1
|
Škopová K, Holubová J, Bočková B, Slivenecká E, Santos de Barros JM, Staněk O, Šebo P. Less reactogenic whole-cell pertussis vaccine confers protection from Bordetella pertussis infection. mSphere 2025; 10:e0063924. [PMID: 40071951 PMCID: PMC12039235 DOI: 10.1128/msphere.00639-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/31/2025] [Indexed: 04/30/2025] Open
Abstract
Pertussis resurged over the last decade in most countries that replaced the traditional whole-cell pertussis vaccines (wP) by the less reactogenic acellular pertussis vaccines (aP). The aP vaccines induce a Th2-polarized immune response and by a yet unknown mechanism hamper the clearance of Bordetella pertussis from infected nasopharyngeal mucosa. The aP-induced pertussis toxin-neutralizing antibodies effectively prevent the life-threatening pertussis pneumonia in infants, but aP-elicited immunity fails to prevent infection of nasopharyngeal mucosa and transmission of B. pertussis. In contrast, the more reactogenic traditional wP vaccines, alike natural infection, elicit a broad antibody response and trigger a Th1/Th17-polarized T cell immunity. We tackled here the reactogenicity of the conventional wP vaccines by genetic modification of the Fim2 and Fim3-producing B. pertussis strains used for wP vaccine manufacturing. Mutations were introduced into the genomes of vaccine strains (i) to reduce the TLR4 signaling potency of the lipid A of B. pertussis lipooligosaccharide (ΔlgmB), (ii) eliminate the enzymatic (immunosuppressive) activity of the pertussis toxin (PtxS1-R9K/E129G), and (iii) ablate the production of the dermonecrotic toxin (Δdnt). Experimental alum-adjuvanted wP vaccines prepared from such triply modified bacteria exhibited a reduced pyrogenicity in rabbits and a reduced systemic toxicity in mice, while conferring a comparable protection from B. pertussis infection as the unmodified wP vaccine.IMPORTANCEThe occasionally severe adverse reactions associated with some lots of the whole-cell pertussis vaccine (wP) led the industrialized nations to switch to the use of less reactogenic acellular pertussis vaccines that confer shorter-lasting protection. This yielded whooping cough resurgence and large whooping cough outbreaks are currently sweeping throughout European countries, calling for the replacement of the pertussis vaccine component of pediatric hexavaccines by an improved wP vaccine. We show that genetic detoxification of the Bordetella pertussis bacteria used for wP preparation yields a reduced reactogenicity wP vaccine that exhibits a reduced systemic toxicity in mice and reduced pyrogenicity in rabbits, while retaining high immunogenicity and protective potency in the mouse model of pneumonic infection by B. pertussis. This result has now been confirmed in a nonhuman primate model of B. pertussis infection of olive baboons, paving the way for the development of the next generation of pertussis vaccines.
Collapse
Affiliation(s)
- Karolína Škopová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Holubová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Barbora Bočková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Eva Slivenecká
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Ondřej Staněk
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Šebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Silva EP, Trentini M, Rodriguez D, Kanno AI, Gomes FMS, Valente MH, Trufen CEM, Yamamoto LS, Januzzi AD, Cunegundes PS, Palacios R, Souza RP, Raw I, Leite LCC, Dias WO. Seroprevalence study reveals pertussis underreporting in Brazil and calls for adolescent/young adult boosting: mouse model demonstrates immunity restoration. Front Immunol 2024; 15:1472157. [PMID: 39697324 PMCID: PMC11652360 DOI: 10.3389/fimmu.2024.1472157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Pertussis continues to pose a significant threat despite the availability of effective vaccines. The challenge lies in the vulnerability of infants who have not yet completed their vaccination schedule and in adolescents and adults becoming potential disease carriers. Methods We evaluated the seroprevalence of pertussis immunity in a cohort of 1,500 healthy Brazilian volunteers. Next, we explored the potential restoration of waning pertussis immunity by administering booster doses of wP, aP or Plow (an economically viable and low reactogenic vaccine in development at Butantan) using a mouse model. Findings The mean anti-PT IgG levels in the Brazilian volunteers was 39.4 IU/mL. Notably, individuals ≤ 19 years exhibited higher IgG values compared to older age groups (≥ 20 y). Overall, 8.4% of the samples displayed indications of recent or current contact/infection, with IgG levels surpassing 120 IU/mL, particularly in the 15-19 years age group. IgM values were also increased in the 10-19 years age group. Potential recovery of pre-existing but waning immunity investigated in mice, showed that boosting with wP induced higher antibody titers than aP or Plow. Notably, aP and Plow boosts prompted superior effector and memory cell responses from both B and T cells. Upon challenge with B. pertussis, aP or Plow boost provided greater protection as compared to wP. Interpretations Pertussis appears to circulate predominantly among adolescents and young adults. Insights from the mouse model indicate that immunity can be restored with booster doses. Boosting immunity in non-targeted groups could prevent the dissemination of pertussis to infants.
