012; 7:e41041. [PMID: 22815904 PMCID: PMC3398878 DOI: 10.1371/journal.pone.0041041] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/21/2012] [Indexed: 01/01/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains that produce heat-stable (ST) and/or heat - labile (LT) enterotoxins are cause of post – weaning diarrhea in piglets. However, the relative importance of the different enterotoxins in host immune responses against ETEC infection has been poorly defined. In the present study, several isogenic mutant strains of an O149:F4ac+, LT+ STa+ STb+ ETEC strain were constructed that lack the expression of LT in combination with one or both types of ST enterotoxins (STa and/or STb). The small intestinal segment perfusion (SISP) technique and microarray analysis were used to study host early immune responses induced by these mutant strains 4 h after infection in comparison to the wild type strain and a PBS control. Simultaneously, net fluid absorption of pig small intestinal mucosa was measured 4 h after infection, allowing us to correlate enterotoxin secretion with gene regulation. Microarray analysis showed on the one hand a non-toxin related general antibacterial response comprising genes such as PAP, MMP1 and IL8. On the other hand, results suggest a dominant role for STb in small intestinal secretion early after post-weaning infection, as well as in the induced innate immune response through differential regulation of immune mediators like interleukin 1 and interleukin 17.
Collapse
|
21
|
Wang X, Gao X, Hardwidge PR. Heat-labile enterotoxin-induced activation of NF-κB and MAPK pathways in intestinal epithelial cells impacts enterotoxigenic Escherichia coli (ETEC) adherence. Cell Microbiol 2012; 14:1231-41. [PMID: 22452361 DOI: 10.1111/j.1462-5822.2012.01793.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes human morbidity and mortality in developing nations and is an emerging threat to food safety in developed nations. The ETEC heat-labile enterotoxin (LT) not only causes diarrheal disease by deregulating host adenylate cyclase, but also enhances ETEC adherence to intestinal epithelial cells. The mechanism governing this LT pro-adherence phenotype is unclear. Here we investigated intestinal epithelial cell signal transduction pathways activated by ETEC and quantified the relative importance of these host pathways to LT-induced ETEC adherence. We show that ETEC activates both NF-κB and mitogen-activated protein kinase signalling pathways through mechanisms that are primarily dependent upon LT. LT-induced NF-κB activation depends upon the cAMP-dependent activation of the Ras-like GTPase Rap1 but is independent of protein kinase A (PKA). By using inhibitors of these pathways, we demonstrate that inhibiting the p38 mitogen-activated protein kinase prevents LT from increasing ETEC adherence. By contrast, the LT pro-adherence phenotype appears unrelated to both LT-induced Rap1 activity and to subsequent NF-κB activation. We speculate that LT may alter host signal transduction to induce the presentation of ligands for ETEC adhesins in such a way that promotes ETEC adherence. Our findings provide insight into previously unexplored functions of LT and their relative importance to ETEC virulence.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | |
Collapse
|
22
|
Edwards LA, Bajaj-Elliott M, Klein NJ, Murch SH, Phillips AD. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli. PLoS One 2011; 6:e27030. [PMID: 22046438 PMCID: PMC3203933 DOI: 10.1371/journal.pone.0027030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/09/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Enteropathogenic (EPEC) and Enteroaggregative (EAEC) E. coli have similar, but distinct clinical symptoms and modes of pathogenesis. Nevertheless when they infect the gastrointestinal tract, it is thought that their flagellin causes IL-8 release leading to neutrophil recruitment and gastroenteritis. However, this may not be the whole story as the effect of bacterial adherence to IEC innate response(s) remains unclear. Therefore, we have characterized which bacterial motifs contribute to the innate epithelial response to EPEC and EAEC, using a range of EPEC and EAEC isogenic mutant strains. METHODOLOGY Caco-2 and HEp-2 cell lines were exposed to prototypical EPEC strain E2348/69 or EAEC strain O42, in addition to a range of isogenic mutant strains. E69 [LPS, non-motile, non-adherent, type three secretion system (TTSS) negative, signalling negative] or O42 [non-motile, non-adherent]. IL-8 and CCL20 protein secretion was measured. Bacterial surface structures were assessed by negative staining Transmission Electron Microscopy. The Fluorescent-actin staining test was carried out to determine bacterial adherence. RESULTS Previous studies have reported a balance between the host pro-inflammatory response and microbial suppression of this response. In our system an overall balance towards the host pro-inflammatory response is seen with the E69 WT and to a greater extent O42 WT, which is in fit with clinical symptoms. On removal of the external EPEC structures flagella, LPS, BFP, EspA and EspC; and EAEC flagella and AAF, the host inflammatory response is reduced. However, removal of E69 lymphostatin increases the host inflammatory response suggesting involvement in the bacterial mediated anti-inflammatory response. CONCLUSION Epithelial responses were due to combinations of bacterial agonists, with host-bacterial contact a key determinant of these innate responses. Host epithelial recognition was offset by the microbe's ability to down-regulate the inflammatory response. Understanding the complexity of this host-microbial balance will contribute to improved vaccine design for infectious gastroenteritis.
