1
|
Park J, Son H. Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms. THE PLANT PATHOLOGY JOURNAL 2024; 40:235-250. [PMID: 38835295 PMCID: PMC11162859 DOI: 10.5423/ppj.rw.01.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/06/2024]
Abstract
During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Chen Y, Zhang Y, Xu D, Zhang Z, Li B, Tian S. PeAP1-mediated oxidative stress response plays an important role in the growth and pathogenicity of Penicillium expansum. Microbiol Spectr 2023; 11:e0380822. [PMID: 37732795 PMCID: PMC10581040 DOI: 10.1128/spectrum.03808-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Penicillium expansum is the causal agent of post-harvest blue mold in various fruits and serves as a model for understanding fungal pathogenicity and mycotoxin production. The relevance of oxidative stress response in the growth and virulence of P. expansum has been largely unexplored. Here, we identify the transcriptional factor PeAP1 as a regulator of oxidative stress response in P. expansum. Gene expression and protein abundance of PeAP1, as well as its nuclear localization, are specifically induced by H2O2. Deletion of PeAP1 results in increased sensitivity to H2O2, and PeAP1 mutants exhibit a variety of defects in hyphal growth and virulence. PeAP1 prevents the accumulation of both intracellular H2O2 during vegetative growth and host-derived H2O2 during biotrophic growth. Application of an antioxidant glutathione and a NADPH oxidase inhibitor, diphenylene iodonium, to the PeAP1 mutant partially restored fungal growth and virulence. RNA sequencing analysis revealed 144 H2O2-induced PeAP1 target genes, including four antioxidant-related genes, PeGST1, PePrx1, PePrx2, and PeTRX2, that were also demonstrated to be involved in oxidative stress response and/or virulence. Collectively, our results demonstrate the global regulatory role of PeAP1 in response to oxidative stress and provide insights into the critical role of the PeAP1-mediated oxidative stress response to regulate growth and virulence of P. expansum. IMPORTANCE Reactive oxygen species are the core of host plant defense and also play a vital role in the successful invasion of host plants by pathogenic fungi. Despite its importance, the relevance of oxidative stress response in fungal growth and virulence is poorly understood in P. expansum. In this study, we reveal that the transcription factor PeAP1 acts as a central regulator of oxidative stress response in P. expansum and that there is a major link between PeAP1-mediated oxidative stress response and fungal growth and virulence. To explore the underlying mechanisms, we performed comparative transcriptomic studies and identified a number of H2O2-induced PeAP1 target genes, including four novel ones, PePrx1, PePrx2, PeGST1, and PeTRX2, whose functions were linked to PeAP1 and pathogenicity. These findings provide novel insights into the regulation mechanism of PeAP1 on growth and virulence, which might offer promising targets for control of blue mold and patulin contamination.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yichen Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongying Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Sanpedro-Luna JA, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Global Gene Expression of Post-Senescent Telomerase-Negative ter1Δ Strain of Ustilago maydis. J Fungi (Basel) 2023; 9:896. [PMID: 37755003 PMCID: PMC10532341 DOI: 10.3390/jof9090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
We analyzed the global expression patterns of telomerase-negative mutants from haploid cells of Ustilago maydis to identify the gene network required for cell survival in the absence of telomerase. Mutations in either of the telomerase core subunits (trt1 and ter1) of the dimorphic fungus U. maydis cause deficiencies in teliospore formation. We report the global transcriptome analysis of two ter1Δ survivor strains of U. maydis, revealing the deregulation of telomerase-deleted responses (TDR) genes, such as DNA-damage response, stress response, cell cycle, subtelomeric, and proximal telomere genes. Other differentially expressed genes (DEGs) found in the ter1Δ survivor strains were related to pathogenic lifestyle factors, plant-pathogen crosstalk, iron uptake, meiosis, and melanin synthesis. The two ter1Δ survivors were phenotypically comparable, yet DEGs were identified when comparing these strains. Our findings suggest that teliospore formation in U. maydis is controlled by key pathogenic lifestyle and meiosis genes.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
4
|
Song S, Willems LAJ, Jiao A, Zhao T, Eric Schranz M, Bentsink L. The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5514-5528. [PMID: 35604925 PMCID: PMC9467645 DOI: 10.1093/jxb/erac232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The NAC family of transcription factors is involved in plant development and various biotic and abiotic stresses. The Arabidopsis thaliana ANAC genes ANAC060, ANAC040, and ANAC089 are highly homologous based on protein and nucleotide sequence similarity. These three genes are predicted to be membrane bound transcription factors (MTFs) containing a conserved NAC domain, but divergent C-terminal regions. The anac060 mutant shows increased dormancy when compared with the wild type. Mutations in ANAC040 lead to higher seed germination under salt stress, and a premature stop codon in ANAC089 Cvi allele results in seeds exhibiting insensitivity to high concentrations of fructose. Thus, these three homologous MTFs confer distinct functions, although all related to germination. To investigate whether the differences in function are caused by a differential spatial or temporal regulation, or by differences in the coding sequence (CDS), we performed swapping experiments in which the promoter and CDS of the three MTFs were exchanged. Seed dormancy and salt and fructose sensitivity analyses of transgenic swapping lines in mutant backgrounds showed that there is functional redundancy between ANAC060 and ANAC040, but not between ANAC060 and ANAC089.
