1
|
Yang J, Li W, Hu Y, Han Y, Lei C, Wang H. Establishment of a rapid RAA-CRISPR/Cas12a system targeting the recN gene for on-site detection of Streptococcus suis in livestock and fresh pork meat. Funct Integr Genomics 2025; 25:99. [PMID: 40327171 DOI: 10.1007/s10142-025-01605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Streptococcus suis is a major bacterial pathogen in the swine industry, causing meningitis, arthritis, and other diseases in infected pigs. It also poses significant public health risks due to its zoonotic potential, particularly in individuals with skin lesions. Current detection methods, including traditional culture-based techniques and PCR assays, are time-consuming, labor-intensive, and lack sufficient accuracy. To address these limitations, this study aimed to develop a rapid and precise detection method for S. suis. By leveraging whole-genome sequencing (WGS) and multiple sequence alignment, the recN gene was identified as a highly specific molecular target. A novel isothermal detection method, integrating recombinase-aided amplification (RAA) with CRISPR/Cas12a, was subsequently established. This RAA-CRISPR/Cas12a-based system demonstrated superior sensitivity compared to conventional PCR (targeting the gdh gene), achieving detection within 30 min without requiring specialized equipment. This method achieves 2.44 × 101 copies/µL and 2.1 × 101 CFU sensitivity and 100% specificity within 30 min, outperforming conventional PCR in speed and reliability while eliminating dependency on specialized equipment. Designed for field applications, it offers a cost-effective (US$1/test), user-friendly solution for on-site S. suis detection in swine farms and fresh pork meat, enhancing outbreak control and preventive healthcare in the livestock industry.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, NO. 29 Wangjiang Road, Chengdu, Sichuan, 610064, People's Republic of China
| | - Wenjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, NO. 29 Wangjiang Road, Chengdu, Sichuan, 610064, People's Republic of China
| | - Yulian Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, NO. 29 Wangjiang Road, Chengdu, Sichuan, 610064, People's Republic of China
| | - Yun Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, NO. 29 Wangjiang Road, Chengdu, Sichuan, 610064, People's Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, NO. 29 Wangjiang Road, Chengdu, Sichuan, 610064, People's Republic of China.
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, NO. 29 Wangjiang Road, Chengdu, Sichuan, 610064, People's Republic of China.
| |
Collapse
|
2
|
Wang H, Dong C, Tian X, Pan Y, Wang L, An T, Zhu L. Development and application of a dual LAMP-LFD assay for the simultaneous detection of Streptococcus suis and Glaesserella parasuis. Front Cell Infect Microbiol 2025; 15:1575365. [PMID: 40235932 PMCID: PMC11996922 DOI: 10.3389/fcimb.2025.1575365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Streptococcus suis (S. suis) and Glaesserella parasuis (G. parasuis) are prevalent pathogens in pig populations and are often associated with co-infections, leading to substantial economic losses in the swine industry. However, there is currently a shortage of rapid detection methods. In this study, a dual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD) assay was developed for the simultaneous and convenient detection of S. suis and G. parasuis. Methods The assay utilized primers targeting the conserved regions of the gdh gene of S. suis and the infB gene of G. parasuis. Optimal primer sets were identified, and reaction conditions, including temperature, time, and primer concentration ratios, were optimized using single-variable control method. The LAMP-LFD assay was established with biotin and digoxin or biotin and 6-FAM-labeled FIP/BIP primers, combined with LFD. Results The assay was most effective at a reaction temperature of 62°C, a primer concentration ratio of 1:4, and a reaction time of 40 minutes. The minimum detection limits were 22 and 18 copies/μL for recombinant plasmids and 19 and 20 CFU for bacterial samples of S. suis and G. parasuis, respectively. The assay showed no cross-reactivity with other pathogens and exhibited high adaptability across various thermal platforms, including PCR instruments, metal baths, and water baths. Clinical testing of 106 samples revealed positive rates of 11.32% (12/106) for S. suis, 25.47% (27/106) for G. parasuis, and 2.83% (3/106) for mixed infections. Discussion This simple, rapid, specific, and sensitive dual LAMP-LFD assay provides robust technical support for the prevention and control of swine streptococcosis and Glässer's disease.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chenhui Dong
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Pan
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Longxi Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tonqging An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
3
|
Wang L, Qiu J, He B, Wu X, Chen Q, Wang Q, Wu R, Zheng B, Zhou L, Huang X. Isolation, Identification, and Molecular Genetic Characteristics of a Pathogenic Strain of Streptococcus suis Serotype 3. Pathogens 2025; 14:192. [PMID: 40005567 PMCID: PMC11858596 DOI: 10.3390/pathogens14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Streptococcus suis (S. suis) is considered as one of the most crucial bacterial pathogens that leads to serious economic losses to the swine industry. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Epidemiology data underscore the importance of S. suis serotype 3 (SS3). However, except for a few epidemiological information, limited study information is available on this serotype. Herein, a pathogenic SS3 (the S. suis strain YA) was isolated from infected piglets in clinical practice, and then whole genome sequencing and analysis, hemolytic activity, antimicrobial susceptibility, pathogenicity to mice and piglets were conducted. The results of the whole genome sequencing of the S. suis strain YA showed that the complete genome was 2,167,682 bp in length with a G + C content of 41.2% and exhibited a unique sequence type (ST1801). The result of phylogenetic tree showed that it was most closely related to strain DNC15 and 6407 (ST54) from Denmark. The tet(W) and erm(B) resistant genes were identified in the S. suis strain YA by inserting into rum locus, in accordance with the result of resistance to tetracyclines and macrolide-lincosamide-streptogramin antibiotics. Twenty-seven key virulence factors were detected in the S. suis strain YA, including sly, ef and mrp, which contribute to pathogenicity in mice and piglets, causing bleeding and congestion in multiple tissue organs especially in the brains. And the LD50 value for mice was 1.54 × 107 CFU. Therefore, our research emphasizes the importance of understanding SS3, and provides valuable information for the scientific prevention and control of S. suis.
Collapse
Affiliation(s)
- Longbai Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingli Qiu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Bing He
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Bohan Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.Q.); (B.H.); (X.W.); (Q.C.); (R.W.)
| | - Xiaohong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (Q.W.); (B.Z.)