Collapse
Affiliation(s)
- Lindsey A Edwards
- Centre for Paediatric Gastroenterology, Royal Free Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Andrade JABD, Freymüller E, Fagundes-Neto U. Pathophysiology of enteroaggregative Escherichia coli infection: an experimental model utilizing transmission electron microscopy. ARQUIVOS DE GASTROENTEROLOGIA 2011; 47:306-12. [PMID: 21140095 DOI: 10.1590/s0004-28032010000300018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/26/2010] [Indexed: 11/22/2022]
Abstract
CONTEXT Enteroaggregative Escherichia coli strains have been associated with persistent diarrhea in several developing countries. In vivo procedures with animal models as rat, rabbit and gnotobiotic piglets intestinal loops, in vitro assays with cellular lines like T84, Caco 2, HT29, HeLa e HEp-2 and in vitro organ culture with intestinal fragments have been applied to study these bacteria and their pathogenicity. OBJECTIVES The present experimental research assessed the pathogenic interactions of three enteroaggregative Escherichia coli strains, using the in vitro organ culture, in order to observe and compare alterations in different regions of both, the ileal and the colonic mucosa. METHODS This study applied intestinal fragments from terminal ileum and colon that were excised from pediatric and adult patients that underwent colonoscopic procedures. Tissue was fixed for transmission electron microscopic study. Each bacterium was tested with three intestinal fragments for each region. RESULTS Enteroaggregative Escherichia coli strains colonized and provoked citotoxic effects in the ileal and colonic mucosa. Total or partial villi destruction, vacuolization of basal cytoplasm of the enterocytes, epithelium detachment, derangement of the structure and epithelial cell extrusion in ileal mucosa could explain the perpetuation of the diarrhea. Bacterial aggregates were seen in intestinal lumen associated with mucus and cellular debris and in the intercellular spaces of the destroyed epithelium, suggesting bacterial invasion that seemed to be secondary to the destruction of the tissue. CONCLUSIONS Pathogenesis of persistent diarrhea should include alterations in the small bowel structures where the digestive-absorptive functions take place. In the colonic mucosa the inflammatory lesions could explain the occurrence of colitis.
Collapse
|
24
|
Long KZ, Santos JI, Rosado JL, Estrada-Garcia T, Haas M, Al Mamun A, DuPont HL, Nanthakumar NN. Vitamin A supplementation modifies the association between mucosal innate and adaptive immune responses and resolution of enteric pathogen infections. Am J Clin Nutr 2011; 93:578-85. [PMID: 21248183 PMCID: PMC3041599 DOI: 10.3945/ajcn.110.003913] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The efficacy of vitamin A supplementation on diarrheal disease morbidity may reflect the divergent effects that supplementation has on pathogen-specific immune responses and pathogen-specific outcomes. OBJECTIVE We examined how vitamin A supplementation modified associations between gut-cytokine immune responses and the resolution of different diarrheal pathogen infections. DESIGN Stools collected from 127 Mexican children who were 5-15 mo old and enrolled in a randomized, placebo-controlled vitamin A supplementation trial were screened for enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli (ETEC), and Giardia lamblia. Fecal concentrations of interleukin (IL)-6, IL-8, IL-4, IL-5, IL-10, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were measured by using an enzyme-linked immunosorbent assay. Hazard models that incorporated categorized cytokine variables (ie, nondetectable, less than the median of detectable concentrations, and at least the median of detectable concentrations) were fit to the length of pathogen infections stratified by treatment group. RESULTS Vitamin A-supplemented children with fecal MCP-1 or IL-8 concentrations less than the median of detectable concentrations and IL-10 concentrations of at least median concentrations had longer durations of EPEC infection than did children in the placebo group. In supplemented children, detectable fecal TNF-α or IL-6 concentrations were associated with shorter ETEC infection durations, whereas MCP-1 concentrations of at least the median were associated with longer infection durations. Children in this group who had IL-4, IL-5, or IFN-γ concentrations of at least median detectable concentrations had shorter durations of G. lamblia infection. CONCLUSION The effect of supplementation on associations between fecal cytokine concentrations and pathogen infection resolution depends on the role of inflammatory immune responses in resolving specific pathogen infections.
