1
|
Ghosh S, Das Sarma J. The age-dependent neuroglial interaction with peripheral immune cells in coronavirus-induced neuroinflammation with a special emphasis on COVID-19. Biogerontology 2025; 26:111. [PMID: 40380990 DOI: 10.1007/s10522-025-10252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Neurodegenerative diseases are chronic progressive disorders that impair memory, cognition, and motor functions, leading to conditions such as dementia, muscle weakness, and speech difficulties. Aging disrupts the stringent balance between pro- and anti-inflammatory cytokines, increasing neuroinflammation, which contributes to neurodegenerative diseases. The aging brain is particularly vulnerable to infections due to a weakened and compromised immune response and impaired integrity of the blood-brain barrier, allowing pathogens like viruses to trigger neurodegeneration. Coronaviruses have been linked to both acute and long-term neurological complications, including cognitive impairments, psychiatric disorders, and neuroinflammation. The virus can induce a cytokine storm, damaging the central nervous system (CNS) and worsening existing neurological conditions. Though its exact mechanism of neuroinvasion remains elusive, evidence suggests it disrupts the blood-brain barrier and triggers immune dysregulation, leading to persistent neurological sequelae in elderly individuals. This review aims to understand the interaction between the peripheral immune system and CNS glial cells in aged individuals, which is imperative in addressing coronavirus-induced neuroinflammation and concomitant neurodegeneration.
Collapse
Affiliation(s)
- Satavisha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
- Department of Ophthalmology, University of Pennsylvania, 19104, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Lima M, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Bogdanos DP, Baloyannis SJ, Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev Neurosci 2022; 33:703-720. [PMID: 35258237 DOI: 10.1515/revneuro-2021-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to examine whether there is a possible (etiological/triggering) relationship between infection with various Coronaviruses, including Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemia, and Multiple Sclerosis (MS), and whether an increase of the prevalence of MS after the current Covid-19 pandemia should be expected, examining new and preexisting data. Although the exact pathogenesis of MS remains unknown, environmental agents seem to greatly influence the onset of the disease, with viruses being the most popular candidate. Existing data support this possible etiological relationship between viruses and MS, and experimental studies show that Coronaviruses can actually induce an MS-like demyelinating disease in animal models. Findings in MS patients could also be compatible with this coronaviral MS hypothesis. More importantly, current data from the Covid-19 pandemia show that SARS-CoV-2 can trigger autoimmunity and possibly induce autoimmune diseases, in the Central Nervous System as well, strengthening the viral hypothesis of MS. If we accept that Coronaviruses can induce MS, it is reasonable to expect an increase in the prevalence of MS after the Covid-19 pandemia. This knowledge is of great importance in order to protect the aging groups that are more vulnerable against autoimmune diseases and MS specifically, and to establish proper vaccination and health policies.
Collapse
Affiliation(s)
- Maria Lima
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500 Viopolis, Larissa, Greece
| | - Stavros J Baloyannis
- Research Institute for Alzheimer's disease, Aristotle University of Thessaloniki, 57200 Iraklio Lagkada, Thessaloniki, Greece.,1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| |
Collapse
|
3
|
Macrophages and Monocytes: "Trojan Horses" in COVID-19. Viruses 2021; 13:v13112178. [PMID: 34834984 PMCID: PMC8624282 DOI: 10.3390/v13112178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
We aimed to explore whether variants of SARS-CoV-2 (Chinese-derived strain (D614, lineage A), Italian strain PV10734 (D614G, lineage B.1.1) and Alpha strain (lineage B.1.1.7)) were able to infect monocytes (MN) and monocyte-derived macrophages (MDM) and whether these infected cells may, in turn, be vectors of infection. For this purpose, we designed an in vitro study following the evolution of MN and MDM infection at different time points in order to confirm whether these cells were permissive for SARS-CoV-2 replication. Finally, we investigated whether, regardless of viral replication, the persistent virus can be transferred to non-infected cells permissive for viral replication. Thus, we co-cultured the infected MN/MDM with permissive VERO E6 cells verifying the viral transmission. This is a further in vitro demonstration of the important role of MN and MDM in the dissemination of SARS-CoV-2 and evolution of the COVID-19 disease.
Collapse
|
4
|
Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021; 22:10118. [PMID: 34576281 PMCID: PMC8465340 DOI: 10.3390/ijms221810118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Jisu Song
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Jin Zhang
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| |
Collapse
|
5
|
Kaundal RK, Kalvala AK, Kumar A. Neurological Implications of COVID-19: Role of Redox Imbalance and Mitochondrial Dysfunction. Mol Neurobiol 2021; 58:4575-4587. [PMID: 34110602 PMCID: PMC8190166 DOI: 10.1007/s12035-021-02412-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 or COVID-19 has been declared as a pandemic disease by the World Health Organization (WHO). Globally, this disease affected 159 million of the population and reported ~ 3.3 million deaths to the current date (May 2021). There is no definitive treatment strategy that has been identified, although this disease has prevailed in its current form for the past 18 months. The main challenges in the (SARS-CoV)-2 infections are in identifying the heterogeneity in viral strains and the plausible mechanisms of viral infection to human tissues. In parallel to the investigations into the patho-mechanism of SARS-CoV-2 infection, understanding the fundamental processes underlying the clinical manifestations of COVID-19 is very crucial for designing effective therapies. Since neurological symptoms are very apparent in COVID-19 infected patients, here, we tried to emphasize the involvement of redox imbalance and subsequent mitochondrial dysfunction in the progression of the COVID-19 infection. It has been articulated that mitochondrial dysfunction is very apparent and also interlinked to neurological symptoms in COVID-19 infection. Overall, this article provides an in-depth overview of redox imbalance and mitochondrial dysfunction involvement in aggravating COVID-19 infection and its probable contribution to the neurological manifestation of the disease.
Collapse
Affiliation(s)
- Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
- Icahn School of Medicine At Mount Sinai, 1470 Madison Ave, New York, NY, USA
| | - Anil K Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, North America, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India.
