1
|
Soliman RM, Nishioka K, Murakoshi F, Nakaya T. Use of live attenuated recombinant Newcastle disease virus carrying avian paramyxovirus 2 HN and F protein genes to enhance immune responses against species A rotavirus VP6 protein. Vet Res 2024; 55:16. [PMID: 38317245 PMCID: PMC10845738 DOI: 10.1186/s13567-024-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Animal Medicine (Infectious Diseases Division), Faculty of Veterinary Medicine, Damanhour University, Damanhour, El‑Beheira, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
2
|
Zhang Y, Mo R, Sun S, Cui Z, Liang B, Li E, Wang T, Feng Y, Yang S, Yan F, Zhao Y, Xia X. Bacillus subtilis vector based oral rabies vaccines induced potent immune response and protective efficacy in mice. Front Microbiol 2023; 14:1126533. [PMID: 36846792 PMCID: PMC9948087 DOI: 10.3389/fmicb.2023.1126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Rabies is a worldwide epidemic that poses a serious threat to global public health. At present, rabies in domestic dogs, cats, and some pets can be effectively prevented and controlled by intramuscular injection of rabies vaccine. But for some inaccessible animals, especially stray dogs, and wild animals, it is difficult to prevent with intramuscular injection. Therefore, it is necessary to develop a safe and effective oral rabies vaccine. Methods We constructed recombinant Bacillus subtilis (B. subtilis) expressing two different strains of rabies virus G protein, named CotG-E-G and CotG-C-G, immunogenicity was studied in mice. Results The results showed that CotG-E-G and CotG-C-G could significantly increase the specific SIgA titers in feces, serum IgG titers, and neutralizing antibodies. ELISpot experiments showed that CotG-E-G and CotG-C-G could also induce Th1 and Th2 to mediate the secretion of immune-related IFN-γ and IL-4. Collectively, our results suggested that recombinant B. subtilis CotG-E-G and CotG-C-G have excellent immunogenicity and are expected to be novel oral vaccine candidates for the prevention and control of wild animal rabies.
Collapse
Affiliation(s)
- Ying Zhang
- Northeast Forestry University College of Wildlife and Protected Area, Harbin, China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ruo Mo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China,College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhanding Cui
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Bo Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China,Feihu Yan,✉
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China,Yongkun Zhao,✉
| | - Xianzhu Xia
- Northeast Forestry University College of Wildlife and Protected Area, Harbin, China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China,*Correspondence: Xianzhu Xia,✉
| |
Collapse
|
3
|
Heterologous Systemic Prime–Intranasal Boosting Using a Spore SARS-CoV-2 Vaccine Confers Mucosal Immunity and Cross-Reactive Antibodies in Mice as well as Protection in Hamsters. Vaccines (Basel) 2022; 10:vaccines10111900. [PMID: 36366408 PMCID: PMC9692796 DOI: 10.3390/vaccines10111900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are administered systemically and typically result in poor immunogenicity at the mucosa. As a result, vaccination is unable to reduce viral shedding and transmission, ultimately failing to prevent infection. One possible solution is that of boosting a systemic vaccine via the nasal route resulting in mucosal immunity. Here, we have evaluated the potential of bacterial spores as an intranasal boost. Method: Spores engineered to express SARS-CoV-2 antigens were administered as an intranasal boost following a prime with either recombinant Spike protein or the Oxford AZD1222 vaccine. Results: In mice, intranasal boosting following a prime of either Spike or vaccine produced antigen-specific sIgA at the mucosa together with the increased production of Th1 and Th2 cytokines. In a hamster model of infection, the clinical and virological outcomes resulting from a SARS-CoV-2 challenge were ameliorated. Wuhan-specific sIgA were shown to cross-react with Omicron antigens, suggesting that this strategy might offer protection against SARS-CoV-2 variants of concern. Conclusions: Despite being a genetically modified organism, the spore vaccine platform is attractive since it offers biological containment, the rapid and cost-efficient production of vaccines together with heat stability. As such, employed in a heterologous systemic prime–mucosal boost regimen, spore vaccines might have utility for current and future emerging diseases.
Collapse
|
4
|
Freeze-drying: A Flourishing Strategy to Fabricate Stable Pharmaceutical and Biological Products. Int J Pharm 2022; 628:122233. [DOI: 10.1016/j.ijpharm.2022.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
5
|
de Almeida MEM, Alves KCS, de Vasconcelos MGS, Pinto TS, Glória JC, Chaves YO, Neves WLL, Tarragô AM, de Souza Neto JN, Astolfi-Filho S, Pontes GS, da Silva Balieiro AA, Isticato R, Ricca E, Mariúba LAM. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model. Sci Rep 2022; 12:1531. [PMID: 35087102 PMCID: PMC8795416 DOI: 10.1038/s41598-022-05344-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Malaria remains a widespread public health problem in tropical and subtropical regions around the world, and there is still no vaccine available for full protection. In recent years, it has been observed that spores of Bacillus subtillis can act as a vaccine carrier and adjuvant, promoting an elevated humoral response after co-administration with antigens either coupled or integrated to their surface. In our study, B. subtillis spores from the KO7 strain were used to couple the recombinant CSP protein of P. falciparum (rPfCSP), and the nasal humoral-induced immune response in Balb/C mice was evaluated. Our results demonstrate that the spores coupled to rPfCSP increase the immunogenicity of the antigen, which induces high levels of serum IgG, and with balanced Th1/Th2 immune response, being detected antibodies in serum samples for 250 days. Therefore, the use of B. subtilis spores appears to be promising for use as an adjuvant in a vaccine formulation.
