1
|
Mohammadzadeh R, Izadi N, Sankian M, Najafzadeh MJ, Farsiani H. Phylogenetic analysis of prevalent Mycobacterium species in Northeastern Iran based on hsp65 and tuf genes. Anal Biochem 2025:115904. [PMID: 40379074 DOI: 10.1016/j.ab.2025.115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Phylogenetic analysis of Mycobacterium species can provide valuable insights into their evolutionary relationships and help to identify species and strains. In this study, two genetic markers, including the heat shock protein 65 (hsp65) gene and the elongation factor (EF)-Tu (tuf) gene were used for phylogenetic analysis of Mycobacterium species. Clinical samples were collected from patients suspected of tuberculosis. Bacterial isolates were obtained from sputum samples and cultured on Löwenstein-Jensen medium. Thirty Mycobacterium isolates (acid-fast +, culture +), were included in our study. After DNA extraction, hsp65 (441 bp) and tuf (741 bp) genes were PCR-amplified and sequenced. The Neighbor-Joining method was employed to infer the evolutionary history of the isolates and the analyses were conducted with MEGA X software. The phylogenetic trees were validated using bootstrap analysis with 1,000 replicates. Bootstrap values above 70% considered indicative of well support for the branches. The phylogenetic trees revealed the overall natural relationships among Mycobacterium species. Our results demonstrated that the tuf gene provides superior resolution for identifying distinct mycobacterial species, closely aligning its phylogenetic profile with the hsp65 gene. However, neither of the markers was effective in distinguishing members of the Mycobacterium tuberculosis complex (MTBC). This study highlights the high discriminatory power of the tuf gene, recommending its use as a primary genomic marker for phylogenetic analysis.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Izadi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Laboratory, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunobiochemistry Lab, Immunology Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Emmerick LS, Schwarz MGA, Corrêa PR, Piñero SL, Gomes LHF, Almeida AMM, Valente RH, Degrave WMS, Mendonça-Lima L. Characterization of mycobacteria isolated from the Brazilian Atlantic Forest: a public health and bioprospection perspective. Front Microbiol 2025; 16:1558006. [PMID: 40351310 PMCID: PMC12062998 DOI: 10.3389/fmicb.2025.1558006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
The Mycobacterium genus remains highly relevant today due to the rising incidence of tuberculosis and opportunistic infections caused by environmental mycobacteria. While much is known about M. tuberculosis, M. leprae and M. bovis, studies focusing on environmental mycobacteria remain limited. These microorganisms are globally distributed and have been identified in diverse biomes, including the Atlantic Forest. This study aims to provide a characterization of four mycobacterial strains isolated from the Atlantic Forest, assessing their metabolic capabilities and biotechnological potential. We investigated the presence of cellulases and proteases and conducted an initial profiling of secreted proteins. Furthermore, the examination of shared antigens and infection kinetics within macrophages offered insights into the ecological and pathogenic potential of these isolates. From a public health perspective, antigenic similarities between these environmental microorganisms and the BCG vaccine strain may influence the efficacy of BCG in protecting against diseases such as tuberculosis. Continued research on these and other environmental isolates, particularly within Brazil's highly biodiverse ecosystems, holds promise for advancing scientific knowledge and contributing to human health.
Collapse
Affiliation(s)
- Leandro Santiago Emmerick
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma Rezende Corrêa
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sindy Licette Piñero
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leonardo Henrique Ferreira Gomes
- Laboratório de Alta Complexidade, Unidade de Pesquisa Clínica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Maria Mazotto Almeida
- Laboratório de Biocatálise Microbiana, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wim Maurits Sylvain Degrave
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Wazahat R. Strategic diagnosis- Unraveling Tuberculosis- A comprehensive approach. Indian J Tuberc 2025; 72:112-132. [PMID: 39890361 DOI: 10.1016/j.ijtb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 02/03/2025]
Abstract
Tuberculosis, an airborne-infectious disease caused by Mycobacterium tuberculosis remains a perpetual threat globally. It claims over 1.4 million lives per year. Various diagnostic strategies including smear microscopy, culture methods, immunochromatographic assays and molecular methods have paved the way for tuberculosis diagnosis. The Government of India has introduced National Strategic Plan (NSP) for TB elimination, aiming to achieve a rapid decline in the incidence, morbidity, and mortality of TB by the year 2030. In its quest for TB elimination, the plan is structured around four strategic pillars: "Detect-Treat-Prevent-Build." To achieve these pillars and progress towards TB elimination, the government encourages adoption of novel point-of- care diagnostics techniques.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Romagnoli CL, Conceição EC, Machado E, Barreto LBPF, Sharma A, Silva NM, Marques LE, Juliano MA, da Silva Lourenço MC, Digiampietri LA, Suffys PN, Leão SC, Viana-Niero C. Description of new species of Mycobacterium terrae complex isolated from sewage at the São Paulo zoological park foundation in Brazil. Front Microbiol 2024; 15:1335985. [PMID: 38322314 PMCID: PMC10844392 DOI: 10.3389/fmicb.2024.1335985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Five mycobacterial isolates from sewage were classified as members of the genus Mycobacterium but presented inconclusive species assignments. Thus, the isolates (MYC017, MYC098, MYC101, MYC123 and MYC340) were analyzed by phenotypical, biochemical, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and genomic features to clarify their taxonomic position. Phenotypic analysis and biochemical tests did not distinguish these isolates from other non-pigmented mycobacteria. In contrast, MALDI-TOF MS analysis showed that isolates were not related to any previously described Mycobacterium species. Comparative genomic analysis showed values of ANI and dDDH between 81.59-85.56% and 24.4-28.8%, respectively, when compared to the genomes of species of this genus. In addition, two (MYC101 and MYC123) presented indistinguishable protein spectra from each other and values of ANI = 98.57% and dDDH = 97.3%, therefore being considered as belonging to the same species. Phylogenetic analysis grouped the five isolates within the Mycobacterium terrae complex (MTC) but in a specific subclade and separated from the species already described and supported by 100% bootstrap value, confirming that they are part of this complex but different from earlier described species. According to these data, we propose the description of four new species belonging to the Mycobacterium genus: (i) Mycobacterium defluvii sp. nov. strain MYC017T (= ATCC TSD-296T = JCM 35364T), (ii) Mycobacterium crassicus sp. nov. strain MYC098T (= ATCC TSD-297T = JCM 35365T), (iii) Mycobacterium zoologicum sp. nov. strain MYC101T (= ATCC TSD-298T = JCM 35366T) and MYC123 (= ATCC BAA-3216 = JCM 35367); and (iv) Mycobacterium nativiensis sp. nov. strain MYC340T (= ATCC TSD-299T = JCM 35368T).
Collapse
Affiliation(s)
- Camila Lopes Romagnoli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Emilyn Costa Conceição
- Laboratório de Bacteriologia e Bioensaios em Micobactérias, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Edson Machado
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leonardo Bruno Paz Ferreira Barreto
- Laboratório de Bacteriologia e Bioensaios em Micobactérias, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Abhinav Sharma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Natalia Maria Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Evangelista Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Maria Cristina da Silva Lourenço
- Laboratório de Bacteriologia e Bioensaios em Micobactérias, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristina Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Wang L, Liu R, Yan F, Chen W, Zhang M, Lu Q, Huang B, Liu R. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites. Food Funct 2024; 15:580-590. [PMID: 37927225 DOI: 10.1039/d3fo03601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Flavan-3-ols are an important class of secondary metabolites in many plants. Their bioavailability and bioactivity are largely determined by the metabolism of intestinal microbiota. However, little is known about the intestinal bacteria involved in the metabolism of flavan-3-ols and the activities of the metabolites. C-ring cleavage is the initial and key step in the metabolism of flavan-3-ol monomers. Here, we isolated a strain from porcine cecum content, which is capable of cleaving the heterocyclic C-ring to form 1-(3',4'-dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol from (+)-catechin and (-)-epicatechin, and 1-(3',4',5'-trihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl) propan-2-ol from (-)-epigallocatechin. The strain was identified as Streptococcus pasteurianus (Streptococcus gallolyticus subsp. Pasteurianus, designated as F32-1) based on 16S rDNA similarity and MALDI-TOF-MS identification. The formation of the C-ring cleavage structural unit by the F32-1 strain enhanced the chemical antioxidant ability and altered the cellular antioxidant activity of (+)-catechin, (-)-epicatechin and (-)-epigallocatechin. Overall, in this study we isolated a new intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and elucidated the bioactivity of their metabolites.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Ruonan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Wanbing Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guang Dong 430073, China
| | - Mo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
6
|
Shah KV, Peraza LR, Wiedermann JP. Current management of cervicofacial nontuberculous mycobacterial infections in the pediatric population. Curr Opin Otolaryngol Head Neck Surg 2023; 31:388-396. [PMID: 37712822 DOI: 10.1097/moo.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to analyze and consolidate recently published literature to provide updated guidelines on the diagnosis and management of nontuberculous mycobacterial lymphadenitis (NTM LAD) in the pediatric population and to suggest areas of further research. RECENT FINDINGS Diagnosis of NTM LAD relies on a detailed clinical history, physical examination, laboratory tests, and imaging techniques. Treatment strategies vary widely, with a shift towards complete surgical excision being observed due to its higher cure rate, improved aesthetic outcomes, and lower recurrence rates. However, patient-specific factors must be considered. The role of genetic factors, such as Mendelian susceptibility to mycobacterial disease (MSMD), is being increasingly recognized and could lead to targeted therapies. SUMMARY Despite strides in the understanding and management of NTM LAD, substantial gaps remain in key areas such as the role of diagnostic imaging, optimal treatment parameters, postoperative care, and surveillance strategies. In this article, we explain our approach to NTM using the most relevant evidence-based medicine while offering directions for future work.
