1
|
Aspatwar A, Parkkinen J, Parkkila S. Physiological role of bicarbonate in microbes: A double-edged sword? Virulence 2025; 16:2474865. [PMID: 40047280 PMCID: PMC11901407 DOI: 10.1080/21505594.2025.2474865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
HCO3- is involved in pH homoeostasis and plays a multifaceted role in human health. HCO3- has been recognized for its antimicrobial properties and is pivotal in bacterial antibiotic susceptibility. Notably, the interconversion between CO2 and HCO3-, facilitated by the enzyme carbonic anhydrase (CA), is crucial in tissues infected by pathogens. Studies have highlighted the antimicrobial potency of CA inhibitors, emphasizing the importance of this enzyme in this area. The potential of HCO3- as an antibiotic adjuvant is evident; its ability to increase virulence in pathogens such as Enterococcus faecalis and Mycobacterium tuberculosis requires meticulous scrutiny. HCO3- modulates bacterial behaviours in diverse manners: it promotes Escherichia coli O157:H7 colonization in the human gut by altering specific gene expression and, with Pseudomonas aeruginosa, amplifies the effect of tobramycin on planktonic cells while promoting biofilm formation. These multifaceted effects necessitate profound mechanistic exploration before HCO3- can be considered a promising clinical adjuvant.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Ramírez-Sotelo U, Gómez-Gaviria M, Mora-Montes HM. Signaling Pathways Regulating Dimorphism in Medically Relevant Fungal Species. Pathogens 2025; 14:350. [PMID: 40333127 PMCID: PMC12030348 DOI: 10.3390/pathogens14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Pathogenic fungi that exhibit the ability to alternate between hyphal and yeast morphology in response to environmental stimuli are considered dimorphic. Under saprobic conditions, some fungi exist as filamentous hyphae, producing conidia. When conidia are inhaled by mammals or traumatically inoculated, body temperature (37 °C) triggers dimorphism into yeast cells. This shift promotes fungal dissemination and immune evasion. Some fungal pathogens undergo dimorphism in the contrary way, forming pseudohyphae and hyphae within the host. While temperature is a major driver of dimorphism, other factors, including CO2 concentration, pH, nitrogen sources, and quorum-sensing molecules, also contribute to morphological shifts. This morphological transition is associated with increased expression of virulence factors that aid in adhesion, colonization, and immune evasion. Candida albicans is a fungus that is commonly found as a commensal on human mucous membranes but has the potential to be an opportunistic fungal pathogen of immunocompromised patients. C. albicans exhibits a dimorphic change from the yeast form to the hyphal form when it becomes established as a pathogen. In contrast, Histoplasma capsulatum is an environmental dimorphic fungus where human infection begins when conidia or hyphal fragments of the fungus are inhaled into the alveoli, where the dimorphic change to yeast occurs, this being the morphology associated with its pathogenic phase. This review examines the main signaling pathways that have been mostly related to fungal dimorphism, using as a basis the information available in the literature on H. capsulatum and C. albicans because these fungi have been widely studied for the morphological transition from hypha to yeast and from yeast to hypha, respectively. In addition, we have included the reported findings of these signaling pathways associated with the dimorphism of other pathogenic fungi, such as Paracoccidioides brasiliensis, Sporothrix schenckii, Cryptococcus neoformans, and Blastomyces dermatitis. Understanding these pathways is essential for advancing therapeutic approaches against systemic fungal infections.
Collapse
Affiliation(s)
| | | | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico; (U.R.-S.); (M.G.-G.)