Collapse
Affiliation(s)
- Maria Edilene M de Almeida
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
| | - Késsia Caroline Souza Alves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliane Corrêa Glória
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Walter Luiz Lima Neves
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
- Programa de Pós-Graduação Stricto Sensu em Ciências Aplicadas à Hematologia PPGH, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Júlio Nino de Souza Neto
- Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Spartaco Astolfi-Filho
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Antônio Alcirley da Silva Balieiro
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
| | - Luis André M Mariúba
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
6
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Oh Y, Kim JA, Kim CH, Choi SK, Pan JG. Bacillus subtilis spore vaccines displaying protective antigen induce functional antibodies and protective potency. BMC Vet Res 2020; 16:259. [PMID: 32723323 PMCID: PMC7385935 DOI: 10.1186/s12917-020-02468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis is the causative agent of anthrax, a disease of both humans and various animal species, and can be used as a bioterror agent. Effective vaccines are available, but those could benefit from improvements, including increasing the immunity duration, reducing the shot frequency and adverse reactions. In addition, more sophisticated antigen delivery and potentiation systems are urgently required. The protective antigen (PA), one of three major virulence factors associated with anthrax was displayed on the surface of Bacillus subtilis spores, which is a vaccine production host and delivery vector with several advantages such as a low production cost, straightforward administration as it is safe for human consumption and the particulate adjuvanticity. Mice were immunized orally (PO), intranasally (IN), sublingually (SL) or intraperitoneally (IP) with the PA displaying probiotic spore vaccine. Clinical observation, serological analysis and challenge experiment were conducted to investigate the safety and efficacy of the vaccine. RESULTS A/J mice immunized with the PA spore vaccine via PO, IN, SL, and IP were observed to have increased levels of active antibody titer, isotype profiles and toxin neutralizing antibody in sera, and IgA in saliva. The immunized mice were demonstrated to raise protective immunity against the challenge with lethal B. anthracis spores. CONCLUSIONS In this study, we developed a B. subtilis spore vaccine that displays the PA on its surface and showed that the PA-displaying spore vaccine was able to confer active immunity to a murine model based on the results of antibody isotype titration, mucosal antibody identification, and a lethal challenge experiment.
Collapse
Affiliation(s)
- Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341 Republic of Korea
| | - Jung Ae Kim
- Infectious Disease Research Center (Superbacteria Group), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Chang-Hwan Kim
- The 4th R&D Institute, Agency for Defense Development (ADD), Yuseong, Daejeon, 34186 Republic of Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center (Superbacteria Group), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jae-Gu Pan
- Infectious Disease Research Center (Superbacteria Group), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
8
|
Tamiev D, Lantz A, Vezeau G, Salis H, Reuel NF. Controlling Heterogeneity and Increasing Titer from Riboswitch-Regulated Bacillus subtilis Spores for Time-Delayed Protein Expression Applications. ACS Synth Biol 2019; 8:2336-2346. [PMID: 31490060 DOI: 10.1021/acssynbio.9b00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sporulated cells have potential as time-delayed expression chassis of proteins for applications such as "on-demand" biologics production, whole cell biosensors, or oral vaccines. However, the desired attributes of high expression rates and low product variances are difficult to maintain from germinated spores. In this work, we study the effect of an integrating vs theta-replicating plasmid in a wild-type Bacillus subtilis and two PolY mutants. The cells were engineered to produce a fluorescent reporter protein (RFP) under the control of a riboswitch activated by theophylline. This allowed for greater sensitivity to point mutations. The fluorescence and cell-growth curves were fit with a custom kinetic model, and a peak kinetic rate (LKPmax) was extracted for each clonal population (n = 30 for all cell, vector, and growth combinations). Plasmid-based expression yields higher (8.7×) expression rates because of an increased copy number of the expression cassette (10× over integrated). The variance of LKPmax values increased 2.1× after sporulation for the wild-type strain. This increase in variance from sporulation is very similar to what is observed with UV exposure. This effect can be partially mitigated by the use of PolY knockouts observed in suspended cell growths and adherent biofilms.
Collapse
Affiliation(s)
- Denis Tamiev
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Alyssa Lantz
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Grace Vezeau
- Department of Chemical Engineering, Agricultural and Biological Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Howard Salis
- Department of Chemical Engineering, Agricultural and Biological Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
IL-1 Fragment Modulates Immune Response Elicited by Recombinant Bacillus subtilis Spores Presenting an Antigen/Adjuvant Chimeric Protein. Mol Biotechnol 2018; 60:810-819. [PMID: 30178298 PMCID: PMC6182635 DOI: 10.1007/s12033-018-0117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mucosal immunizations are convenient ways of vaccination, which do not require any trained personnel for administration. One of the major challenges for developing an effective mucosal vaccine is finding appropriate adjuvant. Bacillus subtilis endospores have been shown to help solving these obstacles while serving as a platform for presentation of both, antigens and adjuvants. In this study, we have successfully designed and constructed recombinant spores displaying an antigen/adjuvant chimeric protein. We have used a fragment of Clostridium difficile flagellar cap FliD protein as antigen and VQGEESNDK peptide, a fragment of human IL-1β, as adjuvant. Recombinant spores presenting FliD were able to elicit immune response in orally immunized mice which could be evaluated by detection of FliD-specific IgA antibodies in feces of immunized animals. Moreover, the presence of IL-1β fragment significantly changed characteristics of elicited immune response. Obtained results show that recombinant spores presenting an antigen/adjuvant chimeric protein exhibit both properties in mucosal immunization of mice. Moreover, IL-1β fragment could serve as valuable adjuvant in B. subtilis spore-based mucosal vaccines.