Collapse
Affiliation(s)
- Kurt Z Long
- Nutrition, Environmental Health, Disease and Injury Control Unit, School of Population Health, University of Queensland, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fecal leukocytes in children infected with diarrheagenic Escherichia coli. J Clin Microbiol 2011; 49:1376-81. [PMID: 21325554 DOI: 10.1128/jcm.02199-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to determine the presence and quantity of fecal leukocytes in children infected with diarrheagenic Escherichia coli and to compare these levels between diarrhea and control cases. We analyzed 1,474 stool samples from 935 diarrhea episodes and 539 from healthy controls of a cohort study of children younger than 2 years of age in Lima, Peru. Stools were analyzed for common enteric pathogens, and diarrheagenic E. coli isolates were studied by a multiplex real-time PCR. Stool smears were stained with methylene blue and read by a blinded observer to determine the number of polymorphonuclear leukocytes per high-power field (L/hpf). Fecal leukocytes at >10 L/hpf were present in 11.8% (110/935) of all diarrheal episodes versus 1.1% (6/539) in controls (P < 0.001). Among stool samples with diarrheagenic E. coli as the only pathogen isolated (excluding coinfection), fecal leukocytes at >10 L/hpf were present in 8.5% (18/212) of diarrhea versus 1.3% (2/157) of control samples (P < 0.01). Ninety-five percent of 99 diarrheagenic E. coli diarrhea samples were positive for fecal lactoferrin. Adjusting for the presence of blood in stools, age, sex, undernutrition, and breastfeeding, enterotoxigenic E. coli (ETEC) isolation as a single pathogen, excluding coinfections, was highly associated with the presence of fecal leukocytes (>10 L/hpf) with an odds ratio (OR) of 4.1 (95% confidence interval [CI], 1.08 to 15.51; P < 0.05). Although diarrheagenic E. coli was isolated with similar frequencies in diarrhea and control samples, clearly it was associated with a more inflammatory response during symptomatic infection; however, in general, these pathogens elicited a mild inflammatory response.
Collapse
|
26
|
Ramos NL, Lamprokostopoulou A, Chapman TA, Chin JC, Römling U, Brauner A, Katouli M. Virulence characteristics of translocating Escherichia coli and the interleukin-8 response to infection. Microb Pathog 2010; 50:81-6. [PMID: 21075195 DOI: 10.1016/j.micpath.2010.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/03/2010] [Indexed: 12/24/2022]
Abstract
Four efficiently translocating Escherichia coli (TEC) strains isolated from the blood of humans (HMLN-1), pigs (PC-1) and rats (KIC-1 and KIC-2) were tested for their ability to adhere and translocate across human gut epithelial Caco-2 and HT-29 cells, to elicit a proinflammatory response and for the presence of 47 pathogenic E. coli virulence genes. HMLN-1 and PC-1 were more efficient in adhesion and translocation than rat strains, had identical biochemical phenotype (BPT) and serotype (O77:H18) and phylogenetic group (D). KIC-2 adhered more than KIC-1, belonged to different BPT and serotype but the same phylogenetic group as KIC-1. TEC strains elicited significantly higher IL-8 response in both cell lines (P < 0.05) and monocytic THP-1 (P < 0.0001) cells than non-TEC strains. KIC-2 induced the highest IL-8 response which may be associated with its immunostimulatory flagellin. Apart from adhesin genes fimH and bmaE that were carried by all strains, HMLN-1 and PC-1 carried capsule synthesis gene kpsMT III and KIC-2 carried the EAST1 toxin gene. The lack of known virulence genes and the ability of TEC to efficiently adhere and translocate whilst causing proinflammatory response suggests that these strains may carry as yet unidentified genes that enable their translocating ability.