Collapse
Affiliation(s)
- Keshav V Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lazaro R Peraza
- Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Joshua P Wiedermann
- Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Meena DS, Kumar D, Meena V, Bohra GK, Tak V, Garg MK. Epidemiology, clinical presentation, and predictors of outcome in nontuberculous mycobacterial central nervous system infection: a systematic review. Trop Med Health 2023; 51:54. [PMID: 37749661 PMCID: PMC10518932 DOI: 10.1186/s41182-023-00546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND CNS manifestations represent an emerging facet of NTM infection with significant mortality. Due to protean presentation and low index of suspicion, many cases are often treated erroneously as tubercular meningitis or fungal infections. OBJECTIVES Literature on NTM CNS disease is scarce, with most available data on pulmonary disease. This systematic review aimed to evaluate the epidemiology, clinical presentation, diagnostic modalities, and predictors of outcome in CNS NTM infection. METHODS The literature search was performed in major electronic databases (PubMed, Google Scholar, and Scopus) using keywords "CNS," "Central nervous system," "brain abscess," "meningitis," "spinal," "Nontuberculous mycobacteria," "NTM". All cases of CNS NTM infection reported between January 1980 and December 2022 were included. RESULTS A total of 77 studies (112 cases) were included in the final analysis. The mean age of all patients was 38 years, with most patients male (62.5%). Mycobacterium avium complex (MAC) was the most common aetiology, followed by M. fortuitum and M. abscessus (34.8%, 21.4% and 15.2%, respectively). The disseminated disease was found in 33% of cases. HIV (33.9%) and neurosurgical hardware (22.3%) were the common risk factors. Intracranial abscess (36.6%) and leptomeningeal enhancement (28%) were the most prevalent findings in neuroimaging. The overall case fatality rate was 37.5%. On multivariate analysis, male gender (adjusted OR 2.4, 95% CI 1.2-7.9) and HIV (adjusted OR 3.7, 95% CI 1.8-6.1) were the independent predictors of mortality). M. fortuitum infection was significantly associated with increased survival (adjusted OR 0.18, 95% CI (0.08-0.45), p value 0.012). CONCLUSIONS Current evidence shows the emerging role of rapid-grower NTM in CNS disease. Male gender and HIV positivity were associated with significant mortality, while M fortuitum carries favourable outcomes.
Collapse
Affiliation(s)
- Durga Shankar Meena
- Department of Internal Medicine (Division of Infectious Diseases), All India Institute of Medical Sciences, Jodhpur, 342005, India.
| | - Deepak Kumar
- Department of Internal Medicine (Division of Infectious Diseases), All India Institute of Medical Sciences, Jodhpur, 342005, India
| | - Vasudha Meena
- Department of Pediatrics, Dr. S.N. Medical College, Jodhpur, 342005, India
| | - Gopal Krishana Bohra
- Department of Internal Medicine (Division of Infectious Diseases), All India Institute of Medical Sciences, Jodhpur, 342005, India
| | - Vibhor Tak
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, 342005, India
| | - Mahendra Kumar Garg
- Department of Internal Medicine (Division of Infectious Diseases), All India Institute of Medical Sciences, Jodhpur, 342005, India
| |
Collapse
|
8
|
Ledesma Y, Echeverría G, Claro-Almea FE, Silva D, Guerrero-Freire S, Rojas Y, Bastidas-Caldes C, Navarro JC, de Waard JH. The Re-Identification of Previously Unidentifiable Clinical Non-Tuberculous Mycobacterial Isolates Shows Great Species Diversity and the Presence of Other Acid-Fast Genera. Pathogens 2022; 11:pathogens11101159. [PMID: 36297216 PMCID: PMC9610484 DOI: 10.3390/pathogens11101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Non-tuberculous mycobacteria that cannot be identified at the species level represent a challenge for clinical laboratories, as proper species assignment is key to implementing successful treatments or epidemiological studies. We re-identified forty-eight isolates of Ziehl-Neelsen (ZN)-staining-positive "acid-fast bacilli" (AFB), which were isolated in a clinical laboratory and previously identified as Mycobacterium species but were unidentifiable at the species level with the hsp65 PCR restriction fragment length polymorphism analysis (PRA). As most isolates also could not be identified confidently via 16S, hsp65, or rpoB DNA sequencing and a nBLAST search analysis, we employed a phylogenetic method for their identification using the sequences of the 16S rDNA, which resulted in the identification of most AFB and a Mycobacterium species diversity not found before in our laboratory. Most were rare species with only a few clinical reports. Moreover, although selected with the ZN staining as AFB, not all isolates belonged to the genus Mycobacterium, and we report for the first time in Latin America the isolation of Nocardia puris, Tsukamurella pulmosis, and Gordonia sputi from sputum samples of symptomatic patients. We conclude that ZN staining does not differentiate between the genus Mycobacterium and other genera of AFB. Moreover, there is a need for a simple and more accurate tree-based identification method for mycobacterial species. For this purpose, and in development in our lab, is a web-based identification system using a phylogenetic analysis (including all AFB genera) based on 16S rDNA sequences (and in the future multigene datasets) and the closest relatives.
Collapse
Affiliation(s)
- Yanua Ledesma
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Franklin E. Claro-Almea
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas 1010, Venezuela
| | - Douglas Silva
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas 1010, Venezuela
| | - Salomé Guerrero-Freire
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Yeimy Rojas
- Grupo de Microbiología Aplicada, Universidad Regional Amazónica Ikiam, Tena 150102, Ecuador
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170125, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres 10003, España
| | - Juan Carlos Navarro
- Grupo de Enfermedades Emergentes, Ecoepidemiologia y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador
| | - Jacobus H. de Waard
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas 1010, Venezuela
- Correspondence:
| |
Collapse
|
9
|
Zhang H, Hua W, Lin S, Zhang Y, Chen X, Wang S, Chen J, Zhang W. In vitro Susceptibility of Nontuberculous Mycobacteria to Tedizolid. Infect Drug Resist 2022; 15:4845-4852. [PMID: 36045871 PMCID: PMC9422992 DOI: 10.2147/idr.s362583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Nontuberculous mycobacteria (NTM) can cause pulmonary and extrapulmonary diseases. Tedizolid (TZD) is a new oxazolidinone with in vitro activity against NTM such as Mycobacterium avium complex (MAC), Mycobacterium fortuitum, and Mycobacterium abscessus complex. The aim of this study was to evaluate the TZD susceptibility profiles of clinical isolates of NTM. Methods The microdilution method was used to identify the minimum inhibitory concentration (MIC) of TZD and linezolid (LZD) for 133 clinical NTM isolates. Broth microdilution chequerboard assays were used to investigate the synergistic effects of TZD and three antibiotics on two reference isolates and eleven clinical isolates of NTM. Results The TZD MIC50 and MIC90 for M. abscessus complex were 2 and 4 μg/mL, 16 and >32 μg/mL for MAC, respectively. TZD exhibited lower MICs than that of LZD for most NTM, which were positively correlated. Due to the high MIC values of TZD against MAC, it is necessary to conduct drug sensitivity tests before TZD administration. TZD-clarithromycin combination had synergistic response on M. abscessus complex in 3 of the 8 isolates, which lasted only 3-5 days. TZD-cefoxitin had synergistic effect against all five M. fortuitum isolates. Conclusion Our study demonstrates that TZD had greater in vitro potency than LZD, and synergy studies suggested that TZD may be an important component of multi-drug treatment regimen.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenya Hua
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Siran Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xinchang Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Hayat Z, Shahzad K, Ali H, Casini R, Naveed K, Hafeez A, El-Ansary DO, Elansary HO, Fiaz S, Abaid-Ullah M, Hafeez FY, Iqbal MS, Ullah A. 16S rRNA gene flow in Enterococcus spp. and SNP analysis: A reliable approach for specie level identification. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Gauthier DT, Doss JH, LaGatta M, Gupta T, Karls RK, Quinn FD. Genomic Degeneration and Reduction in the Fish Pathogen Mycobacterium shottsii. Microbiol Spectr 2022; 10:e0115821. [PMID: 35579461 PMCID: PMC9241763 DOI: 10.1128/spectrum.01158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/26/2022] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium shottsii is a dysgonic, nonpigmented mycobacterium originally isolated from diseased striped bass (Morone saxatilis) in the Chesapeake Bay, USA. Genomic analysis reveals that M. shottsii is a Mycobacterium ulcerans/Mycobacterium marinum clade (MuMC) member, but unlike the superficially similar M. pseudoshottsii, also isolated from striped bass, it is not an M. ulcerans ecovar, instead belonging to a transitional group of strains basal to proposed "Aronson" and "M" lineages. Although phylogenetically distinct from the human pathogen M. ulcerans, the M. shottsii genome shows parallel but nonhomologous genomic degeneration, including massive accumulation of pseudogenes accompanied by proliferation of unique insertion sequences (ISMysh01, ISMysh03), large-scale deletions, and genomic reorganization relative to typical M. marinum strains. Coupled with its observed ecological characteristics and loss of chromogenicity, the genomic structure of M. shottsii is suggestive of evolution toward a state of obligate pathogenicity, as observed for other Mycobacterium spp., including M. ulcerans, M. tuberculosis, and M. leprae. IMPORTANCE Morone saxatilis (striped bass) is an ecologically and economically important finfish species on the United States east coast. Mycobacterium shottsii and Mycobacterium pseudoshottsii were originally described in the early 2000s as novel species from outbreaks of visceral and dermal mycobacteriosis in this species. Biochemical and genetic characterization place these species within the Mycobacterium ulcerans/M. marinum clade (MuMC), and M. pseudoshottsii has been proposed as an ecovar of M. ulcerans. Here, we describe the complete genome of M. shottsii, demonstrating that it is clearly not an M. ulcerans ecovar; however, it has undergone parallel genomic modification suggestive of a transition to obligate pathogenicity. As in M. ulcerans, the M. shottsii genome demonstrates widespread pseudogene formation driven by proliferation of insertion sequences, as well as genomic reorganization. This work clarifies the phylogenetic position of M. shottsii relative to other MuMC members and provides insight into processes shaping its genomic structure.