Collapse
Affiliation(s)
- Eliane P. Silva
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Monalisa Trentini
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Alex I. Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Filumena M. S. Gomes
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria H. Valente
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos E. M. Trufen
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Lais S. Yamamoto
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Arthur D. Januzzi
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | | - Ricardo Palacios
- Clinical Trials Division, Instituto Butantan, São, Paulo, Brazil
| | - Renan P. Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isaías Raw
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Waldely O. Dias
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
3
|
DeJong MA, Wolf MA, Bitzer GJ, Hall JM, Fitzgerald NA, Pyles GM, Huckaby AB, Petty JE, Lee K, Barbier M, Bevere JR, Ernst RK, Damron FH. BECC438b TLR4 agonist supports unique immune response profiles from nasal and muscular DTaP pertussis vaccines in murine challenge models. Infect Immun 2024; 92:e0022323. [PMID: 38323817 PMCID: PMC10929442 DOI: 10.1128/iai.00223-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
The protection afforded by acellular pertussis vaccines wanes over time, and there is a need to develop improved vaccine formulations. Options to improve the vaccines involve the utilization of different adjuvants and administration via different routes. While intramuscular (IM) vaccination provides a robust systemic immune response, intranasal (IN) vaccination theoretically induces a localized immune response within the nasal cavity. In the case of a Bordetella pertussis infection, IN vaccination results in an immune response that is similar to natural infection, which provides the longest duration of protection. Current acellular formulations utilize an alum adjuvant, and antibody levels wane over time. To overcome the current limitations with the acellular vaccine, we incorporated a novel TLR4 agonist, BECC438b, into both IM and IN acellular formulations to determine its ability to protect against infection in a murine airway challenge model. Following immunization and challenge, we observed that DTaP + BECC438b reduced bacterial burden within the lung and trachea for both administration routes when compared with mock-vaccinated and challenged (MVC) mice. Interestingly, IN administration of DTaP + BECC438b induced a Th1-polarized immune response, while IM vaccination polarized toward a Th2 immune response. RNA sequencing analysis of the lung demonstrated that DTaP + BECC438b activates biological pathways similar to natural infection. Additionally, IN administration of DTaP + BECC438b activated the expression of genes involved in a multitude of pathways associated with the immune system. Overall, these data suggest that BECC438b adjuvant and the IN vaccination route can impact efficacy and responses of pertussis vaccines in pre-clinical mouse models.
Collapse
Affiliation(s)
- Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jesse M. Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nicholas A. Fitzgerald
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jonathan E. Petty
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Katherine Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
4
|
Ali RH, Ali ME, Samir R. Production and Characterization of Bacterial Ghost Vaccine against Neisseria meningitidis. Vaccines (Basel) 2022; 11:vaccines11010037. [PMID: 36679882 PMCID: PMC9865227 DOI: 10.3390/vaccines11010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial ghosts (BGS) are empty non-living envelopes produced either genetically or chemically. This study investigated a novel chemical protocol for the production of Neisseria meningitidis ghost vaccine using tween 80 followed by a pH reduction with lactic acid. For our vaccine candidate, both safety and immunogenicity aspects were evaluated. The ghost pellets showed no sign of growth upon cultivation. BGS were visualized by scanning electron microscopy, illustrating the formation of trans-membrane tunnels with maintained cell morphology. Gel electrophoresis showed no distinctive bands of the cytoplasmic proteins and DNA, assuring the formation of ghost cells. In animal model, humoral immune response significantly increased when compared to commercial vaccine (p < 0.01). Moreover, serum bactericidal assay (SBA) recorded 94.67% inhibition compared to 64% only for the commercial vaccine after three vaccination doses. In conclusion, this is the first N. meningitidis ghost vaccine candidate, proven to be effective, economic, and with significant humoral response and efficient SBA values; however, clinical studies should be performed.
Collapse
Affiliation(s)
- Randa H. Ali
- Department of Microbiology and Immunology, National Organization for Research and Control of Biological (NORCB), Giza 12622, Egypt
| | - Mohamed E. Ali
- Department of Microbiology and Immunology, National Organization for Research and Control of Biological (NORCB), Giza 12622, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
5
|
Pérez-Ortega J, van Boxtel R, de Jonge EF, Tommassen J. Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis. Int J Mol Sci 2022; 23:8027. [PMID: 35887374 PMCID: PMC9324023 DOI: 10.3390/ijms23148027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
- Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ria van Boxtel
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
| | - Eline F. de Jonge
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
- Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; (J.P.-O.); (R.v.B.); (E.F.d.J.)
- Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Vaz-de-Lima LR, Sato APS, Pawloski LC, Fernandes EG, Rajam G, Sato HK, Patel D, Li H, de Castilho EA, Tondella ML, Schiffer J, on behalf of the Maternal Pertussis Vaccine Working Group. Effect of maternal Tdap on infant antibody response to a primary vaccination series with whole cell pertussis vaccine in São Paulo, Brazil. Vaccine X 2021; 7:100087. [PMID: 33817624 PMCID: PMC8010450 DOI: 10.1016/j.jvacx.2021.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Maternal Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination provides antibody transfer to newborn infants and may affect their antibody response to the primary vaccination series. This study aimed to assess the effect of Tdap vaccination during pregnancy on infant antibody response to the whole cell pertussis (DTwP) primary series. METHODS Plasma from 318 pregnant women (243 Tdap-vaccinated and 75 unvaccinated) and their infants (cord blood) was collected at delivery; infant blood was again collected at 2 and 7 months, before and after their primary DTwP series. Anti-pertussis toxin (PT), pertactin (PRN), filamentous hemagglutinin (FHA), fimbriae 2/3 (FIM) and adenylate cyclase toxin (ACT) IgG antibodies were quantified by a microsphere-based multiplex antibody capture assay and anti-PT neutralizing antibodies by the Real Time Cell analysis system. RESULTS Infant geometric mean concentrations (GMCs) of IgG anti-Tdap antigens were significantly higher (p < 0.001) among the Tdap-vaccinated (PT: 57.22 IU/mL; PRN: 464.86 IU/mL; FHA: 424.0 IU/mL), versus the unvaccinated group (4 IU/mL, 15.43 IU/mL, 31.99 IU/mL, respectively) at delivery. Anti-FIM and ACT GMCs were similar between the two groups. At 2 months of age, anti-PT, PRN, and FHA GMCs remained higher (p < 0.001) in the Tdap-vaccinated group (12.64 IU/mL; 108.76 IU/mL; 87.41 IU/mL, respectively) than the unvaccinated group (1.02 IU/mL; 4.46 IU/mL; 6.89 IU/mL). However, at 7 months, after receiving the third DTwP dose, the anti-PT GMC was higher (p = 0.016) in the unvaccinated group (7.91 IU/mL) compared to the vaccinated group (2.27 IU/mL), but without differences for anti-PRN, FHA, FIM and ACT GMCs. CONCLUSION Elevated antibody levels suggest that maternal Tdap vaccination might protect infants until 2 months of age. Reduced anti-PT levels at 7 months indicate potential blunting of immune response in infants. Surveillance would help determine if blunting alters vaccine immunity and impacts pertussis prevention in infants.
Collapse
Affiliation(s)
- Lourdes R.A. Vaz-de-Lima
- Centro de Imunologia, Instituto Adolfo Lutz, Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde, São Paulo, Brazil
| | - Ana Paula S. Sato
- Departmento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo – USP, Brazil
| | - Lucia C. Pawloski
- Division of Bacterial Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eder G. Fernandes
- Divisão de Imunização, Centro de Vigilância Epidemiológica Prof. Alexandre Vranjac, Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde SP, Brazil
| | - Gowrisankar Rajam
- Division of Bacterial Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Helena K. Sato
- Divisão de Imunização, Centro de Vigilância Epidemiológica Prof. Alexandre Vranjac, Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde SP, Brazil
| | - Divya Patel
- Division of Bacterial Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Han Li
- Division of Bacterial Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Maria Lucia Tondella
- Division of Bacterial Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jarad Schiffer
- Division of Bacterial Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Umatheva U, Sweeting B, Sauvaget L, Rosa ND, Riley J, Tamer M, Ghosh R. Purification of bacterial virulence factor pertactin using high affinity ligands. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Cherry JD. The 112-Year Odyssey of Pertussis and Pertussis Vaccines-Mistakes Made and Implications for the Future. J Pediatric Infect Dis Soc 2019; 8:334-341. [PMID: 30793754 DOI: 10.1093/jpids/piz005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
Effective diphtheria, tetanus toxoids, whole-cell pertussis (DTwP) vaccines became available in the 1930s, and they were put into routine use in the United States in the 1940s. Their use reduced the average rate of reported pertussis cases from 157 in 100 000 in the prevaccine era to <1 in 100 000 in the 1970s. Because of alleged reactions (encephalopathy and death), several countries discontinued (Sweden) or markedly decreased (United Kingdom, Germany, Japan) use of the vaccine. During the 20th century, Bordetella pertussis was studied extensively in animal model systems, and many "toxins" and protective antigens were described. A leader in B pertussis research was Margaret Pittman of the National Institutes of Health/US Food and Drug Administration. She published 2 articles suggesting that pertussis was a pertussis toxin (PT)-mediated disease. Dr Pittman's views led to the idea that less-reactogenic acellular vaccines could be produced. The first diphtheria, tetanus, pertussis (DTaP) vaccines were developed in Japan and put into routine use there. Afterward, DTaP vaccines were developed in the Western world, and definitive efficacy trials were carried out in the 1990s. These vaccines were all less reactogenic than DTwP vaccines, and despite the fact that their efficacy was less than that of DTwP vaccines, they were approved in the United States and many other countries. DTaP vaccines replaced DTwP vaccines in the United States in 1997. In the last 13 years, major pertussis epidemics have occurred in the United States, and numerous studies have shown the deficiencies of DTaP vaccines, including the small number of antigens that the vaccines contain and the type of cellular immune response that they elicit. The type of cellular response a predominantly, T2 response results in less efficacy and shorter duration of protection. Because of the small number of antigens (3-5 in DTaP vaccines vs >3000 in DTwP vaccines), linked-epitope suppression occurs. Because of linked-epitope suppression, all children who were primed by DTaP vaccines will be more susceptible to pertussis throughout their lifetimes, and there is no easy way to decrease this increased lifetime susceptibility.