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Li K, Zhang Y, Luo T, Li C, Yu H, Wang W, Zhang H, Chen H, Xia C, Gao C. Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida. Microorganisms 2024; 12:2017. [PMID: 39458326 PMCID: PMC11509477 DOI: 10.3390/microorganisms12102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine respiratory disease is a significant economic problem for the global swine industry. Haemophilus parasuis (H. parasuis), Streptococcus suis (S. suis), and Pasteurella multocida (P. multocida) are three important pathogenic bacteria of the swine respiratory tract. Notably, the three pathogens not only frequently manifest as mixed infections, but their striking clinical similarities also present difficulties for pig populations in terms of disease prevention and treatment. Thus, we developed a triplex real-time quantitative polymerase chain reaction (qPCR) assay based on a TaqMan probe for the detection of H. parasuis, S. suis serotype 2, and P. multocida. Primers and probes were designed to target the conserved regions of the H. parasuis OmpP2 gene, the S. suis serotype 2 gdh gene, and the P. multocida Kmt1 gene. By optimizing the reaction system and conditions, a triplex qPCR method for simultaneous detection of H. parasuis, S. suis serotype 2, and P. multocida was successfully established. The amplification efficiencies of the standard curves for all three pathogens were found to be highly similar, with values of 102.105% for H. parasuis, 105.297% for S. suis serotype 2, and 104.829% for P. multocida, and all R2 values achieving 0.999. The specificity analysis results showed that the triplex qPCR method had a strong specificity. The sensitivity test results indicated that the limit of detection can reach 50 copies/μL for all three pathogens. Both intra- and inter-assay coefficients of variation for repeatability were below 1%. This triplex qPCR method was shown to have good specificity, sensitivity, and reproducibility. Finally, the triplex qPCR method established in this study was compared with the nested PCR as recommended by the Chinese national standard (GB/T34750-2017) for H. parasuis, the PCR as recommended by the Chinese national standard (GB/T 19915.9-2005) for S. suis serotype 2, and the PCR as recommended by the Chinese agricultural industry standard (NY/T 564-2016) for P. multocida by detecting the same clinical samples. Both methods are reasonably consistent, while the triplex qPCR assay was more sensitive. In summary, triplex qPCR serves not only as a rapid and accurate detection and early prevention method for these pathogens but also constitutes a robust tool for microbial quality control in specific pathogen-free pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (K.L.); (Y.Z.); (T.L.); (C.L.); (H.Y.); (W.W.); (H.Z.); (H.C.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (K.L.); (Y.Z.); (T.L.); (C.L.); (H.Y.); (W.W.); (H.Z.); (H.C.)
| |
Collapse
|
5
|
Prompunt E, Thongkum W, Sumphanapai T, Kamseng P, Saoin S, Kloypan C, Tayapiwatana C, Nangola S. Integrating loop-mediated isothermal amplification with lateral flow assay to achieve a highly sensitive method for detecting Streptococcus suis Genome in raw pork. Heliyon 2024; 10:e36942. [PMID: 39281572 PMCID: PMC11402220 DOI: 10.1016/j.heliyon.2024.e36942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024] Open
Abstract
Streptococcus suis (S.suis), a zoonotic foodborne pathogen prevalent in Southeast Asia, poses a substantial threat to human and animal health because of its ability to cause severe and life-threatening illnesses. To address this challenge, a rapid and highly sensitive detection platform for S. suis in raw pork was developed by integrating loop-mediated isothermal amplification (LAMP) and a lateral flow assay (LFA), S. suis LAMP-LFA. LAMP reactions targeting the S. suis glutamate dehydrogenase (gdh) gene were optimized for specific detection of S. suis within 45 min at an isothermal temperature of 65 °C. The assay exhibited marked sensitivity, with a detection limit of 100 fg for genomic DNA extracted from S. suis cultures. Notably, this method showed no cross-reactivity with other bacterial contaminants commonly found in raw pork. The resulting LAMP amplicons were effectively detected using LFA, with a test limit of 101 CFU per 25 g of raw pork. S. suis LAMP-LFA proved to be highly specific and reliable, with no false-positives detected in spiked pork samples or pork samples containing other bacterial contaminants. Due to its high sensitivity, specificity, and rapid turnaround time, the proposed technique has immense potential as a field-deployable screening test for S. suis detection in raw pork, contributing to enhanced food safety and public health protection.
Collapse
Affiliation(s)
- Eakkapote Prompunt
- Division of Clinical Microbiology and Medical Parasitology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Weeraya Thongkum
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitima Sumphanapai
- Division of Clinical Hematology and Microscopy, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Parin Kamseng
- Division of Clinical Hematology and Microscopy, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Somphot Saoin
- Division of Clinical Immunology and Transfusion Sciences, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chirapat Kloypan
- School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Sciences, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
6
|
Chittick L, Okwumabua O. Loss of expression of the glutamate dehydrogenase (gdh) of Streptococcus suis serotype 2 compromises growth and pathogenicity. Microb Pathog 2024; 188:106565. [PMID: 38309311 DOI: 10.1016/j.micpath.2024.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Streptococcus suis serotype 2 is a zoonotic agent that causes substantial economic losses to the swine industry and threatens human public health. Factors that contribute to its ability to cause disease are not yet fully understood. Glutamate dehydrogenase (GDH) is an enzyme found in living cells and plays vital roles in cellular metabolism. It has also been shown to affect pathogenic potential of certain bacteria. In this study, we constructed a S. suis serotype 2 GDH mutant (Δgdh) by insertional inactivation mediated by a homologous recombination event and confirmed loss of expression of GDH in the mutant by immunoblot and enzyme activity staining assays. Compared with the wild type (WT) strain, Δgdh displayed a different phenotype. It exhibited impaired growth in all conditions evaluated (solid and broth media, increased temperature, varying pH, and salinity) and formed cells of reduced size. Using a swine infection model, pigs inoculated with the WT strain exhibited fever, specific signs of disease, and lesions, and the strain could be re-isolated from the brain, lung, joint fluid, and blood samples collected from the infected pigs. Pigs inoculated with the Δgdh strain did not exhibit any clinical signs of disease nor histologic lesions, and the strain could not be re-isolated from any of the tissues nor body fluid sampled. The Δgdh also showed a decreased level of survival in pig blood. Taken together, these results suggest that the gdh is important in S. suis physiology and its ability to colonize, disseminate, and cause disease.
Collapse
Affiliation(s)
- Lauren Chittick
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA
| | - Ogi Okwumabua
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA.