Collapse
|
10
|
Abstract
Perhaps the best-studied mucosal adjuvants are the bacterially derived ADP-ribosylating enterotoxins. This adjuvant family includes heat-labile enterotoxin of Escherichia coli (LT), cholera toxin (CT), and mutants or subunits of LT and CT. These proteins promote a multifaceted antigen-specific response, including inflammatory Th1, Th2, Th17, cytotoxic T lymphocytes (CTLs), and antibodies. However, more uniquely among adjuvant classes, they induce antigen-specific IgA antibodies and long-lasting memory to coadministered antigens when delivered mucosally or even parenterally. The purpose of this minireview is to describe the general properties, history and creation, preclinical studies, clinical studies, mechanisms of action, and considerations for use of the most promising enterotoxin-based adjuvant to date, LT(R192G/L211A) or dmLT. This review is timely due to completed, ongoing, and planned clinical investigations of dmLT in multiple vaccine formulations by government, nonprofit, and industry groups in the United States and abroad.
Collapse
Affiliation(s)
- John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Hosseini S, Curilovs A, Cutting SM. Biological Containment of Genetically Modified Bacillus subtilis. Appl Environ Microbiol 2018; 84:e02334-17. [PMID: 29150519 PMCID: PMC5772228 DOI: 10.1128/aem.02334-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
Genetic manipulation of bacterial spores of the genus Bacillus has shown potential for vaccination and for delivery of drugs or enzymes. Remarkably, proteins displayed on the spore surface retain activity and generally are not degraded. The heat stability of spores, coupled with their desiccation resistance, makes them suitable for delivery to humans or to animals by the oral route. Despite these attributes, one regulatory obstacle has remained regarding the fate of recombinant spores shed into the environment as viable spores. We have addressed the biological containment of GMO spores by utilizing the concept of a thymineless death, a phenomenon first reported 6 decades ago. Using Bacillus subtilis, we have inserted chimeric genes in the two thymidylate synthase genes, thyA and thyB, using a two-step process. Insertion is made first at thyA and then at thyB whereby resistance to trimethoprim enables selection of recombinants. Importantly, this method requires introduction of no new antibiotic resistance genes. Recombinant spores have a strict dependence on thymine (or thymidine), and in its absence cells lyse and die. Insertions are stable with no evidence for suppression or reversion. Using this system, we have successfully created a number of spore vaccines as well as spores displaying active enzymes.IMPORTANCE Genetic manipulation of bacterial spores offers a number of exciting possibilities for public and animal health, including their use as heat-stable vehicles for delivering vaccines or enzymes. Despite this, one remaining problem is the fate of recombinant spores released into the environment where they could survive in a dormant form indefinitely. We describe a solution whereby, following genetic manipulation, the bacterium is rendered dependent on thymine. As a consequence, spores if released would produce bacteria unable to survive, and they would exhibit a thymineless death due to rapid cessation of metabolism. The method we describe has been validated using a number of exemplars and solves a critical problem for containing spores of GMOs in the environment.
Collapse
Affiliation(s)
- Siamand Hosseini
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Alex Curilovs
- SporeGen Ltd., Bourne Labs, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
- SporeGen Ltd., Bourne Labs, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
12
|
Potocki W, Negri A, Peszyńska-Sularz G, Hinc K, Obuchowski M, Iwanicki A. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microb Cell Fact 2017; 16:151. [PMID: 28899372 PMCID: PMC5596941 DOI: 10.1186/s12934-017-0765-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bacillus subtilis spores can be used for presentation of heterologous proteins. Two main approaches have been developed, the recombinant one, requiring modification of bacterial genome to express a protein of interest as a fusion with spore-coat protein, and non-recombinant, based on the adsorption of a heterologous protein onto the spore. So far only single proteins have been displayed on the spore surface. RESULTS We have used a combined approach to adsorb and display FliD protein of Clostridium difficile on the surface of recombinant IL-2-presenting spores. Such spores presented FliD protein with efficiency comparable to FliD-adsorbed spores produced by wild-type 168 strain and elicited FliD-specific immune response in intranasally immunized mice. CONCLUSIONS Our results indicate that such dual display technology may be useful in creation of spores simultaneously presenting adjuvant and antigen molecules. Regarding the characteristics of elicited immune response it seems plausible that such recombinant IL-2-presenting spores with adsorbed FliD protein might be an interesting candidate for vaccine against infections with Clostridium difficile.