Collapse
Affiliation(s)
- James D Cherry
- Department of Pediatrics, David Geffen School of Medicine at UCLA
| |
Collapse
|
9
|
Functional Programming of Innate Immune Cells in Response to Bordetella pertussis Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:53-80. [PMID: 31432398 DOI: 10.1007/5584_2019_404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite widespread vaccination, B. pertussis remains one of the least controlled vaccine-preventable diseases. Although it is well known that acellular and whole cell pertussis vaccines induce distinct immune functionalities in memory cells, much less is known about the role of innate immunity in this process. In this review, we provide an overview of the known differences and similarities in innate receptors, innate immune cells and inflammatory signalling pathways induced by the pertussis vaccines either licensed or in development and compare this to primary infection with B. pertussis. Despite the crucial role of innate immunity in driving memory responses to B. pertussis, it is clear that a significant knowledge gap remains in our understanding of the early innate immune response to vaccination and infection. Such knowledge is essential to develop the next generation of pertussis vaccines with improved host defense against B. pertussis.
Collapse
|
10
|
Will we have new pertussis vaccines? Vaccine 2017; 36:5460-5469. [PMID: 29180031 DOI: 10.1016/j.vaccine.2017.11.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/24/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022]
Abstract
Despite wide vaccination coverage with efficacious vaccines, pertussis is still not under control in any country. Two types of vaccines are available for the primary vaccination series, diphtheria/tetanus/whole-cell pertussis and diphtheria/tetanus/acellular pertussis vaccines, in addition to reduced antigen content vaccines recommended for booster vaccination. Using these vaccines, several strategies are being explored to counter the current pertussis problems, including repeated vaccination, cocoon vaccination and maternal immunization. With the exception of the latter, none have proven their effectiveness, and even maternal vaccination is not expected to ultimately control pertussis. Therefore, new pertussis vaccines are needed, and several candidates are in early pre-clinical development. They include whole-cell vaccines with low endotoxin content, outer membrane vesicles, new formulations, acellular vaccines with new adjuvants or additional antigens and live attenuated vaccines. The most advanced is the live attenuated nasal vaccine BPZE1. It provides strong protection in mice and non-human primates, is safe, even in immune compromised animals, and genetically stable after in vitro and in vivo passages. It also has interesting immunoregulatory properties without being immunosuppressive. It has successfully completed a first-in-man clinical trial, where it was found to be safe, able to transiently colonize the human respiratory tract and to induce immune responses in the colonized subjects. It is now undergoing further clinical development. As it is designed to reduce carriage and transmission of Bordetella pertussis, it may hopefully contribute to the ultimate control of pertussis.