Collapse
Affiliation(s)
- D. T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - J. H. Doss
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - M. LaGatta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - T. Gupta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - R. K. Karls
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - F. D. Quinn
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| |
Collapse
|
12
|
Gleeson LE, Waterer G. Beyond antibiotics: recent developments in the diagnosis and management of nontuberculous mycobacterial infection. Breathe (Sheff) 2022; 18:210171. [PMID: 36337137 PMCID: PMC9584569 DOI: 10.1183/20734735.0171-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) pulmonary disease represents a significant clinical challenge with suboptimal therapy and increasing prevalence globally. Although clinical practice guidelines seek to standardise the approach to diagnosis and treatment of NTM disease, a lack of robust evidence limits their utility and significant variability exists in clinical practice. Here we walk through some novel approaches in diagnosis and therapy that are under development to tackle a disease where traditional strategies are failing. Prevalence of NTM disease is rising globally, yet current diagnostic and therapeutic strategies are lacking. This review describes some burgeoning diagnostic and therapeutic approaches, but it is clear that real progress will need more focused attention.https://bit.ly/3O0K2SP
Collapse
|
13
|
Singh M, Heincelman M. Disseminated Nontuberculous Mycobacterium Presenting as Chronic Diarrhea and Wasting. J Investig Med High Impact Case Rep 2022; 10:23247096221101860. [PMID: 35596545 PMCID: PMC9125057 DOI: 10.1177/23247096221101860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infections due to nontuberculous mycobacterium (NTM) are important in chronically immunosuppressed populations and are a particular threat to solid organ transplant recipients (SOT). However, they are not a common occurrence and have protean manifestations, making it important that clinicians maintain a high degree of suspicion in the correct patient population. Mycobacterium avium complex (MAC) usually presents with pulmonary involvement in immunocompetent population and disseminated disease in SOT patients with fever of unknown origin, lymphadenopathy, and cutaneous lesions being part of the well-known presentation. It is not commonly described as causing severe diarrhea. Here, we present an interesting case of a patient with a kidney and pancreas transplant who presented with debilitating wasting and chronic diarrhea. Biopsies and cultures confirmed MAC. To our knowledge, this is the first case report of MAC causing severe wasting diarrhea in renal transplant patients. The patient was treated with a multidrug regimen. Given the rare presentation of MAC presenting as chronic diarrhea, the treatment regimen is not standardized and infectious disease specialists should be involved early on. Up to 30% of renal transplant patients infected with NTM lose graft function and 20% die. Unfortunately, our patient suffered both these outcomes.
Collapse
Affiliation(s)
- Manasi Singh
- Medical University of South Carolina, Charleston, USA
| | | |
Collapse
|
14
|
Gaballah A, Ghazal A, Almiry R, Emad R, Sadek N, Abdel Rahman M, El-Sherbini E. Simultaneous Detection of Mycobacterium tuberculosis and Atypical Mycobacteria by DNA-Microarray in Egypt. Med Princ Pract 2022; 31:246-253. [PMID: 35413718 PMCID: PMC9274830 DOI: 10.1159/000524209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Immunocompromised patients are a high-risk group for developing mycobacterial infections with either pulmonary and/or extrapulmonary diseases. Low-cost/density DNA-microarray is considered an easy and efficient method for the detection of typical and atypical mycobacterial species. MATERIALS AND METHODS Thirty immunocompromised patients were recruited to provide their clinical specimens (sputum, serum, urine, and lymph node aspirates). Real-time polymerase chain reaction (PCR) and DNA-microarray techniques were performed and compared to the conventional methods of Ziehl-Neelsen staining and Lowenstein Jensen culturing. RESULTS Mycobacterium tuberculosis complex was detected in all 30 clinical specimens (100% sensitivity) by real-time PCR and DNA-microarray. Additionally, coinfection with 4 atypical species belonging to nontuberculous mycobacteria was identified in 7 sputum specimens. These atypical mycobacterial species were identified as M. kansasii 10% (n = 3), M. avium complex 6.6% (n = 2), M. gordanae 3.3% (n = 1), and M. peregrinum 3.3% (n = 1). CONCLUSION This study documents the presence of certain species of atypical mycobacteria among immunocompromised patients in Egypt.
Collapse
Affiliation(s)
- Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
- *Ahmed Gaballah,
| | - Abeer Ghazal
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Reda Almiry
- Clinical Pathology Department, Military Academy of Medicine, Alexandria Armed Forces Hospital, Alexandria, Egypt
| | - Rasha Emad
- Clinical Pharmacy, Alexandria Main University Hospital, Alexandria University, Alexandria, Egypt
| | - Nadia Sadek
- Hematology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdel Rahman
- Clinical Pathology Department, Military Academy of Medicine, Alexandria Armed Forces Hospital, Alexandria, Egypt
| | - Eglal El-Sherbini
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Tokuyasu H, Makino Y, Kubouchi Y, Miwa K, Miura H, Ishikawa S, Sakai H, Yamasaki A. Combination treatment with antibiotics and surgical lung resection for Mycobacterium abscessus pulmonary infection in a breast cancer patient. Respir Med Case Rep 2021; 34:101506. [PMID: 34522602 PMCID: PMC8427237 DOI: 10.1016/j.rmcr.2021.101506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
A 51-year-old woman was admitted to our hospital because of pneumonia after chemotherapy with doxorubicin and cyclophosphamide for left breast cancer. The patient was diagnosed with Mycobacterium abscessus pulmonary infection by the detection of M. abscessus complex (MABC) in sputum cultures. However, MABC is intrinsically resistant to most of the antibacterial agents, and MABC pulmonary disease outcomes with modern antibiotic treatment are currently the worst among all mycobacterial species. We herein report the successful treatment of M. abscessus pulmonary infection by a combination treatment with antibiotics and surgical lung resection.
Collapse
Affiliation(s)
- Hirokazu Tokuyasu
- Division of Respiratory Medicine, Matsue Red Cross Hospital, Shimane, Japan
| | - Yoshinari Makino
- Division of Breast Surgery, Matsue Red Cross Hospital, Shimane, Japan
| | - Yasuaki Kubouchi
- Division of Respiratory Surgery, Matsue Red Cross Hospital, Shimane, Japan
| | - Ken Miwa
- Division of Respiratory Surgery, Matsue Red Cross Hospital, Shimane, Japan
| | - Hiroshi Miura
- Division of Pathology, Matsue Red Cross Hospital, Shimane, Japan
| | - Soichiro Ishikawa
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiromitsu Sakai
- Division of Respiratory Medicine, Matsue Red Cross Hospital, Shimane, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
16
|
Gracy Jenifer S, Marimuthu G, Raghuram H. Isolation and characterization of chitinolytic bacterium, Escherichia fergusonii AMC01 from insectivorous bat, Taphozous melanopogon. J Basic Microbiol 2021; 61:940-946. [PMID: 34398462 DOI: 10.1002/jobm.202100271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 08/07/2021] [Indexed: 11/12/2022]
Abstract
Chitinases are capable of hydrolyzing insoluble chitin into its oligo and monomeric parts and have received increased consideration because of their wide scope of biotechnological applications. The commercial application of microbial chitinase is appealing due to the relative ease of enormous production and to meet the current world demands. This study aimed at isolation and characterization of chitin degrading bacteria from the gut of Indian tropical insectivorous black-bearded tomb bat, Taphozous melanopogon. The isolated bacterial strains were characterized through biochemical analysis and nucleic acid-based approaches by 16S ribosomal RNA amplification and sequencing. The BLAST (Basic Local Alignment Search Tool) and phylogenetic analysis showed that the bacterial strain exhibited a close resemblance with Escherichia fergusonii. The chitinolytic activity of the E. fergusonii AMC01 was identified using supplemented colloidal chitin with agar medium. Compiling all, these findings would facilitate in constructing a database and presumably promote the use of E. fergusonii AMC01 as an efficient strain for the chitinase production.