Collapse
Affiliation(s)
- Wojciech Potocki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
| | - Alessandro Negri
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland.,Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Krzysztof Hinc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Iwanicki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
13
|
Choo MK, Sano Y, Kim C, Yasuda K, Li XD, Lin X, Stenzel-Poore M, Alexopoulou L, Ghosh S, Latz E, Rifkin IR, Chen ZJ, Stewart GC, Chong H, Park JM. TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. J Exp Med 2017; 214:1297-1311. [PMID: 28400473 PMCID: PMC5413331 DOI: 10.1084/jem.20161141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/05/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
The spores of pathogenic bacteria are involved in host entry and the initial encounter with the host immune system. How bacterial spores interact with host immunity, however, remains poorly understood. Here, we show that the spores of Bacillus anthracis (BA), the etiologic agent of anthrax, possess an intrinsic ability to induce host immune responses. This immunostimulatory activity is attributable to high amounts of RNA present in the spore surface layer. RNA-sensing TLRs, TLR7, and TLR13 in mice and their human counterparts, are responsible for detecting and triggering the host cell response to BA spores, whereas TLR2 mediates the sensing of vegetative BA. BA spores, but not vegetative BA, induce type I IFN (IFN-I) production. Although TLR signaling in itself affords protection against BA, spore RNA-induced IFN-I signaling is disruptive to BA clearance. Our study suggests a role for bacterial spore-associated RNA in microbial pathogenesis and illustrates a little known aspect of interactions between the host and spore-forming bacteria.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Yasuyo Sano
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | | | - Kei Yasuda
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Xiao-Dong Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mary Stenzel-Poore
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, 13288 Marseille, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - George C Stewart
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65211
| | | | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
14
|
Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol 2017; 8:353-370. [PMID: 28125354 DOI: 10.1146/annurev-food-030216-030256] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bioengineered probiotics represent the next generation of whole cell-mediated biotherapeutics. Advances in synthetic biology, genome engineering, and DNA sequencing and synthesis have enabled scientists to design and develop probiotics with increased stress tolerance and the ability to target specific pathogens and their associated toxins, as well as to mediate targeted delivery of vaccines, drugs, and immunomodulators directly to host cells. Herein, we review the most significant advances in the development of this field. We discuss the critical issue of biological containment and consider the role of synthetic biology in the design and construction of the probiotics of the future.
Collapse
Affiliation(s)
- Babasola Sola-Oladokun
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Eamonn P Culligan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , , .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Stasiłojć M, Hinc K, Peszyńska-Sularz G, Obuchowski M, Iwanicki A. Recombinant Bacillus subtilis Spores Elicit Th1/Th17-Polarized Immune Response in a Murine Model of Helicobacter pylori Vaccination. Mol Biotechnol 2016; 57:685-91. [PMID: 25779639 PMCID: PMC4503858 DOI: 10.1007/s12033-015-9859-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Current progress in research on vaccines against Helicobacter pylori emphasizes the significance of eliciting the Th1/Th17-polarized immune response. Such polarization can be achieved by selection of appropriate antigen and adjuvant. In this study, we wanted to check the polarization of the immune response elicited by UreB protein of Helicobacter acinonychis delivered by recombinant Bacillus subtilis spores upon oral immunization. B. subtilis spores presenting fragment of UreB protein and able to express entire UreB in vegetative cells after germination were orally administered to mice along with aluminum hydroxide or recombinant spores presenting IL-2 as an adjuvant. The pattern of cytokines secreted by sensitized splenocytes assessed by the cytometric bead array clearly indicated polarization of the immune response toward both Th1 and Th17 in mice immunized with the use of above-mentioned adjuvants. Obtained result is promising regarding the usage of recombinant spores in formulations of vaccines against H. pylori and line up with the current state of research emphasizing the key role of appropriate adjuvants.
Collapse
Affiliation(s)
- Małgorzata Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
16
|
Lappalainen S, Pastor AR, Tamminen K, López-Guerrero V, Esquivel-Guadarrama F, Palomares LA, Vesikari T, Blazevic V. Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo. Hum Vaccin Immunother 2016; 10:2039-47. [PMID: 25424814 PMCID: PMC4186038 DOI: 10.4161/hv.28858] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rotavirus (RV) is a common cause of severe gastroenteritis (GE) in children worldwide. Live oral RV vaccines protect against severe RVGE, but the immune correlates of protection are not yet clearly defined. Inner capsid VP6 protein is a highly conserved, abundant, and immunogenic RV protein, and VP6-specific mucosal antibodies, especially IgA, have been implicated to protect against viral challenge in mice. In the present study systemic and mucosal IgG and IgA responses were induced by immunizing BALB/c mice intranasally with a combination of recombinant RV VP6 protein (subgroup II [SGII]) and norovirus (NoV) virus-like particles (VLPs) used in a candidate vaccine. Following immunization mice were challenged orally with murine RV strain EDIMwt (SG non-I-non-II, G3P10[16]). In order to determine neutralizing activity of fecal samples, sera, and vaginal washes (VW) against human Wa RV (SGII, G1P1A[8]) and rhesus RV (SGI, G3P5B[3]), the RV antigen production was measured with an ELISA-based antigen reduction neutralization assay. Only VWs of immunized mice inhibited replication of both RVs, indicating heterotypic protection of induced antibodies. IgA antibody depletion and blocking experiments using recombinant VP6 confirmed that neutralization was mediated by anti-VP6 IgA antibodies. Most importantly, after the RV challenge significant reduction in viral shedding was observed in feces of immunized mice. These results suggest a significant role for mucosal RV VP6-specific IgA for the inhibition of RV replication in vitro and in vivo. In addition, these results underline the importance of non-serotype-specific immunity induced by the conserved subgroup-specific RV antigen VP6 in clearance of RV infection.