Collapse
Affiliation(s)
- Shuang Song
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Ao Jiao
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Tao Zhao
- Present address: State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen, The Netherlands
| | | |
Collapse
|
5
|
Luo X, Tian T, Bonnave M, Tan X, Huang X, Li Z, Ren M. The Molecular Mechanisms of Phytophthora infestans in Response to Reactive Oxygen Species Stress. PHYTOPATHOLOGY 2021; 111:2067-2079. [PMID: 33787286 DOI: 10.1094/phyto-08-20-0321-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROSs) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROSs are toxic. Little is known about the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelium growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome, and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of TOR in P. infestans (PiTOR) displayed high resistance to P. infestans. Therefore, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, because host-mediated silencing of PiTOR increases potato resistance to late blight.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maxime Bonnave
- Centre for Agriculture and Agro-Industry of Hainaut Province, Ath 7800, Belgium
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
6
|
Zhang H, Shen W, Zhang D, Shen X, Wang F, Hsiang T, Liu J, Li G. The bZIP Transcription Factor LtAP1 Modulates Oxidative Stress Tolerance and Virulence in the Peach Gummosis Fungus Lasiodiplodia theobromae. Front Microbiol 2021; 12:741842. [PMID: 34630367 PMCID: PMC8495313 DOI: 10.3389/fmicb.2021.741842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Lasiodiplodia theobromae is one of the primary causal agents in peach gummosis disease, leading to enormous losses in peach production. In our previous study, a redox-related gene, LtAP1, from the fungus was significantly upregulated in peach shoots throughout infection. Here, we characterized LtAP1, a basic leucine zipper transcription factor, during peach gummosis progression using the CRISPR-Cas9 system and homologous recombination. The results showed that LtAP1-deletion mutant had slower vegetative growth and increased sensitivity to several oxidative and nitrosative stress agents. LtAP1 was highly induced by exogenous oxidants treatment in the L. theobromae wild-type strain. In a pathogenicity test, the deletion mutant showed decreased virulence (reduced size of necrotic lesions, less gum release, and decreased pathogen biomass) on infected peach shoots compared to the wild-type strain. The mutant showed severely reduced transcription levels of genes related to glutaredoxin and thioredoxin in L. theobroame under oxidative stress or during infection, indicating an attenuated capacity for reactive oxygen species (ROS) detoxification. When shoots were treated with an NADPH oxidase inhibitor, the pathogenicity of the mutant was partially restored. Moreover, ROS production and plant defense response were strongly activated in peach shoots infected by the mutant. These results highlight the crucial role of LtAP1 in the oxidative stress response, and further that it acts as an important virulence factor through modulating the fungal ROS-detoxification system and the plant defense response.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wanqi Shen
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Dongmei Zhang
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xingyi Shen
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fan Wang
- Jiangxi Oil-tea Camellia, Jiujiang University, Jiujiang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
The NADPH Oxidase A of Verticillium dahliae Is Essential for Pathogenicity, Normal Development, and Stress Tolerance, and It Interacts with Yap1 to Regulate Redox Homeostasis. J Fungi (Basel) 2021; 7:jof7090740. [PMID: 34575778 PMCID: PMC8468606 DOI: 10.3390/jof7090740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Maintenance of redox homeostasis is vital for aerobic organisms and particularly relevant to plant pathogens. A balance is required between their endogenous ROS production, which is important for their development and pathogenicity, and host-derived oxidative stress. Endogenous ROS in fungi are generated by membrane-bound NADPH oxidase (NOX) complexes and the mitochondrial respiratory chain, while transcription factor Yap1 is a major regulator of the antioxidant response. Here, we investigated the roles of NoxA and Yap1 in fundamental biological processes of the important plant pathogen Verticillium dahliae. Deletion of noxA impaired growth and morphogenesis, compromised formation of hyphopodia, diminished penetration ability and pathogenicity, increased sensitivity against antifungal agents, and dysregulated expression of antioxidant genes. On the other hand, deletion of yap1 resulted in defects in conidial and microsclerotia formation, increased sensitivity against oxidative stress, and down-regulated antioxidant genes. Localized accumulation of ROS was observed before conidial fusion and during the heterokaryon incompatibility reaction upon nonself fusion. The frequency of inviable fusions was not affected by the deletion of Yap1. Analysis of a double knockout mutant revealed an epistatic relationship between noxA and yap1. Our results collectively reveal instrumental roles of NoxA and ROS homeostasis in the biology of V. dahliae.
Collapse
|
8
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol 2020; 124:1039-1051. [PMID: 33213784 DOI: 10.1016/j.funbio.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022]
Abstract
The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. We have previously shown that resistant sugarcane plants induce ROS, coinciding with a delay in fungal colonization. Here, we investigated whether the fungus modifies the enzymatic antioxidant system in vitro and when colonizing sugarcane tissues in response to ROS. In vitro, the exposure to ROS did not affect cell integrity, and a combination of superoxide dismutases (SOD) and catalases (CAT) were active. In vitro, the fungus did not alter the expression of the transcriptional regulator Yap1 and the effector Pep1. The fungus activated distinct enzymes when colonizing plant tissues. Instead of CAT, S. scitamineum induced glutathione peroxidase (Gpx) expression only when colonizing smut-resistant plants. Yap1 had an earlier expression in both smut-susceptible and -resistant plants, with no apparent correlation with the expression of antioxidant genes sod, cat, gpx, or external redox imbalance. The expression of the effector pep1 was induced only in smut-resistant plants, potentially in response to ROS. These results collectively suggest that S. scitamineum copes with oxidative stress by inducing different mechanisms depending on the conditions (in vitro/in planta) and intensity of ROS. Moreover, the effector Pep1 is responsive to the stress imposed only by the sugarcane resistant genotype.
Collapse
|
11
|
The Basic Leucine Zipper Transcription Factor PlBZP32 Associated with the Oxidative Stress Response Is Critical for Pathogenicity of the Lychee Downy Blight Oomycete Peronophythora litchii. mSphere 2020; 5:5/3/e00261-20. [PMID: 32493721 PMCID: PMC7273347 DOI: 10.1128/msphere.00261-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete. Basic leucine zipper (bZIP) transcription factors are widespread in eukaryotes, including plants, animals, fungi, and oomycetes. However, the functions of bZIPs in oomycetes are rarely known. In this study, we identified a bZIP protein possessing a special bZIP-PAS structure in Peronophythora litchii, named PlBZP32. We found that PlBZP32 is upregulated in zoospores, in cysts, and during invasive hyphal growth. We studied the functions of PlBZP32 using the RNAi technique to suppress the expression of this gene. PlBZP32-silenced mutants were more sensitive to oxidative stress, showed a lower cyst germination rate, and produced more sporangia than the wild-type strain SHS3. The PlBZP32-silenced mutants were also less invasive on the host plant. Furthermore, we analyzed the activities of extracellular peroxidases and laccases and found that silencing PlBZP32 decreased the activities of P. litchii peroxidase and laccase. To our knowledge, this is the first report that the functions of a bZIP-PAS protein are associated with oxidative stress, asexual development, and pathogenicity in oomycetes. IMPORTANCE In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete.