| |
Collapse
|
6
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Liu G, Jiang X, Zeng X, Pan Y, Xu H. Analysis of Lymphocyte Subpopulations and Cytokines in COVID-19-Associated Pneumonia and Community-Acquired Pneumonia. J Immunol Res 2021; 2021:6657894. [PMID: 34150910 PMCID: PMC8197671 DOI: 10.1155/2021/6657894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/11/2021] [Accepted: 04/17/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The 2019 novel coronavirus SARS-CoV-2 caused large outbreaks of COVID-19 worldwide. COVID-19 resembles community-acquired pneumonia (CAP). Our aim was to identify lymphocyte subpopulations to distinguish between COVID-19 and CAP. METHODS We compared the peripheral blood lymphocytes and their subsets in 296 patients with COVID-19 and 130 patients with CAP. Parameters for independent prediction of COVID-19 were calculated by logistic regression. RESULTS The main lymphocyte subpopulations (CD3+CD4+, CD16+CD56+, and CD4+/CD8+ ratio) and cytokines (TNF-α and IFN-γ) of COVID-19 patients were significantly different from that of CAP patients. CD16+CD56+%, CD4+/CD8+ratio, CD19+, and CD3+CD4+ were identified as predictors of COVID-19 diagnosis by logistic regression. In addition, the CD3+CD4+counts, CD3+CD8+ counts, andTNF-α are independent predictors of disease severity in patients. CONCLUSIONS Lymphopenia is an important part of SARS-CoV-2 infection, and lymphocyte subsets and cytokines may be useful to predict the severity and clinical outcomes of the disease.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xianghu Jiang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Zhu Y, Zhang J, Li Y, Liu F, Zhou Q, Peng Z. Association between thrombocytopenia and 180-day prognosis of COVID-19 patients in intensive care units: A two-center observational study. PLoS One 2021; 16:e0248671. [PMID: 33735911 PMCID: PMC7972743 DOI: 10.1371/journal.pone.0248671] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Thrombocytopenia has been proved to be associated with hospital mortality in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. However, the detailed association of thrombocytopenia with subsequent progression of organ functions and long-term prognosis in critically ill COVID-19 patients remains to be explored. METHODS Medical records of 167 confirmed cases of critically ill COVID-19 from February 16 to March 21, 2020 were collected in this two-center retrospective study. 180-day's outcome and clinical organ development in patients with thrombocytopenia and non-thrombocytopenia were analyzed. FINDINGS Among all 167 patients, the median age was 66 years and 67.07% were male. Significant differences were noticed in laboratory findings including white blood cells, blood urea, total bilirubin, lactate dehydrogenase and SOFA score between groups of thrombocytopenia and non-thrombocytopenia. Older age, lower platelet count and longer activated partial thromboplastin time at admission were determined to be risk factors of 28-day mortality, and all three, together with higher white blood cells were risk factors of 180-day mortality. Subsequent changes of six-point ordinal scale score, oxygenation index, and SOFA score in patients with thrombocytopenia showed marked worsening trends compared with patients without thrombocytopenia. Patients with thrombocytopenia had significantly higher mortality not only in 28 days, but also in 90 days and 180 days. The time-course curves in non-survival group showed a downtrend of platelet count and oxygenation index, while the curve of six-point ordinal scale kept an uptrend. Kaplan-Meier analysis indicated that patients with thrombocytopenia had much lower probability of survival (p<0.01). INTERPRETATION The thrombocytopenia was associated with the deterioration of respiratory function. Baseline platelet count was associated with subsequent and long-term mortality in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Fang Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| | - Qing Zhou
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China
| |
Collapse
|
9
|
Aslan C, Nikfarjam S, Asadzadeh M, Jafari R. Neurological manifestations of COVID-19: with emphasis on Iranian patients. J Neurovirol 2021; 27:217-227. [PMID: 33710597 PMCID: PMC7953513 DOI: 10.1007/s13365-021-00964-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has instigated a global pandemic as a formidable and highly contagious infectious disease. Although the respiratory system remains the most frequently affected organ, several case reports have revealed that the complications are not merely limited to the respiratory system, and neurotropic and neuroinvasive properties have also been observed, leading to neurological diseases. In the present paper, it was intended to review the possible neuroinvasive routes of SARS-CoV-2 and its mechanisms that may cause neurological damage. Additionally, the neurological manifestations of COVID-19 across the globe were discussed with emphasis on Iran, while highlighting the impact of SARS-CoV-2 on the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asadzadeh
- Department of Radiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Roy D, Ghosh R, Dubey S, Dubey MJ, Benito-León J, Kanti Ray B. Neurological and Neuropsychiatric Impacts of COVID-19 Pandemic. Can J Neurol Sci 2021; 48:9-24. [PMID: 32753076 PMCID: PMC7533477 DOI: 10.1017/cjn.2020.173] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Albeit primarily a disease of respiratory tract, the 2019 coronavirus infectious disease (COVID-19) has been found to have causal association with a plethora of neurological, neuropsychiatric and psychological effects. This review aims to analyze them with a discussion of evolving therapeutic recommendations. METHODS PubMed and Google Scholar were searched from 1 January 2020 to 30 May 2020 with the following key terms: "COVID-19", "SARS-CoV-2", "pandemic", "neuro-COVID", "stroke-COVID", "epilepsy-COVID", "COVID-encephalopathy", "SARS-CoV-2-encephalitis", "SARS-CoV-2-rhabdomyolysis", "COVID-demyelinating disease", "neurological manifestations", "psychosocial manifestations", "treatment recommendations", "COVID-19 and therapeutic changes", "psychiatry", "marginalised", "telemedicine", "mental health", "quarantine", "infodemic" and "social media". A few newspaper reports related to COVID-19 and psychosocial impacts have also been added as per context. RESULTS Neurological and neuropsychiatric manifestations of COVID-19 are abundant. Clinical features of both central and peripheral nervous system involvement are evident. These have been categorically analyzed briefly with literature support. Most of the psychological effects are secondary to pandemic-associated regulatory, socioeconomic and psychosocial changes. CONCLUSION Neurological and neuropsychiatric manifestations of this disease are only beginning to unravel. This demands a wide index of suspicion for prompt diagnosis of SARS-CoV-2 to prevent further complications and mortality.
Collapse
Affiliation(s)
- Devlina Roy
- Department of General Medicine, Burdwan Medical College, Burdwan, West Bengal, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College, Burdwan, West Bengal, India
| | - Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| | - Mahua Jana Dubey
- Department of Psychiatry, Berhampore Mental Hospital, Behrampore, West Bengal, India
| | - Julián Benito-León
- Department of Neurology, University Hospital, “12 de Octubre”, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Biman Kanti Ray
- Department of Neuromedicine, Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| |
Collapse
|
11
|
Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: a comprehensive review. Rev Neurosci 2020; 32:219-234. [PMID: 33550782 DOI: 10.1515/revneuro-2020-0070] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 was first reported in December 2019 in the Wuhan city of China, and since then it has spread worldwide taking a heavy toll on human life and economy. COVID-19 infection is commonly associated with symptoms like coughing, fever, and shortness of breath, besides, the reports of muscle pain, anosmia, hyposmia, and loss of taste are becoming evident. Recent reports suggest the pathogenic invasion of the SARS-CoV-2 into the CNS, that could thereby result in devastating long term complications, primarily because some of these complications may go unnoticed for a long time. Evidence suggest that the virus could enter the CNS through angiotensin-converting enzyme-2 (ACE-2) receptor, neuronal transport, haematogenous route, and nasal route via olfactory bulb, cribriform plate, and propagates through trans-synaptic signalling, and shows retrograde movement into the CNS along nerve fiber. COVID-19 induces CNS inflammation and neurological degenerative damage through a diverse mechanism which includes ACE-2 receptor damage, cytokine-associated injury or cytokine storm syndrome, secondary hypoxia, demyelination, blood-brain barrier disruption, neurodegeneration, and neuroinflammation. Viral invasion into the CNS has been reported to show association with complications like Parkinsonism, Alzheimer's disorder, meningitis, encephalopathy, anosmia, hyposmia, anxiety, depression, psychiatric symptoms, seizures, stroke, etc. This review provides a detailed discussion of the CNS pathogenesis of COVID-19. Authors conclude that the COVID-19 cannot just be considered as a disorder of the pulmonary or peripheral system, rather it has a significant CNS involvement. Therefore, CNS aspects of the COVID-19 should be monitored very closely to prevent long term CNS complications, even after the patient has recovered from COVID-19.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, District Shimla, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru 171207, District Shimla, Himachal Pradesh, India
| |
Collapse
|
12
|
Drechsler Y, Vasconcelos EJR, Griggs LM, Diniz PPPV. CRFK and Primary Macrophages Transcriptomes in Response to Feline Coronavirus Infection Differ Significantly. Front Genet 2020; 11:584744. [PMID: 33343631 PMCID: PMC7745755 DOI: 10.3389/fgene.2020.584744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Coronaviruses are highly infectious and common in many species, including in humans, and agricultural and domestic animals. Host responses play an important role in viral entry, replication, assembly, and pathogenesis, although much is still to be understood, particularly host-virus interactions. Feline coronavirus is highly contagious, and ubiquitous in virtually all cat populations. Host-pathogen interactions have not been studied extensively due to the complex pathogenesis and development of clinical disease. Few studies have investigated cellular host responses to feline coronavirus infection, particularly at early time points. Transcriptome studies based on next-generation sequencing have the potential to elucidate the early responses of cells after viral infection and, consequently, give further insight into the pathogenesis of viruses. The current study aims to characterize and compare the viral- and immune-related differentially expressed genes in response to the coronavirus FIPV across different time points in a cell line which is permissive for productive replication versus primary cells implicated in pathogenesis. When comparing host responses in Crandell-Rees Feline Kidney (CRFK) cells to primary macrophages, many differences were observed with regards to expressed genes and their enrichments for both KEGG pathways and GO terms. CRFK cells which are permissive for productive replication of feline infectious peritonitis virus, showed induction of a large network of immunological and virally induced pathways. In contrast, Macrophages did not show similar host responses, with stronger pathway enrichment in downregulated transcripts. This study provides insights to better understand gene transcription in immune cells compared to epithelial cells discerning pathways relevant to pathogenesis in the early stages of infection.