| |
Collapse
|
7
|
Wang J, Liang P, Sun H, Wu Z, Gottschalk M, Qi K, Zheng H. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains. Virulence 2022; 13:1455-1470. [PMID: 36031944 PMCID: PMC9423846 DOI: 10.1080/21505594.2022.2116160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis epidemic strains were responsible for two outbreaks in China and possessed increased pathogenicity which was featured prominently by inducing an excessive inflammatory response at the early phase of infection. To discover the critical genes responsible for the pathogenicity increase of S. suis epidemic strains, the genome-wide transcriptional profiles of epidemic strain SC84 were investigated at the early phase of interaction with BV2 cells. The overall low expression levels of 89K pathogenicity island (PAI) and 129 known virulence genes in the SC84 interaction groups indicated that its pathogenicity increase should be attributed to novel mechanisms. Using highly pathogenic strain P1/7 and intermediately pathogenic strain 89–1591 as controls, 11 pathogenicity increase crucial genes (PICGs) and 38 pathogenicity increase-related genes (PIRGs) were identified in the SC84 incubation groups. The PICGs encoded proteins related to the methionine biosynthesis/uptake pathway and played critical roles in the pathogenicity increase of epidemic strains. A high proportion of PIRGs encoded surface proteins related to host cell adherence and immune escape, which may be conducive to the pathogenicity increase of epidemic strains by rapidly initiating infection. The fact that none of PICGs and PIRGs belonged to epidemic strain-specific gene indicated that the pathogenicity increase of epidemic strain may be determined by the expression level of genes, rather than the presence of them. Our results deepened the understanding on the mechanism of the pathogenicity increase of S. suis epidemic strains and provided novel approaches to control the life-threatening infections of S. suis epidemic strains.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zongfu Wu
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
8
|
Rajkhowa S, Hussain I. Virulence gene profile and antimicrobial resistance of non-typeable Streptococcus suis isolated from clinically healthy and diseased pigs from North East India. Folia Microbiol (Praha) 2022; 67:947-953. [PMID: 35900692 DOI: 10.1007/s12223-021-00944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
The present study was conducted to investigate the virulence gene profile and antimicrobial resistance of non-typeable Streptococcus suis isolates circulating in pigs of North East India. Fifty-two non-typeable S. suis isolates from clinically healthy and diseased pigs were screened by using PCR for the presence of the muramidase-released protein (mrp), extracellular factor (epf), hemolysin suilysin (sly), arginine deiminase (arcA), and glutamate dehydrogenase (gdh) genes. Five different virulence gene profiles were observed and the most predominant virulence gene profile found in healthy pigs was mrp- + sly- + arcA- + gdh + + epf- whereas the most predominant virulence gene profile recorded in diseased pigs was mrp+ + sly- + arcA+ + gdh+ + epf-. Significantly lower carrier rate of mrp+ + sly- + arcA+ + gdh+ + epf- virulence gene profile was observed among the isolates from healthy pigs compared to those from diseased pigs (P < 0.05). Antimicrobial resistance patterns of the S. suis isolates revealed fourteen resistance groups (R1 to R14) where 88.46% isolates showed multi-drug resistance. The most predominant resistance pattern observed was CD-COT-E-TE. This is perhaps the first study reporting virulence gene profile and antimicrobial resistance of non-typeable S. suis isolates from pigs in North East India. The occurrence of relatively high levels of resistance of S. suis to some antimicrobials (e.g. macrolides, tetracyclines, and sulphonamides) as observed in the present study may represent a human health concern.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre On Pig, Rani, Guwahati, Assam, 781131, India.
| | - Isfaqul Hussain
- Division of Veterinary Microbiology & Immunology, SKUAST-Kashmir, Srinagar, Kashmir, India
| |
Collapse
|
9
|
Wang J, Shang Q, Zhao C, Zhang S, Li Z, Lin C, Shen Z, Cheng L. Improvement of Streptococcus suis glutamate dehydrogenase expression in Escherichia coli through genetic modification of acetate synthesis pathway. Lett Appl Microbiol 2019; 70:64-70. [PMID: 31665809 DOI: 10.1111/lam.13244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
Escherichia coli generates acetate as an undesirable by-product that has several negative effects on protein expression, and the reduction of acetate accumulation by modifying genes of acetate synthesis pathway can improve the expression of recombinant proteins. In the present study, the effect of phosphotransacetylase (pta) or/and acetate kinase (ackA) deletion on glutamate dehydrogenase (GDH) expression was investigated. The results indicated that the disruptions of pta or/and ackA decreased the acetate accumulation and synthesis of per gram cell, and increased cell density, and GDH expression and synthesis of per gram cell. The pta gene was more important for acetate formation than the ackA gene. Using the strain with deletions of pta-ackA (SSGPA) for GDH expression, acetate accumulation (2·61 g l-1 ) and acetate synthesis of per gram cell (0·229 g g-1 ) were lowest, decreasing by 28·29 and 41·43% compared with those of the parental strain (SSG) respectively. The flux of acetate synthesis (6·6%) was decreased by 72·15% compared with that of SSG, and the highest cell density (11·38 g l-1 ), GDH expression (2·78 mg ml-1 ), and GDH formation of per gram cell (0·2442 mg mg-1 ) were obtained, which were 1·22-, 1·43- and 1·17-times higher than the parental strain respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: Acetate is the key undesirable by-product in Escherichia coli cultivation, and both biomass and production of desired products are increased by the reduction of acetate accumulation. In the present study, the strains with deletions of pta or/and ackA were constructed to reduce the acetate accumulation and improve the GDH expression, and the highest expression level of GDH was obtained using the strain with lesion in pta-ackA that was 1·17-times higher than that of the parental strain. The construction strategy of recombinant E. coli for decreasing the acetate excretion can be used for high expression level of other desired products.
Collapse
Affiliation(s)
- J Wang
- Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China.,Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Q Shang
- Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - C Zhao
- Research and Development Center, Ningxia Eppen Biotech Co. Ltd, Yinchuan, China
| | - S Zhang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co. Ltd, Binzhou, China
| | - Z Li
- Research and Development Center, Ningxia Eppen Biotech Co. Ltd, Yinchuan, China
| | - C Lin
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Research and Development Center, Ningxia Eppen Biotech Co. Ltd, Yinchuan, China
| | - Z Shen
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co. Ltd, Binzhou, China
| | - L Cheng
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co. Ltd, Binzhou, China
| |
Collapse
|
10
|
Xia X, Qin W, Zhu H, Wang X, Jiang J, Hu J. How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:516-525. [PMID: 30954397 DOI: 10.1016/j.jmii.2019.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Streptococcus suis (S. suis) type 2 (SS2) is an important zoonotic pathogen that causes swine streptococcosis, a widespread infectious disease that occurs in pig production areas worldwide and causes serious economic losses in the pork industry. Hosts recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) to activate both innate and acquired immune responses. However, S. suis has evolved multiple mechanisms to escape host defenses. Pathogenic proteins, such as enolase, double-component regulatory systems, factor H-combining proteins and other pathogenic and virulence factors, contribute to immune escape by evading host phagocytosis, reactive oxygen species (ROS), complement-mediated immune destruction, etc. SS2 can prevent neutrophil extracellular trap (NET) formation to avoid being trapped by porcine neutrophils and disintegrate host immunoglobulins via IgA1 hydrolases and IgM proteases. Currently, the pathogenesis of arthritis and meningitis caused by SS2 infection remains unclear, and further studies are necessary to elucidate it. Understanding immune evasion mechanisms after SS2 infection is important for developing high-efficiency vaccines and targeted drugs.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Wanhai Qin
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
11
|
Cheng L, Yang X, Li S, Fu Q, Fu S, Wang J, Li F, Lei L, Shen Z. Impact of gene modification of phosphotransferase system on expression of glutamate dehydrogenase protein of Streptococcus suis in Escherichia coli. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1304179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Likun Cheng
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Post-doctoral Studies Center, College of Animal Medicine, Jilin University, Changchun, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Xiuyan Yang
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Shuguang Li
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
| | - Qiang Fu
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Shijun Fu
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Jinliang Wang
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Feng Li
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Liancheng Lei
- Post-doctoral Studies Center, College of Animal Medicine, Jilin University, Changchun, P.R. China
| | - Zhiqiang Shen
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| |
Collapse
|
12
|
Tan MF, Liu WQ, Zhang CY, Gao T, Zheng LL, Qiu DX, Li L, Zhou R. The involvement of MsmK in pathogenesis of the Streptococcus suis serotype 2. Microbiologyopen 2017; 6. [PMID: 28102028 PMCID: PMC5387306 DOI: 10.1002/mbo3.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/04/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen that causes global economic and public health problems. Virulent S. suis strains successfully maintain high bacterial concentrations in host blood and rapidly adapt to challenging environments within hosts. Successful survival in hosts is a major factor influencing the pathogenesis of SS2. We have previously identified that SS2 colonization in mouse brain is possibly affected by the ATPase, MsmK of carbohydrate ATP‐binding cassette (ABC) transporters because of carbohydrate utilization. In this study, the chain length of the msmK deletion mutant was longer than that of the wild type, and the former was significantly more susceptible than the latter when theses strains were exposed to mouse blood both in vivo and in vitro. The hemolytic activity of the mutant strain was decreased. Although the adhesion of the mutant to HEp‐2 cell lines was enhanced, the deletion of msmK impaired the abilities of SS2 to resist phagocytosis and survive severe stress conditions. MsmK contributed to the survival and adaptation of SS2 in host bloodstream. Therefore, MsmK was identified as a multifunctional component that not only contributed to carbohydrate utilization but also participated in SS2 pathogenesis.