Collapse
|
12
|
Zhang MM, Wang ZQ, Xu X, Huang S, Yin WX, Luo C. MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2020; 21:820-833. [PMID: 32319202 PMCID: PMC7214477 DOI: 10.1111/mpp.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/01/2023]
Abstract
Monilinia fructicola is the most widely distributed species among the Monilinia genus in the world, and causes blossom blight, twig canker, and fruit rot on Rosaceae fruits. To date, studies on genomics and pathogenicity are limited in M. fructicola. In this study, we identified a redox-related gene, MfOfd1, which was significantly up-regulated at 1 hr after inoculation of M. fructicola on peach fruits. We used the clustered regulatory inter-spaced short palindromic repeats (CRISPR)/Cas9 system combined with homologous recombination to determine the function of the MfOfd1 gene. The results showed that the sporulation of knockdown transformants was reduced by 53% to 83%. The knockdown transformants showed increased sensitivity to H2 O2 and decreased virulence on peach fruits compared to the wild-type isolate Bmpc7. It was found that H2 O2 could stimulate the expression of MfOfd1 in the wild-type isolate. The transformants were also more sensitive to exogenous osmotic stress, such as glycerol, d-sorbitol, and NaCl, and to dicarboximide fungicides (iprodione and dimethachlon). These results indicate that the MfOfd1 gene plays an important role in M. fructicola in sporulation, oxidative response, osmotic stress tolerance, and virulence.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil FertilizerHubei Academy of Agricultural ScienceWuhanChina
| | - Xiao Xu
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Song Huang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei-Xiao Yin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao‐Xi Luo
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
14
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
15
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Transcriptomic analysis reveals candidate genes regulating development and host interactions of Colletotrichum fructicola. BMC Genomics 2018; 19:557. [PMID: 30055574 PMCID: PMC6064131 DOI: 10.1186/s12864-018-4934-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Colletotrichum is a fungal genus in Ascomycota that contain many plant pathogens. Among all Colletotrichum genomes that have been sequenced, C. fructicola contains the largest number of candidate virulence factors, such as plant cell wall degrading enzymes, secondary metabolite (SM) biosynthetic enzymes, secreted proteinases, and small secreted proteins. Systematic analysis of the expressional patterns of these factors would be an important step toward identifying key virulence determinants. Results In this study, we obtained and compared the global transcriptome profiles of four types of infection-related structures: conidia, appressoria, infected apple leaves, and cellophane infectious hyphae (bulbous hyphae spreading inside cellophane) of C. fructicola. We also compared the expression changes of candidate virulence factors among these structures in a systematic manner. A total of 3189 genes were differentially expressed in at least one pairwise comparison. Genes showing in planta-specific expressional upregulations were enriched with small secreted proteins (SSPs), cytochrome P450s, carbohydrate-active enzymes (CAZYs) and secondary metabolite (SM) synthetases, and included homologs of several known candidate effectors and one SM gene cluster specific to the Colletotrichum genus. In conidia, tens of genes functioning in triacylglycerol biosynthesis showed coordinately expressional upregulation, supporting the viewpoint that C. fructicola builds up lipid droplets as energy reserves. Several phosphate starvation responsive genes were coordinately up-regulated during early plant colonization, indicating a phosphate-limited in planta environment immediately faced by biotrophic infectious hyphae. Conclusion This study systematically analyzes the expression patterns of candidate virulence genes, and reveals biological activities related to the development of several infection-related structures of C. fructicola. Our findings lay a foundation for further dissecting infection mechanisms in Colletotrichum and identifying disease control targets. Electronic supplementary material The online version of this article (10.1186/s12864-018-4934-0) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Song Z, Yin Y, Lin Y, Du F, Ren G, Wang Z. The bZIP transcriptional factor activator protein-1 regulates Metarhizium rileyi morphology and mediates microsclerotia formation. Appl Microbiol Biotechnol 2018; 102:4577-4588. [DOI: 10.1007/s00253-018-8941-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/24/2022]
|
18
|
Lee Y, Son H, Shin JY, Choi GJ, Lee Y. Genome-wide functional characterization of putative peroxidases in the head blight fungus Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:715-730. [PMID: 28387997 PMCID: PMC6638050 DOI: 10.1111/mpp.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) are associated with various developmental processes and host-pathogen interactions in pathogenic fungi. Peroxidases are a group of ROS-detoxifying enzymes that are involved in the oxidative stress response and in a variety of physiological processes. In this study, we performed a genome-wide functional characterization of putative peroxidase genes in Fusarium graminearum, a head blight pathogen of cereal crops. We identified 31 putative peroxidase genes and generated deletion mutants for these genes. Twenty-six of the deletion mutants showed developmental phenotypes indistinguishable from that of the wild-type, and five deletion mutants exhibited phenotypic changes in at least one phenotypic category. Four deletion mutants, fca6, fca7, fpx1 and fpx15, showed increased sensitivity to extracellular H2 O2 . Deletion mutants of FCA7 also exhibited reduced virulence and increased trichothecene production compared with those of the wild-type strain, suggesting that Fca7 may play an important role in the host-pathogen interaction in F. graminearum. To identify the transcription factors (TFs) regulating FCA6, FCA7, FPX1 and FPX15 in response to oxidative stress, we screened an F. graminearum TF mutant library for growth in the presence of H2 O2 and found that multiple TFs co-regulated the expression of FCA7 under oxidative stress conditions. These results demonstrate that a complex network of transcriptional regulators of antioxidant genes is involved in oxidative stress responses in this fungus. Moreover, our study provides insights into the roles of peroxidases in developmental processes and host-pathogen interactions in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826South Korea