Collapse
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | | | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pedro P P V Diniz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
13
|
Levine A, Sacktor N, Becker JT. Studying the neuropsychological sequelae of SARS-CoV-2: lessons learned from 35 years of neuroHIV research. J Neurovirol 2020; 26:809-823. [PMID: 32880873 PMCID: PMC7471564 DOI: 10.1007/s13365-020-00897-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/14/2023]
Abstract
The virology of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the human immune response to the virus are under vigorous investigation. There are now several reports describing neurological symptoms in individuals who develop coronavirus disease 2019 (COVID-19), the syndrome associated with SARS-CoV-2 infection. The prevalence, incidence, and clinical course of these symptoms will become clearer in the coming months and years through epidemiological studies. However, the long-term neurological and cognitive consequence of SARS-CoV-2 infection will remain conjectural for some time and will likely require the creation of cohort studies that include uninfected individuals. Considering the early evidence for neurological involvement in COVID-19 it may prove helpful to compare SARS-CoV-2 with another endemic and neurovirulent virus, human immunodeficiency virus-1 (HIV-1), when designing such cohort studies and when making predictions about neuropsychological outcomes. In this paper, similarities and differences between SARS-CoV-2 and HIV-1 are reviewed, including routes of neuroinvasion, putative mechanisms of neurovirulence, and factors involved in possible long-term neuropsychological sequelae. Application of the knowledge gained from over three decades of neuroHIV research is discussed, with a focus on alerting researchers and clinicians to the challenges in determining the cause of neurocognitive deficits among long-term survivors.
Collapse
Affiliation(s)
- Andrew Levine
- Department of Neurology David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Ned Sacktor
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James T Becker
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
14
|
Gracia-Hernandez M, Sotomayor EM, Villagra A. Targeting Macrophages as a Therapeutic Option in Coronavirus Disease 2019. Front Pharmacol 2020; 11:577571. [PMID: 33324210 PMCID: PMC7723423 DOI: 10.3389/fphar.2020.577571] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Immune cells of the monocyte/macrophage lineage are characterized by their diversity, plasticity, and variety of functions. Among them, macrophages play a central role in antiviral responses, tissue repair, and fibrosis. Macrophages can be reprogrammed by environmental cues, thus changing their phenotype during an antiviral immune response as the viral infection progresses. While M1-like macrophages are essential for the initial inflammatory responses, M2-like macrophages are critical for tissue repair after pathogen clearance. Numerous reports have evaluated the detrimental effects that coronaviruses, e.g., HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2, have on the antiviral immune response and macrophage functions. In this review, we have addressed the breadth of macrophage phenotypes during the antiviral response and provided an overview of macrophage-coronavirus interactions. We also discussed therapeutic approaches to target macrophage-induced complications, currently under evaluation in clinical trials for coronavirus disease 2019 patients. Additionally, we have proposed alternative approaches that target macrophage recruitment, interferon signaling, cytokine storm, pulmonary fibrosis, and hypercoagulability.
Collapse
Affiliation(s)
- Maria Gracia-Hernandez
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The George Washington University Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Eduardo M. Sotomayor
- The George Washington University Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The George Washington University Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
15
|
Pietrobon AJ, Teixeira FME, Sato MN. I mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front Immunol 2020; 11:579220. [PMID: 33193377 PMCID: PMC7656138 DOI: 10.3389/fimmu.2020.579220] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
Old individuals are more susceptible to various infections due to immunological changes that occur during the aging process. These changes named collectively as "immunosenescence" include decreases in both the innate and adaptive immune responses in addition to the exacerbated production of inflammatory cytokines. This scenario of immunological dysfunction and its relationship with disease development in older people has been widely studied, especially in infections that can be fatal, such as influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection, many mechanisms of disease pathogenesis in old individuals have been proposed. To better understand the dynamics of COVID-19 in this group, aspects related to immunological senescence must be well elucidated. In this article, we discuss the main mechanisms involved in immunosenescence and their possible correlations with the susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more severe conditions of the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
16
|
Sweid A, Hammoud B, Bekelis K, Missios S, Tjoumakaris SI, Gooch MR, Herial NA, Zarzour H, Romo V, DePrince M, Rosenwasser RH, Jabbour P. Cerebral ischemic and hemorrhagic complications of coronavirus disease 2019. Int J Stroke 2020; 15:733-742. [PMID: 32501751 PMCID: PMC7534206 DOI: 10.1177/1747493020937189] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The coronavirus disease 2019 is associated with neurological manifestations including stroke. OBJECTIVES We present a case series of coronavirus disease 2019 patients from two institutions with acute cerebrovascular pathologies. In addition, we present a pooled analysis of published data on large vessel occlusion in the setting of coronavirus disease 2019 and a concise summary of the pathophysiology of acute cerebrovascular disease in the setting of coronavirus disease 2019. METHODS A retrospective study across two institutions was conducted between 20 March 2020 and 20 May 2020, for patients developing acute cerebrovascular disease and diagnosed with coronavirus disease 2019. We performed a literature review using the PubMed search engine. RESULTS The total sample size was 22 patients. The mean age was 59.5 years, and 12 patients were female. The cerebrovascular pathologies were 17 cases of acute ischemic stroke, 3 cases of aneurysm rupture, and 2 cases of sinus thrombosis. Of the stroke and sinus thrombosis patients, the mean National Institute of Health Stroke Scale was 13.8 ± 8.0, and 16 (84.2%) patients underwent a mechanical thrombectomy procedure. A favorable thrombolysis in cerebral infarction score was achieved in all patients. Of the 16 patients that underwent a mechanical thrombectomy, the mortality incidence was five (31.3%). Of all patients (22), three (13.6%) patients developed hemorrhagic conversion requiring decompressive surgery. Eleven (50%) patients had a poor functional status (modified Rankin Score 3-6) at discharge, and the total mortality incidence was eight (36.4%). CONCLUSIONS Despite timely intervention and favorable reperfusion, the mortality rate in coronavirus disease 2019 patients with large vessel occlusion was high in our series and in the pooled analysis. Notable features were younger age group, involvement of both the arterial and venous vasculature, multivessel involvement, and complicated procedures due to the clot consistency and burden.
Collapse
Affiliation(s)
- Ahmad Sweid
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Batoul Hammoud
- Department of Pediatric Endocrinology, Children Hospital of Philadelphia, Philadelphia, USA
| | - Kimon Bekelis
- Department of Neurosurgery, Good Samaritan Hospital Medical Center, West Islip, USA
| | - Symeon Missios
- Department of Neurosurgery, Good Samaritan Hospital Medical Center, West Islip, USA
| | | | - Michael R Gooch
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Nabeel A Herial
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Hekmat Zarzour
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Victor Romo
- Department of Anesthesia, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Maureen DePrince
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Robert H Rosenwasser
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Pascal Jabbour
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, USA
| |
Collapse
|
17
|
Lima M, Siokas V, Aloizou AM, Liampas I, Mentis AFA, Tsouris Z, Papadimitriou A, Mitsias PD, Tsatsakis A, Bogdanos DP, Baloyannis SJ, Dardiotis E. Unraveling the Possible Routes of SARS-COV-2 Invasion into the Central Nervous System. Curr Treat Options Neurol 2020; 22:37. [PMID: 32994698 PMCID: PMC7515807 DOI: 10.1007/s11940-020-00647-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW To describe the possible neuroinvasion pathways of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemic. RECENT FINDINGS We present data regarding the family of Coronaviruses (CoVs) and the central nervous system (CNS), and describe parallels between SARS-CoV-2 and other members of the family, which have been investigated in more depth and combine these findings with the recent advancements regarding SARS-CoV-2. SUMMARY SARS-CoV-2 like other CoVs is neuroinvasive, neurotropic and neurovirulent. Two main pathways of CNS penetration seem to be the strongest candidates, the hematogenous and the neuronal. Τhe olfactory route in particular appears to play a significant role in neuroinvasion of coronaviruses and SARS-CoV-2, as well. However, existing data suggest that other routes, involving the nasal epithelium in general, lymphatic tissue and the CSF may also play roles in SARS-CoV-2 invasion into the CNS.