Collapse
Affiliation(s)
- Suvi Lappalainen
- a Vaccine Research Center; School of Medicine; University of Tampere; Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang L, Qin T, Yin Y, Gao X, Lin J, Yang Q, Yu Q. Bacillus amyloliquefaciens SQR9 induces dendritic cell maturation and enhances the immune response against inactivated avian influenza virus. Sci Rep 2016; 6:21363. [PMID: 26892720 PMCID: PMC4759567 DOI: 10.1038/srep21363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/19/2016] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to evaluate the stimulatory effects of Bacillus amyloliquefaciens SQR9 on dendritic cells (DCs) and to verify its ability to enhance the immune response by modulating DC maturation. The results demonstrated that B. amyloliquefaciens SQR9 can adhere to the nasal epithelium and be taken up by DCs in the nasal mucosa, thereby inducing DC maturation and resulting in increased CD80, CD86, CD40 and MHCII expression and cytokine secretion. The frequencies of CD4(+) and CD8(+) T cells and CD69(+) memory T cells were increased in spleens after nasal immunization with virus plus B. amyloliquefaciens SQR9 compared to immunization with inactivated H9N2 AIV alone. Moreover, the levels of sIgA in the nasal cavity, the trachea, and the lung and the levels of IgG, IgG1, and IgG2a in serum were significantly increased in mice administered WIV plus SQR9 compared to mice administered H9N2 WIV alone. The results of this study demonstrated that B. amyloliquefaciens SQR9 can stimulate DC maturation to effectively induce an immune response. In conclusion, an effective immune response may result from the uptake of H9N2 by DCs in the nasal mucosa, thereby stimulating DC maturation and migration to cervical lymph nodes to initiate immune response.
Collapse
Affiliation(s)
- Lulu Huang
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Tao Qin
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - YinYan Yin
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Xue Gao
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Jian Lin
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qian Yang
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qinghua Yu
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| |
Collapse
|
18
|
Jalilvand S, Marashi SM, Shoja Z. Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 2015; 33:3281-7. [PMID: 26021725 DOI: 10.1016/j.vaccine.2015.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Rotavirus (RV) structural proteins VP4 and VP7, located on the surface of viral particles, elicit neutralizing antibodies (Abs) and are therefore considered to be important components of RV vaccines. However, despite inducing neutralizing Abs, limits of cross-neutralizing activity and lack of full correlation with protection limit the usefulness of these proteins as protective agents against RV disease. VP6 protein, which forms the middle layer of RV particles, is discussed as an alternative vaccine candidate since it can induce cross-protective immune responses against different RV strains although the Ab raised is not neutralizing. This report reviews different functions of VP6 that can lead to considering it as an alternative vaccine against RV disease.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Lin Z, Shi Y, Deng B, Mao X, Yu D, Li W. Protective immunity against Eimeria tenella infection in chickens following oral immunization with Bacillus subtilis expressing Eimeria tenella 3-1E protein. Parasitol Res 2015; 114:3229-36. [DOI: 10.1007/s00436-015-4539-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
20
|
|
21
|
Hinc K, Stasiłojć M, Piątek I, Peszyńska-Sularz G, Isticato R, Ricca E, Obuchowski M, Iwanicki A. Mucosal adjuvant activity of IL-2 presenting spores of bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS One 2014; 9:e95187. [PMID: 24743850 PMCID: PMC3990602 DOI: 10.1371/journal.pone.0095187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/24/2014] [Indexed: 01/25/2023] Open
Abstract
The endospores of Bacillus subtilis are now widely used as a platform for presentation of heterologous proteins and due to their safety record and high resistance to harsh environmental conditions can be considered as potential vehicles for oral vaccination. In this research we show that recombinant B. subtilis spores presenting a fragment of the Helicobacter acinonychis UreB protein and expressing the ureB gene under vegetative promoter elicit a strong cellular immune response in orally immunized mice when co-administered with spores presenting IL-2. We show for the first time the successful application of two types of recombinant spores, one carrying an antigen and the other an adjuvant, in a single oral immunization.
Collapse
Affiliation(s)
- Krzysztof Hinc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
| | - Iwona Piątek
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
| | | | - Rachele Isticato
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, Naples, Italy
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Iwanicki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
22
|
Comparative analysis of Bacillus subtilis spores and monophosphoryl lipid A as adjuvants of protein-based mycobacterium tuberculosis-based vaccines: partial requirement for interleukin-17a for induction of protective immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:501-8. [PMID: 24477855 DOI: 10.1128/cvi.00622-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of adjuvants for vaccines has become an important area of research as the number of protein-based vaccines against infectious pathogens increases. Currently, there are a number of adjuvant-based Mycobacterium tuberculosis vaccines in clinical trials that have shown efficacy in animal models. Despite these novel adjuvants, there is still a need to design new and more versatile adjuvants that have minimal adverse side effects but produce robust long-lasting adaptive immune responses. To this end, we hypothesized that Bacillus subtilis spores may provide the appropriate innate signals that are required to generate such vaccine-mediated responses, which would be sufficient to reduce the mycobacterial burden after infection with M. tuberculosis. In addition, we compared the response generated by B. subtilis spores to that generated by monophosphoryl lipid A (MPL), which has been used extensively to test tuberculosis vaccines. The well-characterized, 6-kDa early secretory antigenic target of M. tuberculosis (ESAT-6; Rv3875) was used as a test antigen to determine the T cell activation potential of each adjuvant. Inoculated into mice, B. subtilis spores induced a strong proinflammatory response and Th1 immunity, similar to MPL; however, unlike MPL formulated with dimethyldioctadecylammonium (DDA) bromide, it failed to induce significant levels of interleukin-17A (IL-17A) and was unable to significantly reduce the mycobacterial burden after pulmonary infection with M. tuberculosis. Further analysis of the activity of MPL-DDA suggested that IL-17A was required for protective immunity. Taken together, the data emphasize the requirement for a network of cytokines that are essential for protective immunity.