Collapse
Affiliation(s)
- Nubia L Ramos
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jiang ZD, Ke S, Dupont HL. Rifaximin-induced alteration of virulence of diarrhoea-producing Escherichia coli and Shigella sonnei. Int J Antimicrob Agents 2009; 35:278-81. [PMID: 20045287 DOI: 10.1016/j.ijantimicag.2009.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/11/2022]
Abstract
Rifaximin shortens the duration of travellers' diarrhoea without important alteration of colonic flora. This study investigated the expression of virulence factors [heat-stable (ST) and heat-labile (LT) enterotoxins, surface adhesion factors (CS2/CS3, CS6) and matrix metalloproteinase-9 (MMP-9)] as well as the interleukin (IL)-8 induction potential of diarrhoeagenic Escherichia coli and Shigella sonnei strains exposed to rifaximin (8, 32 and 64mg/L) for 4, 8, 18 and 24h. Following exposure to rifaximin, enterotoxigenic E. coli (ETEC) isolates did not express ST/LT, CS2/CS3 or CS6, whereas enteroaggregative E. coli (EAEC) and S. sonnei isolates did not produce detectable amounts of MMP-9. Moreover, induction of IL-8 was undetectable. At subinhibitory concentrations, rifaximin alters the virulence of ETEC, EAEC and S. sonnei isolates. These findings help explain the efficacy of rifaximin despite minimal alteration of colonic flora.
Collapse
Affiliation(s)
- Zhi-Dong Jiang
- Center for Infectious Diseases, The University of Texas School of Public Health, 1200 Herman Pressler, Room 706, Houston, TX 77030, USA.
| | | | | |
Collapse
|
28
|
Associations between mucosal innate and adaptive immune responses and resolution of diarrheal pathogen infections. Infect Immun 2009; 78:1221-8. [PMID: 20038536 DOI: 10.1128/iai.00767-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The identification of immune response mechanisms that contribute to the control of diarrheal disease in developing countries remains an important priority. We addressed the role of fecal chemokines and cytokines in the resolution of diarrheal Escherichia coli and Giardia lamblia infections. Stools collected from 127 Mexican children 5 to 15 months of age enrolled in a randomized, double-blind, placebo-controlled, vitamin A supplementation trial were screened for enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli (ETEC), and Giardia lamblia. Fecal concentrations of tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1), interleukin-4 (IL-4), IL-5, IL-6, IL-8, IL-10, and interferon-gamma (IFN-gamma) were determined. Hazard models incorporating cytokine variables were fit to durations of asymptomatic and symptomatic pathogen infections, controlling for treatment group. Increased levels of TNF-alpha and IL-6 were associated with decreased durations of EPEC infection and increased ETEC durations. Increased IL-4 and IFN-gamma levels were associated with decreased and increased durations, respectively, of both EPEC and ETEC infections. Increased IL-10 levels were associated with increased and decreased durations of asymptomatic and symptomatic EPEC infections, respectively, and increased durations of both asymptomatic and symptomatic ETEC infections. Increased levels of MCP-1, IFN-gamma, IL-4, and IL-5 were associated with increased G. lamblia infection duration, while increased IL-8 levels were associated with decreased durations. Differences in proinflammatory and Treg cytokine levels are associated with differences in the resolution of inflammatory and noninflammatory pathogen infections.
Collapse
|
29
|
Pretreatment of epithelial cells with rifaximin alters bacterial attachment and internalization profiles. Antimicrob Agents Chemother 2009; 54:388-96. [PMID: 19858255 DOI: 10.1128/aac.00691-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rifaximin is a poorly absorbed semisynthetic antibiotic derivative of rifampin licensed for use in the treatment of traveler's diarrhea. Rifaximin reduces the symptoms of enteric infection, often without pathogen eradication and with limited effects on intestinal flora. Epithelial cells (HEp-2 [laryngeal], HCT-8 [ileocecal], A549 [lung], and HeLa [cervical]) were pretreated with rifaximin (or control antibiotics) prior to the addition of enteroaggregative Escherichia coli (EAEC). EAEC adherence was significantly reduced following rifaximin pretreatment compared to pretreatment with rifampin or doxycycline for three of the four cell lines tested. The rifaximin-mediated changes to epithelial cells were explored further by testing the attachment and internalization of either Bacillus anthracis or Shigella sonnei into A549 or HeLa cells, respectively. The attachment and internalization of B. anthracis were significantly reduced following rifaximin pretreatment. In contrast, neither the attachment nor the internalization of S. sonnei was affected by rifaximin pretreatment of HeLa cells, suggesting that rifaximin-mediated modulation of host cell physiology affected bacteria utilizing distinct attachment/internalization mechanisms differently. In addition, rifaximin pretreatment of HEp-2 cells led to reduced concentrations of inflammatory cytokines from uninfected cells. The study provides evidence that rifaximin-mediated changes in epithelial cell physiology are associated with changes in bacterial attachment/internalization and reduced inflammatory cytokine release.