Collapse
Affiliation(s)
| | - Ganapathy Marimuthu
- Department of Animal Behaviour and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Hanumanthan Raghuram
- PG and Research Department of Zoology, The American College, Madurai, Tamil Nadu, India
| |
Collapse
|
17
|
Huang RR, Yang SR, Zhen C, Ge XF, Chen XK, Wen ZQ, Li YN, Liu WZ. Genomic molecular signatures determined characterization of Mycolicibacterium gossypii sp. nov., a fast-growing mycobacterial species isolated from cotton field soil. Antonie van Leeuwenhoek 2021; 114:1735-1744. [PMID: 34392432 DOI: 10.1007/s10482-021-01638-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
A Gram-positive, acid-fast and rapidly growing rod, designated S2-37 T, that could form yellowish colonies was isolated from one soil sample collected from cotton cropping field located in the Xinjiang region of China. Genomic analyses indicated that strain S2-37 T harbored T7SS secretion system and was very likely able to produce mycolic acid, which were typical features of pathogenetic mycobacterial species. 16S rRNA-directed phylogenetic analysis referred that strain S2-37 T was closely related to bacterial species belonging to the genus Mycolicibacterium, which was further confirmed by pan-genome phylogenetic analysis. Digital DNA-DNA hybridization and the average nucleotide identity presented that strain S2-37 T displayed the highest values of 39.1% (35.7-42.6%) and 81.28% with M. litorale CGMCC 4.5724 T, respectively. And characterization of conserved molecular signatures further supported the taxonomic position of strain S2-37 T belonging to the genus Mycolicibacterium. The main fatty acids were identified as C16:0, C18:0, C20:3ω3 and C22:6ω3. In addition, polar lipids profile was mainly composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Phylogenetic analyses, distinct fatty aids and antimicrobial resistance profiles indicated that strain S2-37 T represented genetically and phenotypically distinct from its closest phylogenetic neighbour, M. litorale CGMCC 4.5724 T. Here, we propose a novel species of the genus Mycolicibacterium: Mycolicibacterium gossypii sp. nov. with the type strain S2-37 T (= JCM 34327 T = CGMCC 1.18817 T).
Collapse
Affiliation(s)
- Rui-Rui Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Shen-Rong Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Cheng Zhen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xian-Feng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xin-Kai Chen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhi-Qiang Wen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Ya-Nan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wen-Zheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
18
|
Gnanadurai R, Ninan MM, Arul AO, Sam AS, James P, Gupta R, Michael JS. Challenges in the management of slowly growing non-tuberculous mycobacteria causing pulmonary disease: Perspectives from a high burden country. Indian J Med Microbiol 2021; 39:446-450. [PMID: 34389186 DOI: 10.1016/j.ijmmb.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE There is a dearth of data on epidemiology, diagnosis and management of slow growing non tuberculous mycobacteria(NTM) in India, despite being a TB endemic country. This study aims to describe the geographic distribution, risk factors, and the challenges in management of slow growing NTM causing pulmonary infections. METHODS Over a period of 3 years, all slow growing NTM received from pulmonary specimens at a tertiary care centre were further studied from electronic hospital records to correlate non tuberculous mycobacteria species with demographics, geographic location, describe comorbidities including immunosuppression, radiologic findings and treatment regimes. RESULTS M.intracellullare was found in the majority of isolates with significant geographic variation and M.simiae the second commonest found exclusively in southern states. Common comorbidities included a previous history of treatment for tuberculosis, structural lung disease as well as systemic risk factors. Disseminated disease only occurred in immunocompromised hosts as was expected, but at a high rate of 44%. Treatment completion and outcomes were difficult to attain in our population. CONCLUSION The burden of NTM infection and its management in India remain a challenge. Ensuring it is made a notifiable disease may improve the current situation.
Collapse
Affiliation(s)
- Roshina Gnanadurai
- Specialist Registrar, Infectious Disease and Microbiology, National Infection Service, Public Health England, Colindale, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Marilyn M Ninan
- Dept of Clinical Microbiology, CMC Vellore, Tamil Nadu, India.
| | | | - Ann Susan Sam
- Dept of Clinical Microbiology, CMC Vellore, Tamil Nadu, India.
| | - Prince James
- Department of Respiratory Medicine, CMC Vellore, Tamil Nadu, India.
| | - Richa Gupta
- Department of Respiratory Medicine, CMC Vellore, Tamil Nadu, India.
| | - Joy S Michael
- Dept of Clinical Microbiology, CMC Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Identification of Nontuberculous Mycobacteria in Drinking Water in Cali, Colombia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168451. [PMID: 34444201 PMCID: PMC8392123 DOI: 10.3390/ijerph18168451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous microorganisms naturally resistant to antibiotics and disinfectants that can colonize drinking water supply systems. Information regarding the spread of NTM in specifically South America and Colombia is limited. We aimed to identify and characterize NTM present in tap water samples from Cali, Colombia. Drinking water samples and faucet biofilm swabs were collected in 18 places, including the city’s three main water treatment plants (WTPs). Filter-trapped material and eluates (0.45 μm) from swab washes were plated in 7H11 agar plates. Suspected colonies were evaluated microscopically, and NTM species were identified based on the rpoB gene. Antibiotic susceptibility testing was also performed. Fifty percent (9/18) of sampling points were positive for NTM (including two WTPs), from which 16 different isolates were identified: Mycobacterium mucogenicum (8/16), M. phocaicum (3/16), M. chelonae (2/16), M. mageritense (2/16), and M. fortuitum (1/16), all rapidly growing mycobacteria. A susceptibility profile was obtained from 68.75% (11/16) of the isolates. M. chelonae was the most resistant species. All NTM isolated are potentially responsible for human diseases; our findings might provide a baseline for exploring NTM transmission dynamics and clinical characterization, as well as potential associations between NTM species found in drinking water and isolates from patients.
Collapse
|
20
|
Whole-Genome Sequences of Mycobacterium abscessus subsp. massiliense Isolates from Brazil. Microbiol Resour Announc 2021; 10:e0036121. [PMID: 34264116 PMCID: PMC8280865 DOI: 10.1128/mra.00361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium abscessus complex comprises multidrug-resistant, opportunistic, and rapidly growing pathogens responsible for severe infections. Here, we report the genome composition of four Mycobacterium abscessus subsp. massiliense isolates from three sources: two from the lung of a cystic fibrosis patient, one from a mammary cyst, and one from a gutter system.
Collapse
|
21
|
Gauthier DT, Haines AN, Vogelbein WK. Elevated temperature inhibits Mycobacterium shottsii infection and Mycobacterium pseudoshottsii disease in striped bass Morone saxatilis. DISEASES OF AQUATIC ORGANISMS 2021; 144:159-174. [PMID: 33955854 DOI: 10.3354/dao03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mycobacteriosis occurs with high prevalence in the wild striped bass Morone saxatilis of Chesapeake Bay, USA. Etiologic agents of mycobacteriosis in this system are dominated by Mycobacterium pseudoshottsii and Mycobacterium shottsii, both members of the M. ulcerans/M. marinum clade of mycobacteria. Striped bass occupying Chesapeake Bay during summer months where water temperatures regularly approach and occasionally exceed 30°C are thought to be near their thermal maximum, a condition hypothesized to drive high levels of disease and increased natural mortality due to temperature stress. M. shottsii and M. pseudoshottsii, however, do not grow or grow inconsistently at 30°C on artificial medium, potentially countering this hypothesis. In this work, we examine the effects of temperature (20, 25, and 30°C) on progression of experimental infections with M. shottsii and M. pseudoshottsii in striped bass. Rather than exacerbation of disease, increasing temperature resulted in attenuated bacterial density increase in the spleen and reduced pathology in the spleen and mesenteries of M. pseudoshottsii infected fish, and reduced bacterial densities in the spleen of M. shottsii infected fish. These findings indicate that M. pseudoshottsii and M. shottsii infections in Chesapeake Bay striped bass may be limited by the thermal tolerance of these mycobacteria, and that maximal disease progression may in fact occur at lower water temperatures.
Collapse
Affiliation(s)
- D T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | | | | |
Collapse
|
22
|
Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium fortuitum Group Members. Microorganisms 2021; 9:microorganisms9040797. [PMID: 33920196 PMCID: PMC8068823 DOI: 10.3390/microorganisms9040797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
The Mycobacterium fortuitum group (MFG) consists of about 15 species of fast-growing nontuberculous mycobacteria (NTM). These globally distributed microorganisms can cause diseases in humans and animals, especially fish. The increase in the number of species belonging to MFG and the diagnostic techniques panel do not allow to clarify their real clinical significance. In this study, biomolecular techniques were adopted for species determination of 130 isolates derived from fish initially identified through biochemical tests as NTM belonging to MFG. Specifically, gene sequencing and phylogenetic analysis were used based on a fragment of the gene encoding the 65 KDa heat shock protein (hsp65). The analyzes made it possible to confirm that all the isolates belong to MFG, allowing to identify the strains at species level. Phylogenetic analysis substantially confirmed what was obtained by gene sequencing, except for six strains; this is probably due to the sequences present in NCBI database. Although the methodology used cannot represent a univocal identification system, this study has allowed us to evaluate its effectiveness as regards the species of MFG. Future studies will be necessary to apply these methods with other gene fragments and to clarify the real pathogenic significance of the individual species of this group of microorganisms.