| | - Hokyoung Son
- Center for Food and BioconvergenceSeoul National UniversitySeoul08826South Korea
| | - Ji Young Shin
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826South Korea
| | - Gyung Ja Choi
- Eco‐friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence ChemistryKorea Research Institute of Chemical TechnologyDaejeon34114South Korea
| | - Yin‐Won Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
19
|
Segal LM, Wilson RA. Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet Biol 2018; 110:1-9. [DOI: 10.1016/j.fgb.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
|
20
|
Yin W, Cui P, Wei W, Lin Y, Luo C. Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in Ustilaginoidea virens. Genome 2017; 60:1051-1059. [DOI: 10.1139/gen-2017-0089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest and most diverse TF families widely distributed across the eukaryotes. The bZIP TF family plays an important role in growth, development, and response to abiotic or biotic stresses, which have been well characterized in plants, but not in plant pathogenic fungi. In this study, we performed genome-wide and systematic bioinformatics analysis of bZIP genes in the fungus Ustilaginoidea virens, the causal agent of rice false smut disease. We identified 28 bZIP family members in the U. virens genome by searching for the bZIP domain in predicted genes. The gene structures, motifs, and phylogenetic relationships were analyzed for bZIP genes in U. virens (UvbZIP). Together with bZIP proteins from two other fungi, the bZIP genes can be divided into eight groups according to their phylogenetic relationships. Based on RNA-Seq data, the expression profiles of UvbZIP genes at different infection stages were evaluated. Results showed that 17 UvbZIP genes were up-regulated during the infection period. Furthermore, 11 infection-related UvbZIP genes were investigated under H2O2 stress and the expression level of eight genes were changed, which confirmed their role in stress tolerance and pathogenicity. In summary, our genome-wide systematic characterization and expression analysis of UvbZIP genes provided insight into the molecular function of these genes in U. virens and provides a reference for other pathogens.
Collapse
Affiliation(s)
- Weixiao Yin
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cui
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wei
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Daguerre Y, Levati E, Ruytinx J, Tisserant E, Morin E, Kohler A, Montanini B, Ottonello S, Brun A, Veneault-Fourrey C, Martin F. Regulatory networks underlying mycorrhizal development delineated by genome-wide expression profiling and functional analysis of the transcription factor repertoire of the plant symbiotic fungus Laccaria bicolor. BMC Genomics 2017; 18:737. [PMID: 28923004 PMCID: PMC5604158 DOI: 10.1186/s12864-017-4114-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ectomycorrhizal (ECM) fungi develop a mutualistic symbiotic interaction with the roots of their host plants. During this process, they undergo a series of developmental transitions from the running hyphae in the rhizosphere to the coenocytic hyphae forming finger-like structures within the root apoplastic space. These transitions, which involve profound, symbiosis-associated metabolic changes, also entail a substantial transcriptome reprogramming with coordinated waves of differentially expressed genes. To date, little is known about the key transcriptional regulators driving these changes, and the aim of the present study was to delineate and functionally characterize the transcription factor (TF) repertoire of the model ECM fungus Laccaria bicolor. RESULTS We curated the L. bicolor gene models coding for transcription factors and assessed their expression and regulation in Poplar and Douglas fir ectomycorrhizae. We identified 285 TFs, 191 of which share a significant similarity with known transcriptional regulators. Expression profiling of the corresponding transcripts identified TF-encoding fungal genes differentially expressed in the ECM root tips of both host plants. The L. bicolor core set of differentially expressed TFs consists of 12 and 22 genes that are, respectively, upregulated and downregulated in symbiotic tissues. These TFs resemble known fungal regulators involved in the control of fungal invasive growth, fungal cell wall integrity, carbon and nitrogen metabolism, invasive stress response and fruiting-body development. However, this core set of mycorrhiza-regulated TFs seems to be characteristic of L. bicolor and our data suggest that each mycorrhizal fungus has evolved its own set of ECM development regulators. A subset of the above TFs was functionally validated with the use of a heterologous, transcription activation assay in yeast, which also allowed the identification of previously unknown, transcriptionally active yet secreted polypeptides designated as Secreted Transcriptional Activator Proteins (STAPs). CONCLUSIONS Transcriptional regulators required for ECM symbiosis development in L. bicolor have been uncovered and classified through genome-wide analysis. This study also identifies the STAPs as a new class of potential ECM effectors, highly expressed in mycorrhizae, which may be involved in the control of the symbiotic root transcriptome.
Collapse
Affiliation(s)
- Y Daguerre
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
- Present address: Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umea, Sweden
| | - E Levati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - J Ruytinx
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
- Present address: Hasselt University, Centre for Environmental Sciences, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - E Tisserant
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - E Morin
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - A Kohler
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - B Montanini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - S Ottonello
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - A Brun
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - C Veneault-Fourrey
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France.