Collapse
|
30
|
Mohamed JA, DuPont HL, Jiang ZD, Flores J, Carlin LG, Belkind-Gerson J, Martinez-Sandoval FG, Guo D, White AC, Okhuysen PC. A single-nucleotide polymorphism in the gene encoding osteoprotegerin, an anti-inflammatory protein produced in response to infection with diarrheagenic Escherichia coli, is associated with an increased risk of nonsecretory bacterial diarrhea in North American travelers to Mexico. J Infect Dis 2009; 199:477-85. [PMID: 19128145 DOI: 10.1086/596319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteoprotegerin (OPG), an immunoregulatory member of the TNF receptor superfamily, is expressed in inflamed intestinal mucosa. We investigated whether OPG is produced by intestinal epithelial cells and tested the hypothesis that single-nucleotide polymorphisms (SNPs) in the gene encoding OPG (TNFRSF11B) are associated with traveler's diarrhea (TD) among North American travelers to Mexico. METHODS OPG concentration was measured in the supernatants of T84 cells infected with various diarrheagenic Escherichia coli pathotypes. Genotyping was performed for 4 SNPs in the OPG gene for 968 North American travelers with or without TD. Stool samples from travelers with TD were evaluated for the presence of enteric pathogens. RESULTS T84 cells produced higher OPG levels in response to infection with various diarrheagenic E. coli pathotypes than with E. coli controls (P<.05). A SNP in the exon 1 region of the OPG gene (OPG+1181G>C) was associated with TD in white travelers who stayed in Mexico for >1 week during the summer (P=.009) and for TD due to nonsecretory pathogens (P=.001). CONCLUSIONS Our study suggests that OPG is secreted by intestinal epithelial cells in response to enteropathogens and that a polymorphism in the OPG gene is associated with an increased susceptibility to TD.
Collapse
Affiliation(s)
- Jamal A Mohamed
- Division of Infectious Diseases, The University of Texas Medical School, Center for Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Högdahl M, Söderlund G, Kihlström E. Expression of chemokines and adhesion molecules in human coronary artery endothelial cells infected with Chlamydia (Chlamydophila) pneumoniae. APMIS 2009; 116:1082-8. [PMID: 19133011 DOI: 10.1111/j.1600-0463.2008.01145.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlamydia pneumoniae has during recent years been associated with cardiovascular disease and atherosclerosis. Chemokines, leukocyte adhesion proteins and metalloproteinases are significant for chemotaxis and attachment of leukocytes to vessel walls, and for stability of atherosclerotic plaques. To determine the ability of C. pneumoniae to elicit inflammation in a relevant target host cell, we infected human coronary artery endothelial cells (HCAEC) with a clinical isolate of C. pneumoniae. Extracellular release of five chemokines, two adhesion proteins and a metalloproteinase was measured at different time points after infection using a cytometric bead assay and ELISA. Secretion of IL-8, MCP-1, MIG, IP-10 and ICAM-1 was significantly increased 48 h after C. pneumoniae infection of HCAEC in comparison with uninfected controls. Release of RANTES occurred already 6 h after infection. C. pneumoniae did not elicit release of E-selectin or MMP-1. We conclude that C. pneumoniae induces expression of proinflammatory components in HCAEC, which would promote migration of leukocytes towards endothelial cells. This suggests that C. pneumoniae initiates and propagates vascular inflammation in ways that contribute to coronary artery disease.