Collapse
|
23
|
Ola-Fadunsin SD, Abdullah DA, Gimba FI, Abdullah FJF, Sani RA. Molecular evidence and epidemiology of “Candidatus Mycoplasma haemobos” among cattle in Peninsular Malaysia using the 16S rRNA gene. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Haemotropic Mycoplasma infection among cattle has not been seriously looked into, despite the fact it is associated with poor weight gain and depression. One thousand and forty-five blood samples from apparently healthy cattle from forty-three farms within the entire Peninsular Malaysia were examined over a one-year period. Using polymerase chain reaction to amplify the 16S rRNA gene, the presence of “Candidatus Mycoplasma haemobos” as one of the haemotropic Mycoplasma species that affects cattle in the country was detected. Forty-seven percent of the sampled population was positive for “C. M. haemobos”, with the antigen present in all herds sampled. Breed of cattle, gender, age, production type, physiological status, herd size, management system, farm size, farm age, prophylactic treatment against blood parasites, presence of ticks, frequency of de-ticking, zone, closeness to forest, closeness to waste area, closeness to human settlement and closeness to body of water were all significantly associated (P<0.05) with the detection of “C. M. haemobos”. The findings from this study will be pivotal in government policy on this blood Mycoplasma infection, as the study happens to be the first comprehensive molecular survey of the microorganism in the country.
Collapse
Affiliation(s)
- S. D. Ola-Fadunsin
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - D. A. Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - F. I. Gimba
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - F. J. F. Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R. A. Sani
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Species identification and antimicrobial susceptibility testing of non-tuberculous mycobacteria isolated in Chongqing, Southwest China. Epidemiol Infect 2020; 149:e7. [PMID: 33436128 PMCID: PMC8057515 DOI: 10.1017/s0950268820003088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With the rapid rise in the prevalence of non-tuberculous mycobacteria (NTM) diseases across the world, the microbiological diagnosis of NTM isolates is becoming increasingly important for the diagnosis and treatment of NTM disease. In this study, the clinical presentation, species distribution and drug susceptibility of patients with NTM disease visiting the Chongqing Public Health Medical Centre during March 2016-April 2019 were retrospectively analysed. Among the 146 patients with NTM disease, eight NTM species (complex) were identified. The predominant NTM species in these patients were identified to be Mycobacterium abscessus complex (53, 36.3%), M. intracellulare (38, 26%) and M. fortuitum (17, 11.7%). In addition, two or more species were isolated from 7.5% of the patients. Pulmonary NTM disease (142, 97.3%) showed the highest prevalence among the patients. It was observed that 40.1% of the patients with pulmonary NTM disease had chronic pulmonary obstructive disease and bronchiectasis, while 22.5% had prior tuberculosis. Male patients showed more association with the conditions of cough and haemoptysis than the female patients. In an in vitro antimicrobial susceptibility testing, most of the species showed susceptibility to linezolid, amikacin and clarithromycin, while M. fortuitum exhibited low susceptibility to tobramycin. In conclusion, the prevalence of NTM disease, especially that of the pulmonary NTM disease, is common in Southwest China. Species identification and drug susceptibility testing are thus extremely important to ensure appropriate treatment regimens for patient care and management.
Collapse
|
25
|
Neha P, Prajna L, Gunasekaran R, Appavu SP, Rajapandian SGK, Naveen R, Namperumalsamy Venkatesh P. Clinical and demographic study of non-tuberculous mycobacterial ocular infections in South India. Indian J Med Microbiol 2020; 39:41-47. [PMID: 33610255 DOI: 10.1016/j.ijmmb.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To describe demographics, risk factors, antibiotic susceptibility, management and outcomes of ocular infections caused by non-tuberculous mycobacteria (NTM). METHODS A retrospective review of medical case records and microbiology records of patients with ocular infections that were culture positive for non-tuberculous Mycobacteria from January 2014 to December 2018 was done. Antibiotic susceptibility profile was done based on the CLSI guidelines. Laboratory diagnosis for the NTM Species was done by conventional microbiological methods. The species identification was done for stored isolated utilizing polymerase chain reaction targeting 16S rDNA and rpoB gene, followed by DNA sequencing and phylogenetic analysis. RESULTS Twenty patients with NTM ocular infections were identified during the study period. A majority of cases presented as 12 infectious keratitis (60%) and three suture-related corneal infiltrates (15%). Common risk factors were history of trauma in 9 (45%) patients and history of ocular surgery in 5 (25%) patients. Patients were treated with combination of amikacin and flouroquinolones/chloramphenicol (70%) and surgical interventions were performed in 25% cases. Only twelve isolates were stored and ten isolates were identified as the M. abscessus subsp. abscessus and two isolates as M. abscessus subsp. massiliense by sequencing and phylogenetic analysis. Majority of the NTM were sensitive to amikacin (75%) followed by moxifloxacin, ciprofloxacin, cephotaxime and tobramycin (35%). CONCLUSION High degree of clinical suspicion, multidrug antibiotic therapy and timely surgical intervention in patients with NTM infections, are advised for better clinical outcomes. Prior ocular trauma, prior ocular surgery and presence of biomaterials were the major predisposing factors. Earlier surgical intervention in cases where abscesses or biomaterials are involved, is necessary for rapid recovery.
Collapse
Affiliation(s)
- Pathak Neha
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, Tamil Nadu, India.
| | | | | | | | - Radhakrishnan Naveen
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | |
Collapse
|
26
|
Advantages and Limitations of 16S rRNA Next-Generation Sequencing for Pathogen Identification in the Diagnostic Microbiology Laboratory: Perspectives from a Middle-Income Country. Diagnostics (Basel) 2020; 10:diagnostics10100816. [PMID: 33066371 PMCID: PMC7602188 DOI: 10.3390/diagnostics10100816] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial culture and biochemical testing (CBtest) have been the cornerstone of pathogen identification in the diagnostic microbiology laboratory. With the advent of Sanger sequencing and later, next-generation sequencing, 16S rRNA next-generation sequencing (16SNGS) has been proposed to be a plausible platform for this purpose. Nevertheless, usage of the 16SNGS platform has both advantages and limitations. In addition, transition from the traditional methods of CBtest to 16SNGS requires procurement of costly equipment, timely and sustainable maintenance of these platforms, specific facility infrastructure and technical expertise. All these factors pose a challenge for middle-income countries, more so for countries in the lower middle-income range. In this review, we describe the basis for CBtest and 16SNGS, and discuss the limitations, challenges, advantages and future potential of using 16SNGS for bacterial pathogen identification in diagnostic microbiology laboratories of middle-income countries.
Collapse
|
27
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
28
|
Nontuberculous mycobacteria - clinical and laboratory diagnosis: experiences from a TB endemic country. Future Sci OA 2020; 6:FSO612. [PMID: 33235807 PMCID: PMC7668123 DOI: 10.2144/fsoa-2020-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim To evaluate the performance of VITEK®MS with DNA sequencing for laboratory diagnosis of non-tuberculous mycobacteria (NTM) species in a resource-limited setting. Methods 16SrRNA sequencing and MALDI-TOF mass spectrometry (VITEK®MS) was performed at a tertiary-care hospital in India. MALDI-TOF results were confirmed by 16S rRNA sequencing. In addition, sequencing of the internal transcribed spacer region was performed on slowly growing NTM. Results Commonest species isolated were M. abscessus, M. intracellulare, M. avium, M. fortuitum and M. simiae. 16S rRNA sequencing and MALDI-TOF results had agreement of 94.5% for rapidly growing and 77.5% for slowly growing NTM. Conclusion There is good correlation between VITEK®MS and sequencing for rapidly growing NTM. For slowly growing species, sequencing would be required in a third isolates.
Collapse
|
29
|
Mycobacterium pseudoshottsii in Mediterranean Fish Farms: New Trouble for European Aquaculture? Pathogens 2020; 9:pathogens9080610. [PMID: 32726963 PMCID: PMC7459456 DOI: 10.3390/pathogens9080610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium pseudoshottsii, a slow-growing mycobacterium closely related to M. marinum, has been isolated only in wild fish in the United States and in Japanese fish farms to date. Here, we report cases of mortality in three farmed fish species (Dicentrarchus labrax, Sparus aurata, and Sciaenops ocellatus) caused by M. pseudoshottsii in Italy. Samples underwent necropsy, histology, and culture with pathogen identification based on PCR and sequencing of housekeeping genes (16S rRNA, hsp65, rpoB). Multifocal to coalescing granulomatous and necrotizing inflammation with acid-fast bacilli were observed in the parenchymatous organs, from which M. pseudoshottsii was isolated and identified. Phylogenetic analysis confirmed the results of gene sequencing and allowed subdivision of the isolates into three distinct groups. M. pseudoshottsii poses a potential threat for Mediterranean aquaculture. Its origin in the area under study needs to be clarified, as well as the threat to the farmed fish species.