Collapse
|
23
|
Petschow B, Doré J, Hibberd P, Dinan T, Reid G, Blaser M, Cani PD, Degnan FH, Foster J, Gibson G, Hutton J, Klaenhammer TR, Ley R, Nieuwdorp M, Pot B, Relman D, Serazin A, Sanders ME. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci 2013; 1306:1-17. [PMID: 24266656 PMCID: PMC4013291 DOI: 10.1111/nyas.12303] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions.
Collapse
Affiliation(s)
- Bryon Petschow
- Transcend Biomedical Communications, LLC, Youngsville, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Construction and evaluation of a novel Bacillus subtilis spores-based enterovirus 71 vaccine. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0032-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Lappalainen S, Tamminen K, Vesikari T, Blazevic V. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Hum Vaccin Immunother 2013; 9:1991-2001. [PMID: 23777748 DOI: 10.4161/hv.25249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rotavirus (RV) is the most important cause of severe gastroenteritis in children worldwide. Current live RV vaccines are efficacious but show lower efficacy in developing countries, as well as a low risk of intussusception. This has led to the development of parenteral non-live candidate vaccines against RV. RV capsid VP6 protein is highly conserved and the most abundant RV protein forming highly immunogenic oligomeric structures with multivalent antigen expression. Both recombinant VP6 (rVP6) or double-layered (dl) 2/6-virus-like particles (VLPs), might be considered as the simplest RV subunit vaccine candidates. Human rVP6 protein and dl2/6-VLPs were produced in Sf9 insect cells by baculovirus expression system. Formation of rVP6 tubules and VLPs were confirmed by electron microscopy. BALB/c mice were immunized intramuscularly, and immune responses were analyzed. Both rVP6 and dl2/6-VLPs induced a balanced Th1-type and Th2-type response and high levels of serum IgG antibodies with cross-reactivity against different RV strains (Wa, SC2, BrB, 69M, L26, WC3, and RRV). In addition, mucosal VP6-specific IgG and IgA antibodies were detected in feces and vaginal washes (VW) of immunized animals. Importantly, VWs of immunized mice inhibited RV Wa and RRV infection in vitro. Immunization with either protein preparation induced a similar level of VP6-specific, interferon-γ secreting CD4(+) T cells in response to different RVs or the 18-mer peptide (AA 242-259), a VP6-specific CD4(+) T cell epitope. RV rVP6 and dl2/6-VLPs induced equally strong humoral and cellular responses against RV in mice and therefore, may be considered as non-live vaccine candidates against RV.
Collapse
Affiliation(s)
- Suvi Lappalainen
- Vaccine Research Center; University of Tampere Medical School; Tampere, Finland
| | | | | | | |
Collapse
|
26
|
Amuguni H, Tzipori S. Bacillus subtilis: a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 2012; 8:979-86. [PMID: 22699442 DOI: 10.4161/hv.20694] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most pathogens enter the body through mucosal surfaces. Mucosal immunization, a non-invasive needle-free route, often stimulates a mucosal immune response that is both effective against mucosal and systemic pathogens. The development of mucosally administered heat-stable vaccines with long shelf life would therefore significantly enhance immunization programs in developing countries by avoiding the need for a cold chain or systemic injections. Currently, recombinant vaccine carriers are being used for antigen delivery. Engineering Bacillus subtilis for use as a non-invasive and heat stable antigen delivery system has proven successful. Bacterial spores protected by multiple layers of protein are known to be robust and resistant to desiccation. Stable constructs have been created by integration into the bacterial chromosome of immunogens. The spore coat has been used as a vehicle for heterologous antigen presentation and protective immunization. Sublingual (SL) and intranasal (IN) routes have recently received attention as delivery routes for therapeutic drugs and vaccines and recent attempts by several investigators, including our group, to develop vaccines that can be delivered intranasally and sublingually have met with a lot of success. As discussed in this review, the use of Bacillus subtilis to express antigens that can be administered either intranasally or sublingually is providing new insights in the area of mucosal vaccines. In our work, we evaluated the efficacy of SL and IN immunizations with B. subtilis engineered to express tetanus toxin fragment C (TTFC) in mice and piglets. These bacteria engineered to express heterologous antigen either on the spore surface or within the vegetative cell have been used for oral, IN and SL delivery of antigens. A Bacillus subtilis spore coat protein, CotC was used as a fusion partner to express the tetanus fragment C. B. subtilis spores known to be highly stable and safe are also easy to purify making this spore-based display system a potentially powerful approach for surface expression of antigens. These advances will help to accelerate the development and testing of new mucosal vaccines against many human and animal diseases.