Collapse
Affiliation(s)
- Maria Lima
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A. Mentis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Anastasios Papadimitriou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Panayiotis D. Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202 USA
- School of Medicine, Wayne State University, Detroit, MI 48202 USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stavros J. Baloyannis
- Research Institute for Alzheimer’s Disease, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
18
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
19
|
Shi D, Wu W, Wang Q, Xu K, Xie J, Wu J, Lv L, Sheng J, Guo J, Wang K, Fang D, Li Y, Li L. Clinical Characteristics and Factors Associated With Long-Term Viral Excretion in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection: a Single-Center 28-Day Study. J Infect Dis 2020; 222:910-918. [PMID: 32614392 PMCID: PMC7337834 DOI: 10.1093/infdis/jiaa388] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background Despite the ongoing spread of coronavirus disease 2019 (COVID-19), knowledge about factors affecting prolonged viral excretion is limited. Methods In this study, we retrospectively collected data from 99 hospitalized patients with coronavirus disease 2019 (COVID-19) between 19 January and 17 February 2020 in Zhejiang Province, China. We classified them into 2 groups based on whether the virus test results eventually became negative. Cox proportional hazards regression was used to evaluate factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding. Results Among 99 patients, 61 patients had SARS-CoV-2 clearance (virus-negative group), but 38 patients had sustained positive results (virus-positive group). The median duration of SARS-CoV-2 excretion was 15 (interquartile range, 12–19) days among the virus-negative patients. The shedding time was significantly increased if the fecal SARS-CoV-2 RNA test result was positive. Male sex (hazard ratio [HR], 0.58 [95% confidence interval {CI}, .35–.98]), immunoglobulin use (HR, 0.42 [95% CI, .24–.76]), APACHE II score (HR, 0.89 [95% CI, .84–.96]), and lymphocyte count (HR, 1.81 [95% CI, 1.05–3.1]) were independent factors associated with a prolonged duration of SARS-CoV-2 shedding. Antiviral therapy and corticosteroid treatment were not independent factors. Conclusions SARS-CoV-2 RNA clearance time was associated with sex, disease severity, and lymphocyte function. The current antiviral protocol and low-to-moderate dosage of corticosteroid had little effect on the duration of viral excretion.
Collapse
Affiliation(s)
- Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Daiqiong Fang
- Department of Endocrinology and Metabolism, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Huang J, Zheng M, Tang X, Chen Y, Tong A, Zhou L. Potential of SARS-CoV-2 to Cause CNS Infection: Biologic Fundamental and Clinical Experience. Front Neurol 2020; 11:659. [PMID: 32625165 PMCID: PMC7314941 DOI: 10.3389/fneur.2020.00659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus leading to serious respiratory disease and is spreading around the world at a raging speed. Recently there is emerging speculations that the central nervous system (CNS) may be involved during SARS-CoV-2 infection, contributing to the respiratory failure. However, the existence of viral replication in CNS has not been confirmed due to the lack of evidence from autopsy specimens. Considering the tropism of SARS-CoV-2, ACE2, is prevailing in CNS, and the neuro-invasive property of human coronavirus was widely reported, there is a need to identified the possible complications during COVID-19 for CNS. In this review, we conduct a detailed summary for the potential of SARS-CoV-2 to infect central nervous system from latest biological fundamental of SARS-CoV-2 to the clinical experience of other human coronaviruses. To confirm the neuro-invasive property of SARS-CoV-2 and the subsequent influence on patients will require further exploration by both virologist and neurologist.
Collapse
Affiliation(s)
- Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
SARS-CoV-2 Infection Leads to Neurological Dysfunction. J Neuroimmune Pharmacol 2020; 15:167-173. [PMID: 32447746 PMCID: PMC7244399 DOI: 10.1007/s11481-020-09924-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
A number of neurological disease complications have been seen following infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While most person with COVID-19 respiratory disease demonstrate headache, nausea and vomiting, up to 40% present also experience dizziness, confusion, cerebrovascular disease, muscle pain, ataxia and seizures. Loss of taste and smell, defects in visual acuity and pain occur in parallel. Such central nervous system (CNS) signs and symptoms linked to laboratory-confirmed SARS-CoV-2 infection is often life threatening. Health care providers currently evaluating patients with neurologic symptoms need consider COVID-19 in any differential diagnosis. These considerations will facilitate prompt testing, isolation and prevention of viral transmission speeding best clinical outcomes. Graphical Abstract ![]()
Collapse
|
22
|
Sepehrinezhad A, Shahbazi A, Negah SS. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J Neurovirol 2020; 26:324-329. [PMID: 32418055 PMCID: PMC7229881 DOI: 10.1007/s13365-020-00851-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) was reported at the end of 2019 in China for the first time and has rapidly spread throughout the world as a pandemic. Since COVID-19 causes mild to severe acute respiratory syndrome, most studies in this field have only focused on different aspects of pathogenesis in the respiratory system. However, evidence suggests that COVID-19 may affect the central nervous system (CNS). Given the outbreak of COVID-19, it seems necessary to perform investigations on the possible neurological complications in patients who suffered from COVID-19. Here, we reviewed the evidence of the neuroinvasive potential of coronaviruses and discussed the possible pathogenic processes in CNS infection by COVID-19 to provide a precise insight for future studies.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences , Mashhad, Iran. .,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd, Mashhad, Iran.
| |
Collapse
|
23
|
Morris M, Zohrabian VM. Neuroradiologists, Be Mindful of the Neuroinvasive Potential of COVID-19. AJNR Am J Neuroradiol 2020; 41:E37-E39. [PMID: 32354715 DOI: 10.3174/ajnr.a6551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Morris
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| | - V M Zohrabian
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| |
Collapse
|
24
|
Yang Z, Shi J, He Z, Lü Y, Xu Q, Ye C, Chen S, Tang B, Yin K, Lu Y, Chen X. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging (Albany NY) 2020; 12:6037-6048. [PMID: 32275643 PMCID: PMC7185104 DOI: 10.18632/aging.102999] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the potential parameters associated with imaging progression on chest CT from coronavirus disease 19 (COVID-19) patients. RESULTS The average age of 273 COVID-19 patients enrolled with imaging progression were older than those without imaging progression (p = 0.006). The white blood cells, platelets, neutrophils and acid glycoprotein were all decreased in imaging progression patients (all p < 0.05), and monocytes were increased (p = 0.025). The parameters including homocysteine, urea, creatinine and serum cystatin C were significantly higher in imaging progression patients (all p < 0.05), while eGFR decreased (p < 0.001). Monocyte-lymphocyte ratio (MLR) was significantly higher in imaging progression patients compared to that in imaging progression-free ones (p < 0.001). Logistic models revealed that age, MLR, homocysteine and period from onset to admission were factors for predicting imaging progression on chest CT at first week from COVID-19 patients (all p < 0.05). CONCLUSION Age, MLR, homocysteine and period from onset to admission could predict imaging progression on chest CT from COVID-19 patients. METHODS The primary outcome was imaging progression on chest CT. Baseline parameters were collected at the first day of admission. Imaging manifestations on chest CT were followed-up at (6±1) days.