Collapse
|
30
|
Paratuberculosis: A Potential Zoonosis and a Neglected Disease in Africa. Microorganisms 2020; 8:microorganisms8071007. [PMID: 32635652 PMCID: PMC7409332 DOI: 10.3390/microorganisms8071007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
The Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis, which is an economically important disease of ruminants. The zoonotic role of MAP in Crohn’s disease and, to a lesser extent, in ulcerative colitis, the two major forms of idiopathic inflammatory bowel disease (IIBD), has been debated for decades and evidence continues to mount in support of that hypothesis. The aim of this paper is to present a review of the current information on paratuberculosis in animals and the two major forms of IIBD in Africa. The occurrence, epidemiology, economic significance and “control of MAP and its involvement IIBD in Africa” are discussed. Although the occurrence of MAP is worldwide and has been documented in several African countries, the epidemiology and socioeconomic impacts remain undetermined and limited research information is available from the continent. At present, there are still significant knowledge gaps in all these areas as far as Africa is concerned. Due to the limited research on paratuberculosis in Africa, in spite of growing global concerns, it may rightfully be considered a neglected tropical disease with a potentially zoonotic role.
Collapse
|
31
|
Khan O, Chaudary N. The Use of Amikacin Liposome Inhalation Suspension (Arikayce) in the Treatment of Refractory Nontuberculous Mycobacterial Lung Disease in Adults. Drug Des Devel Ther 2020; 14:2287-2294. [PMID: 32606598 PMCID: PMC7293904 DOI: 10.2147/dddt.s146111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) can cause and perpetuate chronic inflammation and lung infection. Despite having the diagnostic criteria, as defined by the American Thoracic Society (ATS) and Infectious Diseases Society of America (IDSA), clinicians find it challenging to diagnose and treat NTM-induced lung disease. Inhaled antibiotics are suitable for patients with lung infection caused by Pseudomonas aeruginosa and other organisms, but until recently, their utility in NTM-induced infection was not established. The most common NTM pathogens identified are the slow-growing Mycobacterium avium complex (MAC) and the rapid-growing M. abscessus complex (MABSC), both of which include several subspecies. Other less commonly isolated species include M. kansasii, M. simiae, and M. fortuitum. NTM strains are frequently more resistant than what is found in bacterial sputum cultures. Until recently, there was no approved inhaled antibiotic therapy for patients who were culture positive for pulmonary NTM infection. Of late, inhaled amikacin has been under investigation for the treatment of NTM-induced pulmonary infection. The FDA approved Arikayce (amikacin liposome inhalation suspension or ALIS) based on results from the ongoing Phase 3 CONVERT trial. In this study, the use of Arikayce met its primary endpoint of sputum culture conversion by the sixth month of treatment. The addition of Arikayce to guideline-based therapy led to negative sputum cultures for NTM by month 6 in 29% of patients compared to 8.9% of patients treated with guideline-based therapy alone. The effectiveness of Arikayce holds promise. However, due to limited data on Arikayce's safety, it is currently useful only for a specific population, particularly patients with refractory NTM-induced lung disease. Future trials must verify the target group and endorse the clinical benefits of Arikayce.
Collapse
Affiliation(s)
- Omer Khan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Aghajani J, Saif S, Farnia P, Farnia P, Ghanavi J, Velayati AA. An 8-year study on the prevalence and drug resistance of mycobacteria in clinical specimens (2011–2018). CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Identification and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc 2020; 119 Suppl 1:S32-S41. [DOI: 10.1016/j.jfma.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
|
34
|
Busatto C, Vianna JS, Silva ABS, Basso R, Silveira J, Groll AV, Ramis IB, Silva PEAD. Nontuberculous mycobacteria in patients with suspected tuberculosis and the genetic diversity of Mycobacterium avium in the extreme south of Brazil. ACTA ACUST UNITED AC 2020; 46:e20190184. [PMID: 32402014 PMCID: PMC7462694 DOI: 10.36416/1806-3756/e20190184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/04/2019] [Indexed: 11/26/2022]
Abstract
Objective: Nontuberculous mycobacteria (NTM) are a heterogeneous group of bacteria that are widely distributed in nature and associated with opportunistic infections in humans. The aims of this study were to identify NTM in patients with suspected tuberculosis who presented positive cultures and to evaluate the genetic diversity of strains identified as Mycobacterium avium. Methods: We studied pulmonary and extrapulmonary samples obtained from 1,248 patients. The samples that tested positive on culture and negative for the M. tuberculosis complex by molecular identification techniques were evaluated by detection of the hsp65 and rpoB genes and sequencing of conserved fragments of these genes. All strains identified as M. avium were genotyped using the eight-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat method. Results: We found that NTM accounted for 25 (7.5%) of the 332 mycobacteria isolated. Of those 25, 18 (72%) were M. avium, 5 (20%) were M. abscessus, 1 (4%) was M. gastri, and 1 (4%) was M. kansasii. The 18 M. avium strains showed high diversity, only two strains being genetically related. Conclusions: These results highlight the need to consider the investigation of NTM in patients with suspected active tuberculosis who present with positive cultures, as well as to evaluate the genetic diversity of M. avium strains.
Collapse
Affiliation(s)
- Caroline Busatto
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Júlia Silveira Vianna
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ana Barbara Scholante Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Rossana Basso
- Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Jussara Silveira
- Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Andrea Von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ivy Bastos Ramis
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Pedro Eduardo Almeida da Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
35
|
Juhás M, Kučerová L, Horáček O, Janďourek O, Kubíček V, Konečná K, Kučera R, Bárta P, Janoušek J, Paterová P, Kuneš J, Doležal M, Zitko J. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules 2020; 25:E1518. [PMID: 32230728 PMCID: PMC7181131 DOI: 10.3390/molecules25071518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.
Collapse
Affiliation(s)
- Martin Juhás
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Lucie Kučerová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Horáček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Janďourek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Vladimír Kubíček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Klára Konečná
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Radim Kučera
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jiří Janoušek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavla Paterová
- University Hospital Hradec Králové, Department of Clinical Microbiology, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Jiří Kuneš
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Martin Doležal
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jan Zitko
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| |
Collapse
|
36
|
Kim SH, Shin JH. Identification of Nontuberculous Mycobacteria from Clinical Isolates and Specimens using AdvanSure Mycobacteria GenoBlot Assay. Jpn J Infect Dis 2020; 73:278-281. [PMID: 32213717 DOI: 10.7883/yoken.jjid.2019.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the clinical performance of AdvanSure GenoBlot assay using nontuberculous mycobacteria (NTM) isolates and clinical specimens. A total of 136 NTM isolates and 176 clinical specimens were used in this study. AdvanSure Mycobacteria GenoBlot assay was performed according to the manufacturer's instructions. We compared the results with those of 16S rRNA and rpoB genes sequencing. Out of the 136 NTM isolates, 111 (81.6%) were correctly identified to the species level using the GenoBlot assay. The final concordance rate was 89.7% (122/136), including 11 Mycobacterium genus positive control (GPC) results for uncommon NTM. The most common NTM, M. avium, M. fortuitum, M. gordonae, M. intracellulare, M. chelonae, M. abscessus, and M. kansasii, were correctly identified using the GenoBlot assay. For 176 organisms in clinical specimens, 117 were identified to the species level, including single species for 111 specimens and two species for 6 specimens. The final detection and identification rates for clinical specimens were 94.9% and 66.5%, respectively. The AdvanSure GenoBlot assay performs well in identifying the most common NTM, and would be useful in a clinical laboratory.
Collapse
Affiliation(s)
- Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, South Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine Inje University College of Medicine, South Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, South Korea
| |
Collapse
|
37
|
Muñoz-Egea MC, Carrasco-Antón N, Esteban J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin Pharmacother 2020; 21:969-981. [PMID: 32200657 DOI: 10.1080/14656566.2020.1740205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Non-tuberculous Mycobacteria (NTM) are a group of organisms whose importance in medicine seems to be increasing in recent times. The increasing number of patients susceptible to these diseases make it necessary to expand our knowledge of therapeutic options and to explore future possibilities for the development of a therapeutic arsenal. AREAS COVERED In this review, the authors provide a brief introduction about the present importance of NTM and describe the present recommendations of the available guidelines for their treatment. They include a description of the future options for the management of these patients, especially focusing on new antibiotics. The authors also look at possibilities for future therapeutic options, such as antibiofilm strategies. EXPERT OPINION No actual changes have been made to the current recommendations for the management of most NTM infections (except perhaps the availability of nebulized amikacin). However, it is also true that we have increased the number of available antibiotic treatment options with good in vitro activity against NTM. The use of these drugs in selected cases could increase the therapeutic possibilities. However, some problems are still present, such as the knowledge of the actual meaning of a NTM isolate, and will probably be a key part of future research.