Collapse
Affiliation(s)
- Hellen Amuguni
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | |
Collapse
|
27
|
Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 2012; 30:3266-77. [PMID: 22446640 DOI: 10.1016/j.vaccine.2012.03.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/21/2012] [Accepted: 03/09/2012] [Indexed: 01/15/2023]
Abstract
Heat killed spores of the Gram-positive bacterium Bacillus subtilis have been evaluated as a vaccine delivery system with mucosal adjuvant properties for influenza. Killed spores were able to bind H5N1 virions (NIBRG-14; clade 1) and, when intra-nasally administered to mice, resulting immune responses, both humoral and cell mediated, were enhanced compared to immunization with the virion alone. Levels of both systemic IgG and mucosal sIgA specific to the virion were elevated. Levels of IgG2a (a Th(1) antibody type) were strongly enhanced when the virion was co-administered with killed spores. Cytokine induction in stimulated splenocytes was also apparent indicating balanced T(h)1 and T(h)2 responses. Evidence of cross-neutralization of clade 2.2 viruses was shown. In a challenge experiment mice dosed two times with spores adsorbed with just 20 ng HA (hemagglutinin) of inactivated NIBRG-14 were fully protected against challenge with 20 LD(50) of H5N2 virus. Interestingly, partial protection (60%) was observed in animals dosed only with killed spores. Mice dosed only with killed spores were shown to be fully protected against H5N2 (5 LD(50)) infection indicating that innate immunity and its stimulation by spores may play an important role in protection. Supporting this killed spores were (i) shown to stimulate TLR-mediated expression of NF-κB, and (ii) able to recruit NK cells into lungs and induce maturation of DCs. This work demonstrates the potential and underlying mechanism for the use of bacterial spores as an adjuvant for H5N1 vaccination.
Collapse
|
28
|
Amuguni H, Lee S, Kerstein K, Brown D, Belitsky B, Herrmann J, Keusch G, Sonenshein A, Tzipori S. Sublingual immunization with an engineered Bacillus subtilis strain expressing tetanus toxin fragment C induces systemic and mucosal immune responses in piglets. Microbes Infect 2011; 14:447-56. [PMID: 22198093 DOI: 10.1016/j.micinf.2011.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/04/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
UNLABELLED Sublingual (SL) and intranasal (IN) administration of a Bacillus subtilis-based tetanus vaccine was tested in piglets, which more closely mimic the human immune system than mice. Piglets were immunized by the SL, IN or oral routes with vaccine expressing tetanus toxin fragment C, or commercial tetanus vaccine given by intramuscular injection as a control. Tetanus toxoid specific ELISA and passive neutralization tests were used to measure IgG and IgA levels in serum and mucosal secretions, and assess protective serum antibodies, respectively. The nature of the immune response was explored by MHC Class II, TGF-β1 expression, and ELISA assays for multiple cytokines. SL or IN immunization of piglets induced neutralizing tetanus toxoid specific serum antibody and local salivary and vaginal IgA responses. Standard tetanus vaccine resulted in systemic antibodies, whereas oral administration of the Bacillus-based vaccine was ineffective. Further analyses indicated a balanced Th1/Th2 response to SL or IN immunization. CONCLUSION This study demonstrates for the first time that SL or IN administration is effective for inducing both systemic and mucosal responses in a piglet model, indicating that SL or IN delivery of a B. subtilis-based tetanus vaccine can be a simple, non-invasive, low cost strategy to induce immunity to tetanus.
Collapse
Affiliation(s)
- Hellen Amuguni
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Li G, Ren Y, Ren X. Phages bearing affinity peptides to bovine rotavirus differentiate the virus from other viruses. PLoS One 2011; 6:e28667. [PMID: 22163050 PMCID: PMC3232237 DOI: 10.1371/journal.pone.0028667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/12/2011] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to identify potential ligands and develop a novel diagnostic test to pathogenic bovine rotavirus (BRV) using phage display technology. The viruses were used as an immobilized target followed by incubation with a 12-mer phage display random peptide library. After five rounds of biopanning, phages had a specific binding activity to BRV were isolated. DNA sequencing indicated that phage displayed peptides HVHPPLRPHSDK, HATNHLPTPHNR or YPTHHAHTTPVR were potential ligands to BRV. Using the specific peptide-expressing phages, we developed a phage-based ELISA to differentiate BRV from other viruses. Compared with quantitative real-time PCR (qPCR), the phage-mediated ELISA was more suitable for the capture of BRV and the detection limitation of this approach was 0.1 µg/ml of samples. The high sensitivity, specificity and low cross-reactivity for the phage-based ELISA were confirmed in receiver operating characteristics (ROC) analysis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Guangxing Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Yudong Ren
- Department of Computer, College of Engineering, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xiaofeng Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin, China
- * E-mail: ,
| |
Collapse
|
30
|
Belitsky BR, Sonenshein AL. Roadblock repression of transcription by Bacillus subtilis CodY. J Mol Biol 2011; 411:729-43. [PMID: 21699902 DOI: 10.1016/j.jmb.2011.06.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 11/25/2022]
Abstract
CodY is a global transcriptional regulator that is known to control, directly or indirectly, expression of more than 100 genes and operons in Bacillus subtilis. Using a combination of mutational analysis and DNase I footprinting experiments, we identified two high-affinity CodY-binding sites that contribute to repression of the ybgE gene and appear to act independently. One of these sites, located 80 bp downstream of the transcription start site, accounted for the bulk of ybgE repression. Using in vitro transcription experiments, we demonstrated that in the presence of CodY, a shorter-than-expected ybgE transcript that terminates at the downstream CodY-binding site was synthesized. Thus, CodY binding to the downstream site represses transcription by a roadblock mechanism. Similar premature termination of transcription was observed for bcaP and yufN, two other CodY-regulated genes with binding sites downstream of the promoter. In accord with the roadblock mechanism, CodY-mediated repression at downstream sites was partly relieved if the transcription-repair coupling factor Mfd was inactivated.