Collapse
Affiliation(s)
- Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jia Shi
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhang He
- Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ying Lü
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qingnian Xu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chen Ye
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Shishi Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Bozong Tang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Keshan Yin
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yunfei Lu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
25
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 698] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
26
|
Maretti E, Costantino L, Buttini F, Rustichelli C, Leo E, Truzzi E, Iannuccelli V. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res 2019; 9:298-310. [PMID: 30484257 DOI: 10.1007/s13346-018-00607-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study reports about new solid lipid nanoparticle assemblies (SLNas) loaded with rifampicin (RIF) surface-decorated with novel mannose derivatives, designed for anti-tuberculosis (TB) inhaled therapy by dry powder inhaler (DPI). Mannose is considered a relevant ligand to achieve active drug targeting being mannose receptors (MR) overexpressed on membranes of infected alveolar macrophages (AM), which are the preferred site of Mycobacterium tuberculosis. Surface decoration of SLNas was obtained by means of newly synthesized functionalizing compounds used as surfactants in the preparation of carriers. SLNas were fully characterized in vitro determining size, morphology, drug loading, drug release, surface mannosylation, cytotoxicity, macrophage internalization extent and ability to bind MR, and intracellular RIF concentration. Moreover, the influence of these new surface functionalizing agents on SLNas aerodynamic performance was assessed by measuring particle respirability features using next generation impactor. SLNas exhibited suitable drug payload, in vitro release, and more efficient ability to enter macrophages (about 80%) compared to bare RIF (about 20%) and to non-functionalized SLNas (about 40%). The involvement of MR-specific binding has been demonstrated by saturating MR of J774 cells causing a decrease of RIF intracellular concentration of about 40%. Furthermore, it is noteworthy that the surface decoration of particles produced a poor cohesive powder with an adequate respirability (fine particle fraction ranging from about 30 to 50%). Therefore, the proposed SLNas may represent an encouraging opportunity in a perspective of an efficacious anti-TB inhaled therapy.
Collapse
Affiliation(s)
- Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy.
| |
Collapse
|
27
|
Enjuanes L, Zuñiga S, Castaño-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular Basis of Coronavirus Virulence and Vaccine Development. Adv Virus Res 2016; 96:245-286. [PMID: 27712626 PMCID: PMC7112271 DOI: 10.1016/bs.aivir.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus vaccines have to be immunogenic, sufficiently stable, safe, and suitable to induce long-lasting immunity. To meet these requirements, vaccine studies need to provide a comprehensive understanding of (i) the protective roles of antiviral B and T-cell-mediated immune responses, (ii) the complexity and plasticity of major viral antigens, and (iii) virus molecular biology and pathogenesis. There are many types of vaccines including subunit vaccines, whole-inactivated virus, vectored, and live-attenuated virus vaccines, each of which featuring specific advantages and limitations. While nonliving virus vaccines have clear advantages in being safe and stable, they may cause side effects and be less efficacious compared to live-attenuated virus vaccines. In most cases, the latter induce long-lasting immunity but they may require special safety measures to prevent reversion to highly virulent viruses following vaccination. The chapter summarizes the recent progress in the development of coronavirus (CoV) vaccines, focusing on two zoonotic CoVs, the severe acute respiratory syndrome CoV (SARS-CoV), and the Middle East respiratory syndrome CoV, both of which cause deadly disease and epidemics in humans. The development of attenuated virus vaccines to combat infections caused by highly pathogenic CoVs was largely based on the identification and characterization of viral virulence proteins that, for example, interfere with the innate and adaptive immune response or are involved in interactions with specific cell types, such as macrophages, dendritic and epithelial cells, and T lymphocytes, thereby modulating antiviral host responses and viral pathogenesis and potentially resulting in deleterious side effects following vaccination.
Collapse
Affiliation(s)
- L Enjuanes
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.
| | - S Zuñiga
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - C Castaño-Rodriguez
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - J Gutierrez-Alvarez
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - J Canton
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - I Sola
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
28
|
Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases 2016; 4:E26. [PMID: 28933406 PMCID: PMC5456285 DOI: 10.3390/diseases4030026] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses (HCoVs) are known respiratory pathogens associated with a range of respiratory outcomes. In the past 14 years, the onset of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have thrust HCoVs into spotlight of the research community due to their high pathogenicity in humans. The study of HCoV-host interactions has contributed extensively to our understanding of HCoV pathogenesis. In this review, we discuss some of the recent findings of host cell factors that might be exploited by HCoVs to facilitate their own replication cycle. We also discuss various cellular processes, such as apoptosis, innate immunity, ER stress response, mitogen-activated protein kinase (MAPK) pathway and nuclear factor kappa B (NF-κB) pathway that may be modulated by HCoVs.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Ling Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
29
|
Kuchar E, Miśkiewicz K, Nitsch-Osuch A, Szenborn L. Pathophysiology of Clinical Symptoms in Acute Viral Respiratory Tract Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 857:25-38. [PMID: 25786400 PMCID: PMC7121097 DOI: 10.1007/5584_2015_110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this article we discuss the pathophysiology of common symptoms of acute viral respiratory infections (e.g., sneezing, nasal discharge, sore throat, cough, muscle pains, malaise, and mood changes). Since clinical symptoms are not sufficient to determine the etiology of viral respiratory tract infections, we believe that the host defense mechanisms are critical for the symptomatology. Consequently, this review of literature is focused on the pathophysiology of respiratory symptoms regardless of their etiology. We assume that despite a high prevalence of symptoms of respiratory infection, their pathogenesis is not widely known. A better understanding of the symptoms' pathogenesis could improve the quality of care for patients with respiratory tract infections.
Collapse
Affiliation(s)
- E Kuchar
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, 2A Chalubinskiego Str., 50-368, Wroclaw, Poland,
| | | | | | | |
Collapse
|
30
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
31
|
Adhikari R, Thapa S. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 807:75-96. [PMID: 24619619 PMCID: PMC7121612 DOI: 10.1007/978-81-322-1777-0_6] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.
Collapse
Affiliation(s)
| | - Santosh Thapa
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
32
|
A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J Virol 2012; 86:7577-87. [PMID: 22553325 DOI: 10.1128/jvi.00269-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E.
Collapse
|
33
|
Maestre AM, Garzón A, Rodríguez D. Equine torovirus (BEV) induces caspase-mediated apoptosis in infected cells. PLoS One 2011; 6:e20972. [PMID: 21698249 PMCID: PMC3115971 DOI: 10.1371/journal.pone.0020972] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 05/16/2011] [Indexed: 12/26/2022] Open
Abstract
Toroviruses are gastroenteritis causing agents that infect different animal species and humans. To date, very little is known about how toroviruses cause disease. Here, we describe for the first time that the prototype member of this genus, the equine torovirus Berne virus (BEV), induces apoptosis in infected cells at late times postinfection. Observation of BEV infected cells by electron microscopy revealed that by 24 hours postinfection some cells exhibited morphological characteristics of apoptotic cells. Based on this finding, we analyzed several apoptotic markers, and observed protein synthesis inhibition, rRNA and DNA degradation, nuclear fragmentation, caspase-mediated cleavage of PARP and eIF4GI, and PKR and eIF2α phosphorylation, all these processes taking place after peak virus production. We also determined that both cell death receptor and mitochondrial pathways are involved in the apoptosis process induced by BEV. BEV-induced apoptosis at late times postinfection, once viral progeny are produced, could facilitate viral dissemination in vivo and contribute to viral pathogenesis.