Collapse
Affiliation(s)
- Mei-Fang Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Wan-Quan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chun-Yan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ting Gao
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lin-Lin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - De-Xin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| |
Collapse
|
13
|
Xia XJ, Wang L, Shen ZQ, Qin W, Hu J, Jiang SJ, Li SG. Development of an Indirect Dot-PPA-ELISA using glutamate dehydrogenase as a diagnostic antigen for the rapid and specific detection of Streptococcus suis and its application to clinical specimens. Antonie van Leeuwenhoek 2017; 110:585-592. [DOI: 10.1007/s10482-016-0825-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022]
|
14
|
Girinathan BP, Braun S, Sirigireddy AR, Lopez JE, Govind R. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo. PLoS One 2016; 11:e0160107. [PMID: 27467167 PMCID: PMC4965041 DOI: 10.1371/journal.pone.0160107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
Clostridium difficile is the principal cause of antibiotic-associated diarrhea. Major metabolic requirements for colonization and expansion of C. difficile after microbiota disturbance have not been fully determined. In this study, we show that glutamate utilization is important for C. difficile to establish itself in the animal gut. When the gluD gene, which codes for glutamate dehydrogenase (GDH), was disrupted, the mutant C. difficile was unable to colonize and cause disease in a hamster model. Further, from the complementation experiment it appears that extracellular GDH may be playing a role in promoting C. difficile colonization and disease progression. Quantification of free amino acids in the hamster gut during C. difficile infection showed that glutamate is among preferred amino acids utilized by C. difficile during its expansion. This study provides evidence of the importance of glutamate metabolism for C. difficile pathogenesis.
Collapse
Affiliation(s)
| | - Sterling Braun
- Division of Biology, Kansas State University, Manhattan, Kansas, 66502, United States of America
| | | | - Jose Espinola Lopez
- Division of Biology, Kansas State University, Manhattan, Kansas, 66502, United States of America
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, Kansas, 66502, United States of America
| |
Collapse
|
15
|
Li Q, Liu H, Du D, Yu Y, Ma C, Jiao F, Yao H, Lu C, Zhang W. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2. Front Cell Infect Microbiol 2015; 5:82. [PMID: 26636044 PMCID: PMC4644805 DOI: 10.3389/fcimb.2015.00082] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/31/2015] [Indexed: 02/06/2023] Open
Abstract
Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5'-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions.
Collapse
Affiliation(s)
- Quan Li
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Hanze Liu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Dechao Du
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Yanfei Yu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Caifeng Ma
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Fangfang Jiao
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Huochun Yao
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
16
|
Wang R, Li L, Huang Y, Luo F, Liang W, Gan X, Huang T, Lei A, Chen M, Chen L. Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016. BMC Genomics 2015; 16:897. [PMID: 26537657 PMCID: PMC4634907 DOI: 10.1186/s12864-015-2026-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus agalactiae (S. agalactiae), also known as group B Streptococcus (GBS), is an important pathogen for neonatal pneumonia, meningitis, bovine mastitis, and fish meningoencephalitis. The global outbreaks of Streptococcus disease in tilapia cause huge economic losses and threaten human food hygiene safety as well. To investigate the mechanism of S. agalactiae pathogenesis in tilapia and develop attenuated S. agalactiae vaccine, this study sequenced and comparatively analyzed the whole genomes of virulent wild-type S. agalactiae strain HN016 and its highly-passaged attenuated strain YM001 derived from tilapia. Methods We performed Illumina sequencing of DNA prepared from strain HN016 and YM001. Sequencedreads were assembled and nucleotide comparisons, single nucleotide polymorphism (SNP) , indels were analyzed between the draft genomes of HN016 and YM001. Clustered regularly interspaced short palindromic repeats (CRISPRs) and prophage were detected and analyzed in different S. agalactiae strains. Results The genome of S. agalactiae YM001 was 2,047,957 bp with a GC content of 35.61 %; it contained 2044 genes and 88 RNAs. Meanwhile, the genome of S. agalactiae HN016 was 2,064,722 bp with a GC content of 35.66 %; it had 2063 genes and 101 RNAs. Comparative genome analysis indicated that compared with HN016, YM001 genome had two significant large deletions, at the sizes of 5832 and 11,116 bp respectively, resulting in the deletion of three rRNA and ten tRNA genes, as well as the deletion and functional damage of ten genes related to metabolism, transport, growth, anti-stress, etc. Besides these two large deletions, other ten deletions and 28 single nucleotide variations (SNVs) were also identified, mainly affecting the metabolism- and growth-related genes. Conclusions The genome of attenuated S. agalactiae YM001 showed significant variations, resulting in the deletion of 10 functional genes, compared to the parental pathogenic strain HN016. The deleted and mutated functional genes all encode metabolism- and growth-related proteins, not the known virulence proteins, indicating that the metabolism- and growth-related genes are important for the pathogenesis of S. agalactiae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2026-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Yan Huang
- Guangxi Center for Disease Control and Prevention, Nanning, 530028, People's Republic of China.
| | - Fuguang Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou, 545006, People's Republic of China.
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Xi Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Yang YB, Wang S, Wang C, Huang QY, Bai JW, Chen JQ, Chen XY, Li YH. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794. Arch Microbiol 2015; 197:1173-80. [PMID: 26446827 DOI: 10.1007/s00203-015-1158-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
Abstract
Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.
Collapse
Affiliation(s)
- Yan-Bei Yang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China.
| | - Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Chang Wang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Quan-Yong Huang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jing-Wen Bai
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jian-Qing Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
18
|
Willenborg J, Huber C, Koczula A, Lange B, Eisenreich W, Valentin-Weigand P, Goethe R. Characterization of the pivotal carbon metabolism of Streptococcus suis serotype 2 under ex vivo and chemically defined in vitro conditions by isotopologue profiling. J Biol Chem 2015; 290:5840-54. [PMID: 25575595 DOI: 10.1074/jbc.m114.619163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [(13)C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid.
Collapse
Affiliation(s)
- Jörg Willenborg
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| | - Claudia Huber
- the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | - Anna Koczula
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| | - Birgit Lange
- the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Eisenreich
- the Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | - Peter Valentin-Weigand
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| | - Ralph Goethe
- From the Institute of Microbiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany and
| |
Collapse
|
19
|
The identification of six novel proteins with fibronectin or collagen type I binding activity from Streptococcus suis serotype 2. J Microbiol 2014; 52:963-9. [DOI: 10.1007/s12275-014-4311-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
20
|
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014; 5:477-97. [PMID: 24667807 PMCID: PMC4063810 DOI: 10.4161/viru.28595] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis.