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France.
| | - F Martin
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| |
Collapse
|
22
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|
23
|
Yu P, Wang C, Chen P, Lee M. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2017; 18:783-797. [PMID: 27239957 PMCID: PMC6638302 DOI: 10.1111/mpp.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 05/20/2023]
Abstract
Monilinia fructicola (G. Winter) Honey is a devastating pathogen on Rosaceae which causes blossom blight and fruit rot. Only a few studies related to the plant-pathogen interaction have been published and there is limited knowledge on the relationship between oxidative stress and successful infection in M. fructicola. In this study, we cloned and characterized a redox-responsive transcription factor MFAP1, a YAP1 homologue. MfAP1-silenced strains were generated by polyethylene glycol-mediated protoplast transformation or Agrobacterium T-DNA-mediated transformation. Pathogenicity assay demonstrated that MfAP1-silenced strains caused smaller lesions on rose and peach petals. Transformants carrying extra copies of MfAP1, driven by the native promoter, were generated for MfAP1 overexpression. Interestingly, MfAP1-overexpressing strains also caused smaller lesions on rose petals. Strains carrying two copies of MfAP1 accumulated reactive oxygen species (ROS) at higher levels and exhibited delayed accumulation of MfAP1 transcripts compared with the wild-type during pathogenesis. By the analysis of ROS production and the expression patterns of redox- and virulence-related genes in the wild-type strain and an MfAP1-overexpressing strain, we found that the M. fructicola wild-type strain responded to oxidative stress at the infection site, activated the expression of MfAP1 and up-regulated the genes required for ROS detoxification and fungal virulence. In contrast, MfAP1 expression in the MfAP1-overexpressing strain was suppressed after the induction of a strong oxidative burst at the infection site, altering the expression of ROS detoxification and virulence-related genes. Our results highlight the importance of MfAP1 and ROS accumulation in the successful infection of M. fructicola.
Collapse
Affiliation(s)
- Pei‐Ling Yu
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Chih‐Li Wang
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Pei‐Yin Chen
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| |
Collapse
|
24
|
Fang Y, Xiong D, Tian L, Tang C, Wang Y, Tian C. Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene 2017; 626:386-394. [PMID: 28578019 DOI: 10.1016/j.gene.2017.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022]
Abstract
bZIP transcription factors play various biological roles in stress responses, conidiation, and pathogenicity in pathogenic fungi. Here, we report two bZIP transcription factors (VDAG_08640 and VDAG_08676) of Verticillium dahliae, which were differentially expressed during microsclerotia development and induced by hydrogen peroxide as well. We find that deletion of either gene does not affect microsclerotia formation and the sensitivity to hydrogen peroxide; however, the mutants manifest decreased activity of extracellular peroxidase and laccase. Other phenotypic characterization reveals that VDAG_08676 disruption results in significant reduction of conidial production and virulence, while VDAG_08640 disruption does not lead to observable phenotypic variances compared with the wild-type strain. To elucidate whether they exhibit functional redundancy, double deletion mutants were generated. The double deletion mutants show remarkably increased sensitivity to hydrogen peroxide stress, whereas the two genes are not involved in microsclerotia formation. Taken together, our data demonstrate that a bZIP transcription factor gene VDAG_08676 is involved in the conidial production, oxidative stress response and virulence which may lay a foundation for further analysis of other bZIP transcription factors in V. dahliae.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Longyan Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Mendoza-Martínez AE, Lara-Rojas F, Sánchez O, Aguirre J. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans. Front Microbiol 2017; 8:516. [PMID: 28424666 PMCID: PMC5371717 DOI: 10.3389/fmicb.2017.00516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023] Open
Abstract
The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show that SakA-AtfA, SrrA and NapA oxidative stress-sensing pathways regulate essential aspects of spore physiology (i.e., cell cycle arrest, dormancy, drug production and detoxification, and carbohydrate utilization).
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Fernando Lara-Rojas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| |
Collapse
|
26
|
Huang K, Caplan J, Sweigard JA, Czymmek KJ, Donofrio NM. Optimization of the HyPer sensor for robust real-time detection of hydrogen peroxide in the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:298-307. [PMID: 26950262 PMCID: PMC6638257 DOI: 10.1111/mpp.12392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2 O2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2 O2 dynamics in real time during important stages of the plant infection process.
Collapse
Affiliation(s)
- Kun Huang
- BioImaging CenterDelaware Biotechnology InstituteNewarkDE 19716USA
- Department of Plant and Soil SciencesUniversity of DelawareNewarkDE19716USA
| | - Jeff Caplan
- BioImaging CenterDelaware Biotechnology InstituteNewarkDE 19716USA
| | - James A. Sweigard
- DuPont Stine Haskell Research Center 1090 Elkton RdNewarkDE 19711USA
| | | | - Nicole M. Donofrio
- Department of Plant and Soil SciencesUniversity of DelawareNewarkDE19716USA
| |
Collapse
|
27
|
Li X, Wu Y, Liu Z, Zhang C. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides. Microbiol Res 2017; 197:39-48. [PMID: 28219524 DOI: 10.1016/j.micres.2017.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/10/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Colletotrichum gloeosporioides is an important pathogen of anthracnose, which is able to infect numerous crops in tropical and subtropical regions, causing great economic losses. To investigate the fungal response to host-generated reactive oxygen species (ROS), we cloned and characterized the CgAP1 gene of C. gloeosporioides. CgAP1 encoded a bZIP transcription factor which had a bZIP DNA-binding domain and two cysteine-rich domains structurally and functionally related to Saccharomyces cerevisiae YAP1. Deletion of CgAP1 in C. gloeosporioides resulted in increasing sensitivity to H2O2, changes in cell wall integrity and loss of pathogenicity. To understand the regulatory network of CgAP1, RNA sequencing was used to identify differentially expressed genes in the CgAP1 mutant. It was shown that several genes involved in ROS detoxification and cell wall integrity were affected by CgAP1. Moreover, CgAP1 was also involved in many biological processes especially ribosome, cellular transport and amino acid metabolism. In conclusion, CgAP1 is an important transcription factor involved in oxidative stress, cell wall integrity and pathogenicity in C. gloeosporioides.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yateng Wu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhiqiang Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.