Collapse
Affiliation(s)
- M Högdahl
- Department of Clinical Microbiology, University Hospital, Linköping, Sweden
| | | | | |
Collapse
|
32
|
Chakraborty K, Ghosh S, Koley H, Mukhopadhyay AK, Ramamurthy T, Saha DR, Mukhopadhyay D, Roychowdhury S, Hamabata T, Takeda Y, Das S. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 2008; 10:2520-37. [PMID: 18717821 DOI: 10.1111/j.1462-5822.2008.01227.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cathelicidin (hCAP-18/LL-37) and beta-defensin 1 (HBD-1) are human antimicrobial peptides (AMPs) with high basal expression levels, which form the first line of host defence against infections over the epithelial surfaces. The antimicrobial functions owe to their direct microbicidal effects as well as the immunomodulatory role. Pathogenic microorganisms have developed multiple modalities including transcriptional repression to combat this arm of the host immune response. The precise mechanisms and the pathogen-derived molecules responsible for transcriptional downregulation remain unknown. Here, we have shown that enteric pathogens suppress LL-37 and HBD-1 expression in the intestinal epithelial cells (IECs) with Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) exerting the most dramatic effects. Cholera toxin (CT) and labile toxin (LT), the major virulence proteins of V. cholerae and ETEC, respectively, are predominantly responsible for these effects, both in vitro and in vivo. CT transcriptionally downregulates the AMPs by activating several intracellular signalling pathways involving protein kinase A (PKA), ERK MAPKinase and Cox-2 downstream of cAMP accumulation and inducible cAMP early repressor (ICER) may mediate this role of CT, at least in part. This is the first report to show transcriptional repression of the AMPs through the activation of cellular signal transduction pathways by well-known virulence proteins of pathogenic microorganisms.
Collapse
|
33
|
Huang DB, Mohamed JA, Nataro JP, DuPont HL, Jiang ZD, Okhuysen PC. Virulence characteristics and the molecular epidemiology of enteroaggregative Escherichia coli isolates from travellers to developing countries. J Med Microbiol 2007; 56:1386-1392. [PMID: 17893178 DOI: 10.1099/jmm.0.47161-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is associated with diarrhoea among travellers to developing countries. EAEC virulence properties predisposing to illness are not clear. Sixty-four EAEC strains identified by a HEp-2 cell assay and isolated from faecal samples from US and European travellers to developing countries were studied for the prevalence of 11 putative virulence genes by PCR: 49 EAEC strains from adults with acute diarrhoea and 15 EAEC strains from adults without diarrhoea. E. coli strains from the stools of healthy travellers to the same region were used as controls. EAEC carrying aggR, aap, astA and set1A were identified individually more often in the stools of subjects with diarrhoea compared with those without diarrhoea (P<0.05). EAEC isolates with two or three of these genes were associated with diarrhoea compared with EAEC isolates without the presence of these genes (P<0.05). Subjects with diarrhoea who shed EAEC isolates positive for these genes were more likely than subjects shedding EAEC negative for these genes to pass stools with gross mucus (57 vs 14 %) and faecal leukocytes (40 vs 7 %) (P<0.05). This study shows the heterogeneity of gene profiles of EAEC strains found in the stools of international travellers and suggests that the presence of aggR, aap, astA or set1A, the number of genes present and stool characteristics may be markers for more virulent EAEC strains.
Collapse
Affiliation(s)
- David B Huang
- University of Texas at Houston Health Science Center, Division of Infectious Diseases, Houston, TX, USA
- Baylor College of Medicine, Division of Infectious Diseases, Houston, TX, USA
| | - Jamal A Mohamed
- University of Texas at Houston Health Science Center, Division of Infectious Diseases, Houston, TX, USA
| | - James P Nataro
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Herbert L DuPont
- University of Texas at Houston Health Science Center, Division of Infectious Diseases, Houston, TX, USA
- St Luke's Episcopal Hospital, Houston, TX, USA
- Baylor College of Medicine, Division of Infectious Diseases, Houston, TX, USA
- University of Texas at Houston School of Public Health, Houston, TX, USA
| | - Zhi-Dong Jiang
- University of Texas at Houston School of Public Health, Houston, TX, USA
| | - Pablo C Okhuysen
- University of Texas at Houston School of Public Health, Houston, TX, USA
- University of Texas at Houston Health Science Center, Division of Infectious Diseases, Houston, TX, USA
- Baylor College of Medicine, Division of Infectious Diseases, Houston, TX, USA
| |
Collapse
|
34
|
Huang DB, Zhou J. Effect of intensive handwashing in the prevention of diarrhoeal illness among patients with AIDS: a randomized controlled study. J Med Microbiol 2007; 56:659-663. [PMID: 17446290 DOI: 10.1099/jmm.0.46867-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patients with AIDS frequently develop diarrhoeal illness. In this randomized, controlled study, 260 patients were screened for those who had not had diarrhoea in the preceding 3 months and who had received a stable highly active antiretroviral therapy regimen for at least 6 weeks prior to the study enrollment. A total of 148 patients met the inclusion criteria and were enrolled: 75 patients were randomly assigned to an intensive handwashing intervention (i.e. handwashing after defecation, after cleaning infants who had defecated, before preparing food, before eating, and before and after sex) and 73 patients were randomly assigned to the control group. Patients in both groups were called weekly by telephone to determine compliance with handwashing and to determine the number of diarrhoeal episodes for the preceding week. Patients were observed for 1 year. Patients assigned to the intensive handwashing intervention group washed their hands more frequently compared with the control group (seven vs four times a day, respectively; P <0.05) and developed fewer episodes of diarrhoeal illness (1.24+/-0.9 vs 2.92+/-0.6 new episodes of diarrhoea, respectively; P <0.001) during the 1 year observation. The most common pathogens identified in both groups in patients who developed diarrhoeal illness were Giardia lamblia, Cryptosporidium, Entamoeba histolytica and Shigella flexneri. These data suggest that intensive handwashing reduces diarrhoeal illness in patients with AIDS.