Collapse
Affiliation(s)
- Youjun Feng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases & State Key Laboratory for Diagnosis and Treatment of Infectious Disease; First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang, PR China; Department of Medical Microbiology and Parasitology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, PR China
| | - Huimin Zhang
- University of Illinois at Urbana-Champaign (UIUC); Urbana, IL USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames, IA USA
| | - Shihua Wang
- College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou, Fujian, PR China
| | - Min Cao
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| | - Dan Hu
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| | - Changjun Wang
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| |
Collapse
|
21
|
Girinathan BP, Braun SE, Govind R. Clostridium difficile glutamate dehydrogenase is a secreted enzyme that confers resistance to H2O2. MICROBIOLOGY-SGM 2013; 160:47-55. [PMID: 24145018 DOI: 10.1099/mic.0.071365-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clostridium difficile produces an NAD-specific glutamate dehydrogenase (GDH), which converts l-glutamate into α-ketoglutarate through an irreversible reaction. The enzyme GDH is detected in the stool samples of patients with C. difficile-associated disease and serves as one of the diagnostic tools to detect C. difficile infection (CDI). We demonstrate here that supernatant fluids of C. difficile cultures contain GDH. To understand the role of GDH in the physiology of C. difficile, an isogenic insertional mutant of gluD was created in strain JIR8094. The mutant failed to produce and secrete GDH as shown by Western blot analysis. Various phenotypic assays were performed to understand the importance of GDH in C. difficile physiology. In TY (tryptose yeast extract) medium, the gluD mutant grew slower than the parent strain. Complementation of the gluD mutant with the functional gluD gene reversed the growth defect in TY medium. The presence of extracellular GDH may have a functional role in the pathogenesis of CDI. In support of this assumption we found higher sensitivity to H2O2 in the gluD mutant as compared to the parent strain. Complementation of the gluD mutant with the functional gluD gene reversed the H2O2 sensitivity.
Collapse
Affiliation(s)
| | - Sterling E Braun
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
22
|
Vaillancourt K, Bonifait L, Grignon L, Frenette M, Gottschalk M, Grenier D. Identification and characterization of a new cell surface protein possessing factor H-binding activity in the swine pathogen and zoonotic agent Streptococcus suis. J Med Microbiol 2013; 62:1073-1080. [DOI: 10.1099/jmm.0.057877-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Streptococcus suis is a major swine pathogen and an emerging zoonotic agent. The ability of pathogenic bacteria to bind the complement regulator factor H on their cell surface may allow them to avoid complement attack and phagocytosis. The aim of this study was to characterize a new cell surface protein possessing factor H-binding activity in S. suis serotype 2. The capacity of S. suis to bind the complement regulator factor H on its surface was demonstrated by ELISA. Using a factor I–cofactor assay, it was found that the functional activity of factor H bound to S. suis was kept. Since the product of gene SSU0186 in S. suis P1/7 shared similarity with a Streptococcus pneumoniae protein (named PspC) possessing factor H-binding activity, it was proposed as a putative factor H receptor in S. suis. SSU0186 has a 1686 bp open reading frame encoding a 561 amino acid protein containing the Gram-positive cell wall anchoring motif (LPXTG) at the carboxy-terminal, an amino-terminal signal sequence, an α-helix domain, a proline-rich region and a G5 domain. The SSU0186 gene was cloned in Escherichia coli and the purified recombinant factor H-binding protein showed a molecular mass of 95 kDa, as determined by SDS-PAGE. The protein possessed the functional property of binding factor H. Sera from S. suis-infected pigs reacted with the recombinant factor H receptor, suggesting that it is produced during the course of infections. In conclusion, we identified a novel S. suis cell surface protein that binds the complement factor H. This cell surface protein may help S. suis to resist complement attack and phagocytosis and contribute to pathogenesis.
Collapse
Affiliation(s)
- Katy Vaillancourt
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Laetitia Bonifait
- Centre de Recherche en Infectiologie Porcine (CRIP), Fonds de Recherche du Québec – Nature et Technologies (FRQNT), Quebec City, Quebec, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Louis Grignon
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Michel Frenette
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de Recherche en Infectiologie Porcine (CRIP), Fonds de Recherche du Québec – Nature et Technologies (FRQNT), Quebec City, Quebec, Canada
| | - Daniel Grenier
- Centre de Recherche en Infectiologie Porcine (CRIP), Fonds de Recherche du Québec – Nature et Technologies (FRQNT), Quebec City, Quebec, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
23
|
Identification and characterization of Porphyromonas gingivalis client proteins that bind to Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 2012; 81:753-63. [PMID: 23264054 DOI: 10.1128/iai.00875-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coaggregation of Porphyromonas gingivalis and oral streptococci is thought to play an important role in P. gingivalis colonization. Previously, we reported that P. gingivalis major fimbriae interacted with Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and that amino acid residues 166 to 183 of GAPDH exhibited strong binding activity toward P. gingivalis fimbriae (H. Nagata, M. Iwasaki, K. Maeda, M. Kuboniwa, E. Hashino, M. Toe, N. Minamino, H. Kuwahara, and S. Shizukuishi, Infect. Immun. 77:5130-5138, 2009). The present study aimed to identify and characterize P. gingivalis components other than fimbriae that interact with S. oralis GAPDH. A pulldown assay was performed to detect potential interactions between P. gingivalis client proteins and S. oralis recombinant GAPDH with amino acid residues 166 to 183 deleted by site-directed mutagenesis. Seven proteins, namely, tonB-dependent receptor protein (RagA4), arginine-specific proteinase B, 4-hydroxybutyryl-coenzyme A dehydratase (AbfD), lysine-specific proteinase, GAPDH, NAD-dependent glutamate dehydrogenase (GDH), and malate dehydrogenase (MDH), were identified by two-dimensional gel electrophoresis followed by proteomic analysis using tandem mass spectrometry. Interactions between these client proteins and S. oralis GAPDH were analyzed with a biomolecular interaction analysis system. S. oralis GAPDH showed high affinity for five of the seven client proteins (RagA4, AbfD, GAPDH, GDH, and MDH). Interactions between P. gingivalis and S. oralis were measured by a turbidimetric method and fluorescence microscopy. RagA4, AbfD, and GDH enhanced coaggregation, whereas GAPDH and MDH inhibited coaggregation. Furthermore, the expression of luxS in P. gingivalis was upregulated by RagA4, AbfD, and GDH but was downregulated by MDH. These results indicate that the five P. gingivalis client proteins function as regulators in P. gingivalis biofilm formation with oral streptococci.