Collapse
Affiliation(s)
- Ana M. Maestre
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Ana Garzón
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
34
|
Validation of a medium-throughput method for evaluation of intracellular growth of Mycobacterium tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:513-7. [PMID: 20107000 DOI: 10.1128/cvi.00446-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intracellular pathogens such as Mycobacterium tuberculosis have adapted to a life inside host cells, in which they utilize host nutrients to replicate and spread. Ineffective methods for the evaluation of growth of intracellular pathogens in their true environment pose an obstacle for basic research and drug screening. Here we present the validation of a luminometry-based method for the analysis of intramacrophage growth of M. tuberculosis. The method, which is performed in a medium-throughput format, can easily be adapted for studies of other intracellular pathogens and cell types. The use of host cells in drug-screening assays dedicated to find antimicrobials effective against intracellular pathogens permits the discovery of not only novel antibiotics but also compounds with immunomodulatory and virulence-impairing activities, which may be future alternatives or complements to antibiotics.
Collapse
|
35
|
De Martino L, Marfé G, Longo M, Fiorito F, Montagnaro S, Iovane V, Decaro N, Pagnini U. Bid cleavage, cytochrome c release and caspase activation in canine coronavirus-induced apoptosis. Vet Microbiol 2009; 141:36-45. [PMID: 19781871 PMCID: PMC7117139 DOI: 10.1016/j.vetmic.2009.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/06/2009] [Accepted: 09/04/2009] [Indexed: 10/26/2022]
Abstract
A previous study demonstrated that infection of a canine fibrosarcoma cell line (A-72 cells) by canine coronavirus (CCoV) resulted in apoptosis (Ruggieri et al., 2007). In this study, we investigated the cell death processes during infection and the underlying mechanisms. We found that CCoV-II triggers apoptosis in A-72 cells by activating initiator (caspase-8 and -9) and executioner (caspase-3 and -6) caspases. The proteolytic cleavage of poly(ADP-ribose) polymerases (PARPs) confirmed the activation of executioner caspases. Furthermore, CCoV-II infection resulted in truncated bid (tbid) translocation from the cytosolic to the mitochondrial fraction, the cytochrome c release from mitochondria, and alterations in the pro- and anti-apoptotic proteins of bcl-2 family. Our data indicated that, in this experimental model, both intrinsic and extrinsic pathways are involved. In addition, we demonstrated that the inhibition of apoptosis by caspase inhibitors did not affect CCoV replication, suggesting that apoptosis does not play a role in facilitating viral release.
Collapse
Affiliation(s)
- Luisa De Martino
- Department of Pathology and Animal Health, Infectious Diseases, Faculty of Veterinary Medicine, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res 2009; 142:19-27. [PMID: 19185596 PMCID: PMC2699111 DOI: 10.1016/j.virusres.2009.01.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/09/2009] [Indexed: 12/12/2022]
Abstract
A purified recombinant spike (S) protein was studied for its effect on stimulating human peripheral blood monocyte macrophages (PBMC). We examined inflammatory gene mRNA abundances found in S protein-treated PBMC using gene arrays. We identified differential mRNA abundances of genes with functional properties associated with antiviral (CXCL10) and inflammatory (IL-6 and IL-8) responses. We confirmed cytokine mRNA increases by real-time quantitative(q) RT-PCR or ELISA. We further analyzed the sensitivity and specificity of the prominent IL-8 response. By real-time qRT-PCR, S protein was shown to stimulate IL-8 mRNA accumulation in a dose dependent manner while treatment with E protein did not. Also, titration of S protein-specific production and secretion of IL-8 by ELISA showed that the dose of 5.6nM of S produced a significant increase in IL-8 (p=0.003) compared to mock-treated controls. The increase in IL-8 stimulated by a concentration of 5.6nM of S was comparable to concentrations seen for S protein binding to ACE2 or to neutralizing monoclonal antibody suggesting a physiological relevance. An NF-kappaB inhibitor, TPCK (N-Tosyl-L-Phenylalanine Chloromethyl Ketone) could suppress IL-8 production and secretion in response to S protein in PBMC and THP-1 cells and in HCoV-229E virus-infected PBMC. Activation and translocation of NF-kappaB was shown to occur rapidly following exposure of PBMC or THP-1 cells to S protein using a highly sensitive assay for active nuclear NF-kappaB p65 transcription factor. The results further suggested that released or secreted S protein could activate blood monocytes through recognition by toll-like receptor (TLR)2 ligand.
Collapse
Affiliation(s)
- Susan F. Dosch
- Department of Microbiology and Immunology, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Arlene R. Collins
- Department of Microbiology and Immunology, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
37
|
Krähling V, Stein DA, Spiegel M, Weber F, Mühlberger E. Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J Virol 2009; 83:2298-309. [PMID: 19109397 PMCID: PMC2643707 DOI: 10.1128/jvi.01245-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/15/2008] [Indexed: 01/09/2023] Open
Abstract
In this study, infection of 293/ACE2 cells with severe acute respiratory syndrome coronavirus (SARS-CoV) activated several apoptosis-associated events, namely, cleavage of caspase-3, caspase-8, and poly(ADP-ribose) polymerase 1 (PARP), and chromatin condensation and the phosphorylation and hence inactivation of the eukaryotic translation initiation factor 2alpha (eIF2alpha). In addition, two of the three cellular eIF2alpha kinases known to be virus induced, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), were activated by SARS-CoV. The third kinase, general control nonderepressible-2 kinase (GCN2), was not activated, but late in infection the level of GCN2 protein was significantly reduced. Reverse transcription-PCR analyses revealed that the reduction of GCN2 protein was not due to decreased transcription or stability of GCN2 mRNA. The specific reduction of PKR protein expression by antisense peptide-conjugated phosphorodiamidate morpholino oligomers strongly reduced cleavage of PARP in infected cells. Surprisingly, the knockdown of PKR neither enhanced SARS-CoV replication nor abrogated SARS-CoV-induced eIF2alpha phosphorylation. Pretreatment of cells with beta interferon prior to SARS-CoV infection led to a significant decrease in PERK activation, eIF2alpha phosphorylation, and SARS-CoV replication. The various effects of beta interferon treatment were found to function independently on the expression of PKR. Our results show that SARS-CoV infection activates PKR and PERK, leading to sustained eIF2alpha phosphorylation. However, virus replication was not impaired by these events, suggesting that SARS-CoV possesses a mechanism to overcome the inhibitory effects of phosphorylated eIF2alpha on viral mRNA translation. Furthermore, our data suggest that viral activation of PKR can lead to apoptosis via a pathway that is independent of eIF2alpha phosphorylation.
Collapse
Affiliation(s)
- Verena Krähling
- Department of Virology, Philipps University Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Desforges M, Miletti TC, Gagnon M, Talbot PJ. Activation of human monocytes after infection by human coronavirus 229E. Virus Res 2007; 130:228-40. [PMID: 17669539 PMCID: PMC7114174 DOI: 10.1016/j.virusres.2007.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 12/15/2022]
Abstract
Human coronaviruses (HCoV) are recognized respiratory pathogens that may be involved in other pathologies such as central nervous system (CNS) diseases. To investigate whether leukocytes could participate in respiratory pathologies and serve as vector for viral spread towards other tissues, the susceptibility of human leukocytic cell lines and peripheral blood mononuclear cells (PBMC) to HCoV-229E and HCoV-OC43 infection was investigated. Human primary monocytes/macrophages were susceptible to HCoV-229E infection, but strongly restricted HCoV-OC43 replication. Moreover, productive HCoV-229E infection of primary monocytes and of the THP-1 monocytic cell line led to their activation, as indicated by the production of pro-inflammatory mediators, including TNF-alpha, CCL5, CXCL10 and CXCL11 and MMP-9. Moreover, an in vitro chemotaxis assay showed that motility towards chemokines of THP-1 cells and primary monocytes was increased following an acute or persistent HCoV-229E infection. Taken together, these results suggest that infected monocytes could serve as a reservoir for HCoV-229E, become activated, participate in the exacerbation of pulmonary pathologies, as well as serve as potential vectors for viral dissemination to host tissues, where it could be associated with other pathologies.