Collapse
|
11
|
Dias WDO, Prestes AFR, Cunegundes PS, Silva EP, Raw I. Immunization against Pertussis: An Almost Solved Problem or a Headache in Public Health. Vaccines (Basel) 2017. [DOI: 10.5772/intechopen.69283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
12
|
Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin Microbiol Rev 2016; 29:449-86. [PMID: 27029594 PMCID: PMC4861987 DOI: 10.1128/cmr.00083-15] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pertussis is a severe respiratory infection caused by Bordetella pertussis, and in 2008, pertussis was associated with an estimated 16 million cases and 195,000 deaths globally. Sizeable outbreaks of pertussis have been reported over the past 5 years, and disease reemergence has been the focus of international attention to develop a deeper understanding of pathogen virulence and genetic evolution of B. pertussis strains. During the past 20 years, the scientific community has recognized pertussis among adults as well as infants and children. Increased recognition that older children and adolescents are at risk for disease and may transmit B. pertussis to younger siblings has underscored the need to better understand the role of innate, humoral, and cell-mediated immunity, including the role of waning immunity. Although recognition of adult pertussis has increased in tandem with a better understanding of B. pertussis pathogenesis, pertussis in neonates and adults can manifest with atypical clinical presentations. Such disease patterns make pertussis recognition difficult and lead to delays in treatment. Ongoing research using newer tools for molecular analysis holds promise for improved understanding of pertussis epidemiology, bacterial pathogenesis, bioinformatics, and immunology. Together, these advances provide a foundation for the development of new-generation diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abdulbaset M Salim
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marcus J Zervos
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System and Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Heinz-Josef Schmitt
- Medical and Scientific Affairs, Pfizer Vaccines, Paris, France Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
13
|
Pagliusi S, Leite LCC, Datla M, Makhoana M, Gao Y, Suhardono M, Jadhav S, Harshavardhan GVJA, Homma A. Developing Countries Vaccine Manufacturers Network: doing good by making high-quality vaccines affordable for all. Vaccine 2014; 31 Suppl 2:B176-83. [PMID: 23598479 DOI: 10.1016/j.vaccine.2012.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/19/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022]
Abstract
The Developing Countries Vaccine Manufacturers Network (DCVMN) is a unique model of a public and private international alliance. It assembles governmental and private organizations to work toward a common goal of manufacturing and supplying high-quality vaccines at affordable prices to protect people around the world from known and emerging infectious diseases. Together, this group of manufacturers has decades of experience in manufacturing vaccines, with technologies, know-how, and capacity to produce more than 40 vaccines types. These manufacturers have already contributed more than 30 vaccines in various presentations that have been prequalified by the World Health Organization for use by global immunization programmes. Furthermore, more than 45 vaccines are in the pipeline. Recent areas of focus include vaccines to protect against rotavirus, human papillomavirus (HPV), Japanese encephalitis, meningitis, hepatitis E, poliovirus, influenza, and pertussis, as well as combined pentavalent vaccines for children. The network has a growing number of manufacturers that produce a growing number of products to supply the growing demand for vaccines in developing countries.
Collapse
Affiliation(s)
- Sonia Pagliusi
- DCVMN International, Chemin du Canal 5, 1260 Nyon, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lima FA, Miyaji EN, Quintilio W, Raw I, Ho PL, Oliveira MLS. Pneumococcal Surface Protein A does not affect the immune responses to a combined diphtheria tetanus and pertussis vaccine in mice. Vaccine 2013; 31:2465-70. [PMID: 23541622 DOI: 10.1016/j.vaccine.2013.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/06/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
The Pneumococcal Surface Protein A (PspA) is a promising candidate for the composition of a protein vaccine against Streptococcus pneumoniae. We have previously shown that the whole cell Bordetella pertussis vaccine (wP) is a good adjuvant to PspA, inducing protective responses against pneumococcal infection in mice. In Brazil, wP is administered to children, formulated with diphtheria and tetanus toxoids (DTPw) and aluminum hydroxide (alum) as adjuvant. A single subcutaneous dose of PspA5-DTPlow (a formulation containing PspA from clade 5 and a new generation DTPw, containing low levels of B. pertussis LPS and Alum) induced high levels of systemic anti-PspA5 antibodies in mice and conferred protection against respiratory lethal challenges with two different pneumococcal strains. Here we evaluate the mucosal immune responses against PspA5 as well as the immune responses against the DTP antigens in mice vaccinated with PspA5-DTPlow. Subcutaneous immunization of mice with PspA5-DTPlow induced high levels of anti-PspA5 IgG in the airways but no IgA. In addition, no differences in the influx of cells to the respiratory mucosa, after the challenge, were observed in vaccinated mice, when compared with control mice. The levels of circulating anti-pertussis, -tetanus and -diphtheria antibodies were equivalent in mice vaccinated with DTPlow or PspA5-DTPlow. Antibodies induced by DTPlow or PspA5-DTPlow showed similar ability to neutralize the cytotoxic effects of the diphtheria toxin on Vero cells. Furthermore, combination with PspA5 did not affect protection against B. pertussis and tetanus toxin challenges in mice. Our results support the proposal for a combined PspA-DTP vaccine.