Collapse
|
24
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
25
|
Zhu H, Huang D, Zhang W, Wu Z, Lu Y, Jia H, Wang M, Lu C. The novel virulence-related gene stp of Streptococcus suis serotype 9 strain contributes to a significant reduction in mouse mortality. Microb Pathog 2011; 51:442-53. [DOI: 10.1016/j.micpath.2011.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
|
26
|
Yang W, Cai X, Hao Y, Liu Y, Wang S, Xing R, Gu J, Li C, Yue X, Yuan C, Zhang M, Cui L, Hua X, Yang Z. Characterization of Streptococcus suis serotype 2 blood infections using RT-qPCR to quantify glutamate dehydrogenase copy numbers. J Microbiol Methods 2010; 83:326-9. [PMID: 20869401 DOI: 10.1016/j.mimet.2010.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
This study characterized the dynamic distribution of bacteria in the blood of pigs infected with Streptococcus suis serotype 2 using specific primers and a TaqMan probe designed to amplify the highly conserved S. suis serotype 2 glutamate dehydrogenase (GDH) gene sequences. Gene copy numbers were used to determine the concentration of bacteria in the blood of infected pigs over time using established TaqMan real-time quantitative PCR methodologies (RT-qPCR). The results showed that the detection limit of the RT-qPCR was 10 GDH gene copies. The advantages of utilizing this approach are the high levels of specificity, sensitivity and reproducibility. Bacteria were detected in the blood of infected pigs after 24 h post infection and S. suis GDH gene copies in the experimental group were highest (10(4.15)) on day 7 post infection. Data presented in this report demonstrate that the TaqMan RT-qPCR detection method can be used to characterize the dynamic changes occurring during S. suis serotype 2 blood infections in Bama minipigs thereby facilitating research associated with defining pathogenic mechanisms associated with this organism.
Collapse
Affiliation(s)
- Weijun Yang
- College of Animal science and Animal medicine, Inner Mongolia Agriculture University, Huhhot 010018, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bonifait L, de la Cruz Dominguez-Punaro M, Vaillancourt K, Bart C, Slater J, Frenette M, Gottschalk M, Grenier D. The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis. BMC Microbiol 2010; 10:42. [PMID: 20146817 PMCID: PMC2832634 DOI: 10.1186/1471-2180-10-42] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 02/10/2010] [Indexed: 12/30/2022] Open
Abstract
Background Streptococcus suis is a major swine pathogen and zoonotic agent that mainly causes septicemia, meningitis, and endocarditis. It has recently been suggested that proteinases produced by S. suis (serotype 2) are potential virulence determinants. In the present study, we screened a S. suis mutant library created by the insertion of Tn917 transposon in order to isolate a mutant deficient in a cell surface proteinase. We characterized the gene and assessed the proteinase for its potential as a virulence factor. Results Two mutants (G6G and M3G) possessing a single Tn917 insertion were isolated. The affected gene coded for a protein (SSU0757) that shared a high degree of identity with Streptococccus thermophilus PrtS (95.9%) and, to a lesser extent, with Streptococcus agalactiae CspA (49.5%), which are cell surface serine proteinases. The SSU0757 protein had a calculated molecular mass of 169.6 kDa and contained the catalytic triad characteristic of subtilisin family proteinases: motif I (Asp200), motif II (His239), and motif III (Ser568). SSU0757 also had the Gram-positive cell wall anchoring motif (Leu-Pro-X-Thr-Gly) at the carboxy-terminus, which was followed by a hydrophobic domain. All the S. suis isolates tested, which belonged to different serotypes, possessed the gene encoding the SSU0757 protein. The two mutants devoid of subtilisin-like proteinase activity had longer generation times and were more susceptible to killing by whole blood than the wild-type parent strain P1/7. The virulence of the G6G and M3G mutants was compared to the wild-type strain in the CD1 mouse model. Significant differences in mortality rates were noted between the P1/7 group and the M3G and G6G groups (p < 0.001). Conclusion In summary, we identified a gene coding for a cell surface subtilisin-like serine proteinase that is widely distributed in S. suis. Evidences were brought for the involvement of this proteinase in S. suis virulence.
Collapse
Affiliation(s)
- Laetitia Bonifait
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Feng Y, Zhang H, Ma Y, Gao GF. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol 2010; 18:124-31. [PMID: 20071175 DOI: 10.1016/j.tim.2009.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/31/2023]
Abstract
Streptococcus suis is recognized as a major swine pathogen and an emerging zoonotic agent. Two large-scale outbreaks of severe S. suis epidemics occurred in China in 1998 and 2005 that posed serious concerns to public health and challenged the conventional conception that opportunistic infections of S. suis serotype 2 (SS2) in humans were only sporadic cases. An extensive, collaborative study on Chinese SS2 variants, which exhibit strong invasiveness and high pathogenicity, has resulted in the description of a new disease form of streptococcal toxic shock syndrome (STSS) and a putative pathogenicity island (termed 89K). The abbreviation of STSS is used for the severe disease caused by both Staphylococci and Streptococci. The main virulence factors involved in STSS caused by either Staphylococcus aureus or Streptococcus pyogenes consist of so-called superantigens or molecules that trigger a nonspecific, uncontrolled activation of T cells and massive cytokine release. However, although a collection of new virulence factors have been described, no superantigen candidates have been found for SS2 strains, implying that a different mechanism could be involved in the STSS form caused by SS2 variants.
Collapse
Affiliation(s)
- Youjun Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
29
|
Zhang XH, He KW, Duan ZT, Zhou JM, Yu ZY, Ni YX, Lu CP. Identification and characterization of inosine 5-monophosphate dehydrogenase in Streptococcus suis type 2. Microb Pathog 2009; 47:267-73. [DOI: 10.1016/j.micpath.2009.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/28/2022]
|
30
|
Liu L, Cheng G, Wang C, Pan X, Cong Y, Pan Q, Wang J, Zheng F, Hu F, Tang J. Identification and experimental verification of protective antigens against Streptococcus suis serotype 2 based on genome sequence analysis. Curr Microbiol 2009; 58:11-7. [PMID: 18839251 DOI: 10.1007/s00284-008-9258-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 11/29/2022]
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that can cause severe disease and even death in both humans and swine. No effective vaccine is clinically available. In this study, a reverse vaccinology method was first applied to identify protective antigens against S. suis 2. As a consequence, 153 genes encoding vaccine candidates were selected from the whole genome sequence by means of bioinformatics analysis, from which 10 genes were selected based on experimental evidences arising from the study of related bacteria such as Streptococcus pneumoniae, group B streptococcus, S. suis and so on. Of 10 target genes, 8 were successfully expressed in Escherichia coli Rosetta, and expressed proteins were purified and used as the immunogens for evaluating vaccine efficacy in a mouse infection model. The results have confirmed that RTX family exoprotein A (RfeA), epidermal surface antigen (ESA), immunoglobulin G (IgG)-binding protein (IBP), and suilysin (SLY) can induce a protective response of the vaccinated animals against S. suis 2, whereas RfeA, ESA, and IBP mainly induce humoral-mediated immunity, and SLY elicits a combined pattern of both humoral- and cellular-mediated immunity. Although immunoprotection of SLY against S. suis 2 was reported previously, RfeA, ESA, and IBP were explored first in this study.