Collapse
Affiliation(s)
| | | | - Jaime Esteban
- Departments of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM , Madrid, Spain
| |
Collapse
|
38
|
Schubert N, Schill T, Plüß M, Korsten P. Flare or foe? - Mycobacterium marinum infection mimicking rheumatoid arthritis tenosynovitis: case report and literature review. BMC Rheumatol 2020; 4:11. [PMID: 32190818 PMCID: PMC7074991 DOI: 10.1186/s41927-020-0114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/10/2020] [Indexed: 12/03/2022] Open
Abstract
Background Rheumatoid arthritis is the most common type of inflammatory arthritis affecting about 1% of the population. With the advent of disease-modifying anti-rheumatic drugs the disease can be well controlled in many cases. Patients, however, are prone to developing infectious complications. In rare cases, these can mimic a flare of the underlying itself. Case presentation We report the case of a 45-year-old female patient with a history of seronegative rheumatoid arthritis (RA) who presented with swelling and tenderness of the third metacarpophalangeal joint of the right hand. A flare of her RA was suspected based on clinical and ultrasound findings which showed a tenosynovitis with intense power doppler activity. Her steroid dose was increased but the clinical response to glucocorticoid therapy was very limited. Subsequently, she developed skin manifestations of ‘swimmer’s granuloma’ over the next 2 weeks after first presentation. Finally, a diagnosis of a Mycobacterium marinum infection was established with the help of tissue biopsy and culture, and the patient received appropriate antibiotic treatment with the desired effect. Conclusions This case highlights the difficulty of distinction between infection and inflammation in patients with joint swelling and pain, especially in the age of disease-modifying drugs (DMARDs) and the concomitant risk of atypical infections. A review of the literature identified eight additional published cases, which suggests that Mycobacterium marinum infection is a rare but recognized complication of DMARD therapy. It can mimic a flare of the underlying arthritis potentially leading to diagnostic delays, and requires differential diagnostic methods to identify the pathogen and pave the way for appropriate treatment.
Collapse
Affiliation(s)
- Nils Schubert
- 1Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany
| | - Tillmann Schill
- 2Department of Dermatology, Venereology, and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Marlene Plüß
- 1Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany
| | - Peter Korsten
- 1Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany
| |
Collapse
|
39
|
Horizontal Gene Transfer of Short-Chain Dehydrogenase Coding Genes Contribute to the Biofilm Formation and Pathogenicity on Mycobacterium grossiae sp. nov. PB739 T (=DSM 104744 T). Curr Microbiol 2020; 77:528-533. [PMID: 31907602 DOI: 10.1007/s00284-019-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Mycobacterium grossiae sp. nov. of type strain PB739T is a Gram-positive acid-alcohol-fast rod-shaped bacterium, which was recently isolated from a 76-year-old male who suffered from a 1-year history of hemoptysis. This strain was described as novel species in Mycobacterium genus. In this study, its genome was completely sequenced by PacBio technology, analyzed, and compared with other selected complete genome sequences of Mycobacterium to elucidate the distinct pathogenic features of the strain. The genomic analysis revealed that the genome of PB739T consists of one circular DNA chromosome of 5,637,923 bp with a GC content of 70.48% and one plasmid of 43,679 bp with a GC content of 66.24%. The entire genome contains 5434 predicted coding genes, 48 tRNAs, and 6 rRNA genes. Genome and comparative genomics against M. grossiae SCH identified three tandem short-chain dehydrogenase (SDR) genes which only exist in PB739T. These three tandem SDR genes locate in a Genomic island which was identified by Island Viewer. These SDR genes were predicted to be horizontally transferred from a Streptomyces ancestor based on phylogeny. Analysis of the mutant ΔSDR confirmed the relationship between these tandem genes with biofilm and pathogenicity. This report will provide us with an extended understanding of M. grossiae at the genomic level and would be helpful for understanding the evolution of Mycobacterium genus.
Collapse
|
40
|
Song Y, Jeong H, Lee B, Huh H, Koh W, Kim J, Ahn K, Kyung Y. Nontuberculous mycobacterial pulmonary disease in a 16-year-old female patient with bronchiectasis. ALLERGY ASTHMA & RESPIRATORY DISEASE 2020. [DOI: 10.4168/aard.2020.8.4.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yousun Song
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyein Jeong
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bora Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heejae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wonjung Koh
- Department of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yechan Kyung
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
41
|
Kim BJ, Kim GN, Kim BR, Shim TS, Kook YH, Kim BJ. New Mycobacteroides abscessus subsp. massiliense strains with recombinant hsp65 gene laterally transferred from Mycobacteroides abscessus subsp. abscessus: Potential for misidentification of M. abscessus strains with the hsp65-based method. PLoS One 2019; 14:e0220312. [PMID: 31518354 PMCID: PMC6743754 DOI: 10.1371/journal.pone.0220312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/13/2019] [Indexed: 12/05/2022] Open
Abstract
It has been reported that lateral gene transfer (LGT) events among Mycobacteroides abscessus strains are prevalent. The hsp65 gene, a chronometer gene for bacterial phylogenetic analysis, is resistant to LGT events, particularly among mycobacterial strains, rendering the hsp65-targeting method the most widely used method for mycobacterial detection. To determine the prevalence of M. abscessus strains that are subject to hsp65 LGT, we applied rpoB typing to 100 clinically isolated Korean strains of M. abscessus that had been identified by hsp65 sequence analysis. The analysis indicated the presence of 2 rough strains, showing a discrepancy between the 2 typing methods. MLST analysis based on the partial sequencing of seven housekeeping genes, erm(41) PCR and further hsp65 PCR-restriction enzyme and polymorphism analysis (PRA) were conducted to identify the two strains. The MLST results showed that the two strains belong to M. abscessus subsp. massiliense and not to M. abscessus subsp. abscessus, as indicated by the rpoB-based analysis, suggesting that their hsp65 genes are subject to LGT from M. abscessus subsp. abscessus. Further analysis of these strains using the hsp65 PRA method indicated that these strains possess a PRA pattern identical to that of M. abscessus subsp. abscessus and distinct from that of M. abscessus subsp. massiliense. In conclusion, we identified two M. abscessus subsp. massiliense rough strains from Korean patients with hsp65 genes that might be laterally transferred from M. abscessus subsp. abscessus. To the best of our knowledge, this is the first demonstration of possible LGT events associated with the hsp65 gene in mycobacteria. Our results also suggest that there is the potential for misidentification when the hsp65-based protocol is used for mycobacterial identification.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ga-Na Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Tae-Sun Shim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
O'Donnell N, Corcoran D, Lucey B, Barrett A. Molecular-based mycobacterial identification in a clinical laboratory setting: a comparison of two methods. Br J Biomed Sci 2019. [DOI: 10.1080/09674845.2012.12069146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- N. O'Donnell
- Department of Medical Microbiology, Cork University Hospital
| | - D. Corcoran
- Department of Medical Microbiology, Cork University Hospital
| | - B. Lucey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - A. Barrett
- Department of Medical Microbiology, Cork University Hospital
| |
Collapse
|
43
|
Behra PRK, Pettersson BMF, Das S, Dasgupta S, Kirsebom LA. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol Biol 2019; 19:124. [PMID: 31215393 PMCID: PMC6582537 DOI: 10.1186/s12862-019-1447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mycobacteria occupy various ecological niches and can be isolated from soil, tap water and ground water. Several cause diseases in humans and animals. To get deeper insight into our understanding of mycobacterial evolution focusing on tRNA and non-coding (nc)RNA, we conducted a comparative genome analysis of Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clade members. Results Genome sizes for Mmuc- and Mneo-clade members vary between 5.4 and 6.5 Mbps with the complete MmucT (type strain) genome encompassing 6.1 Mbp. The number of tRNA genes range between 46 and 79 (including one pseudo tRNA gene) with 39 tRNA genes common among the members of these clades, while additional tRNA genes were probably acquired through horizontal gene transfer. Selected tRNAs and ncRNAs (RNase P RNA, tmRNA, 4.5S RNA, Ms1 RNA and 6C RNA) are expressed, and the levels for several of these are higher in stationary phase compared to exponentially growing cells. The rare tRNAIleTAT isoacceptor and two for mycobacteria novel ncRNAs: the Lactobacillales-derived GOLLD RNA and a homolog to the antisense Salmonella typhimurium phage Sar RNA, were shown to be present and expressed in certain Mmuc-clade members. Conclusions Phages, IS elements, horizontally transferred tRNA gene clusters, and phage-derived ncRNAs appears to have influenced the evolution of the Mmuc- and Mneo-clades. While the number of predicted coding sequences correlates with genome size, the number of tRNA coding genes does not. The majority of the tRNA genes in mycobacteria are transcribed mainly from single genes and the levels of certain ncRNAs, including RNase P RNA (essential for the processing of tRNAs), are higher at stationary phase compared to exponentially growing cells. We provide supporting evidence that Ms1 RNA represents a mycobacterial 6S RNA variant. The evolutionary routes for the ncRNAs RNase P RNA, tmRNA and Ms1 RNA are different from that of the core genes. Electronic supplementary material The online version of this article (10.1186/s12862-019-1447-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
44
|
Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis 2019; 13:e0007083. [PMID: 30763316 PMCID: PMC6375572 DOI: 10.1371/journal.pntd.0007083] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seemingly innocuous nontuberculous mycobacteria (NTM) species, classified by their slow or rapid growth rates, can cause a wide range of illnesses, from skin ulceration to severe pulmonary and disseminated disease. Despite their worldwide prevalence and significant disease burden, NTM do not garner the same financial or research focus as Mycobacterium tuberculosis. In this review, we outline the most abundant of over 170 NTM species and inadequacies of diagnostics and treatments and weigh the advantages and disadvantages of currently available in vivo animal models of NTM. In order to effectively combat this group of mycobacteria, more research focused on appropriate animal models of infection, screening of chemotherapeutic compounds, and development of anti-NTM vaccines and diagnostics is urgently needed.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sasha E. Larsen
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gail Cassell
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- PAI Life Sciences, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Turenne CY. Nontuberculous mycobacteria: Insights on taxonomy and evolution. INFECTION GENETICS AND EVOLUTION 2019; 72:159-168. [PMID: 30654178 DOI: 10.1016/j.meegid.2019.01.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022]
Abstract
Seventy years have passed since Ernest H. Runyon presented a phenotypic classification approach for nontuberculous mycobacteria (NTM), primarily as a starting point in trying to understand their clinical relevance. From numerical taxonomy (biochemical testing) to 16S rRNA gene sequencing to whole genome sequencing (WGS), our understanding of NTM has also evolved. Novel species are described at a rapid pace, while taxonomical relationships are re-defined in large part due to the accessibility of WGS. The evolutionary course of clonal complexes within species is better known for some NTM and less for others. In contrast with M. tuberculosis, much is left to learn about NTM as a whole.