| | - Chenghui Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
28
|
Bultman KM, Kowalski CH, Cramer RA. Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol 2016; 55:24-38. [PMID: 27816905 DOI: 10.1093/mmy/myw120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/19/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Invasive aspergillosis (IA), most commonly caused by the filamentous fungus Aspergillus fumigatus, occurs in immune compromised individuals. The ability of A. fumigatus to proliferate in a multitude of environments is hypothesized to contribute to its pathogenicity and virulence. Transcription factors (TF) have long been recognized as critical proteins for fungal pathogenicity, as many are known to play important roles in the transcriptional regulation of pathways implicated in virulence. Such pathways include regulation of conidiation and development, adhesion, nutrient acquisition, adaptation to environmental stress, and interactions with the host immune system among others. In both murine and insect models of IA, TF loss of function in A. fumigatus results in cases of hyper- and hypovirulence as determined through host survival, fungal burden, and immune response analyses. Consequently, the study of specific TFs in A. fumigatus has revealed important insights into mechanisms of pathogenicity and virulence. Although in vitro studies have identified virulence-related functions of specific TFs, the full picture of their in vivo functions remain largely enigmatic and an exciting area of current research. Moreover, the vast majority of TFs remain to be characterized and studied in this important human pathogen. Here in this mini-review we provide an overview of selected TFs in A. fumigatus and their contribution to our understanding of this important human pathogen's pathogenicity and virulence.
Collapse
Affiliation(s)
- Katherine M Bultman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
29
|
Shalaby S, Larkov O, Lamdan NL, Goldshmidt-Tran O, Horwitz BA. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ Microbiol 2016; 18:4188-4199. [PMID: 27631532 DOI: 10.1111/1462-2920.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022]
Abstract
Plant aromatic compounds provide signals and a nutrient source to pathogens, and also act as stressors. Structure-activity relationships suggest two pathways sensing these compounds in the maize pathogen Cochliobolus heterostrophus, one triggering a stress response, and one inducing enzymes for their degradation. Focusing on the stress pathway, we found that ferulic acid causes rapid appearance of TUNEL-positive nuclei, dispersion of histone H1:GFP, hyphal shrinkage, and eventually membrane damage. These hallmarks of programmed cell death (PCD) were not seen upon exposure to caffeic acid, a very similar compound. Exposure to ferulic acid dephosphorylated two MAP kinases: Hog1 (stress activated) and Chk1 (pathogenicity related), while increasing phosphorylation of Mps1 (cell integrity related). Mutants lacking Hog1 or Chk1 are hypersensitive to ferulic acid while Mps1 mutants are not. These results implicate three MAPK pathways in the stress response. Ferulic acid and the antifungal fludioxonil have opposite additive effects on survival and on dephosphorylation of Hog1, which is thus implicated in survival. The results may explain why some fungal pathogens of plants undergo cell death early in host invasion, when phenolics are released from plant tissue.
Collapse
Affiliation(s)
- Samer Shalaby
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Olga Larkov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Netta-Li Lamdan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| |
Collapse
|
30
|
Sun Y, Wang Y, Tian C. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet Biol 2016; 95:58-66. [PMID: 27544415 DOI: 10.1016/j.fgb.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
Abstract
Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides.
Collapse
Affiliation(s)
- Yingjiao Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
31
|
Castell-Miller CV, Gutierrez-Gonzalez JJ, Tu ZJ, Bushley KE, Hainaut M, Henrissat B, Samac DA. Genome Assembly of the Fungus Cochliobolus miyabeanus, and Transcriptome Analysis during Early Stages of Infection on American Wildrice (Zizania palustris L.). PLoS One 2016; 11:e0154122. [PMID: 27253872 PMCID: PMC4890743 DOI: 10.1371/journal.pone.0154122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
The fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice (Oryza sativa) and two North American specialty crops, American wildrice (Zizania palustris) and switchgrass (Panicum virgatum). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated. Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.
Collapse
Affiliation(s)
- Claudia V. Castell-Miller
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Juan J. Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, United States of America
- USDA-ARS-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Zheng Jin Tu
- Mayo Clinic, Division of Biomedical Statistics and Informatics, Rochester, Minnesota, United States of America
| | - Kathryn E. Bushley
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Matthieu Hainaut
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
- USDA-ARS-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| |
Collapse
|
32
|
Calmes B, N’Guyen G, Dumur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. FRONTIERS IN PLANT SCIENCE 2015; 6:414. [PMID: 26089832 PMCID: PMC4452805 DOI: 10.3389/fpls.2015.00414] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Guillaume N’Guyen
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Jérome Dumur
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Carlos A. Brisach
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Claire Campion
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Béatrice Iacomi
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Sandrine Pigné
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Eva Dias
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - David Macherel
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Thomas Guillemette
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Philippe Simoneau
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| |
Collapse
|
33
|
Yang F, Li W, Derbyshire M, Larsen MR, Rudd JJ, Palmisano G. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics. BMC Genomics 2015; 16:362. [PMID: 25952551 PMCID: PMC4423625 DOI: 10.1186/s12864-015-1549-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/17/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. RESULTS The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. CONCLUSIONS The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | | | - Mark Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| | - Jason J Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
- Present address: Institute of Biomedical Science, Department of Parasitology, University of São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
34
|
Kong S, Park SY, Lee YH. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol 2014; 17:1425-43. [PMID: 25314920 DOI: 10.1111/1462-2920.12633] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/26/2023]
Abstract
Regulatory roles of the basic leucine zipper (bZIP) transcription factors (TFs) in fungi have been identified in diverse cellular processes such as development, nutrient utilization and various stress responses. In this study, the 22 Magnaporthe oryzae genes encoding bZIP TFs were systematically characterized. Phylogenetic analysis of fungal bZIP TFs revealed that seven MobZIPs are Magnaporthe-specific, while others belongs to 15 clades of orthologous Ascomycota genes. Expression patterns of MobZIPs under various conditions showed that they are highly stress responsive. We generated deletion mutants for 13 MobZIPs: nine with orthologues in other fungal species and four Magnaporthe-specific ones. Seven of them exhibited defects in mycelial growth, development and/or pathogenicity. Consistent with the conserved functions of the orthologues, MobZIP22 and MobZIP13 played a role in sulfur metabolism and iron homeostasis respectively. Along with MobZIP22 and MobZIP13, one Magnaporthe-specific gene, MobZIP11 is essential for pathogenicity in a reactive oxygen species-dependent manner. Taken together, our results will contribute to understanding the regulatory mechanisms of the bZIP TF gene family in fungal development, adaptation to environmental stresses and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
35
|
Shalaby S, Horwitz BA. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions. Curr Genet 2014; 61:347-57. [PMID: 25407462 DOI: 10.1007/s00294-014-0458-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion, Israel Institute of Technology, 3200000, Haifa, Israel
| | | |
Collapse
|
36
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hayes BME, Anderson MA, Traven A, van der Weerden NL, Bleackley MR. Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cell Mol Life Sci 2014; 71:2651-66. [PMID: 24526056 PMCID: PMC11113482 DOI: 10.1007/s00018-014-1573-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.