Collapse
Affiliation(s)
- Fernanda A Lima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Dias WO, van der Ark AAJ, Sakauchi MA, Kubrusly FS, Prestes AFRO, Borges MM, Furuyama N, Horton DSPQ, Quintilio W, Antoniazi M, Kuipers B, van der Zeijst BAM, Raw I. An improved whole cell pertussis vaccine with reduced content of endotoxin. Hum Vaccin Immunother 2013; 9:339-48. [PMID: 23291935 PMCID: PMC3859757 DOI: 10.4161/hv.22847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An improved whole cell pertussis vaccine, designated as Plow, which is low in endotoxicity due to a chemical extraction of lipo-oligosaccharide (LOS) from the outer membrane, was evaluated for safety, immunogenicity and potency, comparatively to a traditional whole cell pertussis vaccine. Current whole cell pertussis vaccines are effective but contain large quantities of endotoxin and consequently display local and systemic adverse reactions after administration. Endotoxin is highly inflammatory and contributes considerably to the reactogenicity as well as the potency of these vaccines. In contrast, acellular pertussis vaccines hardly contain endotoxin and are significantly less reactogenic, but their elevated costs limit their global use, especially in developing countries. In this paper, bulk products of Plow and a traditional whole cell vaccine, formulated as plain monocomponents or combined with diphtheria and tetanus toxoids (DTPlow or DTP, respectively) were compared by in vitro and in vivo assays. Chemical extraction of LOS resulted in a significant decrease in endotoxin content (20%) and a striking decline in endotoxin related toxicity (up to 97%), depending on the used in vitro or in vivo test. The LOS extraction did not affect the integrity of the product and, more importantly, did not affect the potency and/or stability of DTPlow. Moreover, hardly any differences in antibody and T-cell responses were observed. The development of Plow is a significant improvement regarding the endotoxicity of whole cell pertussis vaccines and therefore a promising and affordable alternative to currently available whole cell or acellular pertussis vaccines for developing countries.
Collapse
|
16
|
Locht C, Mielcarek N. New pertussis vaccination approaches: en route to protect newborns? ACTA ACUST UNITED AC 2012; 66:121-33. [PMID: 22574832 DOI: 10.1111/j.1574-695x.2012.00988.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 11/26/2022]
Abstract
Pertussis or whooping cough is a life-threatening childhood disease, particularly severe during the first months of life, although adolescent and adult pertussis is increasingly more noted. General vaccination has tremendously reduced its incidence but has failed to bring it completely under control. In fact, it remains one of the most poorly controlled vaccine-preventable diseases in the world. New vaccination strategies are thus being explored. These include vaccination of pregnant mothers to transmit protective antibodies to the offspring, a cocooning strategy to prevent the transmission of the disease from family members to the newborn and neonatal vaccination. All have their inherent limitations, and improved vaccines are urgently needed. Two types of pertussis vaccines are currently available, whole-cell, first-generation and second-generation, acellular vaccines, with an improved safety profile. Attempts have been made to discover additional protective antigens to the 1-5 currently included in the acellular vaccines or to include new adjuvants. Recently, a live attenuated nasal Bordetella pertussis vaccine has been developed and undergone first-in-man clinical trials. However, as promising as it may be, in order to protect infants against severe disease, a single approach may not be sufficient, and multiple strategies applied in a concerted fashion may ultimately be required.
Collapse
Affiliation(s)
- Camille Locht
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.
| | | |
Collapse
|
17
|
Carniel EDF, Antônio MÂRGM, Zanolli MDL, Vilela MMS. Estratégias de campo em ensaios clínicos com novas vacinas produzidas no Brasil. REVISTA PAULISTA DE PEDIATRIA 2012. [DOI: 10.1590/s0103-05822012000200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Relatar as estratégias de campo utilizadas em dois ensaios clínicos com vacinas desenvolvidas pelo Instituto Butantan, em 2004 e 2006. MÉTODOS: Estudo do tipo relato de experiência, em que se descreve o planejamento e a operacionalização dos ensaios clínicos, que avaliaram a imunogenicidade e a segurança da vacina BCG combinada com a vacina da hepatite B (VrHB-IB) e da tetravalente bacteriana modificada pela extração do lipopolissacarídeo (LPS) do componente pertussis (DTPm/Hib). RESULTADOS: As principais estratégias de campo utilizadas foram: a) Parceria entre os pesquisadores e os gestores da Secretaria Municipal de Saúde e b) Realização dos procedimentos da pesquisa nos domicílios ou nos Centros de Saúde frequentados pelos participantes. No primeiro estudo, foram vacinados 552 recém-nascidos na maternidade com a BCG/VrHB-IB (combinadas ou separadas) e nos domicílios, com as duas doses subsequentes de VrHB-IB. O segundo estudo incluiu 241 lactentes em Centros de Saúde da rede municipal, vacinados com tetravalente bacteriana (com componente pertussis total ou modificado). Em ambos os estudos, amostras de sangue foram colhidas nas residências. Não houve relatos de eventos adversos. A adesão foi de 90,2% para o primeiro estudo e 93,8%, para o segundo. As vacinas foram administradas nas datas preconizadas pelo Programa Nacional de Imunizações e as coletas de sangue, de acordo com o cronograma dos estudos. CONCLUSÕES: As estratégias utilizadas facilitaram o recrutamento das crianças e garantiram cumprir o protocolo da pesquisa com alta adesão, sem interferir no vínculo da família com o Serviço de Saúde, no calendário vacinal ou no seguimento pediátrico dos participantes.