Collapse
Affiliation(s)
- Christine Y Turenne
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Shared Health - Diagnostic Services, Winnipeg, MB, Canada.
| |
Collapse
|
46
|
Carneiro MDS, Nunes LDS, David SMMD, Dias CF, Barth AL, Unis G. Nontuberculous mycobacterial lung disease in a high tuberculosis incidence setting in Brazil. ACTA ACUST UNITED AC 2019; 44:106-111. [PMID: 29791549 PMCID: PMC6044650 DOI: 10.1590/s1806-37562017000000213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/15/2017] [Indexed: 11/05/2022]
Abstract
Objective: The incidence of lung disease caused by nontuberculous mycobacteria (NTM) has been increasing worldwide. In Brazil, there are few studies about nontuberculous mycobacterial lung disease (NTMLD), and its prevalence is yet to be known. Our objective was to determine the specific etiology of the disease in the state of Rio Grande do Sul, Brazil, as well as the frequency and diversity of NTM species in our sample of patients. Methods: This is a retrospective analysis of the medical records of patients diagnosed with NTMLD treated in a referral center located in the city of Porto Alegre, Brazil, between 2003 and 2013. Results: Our sample comprised 100 patients. The most prevalent NTM species were Mycobacterium avium complex (MAC), in 35% of the cases; M. kansasii, in 17%; and M. abscessus, in 12%. A total of 85 patients had received previous treatment for tuberculosis. Associated conditions included structural abnormalities in the lungs, such as bronchiectasis, in 23% of the cases; COPD, in 17%; and immunosuppressive conditions, such as AIDS, in 24%. Conclusions: MAC and M. kansasii were the most prevalent species involved in NTMLD in the state, similarly to what occurs in other regions of Brazil. Data on regional epidemiology of NTMLD, its specific etiology, and associated conditions are essential to establish appropriate treatment, since each species requires specific regimens. Most patients with NTMLD had received previous tuberculosis treatment, which might lead to development of resistance and late diagnosis.
Collapse
Affiliation(s)
- Maiara Dos Santos Carneiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciana de Souza Nunes
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | | | | | - Afonso Luís Barth
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gisela Unis
- Hospital Sanatório Partenon, Porto Alegre, RS, Brasil
| |
Collapse
|
47
|
Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: From probes to genomes. INFECTION GENETICS AND EVOLUTION 2018; 72:93-112. [PMID: 30508687 DOI: 10.1016/j.meegid.2018.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/29/2022]
Abstract
Tuberculosis, disease caused by Mycobacterium tuberculosis, is currently the leading cause of death by a single infectious agent worldwide. Early, rapid and accurate identification of M. tuberculosis and the determination of drug susceptibility is essential for the treatment and management of this disease. Tuberculosis diagnosis is mainly based on chest radiography, smear microscopy and bacteriological culture. Smear microscopy has variable sensitivity, mainly in patients co-infected with the human immunodeficiency virus (HIV). Conventional culture for M. tuberculosis isolation, identification and drug susceptibility testing requires several weeks owning to the slow growth of M. tuberculosis. The delay in the time to results drives the prolongation of potentially inappropriate antituberculosis therapy contributing to the emergence of drug resistance, reducing treatment options and increasing treatment duration and associated costs, resulting in increased mortality and morbidity. For these reasons, novel diagnostic methods are need for timely identification of M. tuberculosis and determination of the antibiotic susceptibility profile of the infecting strain. Molecular methods offer enhanced sensitivity and specificity, early detection and the capacity to detect mixed infections. These technologies have improved turnaround time, cost effectiveness and are amenable for point-of-care testing. However, although these methods produce results within hours from sample collection, the phenotypic susceptibility testing is still needed for the determination of drug susceptibility and quantify the susceptibility levels of a given strain towards individual antibiotics. This review presents the history, advances and forthcoming promises in the molecular diagnosis of tuberculosis. An overview on the general principles, diagnostic value and the main advantages and disadvantages of the molecular methods used for the detection and identification of M. tuberculosis and its associated disease, is provided. It will be also discussed how the current phenotypic methods should be used in combination with the genotypic methods for rapid antituberculosis susceptibility testing.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal.
| |
Collapse
|
48
|
Gupta T, LaGatta M, Helms S, Pavlicek RL, Owino SO, Sakamoto K, Nagy T, Harvey SB, Papania M, Ledden S, Schultz KT, McCombs C, Quinn FD, Karls RK. Evaluation of a temperature-restricted, mucosal tuberculosis vaccine in guinea pigs. Tuberculosis (Edinb) 2018; 113:179-188. [PMID: 30514501 DOI: 10.1016/j.tube.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is currently the leading cause of death in humans by a single infectious agent, Mycobacterium tuberculosis. The Bacillus Calmette-Guérin (BCG) vaccine prevents pulmonary TB with variable efficacy, but can cause life-threatening systemic infection in HIV-infected infants. In this study, TBvac85, a derivative of Mycobacterium shottsii expressing M. tuberculosis Antigen 85B, was examined as a safer alternative to BCG. Intranasal vaccination of guinea pigs with TBvac85, a naturally temperature-restricted species, resulted in serum Ag85B-specific IgG antibodies. Delivery of the vaccine by this route also induced protection equivalent to intradermal BCG based on organ bacterial burdens and lung pathology six weeks after aerosol challenge with M. tuberculosis strain Erdman. These results support the potential of TBvac85 as the basis of an effective TB vaccine. Next-generation derivatives expressing multiple M. tuberculosis immunogens are in development.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Monica LaGatta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Shelly Helms
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Rebecca L Pavlicek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Simon O Owino
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stephen B Harvey
- Animal Resources Program, University of Georgia, Athens, GA, USA; Department of Population Heath, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mark Papania
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Ledden
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | - Frederick D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA
| | - Russell K Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Pathens, Inc., Athens, GA, USA.
| |
Collapse
|
49
|
Huh HJ, Kim SY, Jhun BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. INFECTION GENETICS AND EVOLUTION 2018; 72:169-182. [PMID: 30315892 DOI: 10.1016/j.meegid.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that human infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, indicating that NTM disease is no longer uncommon in many countries. As a result of an increasing emphasis on the importance of differential identification of NTM species, several molecular tools have recently been introduced in clinical and experimental settings. These advances have led to a much better understanding of the diversity of NTM species with regard to clinical aspects and the potential factors responsible for drug resistance that influence the different outcomes of NTM disease. In this paper, we review currently available molecular diagnostics for identification and differentiation of NTM species by summarizing data from recently applied methods, including commercially available assays, and their relevant strengths and weaknesses. We also highlight drug resistance-associated genes in clinically important NTM species. Understanding the basis for different treatment outcomes with different causative species and drug-resistance mechanisms will eventually improve current treatment regimens and facilitate the development of better control measures for NTM diseases.
Collapse
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
50
|
Niederhäuser S, Klauser L, Bolliger J, Friedel U, Schmitt S, Ruetten M, Greene CE, Ghielmetti G. First report of nodular skin lesions caused by Mycobacterium nebraskense in a 9-year-old cat. JFMS Open Rep 2018; 4:2055116918792685. [PMID: 30186616 PMCID: PMC6113737 DOI: 10.1177/2055116918792685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Case summary A 9-year-old cat was referred with multiple, raised, ulcerative skin nodules in the region of the neck and dorsal head. Histopathological findings of a biopsied nodule were granulomatous dermatitis and panniculitis without multinucleated giant cells or caseous necrosis. In addition, by Ziehl–Neelsen staining numerous acid-fast intracellular bacilli were observed within the lesions. Mycobacterial culture showed growth of rough scotochromogenic colonies after 3 weeks of incubation. Molecular characterisation of the isolate identified Mycobacterium nebraskense as the cause of the infection. No phenotypic resistance was detected for the antimycobacterial agents tested. The cat was successfully treated with a combination of surgical excision and a 12 week course of antimicrobial therapy, including rifampicin combined with clarithromycin. Relevance and novel information To our knowledge, this is the first documented case of mycobacterial granulomatous dermatitis and panniculitis due to M nebraskense infection in a cat. The successful surgical and antimycobacterial treatment regimen is described.
Collapse
Affiliation(s)
| | | | | | - Ute Friedel
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Schmitt
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Craig E Greene
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Giovanni Ghielmetti
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|