Collapse
Affiliation(s)
- Brigitte M. E. Hayes
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Marilyn A. Anderson
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | | | - Mark R. Bleackley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| |
Collapse
|
38
|
Coordinated and distinct functions of velvet proteins in Fusarium verticillioides. EUKARYOTIC CELL 2014; 13:909-18. [PMID: 24792348 DOI: 10.1128/ec.00022-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
Collapse
|
39
|
Chen LH, Yang SL, Chung KR. Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:970-979. [PMID: 24586035 DOI: 10.1099/mic.0.076182-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of the necrotrophic fungus Alternaria alternata to detoxify reactive oxygen species (ROS) is crucial for pathogenesis to citrus. We report regulation of siderophore-mediated iron acquisition and ROS resistance by the NADPH oxidase (NOX), the redox activating yes-associated protein 1 (YAP1) regulator, and the high-osmolarity glycerol 1 (HOG1) mitogen-activated protein kinase (MAPK). The A. alternata nonribosomal peptide synthetase (NPS6) is essential for the biosynthesis of siderophores, contributing to iron uptake under low-iron conditions. Fungal strains impaired for NOX, YAP1, HOG1 or NPS6 all display increased sensitivity to ROS. Exogenous addition of iron at least partially rescues ROS sensitivity seen for NPS6, YAP1, HOG1, and NOX mutants. Importantly, expression of the NPS6 gene and biosynthesis of siderophores are regulated by NOX, YAP1 and HOG1, supporting a functional link among these regulatory pathways. Although iron fully rescues H2O2 sensitivity seen in mutants impaired for the response regulator SKN7, neither expression of NPS6 nor biosynthesis of siderophores is controlled by SKN7. Our results indicate that the acquisition of environmental iron has profound effects on ROS detoxification.
Collapse
Affiliation(s)
- Li-Hung Chen
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Siwy Ling Yang
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
40
|
Donofrio NM, Wilson RA. Redox and rice blast: new tools for dissecting molecular fungal-plant interactions. THE NEW PHYTOLOGIST 2014; 201:367-369. [PMID: 26013301 DOI: 10.1111/nph.12623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Nicole M Donofrio
- Department of Plant and Soil Sciences, University of Delaware, 531 S. College Ave, Newark, DE, 19716, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, 406I Plant Sciences Hall, Lincoln, NE, 68583, USA
| |
Collapse
|
41
|
Samalova M, Meyer AJ, Gurr SJ, Fricker MD. Robust anti-oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst. THE NEW PHYTOLOGIST 2014; 201:556-573. [PMID: 24117971 DOI: 10.1111/nph.12530] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/20/2013] [Indexed: 05/22/2023]
Abstract
Plants respond to pathogen attack via a rapid burst of reactive oxygen species (ROS). However, ROS are also produced by fungal metabolism and are required for the development of infection structures in Magnaporthe oryzae. To obtain a better understanding of redox regulation in M. oryzae, we measured the amount and redox potential of glutathione (E(GSH)), as the major cytoplasmic anti-oxidant, the rates of ROS production, and mitochondrial activity using multi-channel four-dimensional (x,y,z,t) confocal imaging of Grx1-roGFP2 and fluorescent reporters during spore germination, appressorium formation and infection. High levels of mitochondrial activity and ROS were localized to the growing germ tube and appressorium, but E(GSH) was highly reduced and tightly regulated during development. Furthermore, germlings were extremely resistant to external H2O2 exposure ex planta. EGSH remained highly reduced during successful infection of the susceptible rice cultivar CO39. By contrast, there was a dramatic reduction in the infection of resistant (IR68) rice, but the sparse hyphae that did form also maintained a similar reduced E(GSH). We conclude that M. oryzae has a robust anti-oxidant defence system and maintains tight control of EGSH despite substantial oxidative challenge. Furthermore, the magnitude of the host oxidative burst alone does not stress the pathogen sufficiently to prevent infection in this pathosystem.
Collapse
Affiliation(s)
- Marketa Samalova
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Andreas J Meyer
- INRES, Universität Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Biosciences, University of Exeter, Devon, EX4 4QD, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
42
|
Montibus M, Ducos C, Bonnin-Verdal MN, Bormann J, Ponts N, Richard-Forget F, Barreau C. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLoS One 2013; 8:e83377. [PMID: 24349499 PMCID: PMC3861502 DOI: 10.1371/journal.pone.0083377] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/01/2013] [Indexed: 11/22/2022] Open
Abstract
Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism.
Collapse
Affiliation(s)
- Mathilde Montibus
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
- * E-mail:
| | - Christine Ducos
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | | | - Jorg Bormann
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Hamburg, Germany
| | - Nadia Ponts
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | - Florence Richard-Forget
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | - Christian Barreau
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
- Centre National de la Recherche Scientifique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| |
Collapse
|
43
|
Zhang N, MohdZainudin NAI, Scher K, Condon BJ, Horwitz BA, Turgeon BG. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1473-1485. [PMID: 23980626 DOI: 10.1094/mpmi-02-13-0055-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the host, compared with the WT.