Collapse
Affiliation(s)
- David B Huang
- Division of Infectious Diseases, New Jersey Veterans Affairs Medical Center, East Orange, NJ, USA
| | - Jing Zhou
- Division of Infectious Diseases, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, 535EE, Houston, TX 77030, USA
| |
Collapse
|
35
|
Huang DB, Mohanty A, DuPont HL, Okhuysen PC, Chiang T. A review of an emerging enteric pathogen: enteroaggregative Escherichia coli. J Med Microbiol 2006; 55:1303-1311. [PMID: 17005776 DOI: 10.1099/jmm.0.46674-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an increasingly recognized enteric pathogen. It is a cause of both acute and persistent diarrhoea among children, adults and HIV-infected persons, in both developing and developed countries. In challenge studies, EAEC has caused diarrhoeal illness with the ingestion of 1010 c.f.u. Outbreaks of diarrhoeal illness due to EAEC have been reported, and linked to the ingestion of contaminated food. Diarrhoeal illness due to EAEC is the result of a complex pathogen–host interaction. Some infections due to EAEC result in diarrhoeal illness and elicit an inflammatory response, whereas other infections do not result in a symptomatic infection. Many putative virulence genes and EAEC strains that produce biofilm have been identified; however, the clinical significance of these genes and of biofilm production has yet to be defined. A −251 AA single nucleotide polymorphism (SNP) in the interleukin (IL)-8 promoter region is reported to increase host susceptibility to EAEC diarrhoea. Ciprofloxacin and rifaximin continue to be an effective treatment in persons infected with EAEC. This review is intended to provide an updated review for healthcare workers on EAEC, an emerging enteric pathogen.
Collapse
Affiliation(s)
- David B Huang
- Infectious Diseases Section, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, 535EE, Houston, TX 77030, USA
| | - Alakananda Mohanty
- University of Texas at Houston School of Public Health, 1200 Herman Pressler - E50, Houston, TX 77030, USA
| | - Herbert L DuPont
- Infectious Diseases Section, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, 535EE, Houston, TX 77030, USA
- University of Texas at Houston Medical School, 6431 Fannin Street, Houston, TX 77030, USA
- University of Texas at Houston School of Public Health, 1200 Herman Pressler - E50, Houston, TX 77030, USA
- St. Luke's Episcopal Hospital, 6720 Bertner Avenue, MC 1-164, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- University of Texas at Houston Medical School, 6431 Fannin Street, Houston, TX 77030, USA
- University of Texas at Houston School of Public Health, 1200 Herman Pressler - E50, Houston, TX 77030, USA
| | - Tom Chiang
- New Jersey Veterans Affairs Medical Center, 385 Tremont Avenue, East Orange, NJ 07018-1023, USA
| |
Collapse
|
36
|
Abstract
Of the millions who travel from the industrialized world to developing countries every year, between 20% and 50% will develop at least one episode of diarrhea, making it the most common medical ailment afflicting travelers. Although usually a mild illness, traveler's diarrhea can result in significant morbidity and hardship overseas. Precautions can be taken to minimize the risk of developing traveler's diarrhea, either through avoidance of potentially contaminated food or drink or through various prophylactic measures, including both nonpharmacological and antimicrobial strategies. If diarrhea does develop despite the precautions taken, effective treatment-usually a combination of an antibiotic and an antimotility agent-can be brought by the traveler and initiated as soon as symptoms develop. In the future, vaccines-several of which are in the advanced stages of clinical testing-may be added to the list of prophylactic measures.