Collapse
Affiliation(s)
- Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
31
|
Amuguni JH, Lee S, Kerstein KO, Brown DW, Belitsky BR, Herrmann JE, Keusch GT, Sonenshein AL, Tzipori S. Sublingually administered Bacillus subtilis cells expressing tetanus toxin C fragment induce protective systemic and mucosal antibodies against tetanus toxin in mice. Vaccine 2011; 29:4778-84. [PMID: 21565244 DOI: 10.1016/j.vaccine.2011.04.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Sublingual (SL) immunization against infectious agents or bacterial toxins is not a common route for antigen delivery. However, in our continued search for a needle-free platform for vaccine administration, we evaluated the efficacy of SL immunization with Bacillus subtilis engineered to express tetanus toxin fragment C (TTFC). We compared the results obtained with those for intranasal (IN) immunization with the same vaccine, which we recently reported to induce complete protection in mice against a 2×LD100 challenge of tetanus toxin (Lee et al., Vaccine 28:6658-65). Groups of animals received 3-4 immunizations of 10(9)B. subtilis vegetative cells expressing TTFC given IN or SL. Other SL immunized groups received either purified recombinant TTFC (rTTFC) or B. subtilis placebo. A non-toxic mutant of Escherichia coli heat labile enterotoxin (mLT) was included as adjuvant in some of the studies. Mice inoculated by either IN or SL administration developed protective IgG antibodies against tetanus toxin challenge. Similar of higher IgA levels in saliva, vaginal wash and feces were detected in animals immunized SL with B. subtilis cells expressing TTFC compared with IN-immunized mice or mice immunized SL with rTTFC. SL immunization promoted a mixed Th1/Th2 response, based on cytokine analysis (IL-2, IL-4, IL-10 and INFγ). Antigen-stimulated tissues (lung, intestine, spleen and lymph nodes) revealed a dramatic increase in the density of MHC class II+ expressing cells compared to all other groups. The antibody response to TTFC was superior when the adjuvant mLT was excluded from IN and SL immunizations. However, SL administration of mLT induced strong systemic and mucosal antibody responses, indicating that successful use of this route of immunization is not specific to tetanus toxin. We conclude that SL immunization is a promising, effective, safe, non-invasive and convenient method for mucosal delivery of B. subtilis cells expressing tetanus vaccine and, potentially, other immunogens. SL immunization appears to induce both systemic and mucosal immune responses.
Collapse
Affiliation(s)
- J Hellen Amuguni
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:546-51. [PMID: 21288994 DOI: 10.1128/cvi.00538-10] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the fact that the adjuvant properties of the heat-labile enterotoxins of Escherichia coli (LT) and Vibrio cholerae (CT) have been known for more than 20 years, there are no available oral vaccines containing these molecules as adjuvants, primarily because they are both very potent enterotoxins. A number of attempts with various degrees of success have been made to reduce or eliminate the enterotoxicity of LT and CT so they can safely be used as oral adjuvants or immunogens. In this report we characterize the structural, enzymatic, enterotoxic, and adjuvant properties of a novel mutant of LT, designated LT(R192G/L211A), or dmLT. dmLT was not sensitive to trypsin activation, had reduced enzymatic activity for induction of cyclic AMP in Caco-2 cells, and exhibited no enterotoxicity in the patent mouse assay. Importantly, dmLT retained the ability to function as an oral adjuvant for a coadministered antigen (tetanus toxoid) and to elicit anti-LT antibodies. In vitro and in vivo data suggest that the reduced enterotoxicity of this molecule compared to native LT or the single mutant, LT(R192G), is a consequence of increased sensitivity to proteolysis and rapid intracellular degradation in mammalian cells. In conclusion, dmLT is a safe and powerful detoxified enterotoxin with the potential to function as a mucosal adjuvant for coadministered antigens and to elicit anti-LT antibodies without undesirable side effects.
Collapse
|
33
|
Industry Update: The latest developments in therapeutic delivery. Ther Deliv 2011. [DOI: 10.4155/tde.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present industry update covers the period 16 November to 15 December 2010, with information sourced from company press releases, regulatory agencies and patent search engines. A number of significant mergers took place with Novartis and Alcon set to form the largest eye company division in the industry. Roche announced the planned loss of 4800 positions to reduce operating costs, and focus on efficiency, productivity and strengthening their pipeline. US FDA approval of a Phase I/II study of embryonic stem cells for the treatment of macular degeneration represents an exciting proposition, with enormous potential benefits if this and any following studies are successful. The recently reported results of the pre-exposure prophylaxis study with Truvada® represents a major breakthrough in achieving significant reductions in the acquisition of the HIV virus by men and transgender women having sex with men. The potential development of an effective vaccine against ricin toxin is another exciting, if unsettling, development. Interesting journal articles this month include a description of the potentially low-cost development of nasally delivered vaccines derived from modified Bacillus subtilis, as well as the use of radiofrequency-mediated hyperthermic destruction of cancerous cells targeted with immunomodified gold nanoparticles.
Collapse
|