Collapse
|
44
|
Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae. BMC Genomics 2013; 14:839. [PMID: 24286285 PMCID: PMC4046829 DOI: 10.1186/1471-2164-14-839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Basic leucine zipper (bZIP) transcription factors are present exclusively in eukaryotes and constitute one of the largest and most diverse transcription factor families. The proteins are responsible for central developmental and physiological processes in plants, animals, and fungi, including the pathogenicity of fungal plant pathogens. However, there is limited understanding of bZIPs in oomycetes, which are fungus-like organisms in the kingdom Stramenopila. Oomycetes include many destructive plant pathogens, including the well-studied species Phytophthora sojae, which causes soybean stem and root rot. RESULTS Candidate bZIPs encoded in the genomes of P. sojae and four other oomycetes, two diatoms, and two fungal species were predicted using bioinformatic methods. Comparative analysis revealed expanded numbers of bZIP candidates in oomycetes, especially the Phytophthora species, due to the expansion of several novel bZIP classes whose highly conserved asparagines in basic DNA-binding regions were substituted by other residues such as cysteine. The majority of these novel bZIP classes were mostly restricted to oomycetes. The large number of novel bZIPs appears to be the result of widespread gene duplications during oomycete evolution. The majority of P. sojae bZIP candidates, including both conventional and novel bZIP classes, were predicted to contain canonical protein secondary structures. Detection of gene transcripts using digital gene expression profiling and qRT-PCR suggested that most of the candidates were not pseudogenes. The major transcriptional shifts of bZIPs occurred during the zoosporangia/zoospore/cyst and host infection stages. Several infection-associated bZIP genes were identified that were positively regulated by H2O2 exposure. CONCLUSIONS The identification of large classes of bZIP proteins in oomycetes with novel bZIP motif variants, that are conserved and developmentally regulated and thus presumably functional, extends our knowledge of this important family of eukaryotic transcription factors. It also lays the foundation for detailed studies of the roles of these proteins in development and infection in P. sojae and other oomycetes.
Collapse
|
45
|
Shalaby S, Larkov O, Lamdan NL, Horwitz BA. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus. FEMS Microbiol Lett 2013; 350:83-9. [PMID: 24164316 DOI: 10.1111/1574-6968.12314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022] Open
Abstract
The transcription factors ChAP1 and Skn7 of the maize pathogen Cochliobolus heterostrophus are orthologs of Yap1 and Skn7 in yeast, where they are predicted to work together in a complex. Previous work showed that in C. heterostrophus, as in yeast, ChAP1 accumulates in the nucleus in response to reactive oxygen species (ROS). The expression of genes whose products counteract oxidative stress depends on ChAP1, as shown by impaired ability of a Δchap1 mutant to induce these 'antioxidant' genes. In this study, we found that under oxidative stress, antioxidant gene expression is also partially impaired in the Δskn7 mutant but to a milder extent than in the Δchap1 mutant, whereas in the double mutant - Δchap1-Δskn7 - none of the tested genes was induced, with the exception of one catalase gene, CAT2. Both single mutants are capable of infecting the plant, showing similar virulence to the WT. The double mutant, however, showed clearly decreased virulence, pointing to additive contributions of ChAP1 and Skn7. Possible mechanisms are discussed, including additive regulation of gene expression by oxidative stress.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
46
|
Ronen M, Shalaby S, Horwitz BA. Role of the transcription factor ChAP1 in cytoplasmic redox homeostasis: imaging with a genetically encoded sensor in the maize pathogen Cochliobolus heterostrophus. MOLECULAR PLANT PATHOLOGY 2013; 14:786-90. [PMID: 23745603 PMCID: PMC6638657 DOI: 10.1111/mpp.12047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The redox-sensitive transcription factor ChAP1 [Cochliobolus heterostrophus YAP1 (Yeast Activator Protein 1) orthologue] of C. heterostrophus is required for oxidative stress tolerance. It is not known, however, to what extent the intracellular redox state changes on exposure of the fungus to oxidants, and whether ChAP1 is involved in the return of the cell to redox homeostasis. In order to answer these questions, we expressed a ratiometric redox-sensitive fluorescent protein sensor, pHyper, in C. heterostrophus. The fluorescence ratio was sensitive to extracellular hydrogen peroxide (H2O2) concentrations that had been shown previously to inhibit the germination of conidia and growth of the pathogen in culture. chap1 mutants showed a slower return to redox homeostasis than the wild-type on exposure to H2O2. Plant extracts that mimic oxidants in their ability to promote nuclear retention of ChAP1 reduced, rather than oxidized, the fungal cells. This result is consistent with other data suggesting that ChAP1 responds to plant-derived signals other than oxidants. pHyper should be a useful reporter of the intracellular redox state in filamentous fungi.
Collapse
Affiliation(s)
- Mordechai Ronen
- Department of Plant Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
47
|
Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol 2013; 41:295-308. [PMID: 24041414 DOI: 10.3109/1040841x.2013.829416] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.
Collapse
|
48
|
Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae. EUKARYOTIC CELL 2013; 12:1335-48. [PMID: 23893078 DOI: 10.1128/ec.00129-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA.
Collapse
|
49
|
Zhu J, Yu X, Xie B, Gu X, Zhang Z, Li S. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa. Fungal Biol 2013; 117:422-30. [DOI: 10.1016/j.funbio.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/26/2022]
|
50
|
Narula K, Datta A, Chakraborty N, Chakraborty S. Comparative analyses of nuclear proteome: extending its function. FRONTIERS IN PLANT SCIENCE 2013; 4:100. [PMID: 23637696 PMCID: PMC3636469 DOI: 10.3389/fpls.2013.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/30/2013] [Indexed: 05/20/2023]
Abstract
Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10-20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect.
Collapse
Affiliation(s)
| | | | | | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew Delhi, India
| |
Collapse
|