Collapse
Affiliation(s)
- David J Diemert
- Human Hookworm Vaccine Initiative, Sabin Vaccine Institute, 1889 F St. NW, Suite 200S, Washington, DC 20006, USA.
| |
Collapse
|
37
|
Harrington SM, Dudley EG, Nataro JP. Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol Lett 2006; 254:12-8. [PMID: 16451173 DOI: 10.1111/j.1574-6968.2005.00005.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is emerging as a significant diarrheal pathogen in multiple population groups. Although most commonly associated with pediatric diarrhea in developing countries, EAEC is also linked to diarrhea in adults including HIV-positive patients and travelers and has been a cause of food-borne outbreaks in the industrialized world. Current data suggest that one set of virulence elements is not associated with all EAEC strains, but that combinations of multiple factors prevail. Pathogenesis is believed to be initiated with adherence to the terminal ileum and colon in an aggregative, stacked-brick-type pattern by means of one of several different hydrophobic aggregative adherence fimbriae. Some strains of EAEC may then elaborate cytotoxins including the plasmid-encoded toxin and the enterotoxins, EAST1 and ShET1. An AraC homolog termed AggR regulates several genes contributing to fimbrial biogenesis in 'typical EAEC strains'. AggR has now also been shown to regulate genes on a chromosomal island. Sequencing of the EAEC type strain 042 completed at the Sanger Center has revealed two other chromosomal islands that are being explored for their pathogenetic potential. This article reviews these virulence elements and presents on-going areas of research in EAEC pathogenesis.
Collapse
Affiliation(s)
- Susan M Harrington
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
38
|
Allen KP, Randolph MM, Fleckenstein JM. Importance of heat-labile enterotoxin in colonization of the adult mouse small intestine by human enterotoxigenic Escherichia coli strains. Infect Immun 2006; 74:869-75. [PMID: 16428729 PMCID: PMC1360293 DOI: 10.1128/iai.74.2.869-875.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/01/2005] [Accepted: 10/21/2005] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are a significant cause of diarrheal disease and infant mortality in developing countries. Studies of ETEC pathogenesis relevant to vaccine development have been greatly hampered by the lack of a suitable small-animal model of infection with human ETEC strains. Here, we demonstrate that adult immunocompetent outbred mice can be effectively colonized with the prototypical human ETEC H10407 strain (colonization factor antigen I; heat-labile and heat-stable enterotoxin positive) and that production of heat-labile holotoxin provides a significant advantage in colonization of the small intestine in this model.
Collapse
Affiliation(s)
- Kenneth P Allen
- Department of Comparative Medicine, University of Tenessee Health Science Center, Memphis, TN 38104, USA
| | | | | |
Collapse
|
39
|
Harrington SM, Strauman MC, Abe CM, Nataro JP. Aggregative adherence fimbriae contribute to the inflammatory response of epithelial cells infected with enteroaggregative Escherichia coli. Cell Microbiol 2005; 7:1565-78. [PMID: 16207244 DOI: 10.1111/j.1462-5822.2005.00588.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) causes watery diarrhoea that is often mildly inflammatory. Previous studies have reported that the flagellin of EAEC induces IL-8 from intestinal epithelial cells (IECs) in culture. To characterize more fully the inflammatory response to EAEC, we infected IECs with EAEC prototype strain 042 and assessed cellular responses by macroarray and reverse transcriptase polymerase chain reaction (RT-PCR). Genes upregulated in 042-infected non-polarized T84 cells included IL-8, IL-6, TNF-alpha, GRO-alpha, GRO-gamma, ICAM-1, GM-CSF and IL-1alpha. RT-PCR analyses performed with cDNA from T84 and HT-29 cells infected with an aflagellar mutant (042fliC) suggested that these responses were primarily mediated by flagellin. To better reproduce the conditions of the infection for this non-invasive pathogen, we assessed the responses of polarized IECs to strain 042 infection. As expected, 042 induced IL-8 production from both polarized T84 and HT-29 cells. However, significant IL-8 secretion was induced in polarized T84 cells infected with 042fliC, suggesting that a factor other than flagellin contributes to inflammation in this model. This non-flagellar IL-8 response required expression of the aggregative adherence fimbria (AAF) adhesin, and was related to the presence of the minor fimbria-associated protein AafB. Our data suggest that multiple factors contribute to EAEC-induced inflammation, and further characterization of the nature of EAEC proinflammatory factors will greatly advance our understanding of this emerging pathogen.
Collapse
Affiliation(s)
- Susan M Harrington
- Department of Microbiology, The University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|