Collapse
Affiliation(s)
- Lina Liu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Lactic acid bacteria (LAB) constitute a diverse group of Gram positive obligately fermentative microorganisms which include both beneficial and pathogenic strains. LAB generally have complex nutritional requirements and therefore they are usually associated with nutrient-rich environments such as animal bodies, plants and foodstuffs. Amino acids represent an important resource for LAB and their utilization serves a number of physiological roles such as intracellular pH control, generation of metabolic energy or redox power, and resistance to stress. As a consequence, the regulation of amino acid catabolism involves a wide set of both general and specific regulators and shows significant differences among LAB. Moreover, due to their fermentative metabolism, LAB amino acid catabolic pathways in some cases differ significantly from those described in best studied prokaryotic model organisms such as Escherichia coli or Bacillus subtilis. Thus, LAB amino acid catabolism constitutes an interesting case for the study of metabolic pathways. Furthermore, LAB are involved in the production of a great variety of fermented products so that the products of amino acid catabolism are also relevant for the safety and the quality of fermented products.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias CSIC, Crta de Infiesto s/n, Villaviciosa, Asturias, Spain
| | | |
Collapse
|
32
|
Kutz R, Okwumabua O. Differentiation of highly virulent strains of Streptococcus suis serotype 2 according to glutamate dehydrogenase electrophoretic and sequence type. J Clin Microbiol 2008; 46:3201-7. [PMID: 18685014 PMCID: PMC2566107 DOI: 10.1128/jcm.02309-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/06/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022] Open
Abstract
The glutamate dehydrogenase (GDH) enzymes of 19 Streptococcus suis serotype 2 strains, consisting of 18 swine isolates and 1 human clinical isolate from a geographically varied collection, were analyzed by activity staining on a nondenaturing gel. All seven (100%) of the highly virulent strains tested produced an electrophoretic type (ET) distinct from those of moderately virulent and nonvirulent strains. By PCR and nucleotide sequence determination, the gdh genes of the 19 strains and of 2 highly virulent strains involved in recent Chinese outbreaks yielded a 1,820-bp fragment containing an open reading frame of 1,344 nucleotides, which encodes a protein of 448 amino acid residues with a calculated molecular mass of approximately 49 kDa. The nucleotide sequences contained base pair differences, but most were silent. Cluster analysis of the deduced amino acid sequences separated the isolates into three groups. Group I (ETI) consisted of the seven highly virulent isolates and the two Chinese outbreak strains, containing Ala(299)-to-Ser, Glu(305)-to-Lys, and Glu(330)-to-Lys amino acid substitutions compared with groups II and III (ETII). Groups II and III consisted of moderately virulent and nonvirulent strains, which are separated from each other by Tyr(72)-to-Asp and Thr(296)-to-Ala substitutions. Gene exchange studies resulted in the change of ETI to ETII and vice versa. A spectrophotometric activity assay for GDH did not show significant differences between the groups. These results suggest that the GDH ETs and sequence types may serve as useful markers in predicting the pathogenic behavior of strains of this serotype and that the molecular basis for the observed differences in the ETs was amino acid substitutions and not deletion, insertion, or processing uniqueness.
Collapse
Affiliation(s)
- Russell Kutz
- Department of Bacteriology, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
33
|
Feng Y, Zheng F, Pan X, Sun W, Wang C, Dong Y, Ju AP, Ge J, Liu D, Liu C, Yan J, Tang J, Gao GF. Existence and characterization of allelic variants of Sao, a newly identified surface protein from Streptococcus suis. FEMS Microbiol Lett 2007; 275:80-8. [PMID: 17854470 PMCID: PMC7110054 DOI: 10.1111/j.1574-6968.2007.00859.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Surface antigen one (Sao) is a newly identified protein from the major zoonotic pathogen, Streptococcus suis. In search of functional proteins related to the pathogenesis of Chinese S. suis 2 (SS2), unexpectedly, a variant of Sao protein was obtained. To test its prevalence in S. suis, PCR assay was adopted to address the coding genes systematically. It was found that there are three allelic variants of sao gene, namely sao-S, sao-M, and sao-L based on the different lengths of the genes (approximately 1.5, approximately 1.7, and approximately 2.0 kb, respectively). These differences were determined to be caused by heterogeneity within the number of C-terminal repeat sequences (R), which had been seen as a pathogenicity-related domain in the plant pathogen, Xanthomonas oryzae. Two variants (sao-M and sao-L) were only found in SS2. All three variant proteins were prepared in vitro and their biochemical and biophysical properties were characterized. A soluble form of Sao-M protein was then used as a capture antigen to develop an enzyme-linked immunosorbent assay method to detect antibodies against SS2 in convalescent pig sera. Taken together, the results exhibit the properties of Sao proteins and provide an efficient Sao-M-based method for monitoring SS2 infection.
Collapse
Affiliation(s)
- Youjun Feng
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University, Chinese Academy of Sciences, Beijing, China
| | - Feng Zheng
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Xiuzhen Pan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Wen Sun
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Changjun Wang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Yaqing Dong
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Ai-ping Ju
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Junchao Ge
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Di Liu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cuihua Liu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Tang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - George F. Gao
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Correspondence: George F. Gao, Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. Tel.: +86 10 62552530; fax: +86 10 62521882; e-mail:
| |
Collapse
|
34
|
Gottschalk M, Segura M, Xu J. Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev 2007; 8:29-45. [PMID: 17692141 DOI: 10.1017/s1466252307001247] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infections caused by Streptococcus suis are considered a global problem in the swine industry. In this animal species, S. suis is associated with septicemia, meningitis, endocarditis, arthritis and, occasionally, other infections. Moreover, it is an agent of zoonosis that afflicts people in close contact with infected pigs or pork-derived products. Although sporadic cases of S. suis infection in humans have been reported, a large outbreak due to S. suis serotype 2 emerged in the summer of 2005 in Sichuan, China. A similar outbreak was observed in another Chinese province in 1998. Symptoms reported in these two outbreaks include high fever, malaise, nausea and vomiting, followed by nervous symptoms, subcutaneous hemorrhage, septic shock and coma in severe cases. The increased severity of S. suis infections in humans, such as a shorter incubation time, more rapid disease progression and higher rate of mortality, underscores the critical need to better understand the factors associated with pathogenesis of S. suis infection. From the 35 capsular serotypes currently known, serotype 2 is considered the most virulent and frequently isolated in both swine and humans. Here, we review the epidemiological, clinical and immunopathological features of S. suis infection in humans.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | | | | |
Collapse
|
35
|
Tang J, Wang C, Feng Y, Yang W, Song H, Chen Z, Yu H, Pan X, Zhou X, Wang H, Wu B, Wang H, Zhao H, Lin Y, Yue J, Wu Z, He X, Gao F, Khan AH, Wang J, Zhao GP, Wang Y, Wang X, Chen Z, Gao GF. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 2006; 3:e151. [PMID: 16584289 PMCID: PMC1434494 DOI: 10.1371/journal.pmed.0030151] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 01/10/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptococcus suis serotype 2 (S. suis 2, SS2) is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS) that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS). However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. METHODS AND FINDINGS We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP) and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. CONCLUSIONS We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe septicemia. The molecular mechanisms underlying these human STSS outbreaks in human beings remain unclear and an objective for further study.