Collapse
Affiliation(s)
| | | | | | - Pierre J. Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| |
Collapse
|
39
|
Tan YJ, Lim SG, Hong W. Regulation of cell death during infection by the severe acute respiratory syndrome coronavirus and other coronaviruses. Cell Microbiol 2007; 9:2552-61. [PMID: 17714515 PMCID: PMC7162196 DOI: 10.1111/j.1462-5822.2007.01034.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 12/16/2022]
Abstract
Both apoptosis and necrosis have been observed in cells infected by various coronaviruses, suggesting that the regulation of cell death is important for viral replication and/or pathogenesis. Expeditious research on the severe acute respiratory syndrome (SARS) coronavirus, one of the latest discovered coronaviruses that infect humans, has provided valuable insights into the molecular aspects of cell-death regulation during infection. Apoptosis was observed in vitro, while both apoptosis and necrosis were observed in tissues obtained from SARS patients. Viral proteins that can regulate apoptosis have been identified, and many of these also have the abilities to interfere with cellular functions. Occurrence of cell death in host cells during infection by other coronaviruses, such as the mouse hepatitis virus and transmissible porcine gastroenteritis virus, has also being extensively studied. The diverse cellular responses to infection revealed the complex manner by which coronaviruses affect cellular homeostasis and modulate cell death. As a result of the complex interplay between virus and host, infection of different cell types by the same virus does not necessarily activate the same cell-death pathway. Continuing research will lead to a better understanding of the regulation of cell death during viral infection and the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673.
| | | | | |
Collapse
|
40
|
Liu Z, Wang Z, Liu Y, Dong W, Qi Y. Analysis of proteins that interact with nucleocapsid protein of SARS-CoV using 15-mer phage-displayed library. CHINESE SCIENCE BULLETIN-CHINESE 2007; 52:2072-2080. [PMID: 32214725 PMCID: PMC7088746 DOI: 10.1007/s11434-007-0303-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/16/2007] [Indexed: 12/16/2022]
Abstract
Analysis of proteins that interact with N protein of SARS-CoV using 15-mer phage-displayed library will help to explore the virus pathogenesis and to develop new drugs and vaccines against SARS. In this study, we cloned, expressed and purified N protein of SARS-CoV. This 46-kD N protein was verified by SDS-PAGE and Western-blot. Then, the peptides binding-specific to N protein were identified using 15-mer phage-displayed library. Surprisingly, all of the 89 clones from monoclonal ELISA were positive (S/N>2.1) and the result was further confirmed experimentally once again. Six N protein-binding peptides, designated separately as SNA1, SNA2, SNA4, SNA5, SNA9 and SNG11, were selected for sequencing. Sequence analysis suggested that SNA5 shared approximatively 100% sequence identity to SNA4, SNA2, SNA9 and SNA1. In addition, the binding specificity of the 15-mer peptides with the SARS-CoV N protein was further demonstrated by blocking ELISA using the synthetical 15-mer peptide according to the deduced amino acid sequence of SNA5. Also, the deduced amino sequence of SNA5 was compared with proteins in translated database using the tblastx program, and the results showed that the proteins with the highest homology were Ubiquinol-cytochrome c reductase iron-sulfur subunits (UCRI or UQCR), otherwise known as the Rieske iron-sulfur proteins (RISP). Notablely, in the [2Fe-2S] redox centre of UCRI, there were 6 residues [GGW(Y)F(Y)CP] compatible to the residues (position 2→7, GGWFCP7) of the NH2-terminal of the 15-mer peptide, which indicated higher binding specificity between the N protein of SARS-CoV and the redox centre of UCRI to some extent. Here, the possible molecular mechanisms of SARS-CoV N protein in the pathogenesis of SARS are discussed.
Collapse
Affiliation(s)
- ZhengXue Liu
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, 430072 China
- Biology Department, Chongqing Three Gorges University, Chongqing, 404000 China
| | - ZhanHui Wang
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - YingLe Liu
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Wei Dong
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - YiPeng Qi
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
41
|
Perlman S, Holmes KV. HCoV-229E infects and activates monocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:511-4. [PMID: 17037587 PMCID: PMC7123421 DOI: 10.1007/978-0-387-33012-9_91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
42
|
Perlman S, Holmes KV. HCoV-OC43-induced apoptosis of murine neuronal cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:473-8. [PMID: 17037580 PMCID: PMC7123252 DOI: 10.1007/978-0-387-33012-9_84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
43
|
Chow KY, Yeung YS, Hon CC, Zeng F, Law KM, Leung FC. Adenovirus-mediated expression of the C-terminal domain of SARS-CoV spike protein is sufficient to induce apoptosis in Vero E6 cells. FEBS Lett 2005; 579:6699-704. [PMID: 16310778 PMCID: PMC7094440 DOI: 10.1016/j.febslet.2005.10.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/18/2005] [Accepted: 10/25/2005] [Indexed: 02/08/2023]
Abstract
The pro-apoptotic properties of severe acute respiratory syndrome coronavirus (SARS-CoV) structural proteins were studied in vitro. By monitoring apoptosis indicators including chromatin condensation, cellular DNA fragmentation and cell membrane asymmetry, we demonstrated that the adenovirus-mediated over-expression of SARS-CoV spike (S) protein and its C-terminal domain (S2) induce apoptosis in Vero E6 cells in a time- and dosage-dependent manner, whereas the expression of its N-terminal domain (S1) and other structural proteins, including envelope (E), membrane (M) and nucleocapsid (N) protein do not. These findings suggest a possible role of S and S2 protein in SARS-CoV induced apoptosis and the molecular pathogenesis of SARS.
Collapse
Affiliation(s)
- Ken Y.C. Chow
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yin Shan Yeung
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chung Chau Hon
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fanya Zeng
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ka Man Law
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Frederick C.C. Leung
- Department of Zoology, Kadoorie Biological Science Building, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
44
|
Law HKW, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JSM, Lau YL. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 2005; 106:2366-74. [PMID: 15860669 PMCID: PMC1895271 DOI: 10.1182/blood-2004-10-4166] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 04/19/2005] [Indexed: 02/08/2023] Open
Abstract
Lymphopenia and increasing viral load in the first 10 days of severe acute respiratory syndrome (SARS) suggested immune evasion by SARS-coronavirus (CoV). In this study, we focused on dendritic cells (DCs) which play important roles in linking the innate and adaptive immunity. SARS-CoV was shown to infect both immature and mature human monocyte-derived DCs by electron microscopy and immunofluorescence. The detection of negative strands of SARS-CoV RNA in DCs suggested viral replication. However, no increase in viral RNA was observed. Using cytopathic assays, no increase in virus titer was detected in infected DCs and cell-culture supernatant, confirming that virus replication was incomplete. No induction of apoptosis or maturation was detected in SARS-CoV-infected DCs. The SARS-CoV-infected DCs showed low expression of antiviral cytokines (interferon alpha [IFN-alpha], IFN-beta, IFN-gamma, and interleukin 12p40 [IL-12p40]), moderate up-regulation of proinflammatory cytokines (tumor necrosis factor alpha [TNF-alpha] and IL-6) but significant up-regulation of inflammatory chemokines (macrophage inflammatory protein 1alpha [MIP-1alpha], regulated on activation normal T cell expressed and secreted [RANTES]), interferon-inducible protein of 10 kDa [IP-10], and monocyte chemoattractant protein 1 [MCP-1]). The lack of antiviral cytokine response against a background of intense chemokine up-regulation could represent a mechanism of immune evasion by SARS-CoV.