Collapse
|
18
|
Economical value of vaccines for the developing countries--the case of Instituto Butantan, a public institution in Brazil. PLoS Negl Trop Dis 2011; 5:e1300. [PMID: 22140586 PMCID: PMC3226538 DOI: 10.1371/journal.pntd.0001300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Kitchin NRE. Review of diphtheria, tetanus and pertussis vaccines in clinical development. Expert Rev Vaccines 2011; 10:605-15. [PMID: 21604982 DOI: 10.1586/erv.11.60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diphtheria, tetanus and pertussis vaccines have formed the cornerstone of childhood immunization programs for decades. Historically, these have comprised diphtheria and tetanus toxoids combined with inactivated whole-cell pertussis. More recently, advances have been made with the development of purified acellular pertussis vaccines, with improved reactogenicity profiles, and formulation with additional vaccines such as Haemophilus influenzae type b, hepatitis B virus and inactivated poliovirus. Development is currently focused on maximizing the number of vaccines that can be combined in a single formulation and strategies to provide protection against pertussis before the commencement of routine infant immunization.
Collapse
|
20
|
Impaired humoral response to vaccines among HIV-exposed uninfected infants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1406-9. [PMID: 21775515 DOI: 10.1128/cvi.05065-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the vaccine protective response for infants born from HIV-infected mothers. We evaluated the antibody response to hepatitis B, tetanus, and diphtheria vaccine in vertically HIV-exposed uninfected infants and compared them to those of control infants not exposed to the virus. The quantitative determination of specific neutralizing antibodies against hepatitis B, diphtheria, and tetanus were performed blindly on serum samples. The results showed that 6.7% of the HIV-exposed uninfected individuals were nonresponders to hepatitis B vaccine (anti-HBs titer, <10 mIU/ml), and 64.4% were very good responders (anti-HBs titer, ≥1,000 mIU/ml), whereas only 3.6% of the nonexposed infants were nonresponders (χ(2)=10.93; 1 df). The HIV-exposed uninfected infants showed protective titers for diphtheria and tetanus but lower geometric mean anti-tetanus titers compared to those of the HIV-unexposed infants. Our data point to the necessity of evaluating vaccine immune responses in these children and reinforced that alterations in lymphocyte numbers and functions reported for newborns from HIV-infected mothers interfere with the vaccine response.
Collapse
|
21
|
Rieber N, Graf A, Hartl D, Urschel S, Belohradsky BH, Liese J. Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response. PLoS One 2011; 6:e17271. [PMID: 21408149 PMCID: PMC3050840 DOI: 10.1371/journal.pone.0017271] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/25/2011] [Indexed: 12/16/2022] Open
Abstract
In a number of countries, whole cell pertussis vaccines (wcP) were replaced by acellular vaccines (aP) due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4(+) T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ) and Th2 (IL-4, IL-5, IL-10) cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8(+) T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8(+)CD69(+) activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8(+) memory T cells may contribute to protection against clinical pertussis.
Collapse
Affiliation(s)
- Nikolaus Rieber
- University Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- University Children's Hospital, Eberhard-Karls-University, Tuebingen, Germany
| | - Anna Graf
- University Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dominik Hartl
- University Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- University Children's Hospital, Eberhard-Karls-University, Tuebingen, Germany
| | - Simon Urschel
- University Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Johannes Liese
- University Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- University Children's Hospital, Julius-Maximilians-University, Wuerzburg, Germany
| |
Collapse
|
22
|
Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 2011; 29:1649-56. [DOI: 10.1016/j.vaccine.2010.12.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/30/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
|
23
|
Harro JM, Peters BM, O'May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME. Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. ACTA ACUST UNITED AC 2010; 59:306-23. [PMID: 20602638 PMCID: PMC2936112 DOI: 10.1111/j.1574-695x.2010.00708.