Collapse
Affiliation(s)
- Jiaqi Tang
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Changjun Wang
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Youjun Feng
- 2Center for Molecular Immunology and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- 10Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Weizhong Yang
- 3Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Huaidong Song
- 4State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Medical School of Shanghai Jiao-Tong University, Shanghai, China
- 9Chinese National Human Genome Center, Shanghai, China
| | | | - Hongjie Yu
- 3Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiuzhen Pan
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Xiaojun Zhou
- 6Department of Pathology, Jinling Hospital of Nanjing, Nanjing, China
| | - Huaru Wang
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Bo Wu
- 6Department of Pathology, Jinling Hospital of Nanjing, Nanjing, China
| | - Haili Wang
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Huamei Zhao
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Ying Lin
- 7School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jianhua Yue
- 1Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Zhenqiang Wu
- 7School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Xiaowei He
- 7School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Feng Gao
- 2Center for Molecular Immunology and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Abdul Hamid Khan
- 2Center for Molecular Immunology and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- 10Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- 8Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
| | - Guo-Ping Zhao
- 9Chinese National Human Genome Center, Shanghai, China
| | - Yu Wang
- 3Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiaoning Wang
- 7School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhu Chen
- 4State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Medical School of Shanghai Jiao-Tong University, Shanghai, China
- 9Chinese National Human Genome Center, Shanghai, China
| | - George F Gao
- 2Center for Molecular Immunology and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Gruening P, Fulde M, Valentin-Weigand P, Goethe R. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 2006; 188:361-9. [PMID: 16385025 PMCID: PMC1347268 DOI: 10.1128/jb.188.2.361-369.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 10/27/2005] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative beta-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions.
Collapse
Affiliation(s)
- Petra Gruening
- Institut fuer Mikrobiologie, Zentrum fuer Infektionsmedizin, Tieraerztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | | | | | | |
Collapse
|
37
|
Tanous C, Chambellon E, Sepulchre AM, Yvon M. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. J Bacteriol 2005; 187:5019-22. [PMID: 15995220 PMCID: PMC1169520 DOI: 10.1128/jb.187.14.5019-5022.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene responsible for the uncommon glutamate dehydrogenase (GDH) activity of Lactococcus lactis was identified and characterized. It encodes a GDH of family I that is mainly active in glutamate biosynthesis, is carried by a large plasmid, and is included, with functional cadmium resistance genes, in a remnant Tn3-like transposon.
Collapse
Affiliation(s)
- Catherine Tanous
- Institut National de la Recherche Agronomique, Unité de Biochimie et Structure des Protéines, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
38
|
Okwumabua O, Chinnapapakkagari S. Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:484-90. [PMID: 15817754 PMCID: PMC1074381 DOI: 10.1128/cdli.12.4.484-490.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In our continued effort to search for a Streptococcus suis protein(s) that can serve as a vaccine candidate or a diagnostic reagent, we constructed and screened a gene library with a polyclonal antibody raised against the whole-cell protein of S. suis type 2. A clone that reacted with the antibody was identified and characterized. Analysis revealed that the gene encoding the protein is localized within a 2.0-kbp EcoRI DNA fragment. The nucleotide sequence contained an open reading frame that encoded a polypeptide of 445 amino acid residues with a calculated molecular mass of 46.4 kDa. By in vitro protein synthesis and Western blot experiments, the protein exhibited an electrophoretic mobility of approximately 38 kDa. At the amino acid level the deduced primary sequence shared homology with sequences of unknown function from Streptococcus pneumoniae (89%), Streptococcus mutans (86%), Lactococcus lactis (80%), Listeria monocytogenes (74%), and Clostridium perfringens (64%). Except for strains of serotypes 20, 26, 32, and 33, Southern hybridization analysis revealed the presence of the gene in strains of other S. suis serotypes and demonstrated restriction fragment length differences caused by a point mutation in the EcoRI recognition sequence. We confirmed expression of the 38-kDa protein in the hybridization-positive isolates using specific antiserum against the purified protein. The recombinant protein was reactive with serum from pigs experimentally infected with virulent strains of S. suis type 2, suggesting that the protein is immunogenic and may serve as an antigen of diagnostic importance for the detection of most S. suis infections. Pigs immunized with the recombinant 38-kDa protein mounted antibody responses to the protein and were completely protected against challenge with a strain of a homologous serotype, the wild-type virulent strain of S. suis type 2, suggesting that it may be a good candidate for the development of a vaccine that can be used as protection against S. suis infection. Analysis of the cellular fractions of the bacterium by Western blotting revealed that the protein was present in the surface and cell wall extracts. The functional role of the protein with respect to pathogenesis and whether antibodies against the antigen confer protective immunity against diseases caused by strains of other pathogenic S. suis capsular types remains to be determined.
Collapse
Affiliation(s)
- Ogi Okwumabua
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705-4494, USA.
| | | |
Collapse
|
39
|
Jobin MC, Martinez G, Motard J, Gottschalk M, Grenier D. Cloning, purification, and enzymatic properties of dipeptidyl peptidase IV from the swine pathogen Streptococcus suis. J Bacteriol 2005; 187:795-9. [PMID: 15629953 PMCID: PMC543536 DOI: 10.1128/jb.187.2.795-799.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the dipeptidyl peptidase IV (DPP IV) of the swine pathogen Streptococcus suis was cloned, overexpressed in Escherichia coli, and characterized. The coding region comprises 2,268 nucleotides containing an open reading frame that codes for a 755-amino-acid protein with a calculated molecular mass of 85 kDa. The amino acid sequence contained the sequence Gly-X-Ser-X-X-Gly, which is a consensus motif flanking the active-site serine shared by serine proteases. The recombinant DPP IV showed a high affinity for the synthetic peptide glycine-proline-p-nitroanilide and was strongly inhibited by Hg2+ and diprotin A.
Collapse
Affiliation(s)
- Marie-Claude Jobin
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada G1K 7P4
| | | | | | | | | |
Collapse
|
40
|
Okwumabua O, O'Connor M, Shull E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiol Lett 2003; 218:79-84. [PMID: 12583901 DOI: 10.1111/j.1574-6968.2003.tb11501.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Polymerase chain reaction (PCR) primers that flank a 688-bp segment within the glutamate dehydrogenase gene (gdh) of Streptococcus suis type 2 could amplify efficiently the DNA of all 306 (100%) clinical S. suis isolates tested (pigs, n=305; human, n=1) encompassing all serotypes obtained from diverse organs, and geographic origins. When DNA from other bacteria were used as templates for amplification, no product was detected indicating specificity of the primers. Multiplex PCR was developed using the gdh gene primer pair and primers that targeted the gene encoding S. suis capsular biosynthesis (cps). This strategy enabled the detection of strains belonging to serotypes 1/2, 1, 2, 7, and 9, respectively. Using the multiplex-PCR technique, 12 out of 14 (86%) isolates that were previously identified as non-typable S. suis (based on biochemical reactions and serology) gave positive PCR results of which four were positive for serotype 7, three for serotype 2, and five for S. suis strains that belong to other serotypes. Retest results of all 14 isolates by several veterinary laboratories were identical with PCR and confirmed that the two non-PCR reactive isolates belonged to strains of other streptococcal species. These results indicated that PCR improved species determination and can thus be used as a reliable species-specific molecular diagnostic reagent for the accurate identification of S. suis isolates and a serotype-specific method for the detection of strains of serotypes 1/2, 1, 2, 7, and 9, respectively. The PCR method therefore has potential clinical and epidemiological applications.
Collapse
Affiliation(s)
- Ogi Okwumabua
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA.
| | | | | |
Collapse
|