Collapse
Affiliation(s)
- Helen K W Law
- Department of Paediatrics and Adolescent Medicine, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bordi L, Castilletti C, Falasca L, Ciccosanti F, Calcaterra S, Rozera G, Di Caro A, Zaniratti S, Rinaldi A, Ippolito G, Piacentini M, Capobianchi MR. Bcl-2 inhibits the caspase-dependent apoptosis induced by SARS-CoV without affecting virus replication kinetics. Arch Virol 2005; 151:369-77. [PMID: 16155806 PMCID: PMC7086587 DOI: 10.1007/s00705-005-0632-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 08/02/2005] [Indexed: 01/20/2023]
Abstract
Vero cells transfected with either neo- or bcl-2-plasmid were infected with SARS-CoV at a high multiplicity of infection. Apoptosis appeared after the onset of CPE and completion of virus replication, and could be prevented by Bcl-2 expression. Apoptosis is likely mediated by the mitochondrial pathway, as demonstrated by its inhibition using Bcl-2, and by the activation of the caspase cascade, resulting in PARP cleavage. Prevention of apoptosis did not affect susceptibility to infection, kinetics and extent of viral replication and release, thus implying that apoptosis is not involved in facilitating release and/or dissemination of SARS-CoV in Vero cells.
Collapse
Affiliation(s)
- L Bordi
- Laboratory of Virology, National Institute for Infectious Diseases INMI L. Spallanzani, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
He Z, Zhao C, Dong Q, Zhuang H, Song S, Peng G, Dwyer DE. Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int J Infect Dis 2005; 9:323-30. [PMID: 16095942 PMCID: PMC7110876 DOI: 10.1016/j.ijid.2004.07.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 07/05/2004] [Accepted: 07/20/2004] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome (SARS) caused large outbreaks of atypical pneumonia in 2003, with the largest localized outbreak occurring in Beijing, China. Lymphopenia was prominent amongst the laboratory abnormalities reported in acute SARS. METHODS The effect of SARS on peripheral blood lymphocytes and their subsets was examined in 271 SARS coronavirus-infected individuals. RESULTS There was a significant decrease in the CD45+, CD3+, CD4+, CD8+, CD19+ and CD16+/56+ cell counts over the five weeks of the SARS illness although CD4+/CD8+ ratios did not change significantly. The lymphopenia was prolonged, reaching a nadir during days 7-9 in the second week of illness before returning towards normal after five weeks, with the lowest mean CD4+ cell count of 317 cellsx10(6)/L at day 7, and CD8+ cell count of 239 cellsx10(6)/L at day 8. Patients with more severe clinical illness, or patients who died, had significantly more profound CD4+ and CD8+ lymphopenia. DISCUSSION Lymphopenia is a prominent part of SARS-CoV infection and lymphocyte counts may be useful in predicting the severity and clinical outcomes. Possible reasons for the SARS-associated lymphopenia may be direct infection of lymphocytes by SARS-CoV, lymphocyte sequestration in the lung or cytokine-mediated lymphocyte trafficking. There may also be immune-mediated lymphocyte destruction, bone marrow or thymus suppression, or apoptosis.
Collapse
Affiliation(s)
- Zhongping He
- Capital University of Medical Sciences Affiliated Beijing YouAn Hospital, Beijing 100054, PR China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Yilla M, Harcourt BH, Hickman CJ, McGrew M, Tamin A, Goldsmith CS, Bellini WJ, Anderson LJ. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res 2005; 107:93-101. [PMID: 15567038 PMCID: PMC7114182 DOI: 10.1016/j.virusres.2004.09.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 01/23/2023]
Abstract
A novel coronavirus (CoV) has been described in association with cases of severe acute respiratory syndrome (SARS). The virus, SARS-CoV, differs from the previously described human coronaviruses, 229E and OC43. 229E was previously shown to productively infect human monocytes/macrophages, whereas OC43 poorly infected the cells. In this study, we examined whether SARS-CoV could productively infect purified monocytes/macrophages (PM) derived from human donor cells. Unlike 229E-infected cells, which produced viral titers of 103.5 to 106 TCID50/ml, SARS-CoV replicated poorly in PM, producing titers of 101.75 to 102 TCID50/ml. This finding was similar to results reported for OC43-infected cells, with titers ranging from 101.2 to 102.7 TCID50/ml. Of interest, SARS-CoV proteins were detected only in PM that did not produce significant amounts of interferon (IFN)-α, and in one such case, preliminary electron microscope studies demonstrated that SARS-CoV-like particles could enter the cells, possibly via phagocytosis. These results suggest that SARS-CoV, like human CoV OC43, poorly infects human PM, and production of IFN-α by these cells further limits the infection. Given the importance of monocytes/macrophages to the immune response, it is possible that their infection by SARS-CoV and alteration of this infection by IFN-α may be important to the course of the infection in humans.
Collapse
Affiliation(s)
- Mamadi Yilla
- Respiratory and Enteric Viruses Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS-C22, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tan YJ, Fielding BC, Goh PY, Shen S, Tan THP, Lim SG, Hong W. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 2004; 78:14043-7. [PMID: 15564512 PMCID: PMC533950 DOI: 10.1128/jvi.78.24.14043-14047.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides genes that are homologous to proteins found in other coronaviruses, the severe acute respiratory syndrome coronavirus genome also contains nine other potential open reading frames. Previously, we have characterized the expression and cellular localization of two of these "accessory" viral proteins, 3a (previously termed U274) and 7a (previously termed U122). In this study, we further examined whether they can induce apoptosis, which has been observed clinically. We showed that the overexpression of 7a, but not of 3a or the viral structural proteins, nucleocapsid, membrane, and envelope, induces apoptosis. 7a induces apoptosis via a caspase-dependent pathway and in cell lines derived from different organs, including lung, kidney, and liver.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | | | | | | | | | | | |
Collapse
|
49
|
Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 2004. [PMID: 15564512 DOI: 10.1128/jvi.78.24.14043‐14047.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Besides genes that are homologous to proteins found in other coronaviruses, the severe acute respiratory syndrome coronavirus genome also contains nine other potential open reading frames. Previously, we have characterized the expression and cellular localization of two of these "accessory" viral proteins, 3a (previously termed U274) and 7a (previously termed U122). In this study, we further examined whether they can induce apoptosis, which has been observed clinically. We showed that the overexpression of 7a, but not of 3a or the viral structural proteins, nucleocapsid, membrane, and envelope, induces apoptosis. 7a induces apoptosis via a caspase-dependent pathway and in cell lines derived from different organs, including lung, kidney, and liver.
Collapse
|
50
|
Tse GMK, Hui PK, Ma TKF, Lo AWI, To KF, Chan WY, Chow LTC, Ng HK. Sputum cytology of patients with severe acute respiratory syndrome (SARS). J Clin Pathol 2004; 57:256-9. [PMID: 14990595 PMCID: PMC1770235 DOI: 10.1136/jcp.2003.012948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS) is a newly described form of atypical pneumonia linked to a novel coronavirus. AIMS To review the sputum cytology of 15 patients who fulfilled the World Health Organisation clinical criteria for SARS in an attempt to evaluate whether early diagnosis is feasible with routine sputum examination. METHODS All sputum samples from patients with SARS from the four major hospitals in Hong Kong were reviewed; abnormalities were sought in the cellular component, including abnormal numbers and morphology of the component cells compared with those from age matched controls taken over the same period one year ago. RESULTS Fifteen sputum samples from patients were compared with 25 control samples. In the patients with SARS, loose aggregates of macrophages were seen more frequently in the sputum. These macrophages frequently showed morphological changes, such as cytoplasmic foaminess, vacuole formation, and nuclear changes (including multinucleation and a ground glass appearance) when compared with the control samples. CONCLUSIONS The cytological features of SARS are non-specific, but the observation of any of the described features should prompt further investigations, especially in patients with suspicious clinical features.
Collapse
Affiliation(s)
- G M K Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Ngan Shing Street, NT, Hong Kong ROC.
| | | | | | | | | | | | | | | |
Collapse
|