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Oliveira MLS, Miyaji EN, Ferreira DM, Moreno AT, Ferreira PCD, Lima FA, Santos FL, Sakauchi MA, Takata CS, Higashi HG, Raw I, Kubrusly FS, Ho PL. Combination of pneumococcal surface protein A (PspA) with whole cell pertussis vaccine increases protection against pneumococcal challenge in mice. PLoS One 2010; 5:e10863. [PMID: 20523738 PMCID: PMC2877721 DOI: 10.1371/journal.pone.0010863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of respiratory acute infections around the world. In Latin America, approximately 20,000 children under 5 years of age die of pneumococcal diseases annually. Pneumococcal surface protein A (PspA) is among the best-characterized pneumococcal antigens that confer protection in animal models of pneumococcal infections and, as such, is a good alternative for the currently available conjugated vaccines. Efficient immune responses directed to PspA in animal models have already been described. Nevertheless, few low cost adjuvants for a subunit pneumococcal vaccine have been proposed to date. Here, we have tested the adjuvant properties of the whole cell Bordetella pertussis vaccine (wP) that is currently part of the DTP (diphtheria-tetanus-pertussis) vaccine administrated to children in several countries, as an adjuvant to PspA. Nasal immunization of BALB/c mice with a combination of PspA5 and wP or wP(low)--a new generation vaccine that contains low levels of B. pertussis LPS--conferred protection against a respiratory lethal challenge with S. pneumoniae. Both PspA5-wP and PspA5-wP(low) vaccines induced high levels of systemic and mucosal antibodies against PspA5, with similar profile, indicating no essential requirement for B. pertussis LPS in the adjuvant properties of wP. Accordingly, nasal immunization of C3H/HeJ mice with PspA5-wP conferred protection against the pneumococcal challenge, thus ruling out a role for TLR4 responses in the adjuvant activity and the protection mechanisms triggered by the vaccines. The high levels of anti-PspA5 antibodies correlated with increased cross-reactivity against PspAs from different clades and also reflected in cross-protection. In addition, passive immunization experiments indicated that antibodies played an important role in protection in this model. Finally, subcutaneous immunization with a combination of PspA5 with DTP(low) protected mice against challenge with two different pneumococcal strains, opening the possibility for the development of a combined infant vaccine composed of DTP and PspA.
Collapse
Affiliation(s)
- Maria Leonor S. Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: (PLH); (MLSO)
| | - Eliane N. Miyaji
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Adriana T. Moreno
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Fernanda A. Lima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | - Célia S. Takata
- Divisão Bioindustrial, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Hisako G. Higashi
- Divisão Bioindustrial, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Isaías Raw
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Flavia S. Kubrusly
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Paulo L. Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: (PLH); (MLSO)
| |
Collapse
|
25
|
Toxins-useful biochemical tools for leukocyte research. Toxins (Basel) 2010; 2:428-52. [PMID: 22069594 PMCID: PMC3153219 DOI: 10.3390/toxins2040428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/24/2010] [Indexed: 12/28/2022] Open
Abstract
Leukocytes are a heterogeneous group of cells that display differences in anatomic localization, cell surface phenotype, and function. The different subtypes include e.g., granulocytes, monocytes, dendritic cells, T cells, B cells and NK cells. These different cell types represent the cellular component of innate and adaptive immunity. Using certain toxins such as pertussis toxin, cholera toxin or clostridium difficile toxin, the regulatory functions of Gαi, Gαs and small GTPases of the Rho family in leukocytes have been reported. A summary of these reports is discussed in this review.
Collapse
|
26
|
Miyaki C, Quintilio W, Miyaji EN, Botosso VF, Kubrusly FS, Santos FL, Iourtov D, Higashi HG, Raw I. Production of H5N1 (NIBRG-14) inactivated whole virus and split virion influenza vaccines and analysis of immunogenicity in mice using different adjuvant formulations. Vaccine 2010; 28:2505-9. [PMID: 20123051 DOI: 10.1016/j.vaccine.2010.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/28/2009] [Accepted: 01/16/2010] [Indexed: 01/13/2023]
Abstract
Consecutive lots of H5N1 (A/Vietnam/1194/2004 - NIBRG-14) split virion and whole virus vaccines were produced in a pilot-scale laboratory. The average yields of vaccine doses (15 microg HA) per egg were 0.57 doses for H5N1 split virion vaccine and 1.12 for H5N1 whole virus vaccine, compared to 2.09 doses for the seasonal H3N2 split virion vaccine. H5N1 split virion vaccine lots complied with WHO protein content criteria, while some lots of the H5N1 whole virus vaccine showed protein content per dose higher than the limit established. All lots of both vaccines showed ovalbumin (OVA) concentration below the recommended limit. Dose sparing strategies using adjuvant formulations using aluminum hydroxide (Al(OH)(3)) and monophosphoryl lipid A (MPLA) from Bordetella pertussis were tested in mice. Both 3.75 microg HA and 7.5 microg HA of H5N1 split virion vaccine with Al(OH)(3) or Al(OH)(3) plus MPLA in aqueous suspension showed higher hemagglutination-inhibition (HAI) titers when compared to the same vaccine dose without any adjuvant. Immunization with the H5N1 inactivated whole virus vaccine was also performed using 3.75 microg HA and HAI titers were higher than those induced by the split virion vaccine. Moreover, the use of Al(OH)(3) with MPLA as an emulsion induced a further increase in HAI titers.
Collapse
Affiliation(s)
- Cosue Miyaki
- BioIndustrial Division, Instituto/Fundação Butantan, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|