| |
Collapse
|
3
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Choi YJ, Lee KS, Oh JW. Inverse Trend Between Tree Pollen and Fungal Concentrations With Allergic Sensitization Rates in Seoul for 25 Years. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:571-584. [PMID: 39622683 PMCID: PMC11621478 DOI: 10.4168/aair.2024.16.6.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 12/08/2024]
Abstract
A growing number of individuals are developing allergic diseases due to pollen exposure. Seasonal variations and increased pollen concentrations have occurred with the increased rates of allergic sensitization among both children and adults. Temperature significantly influences pollination, particularly in spring- and early summer-flowering plants, with weather conditions affecting pollen allergen levels. Human activities, including agriculture and deforestation, increase carbon emissions, leading to higher atmospheric CO₂ levels that may enhance allergenic plant productivity. Climate change affects the range of allergenic plant species and length of pollen season. Studies indicate that higher CO₂ and temperature levels are linked to increased pollen concentrations and allergenicity, whereas atmospheric fungal concentrations have declined annually over the past 25 years. Despite more intense precipitation in summer and autumn, the number of rainy days has decreased across all seasons. This concentration of rainfall over shorter periods likely prolongs the dry season and shortens the period of fungal sporulation. Future climate changes, including atmospheric dryness, drought, and desertification could further decrease allergenic fungal sporulation. It remains unclear whether the inverse relationship between pollen and fungal concentrations and distributions directly results from climate change. It is crucial to evaluate the patterns of aeroallergens and their associated health risks.
Collapse
Affiliation(s)
- Young-Jin Choi
- Division of Allergy, Respiratory Diseases, Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| | - Kyung-Suk Lee
- Division of Allergy, Respiratory Diseases, Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Oh
- Division of Allergy, Respiratory Diseases, Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
5
|
Jung KW, Lee SH, Lee KT, Bahn YS. Sensing and responding to host-derived stress signals: lessons from fungal meningitis pathogen. Curr Opin Microbiol 2024; 80:102514. [PMID: 39024914 DOI: 10.1016/j.mib.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The sophisticated ability of living organisms to sense and respond to external stimuli is critical for survival. This is particularly true for fungal pathogens, where the capacity to adapt and proliferate within a host is essential. To this end, signaling pathways, whether evolutionarily conserved or unique, have been refined through interactions with the host. Cryptococcus neoformans, an opportunistic fungal pathogen, is responsible for over 190,000 cases and an estimated 147,000 annual deaths globally. Extensive research over the past decades has shed light on the signaling pathways underpinning the pathogenicity of C. neoformans, as well as the host's responses during infection. In this context, we delineate the regulatory mechanisms employed by C. neoformans to detect and react to stresses derived from the host.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| | - Seung-Heon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Hughes ES, Tuck LR, He Z, Ballou ER, Wallace EWJ. A trade-off between proliferation and defense in the fungal pathogen Cryptococcus at alkaline pH is controlled by the transcription factor GAT201. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.543486. [PMID: 37398450 PMCID: PMC10312749 DOI: 10.1101/2023.06.14.543486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cryptococcus is a fungal pathogen whose virulence relies on proliferation in and dissemination to host sites, and on synthesis of a defensive yet metabolically costly polysaccharide capsule. Regulatory pathways required for Cryptococcus virulence include a GATA-like transcription factor, Gat201, that regulates Cryptococcal virulence in both capsule-dependent and capsule-independent ways. Here we show that Gat201 is part of a negative regulatory pathway that limits fungal survival at alkaline pH. RNA-seq analysis found strong induction of GAT201 expression within minutes of transfer to RPMI media at alkaline pH. Microscopy, growth curves, and colony forming unit assays show that in RPMI at alkaline pH wild-type Cryptococcus neoformans yeast cells produce capsule but do not bud or maintain viability, while gat201Δ cells make buds and maintain viability, yet fail to produce capsule. GAT201 is required for transcriptional upregulation of a specific set of genes, the majority of which are direct Gat201 targets. Evolutionary analysis shows that Gat201 is in a subfamily of GATA-like transcription factors that is conserved within pathogenic fungi but absent in model yeasts. This work identifies the Gat201 pathway as controlling a trade-off between proliferation and production of defensive capsule. The assays established here will allow characterisation of the mechanisms of action of the Gat201 pathway. Together, our findings urge improved understanding of the regulation of proliferation as a driver of fungal pathogenesis.
Collapse
Affiliation(s)
- Elizabeth S Hughes
- Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh
| | - Laura R Tuck
- Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh
| | - Zhenzhen He
- Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh
| | | | - Edward W J Wallace
- Institute for Cell Biology, and Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh
| |
Collapse
|
7
|
Saidykhan L, Correia J, Romanyuk A, Peacock AFA, Desanti GE, Taylor-Smith L, Makarova M, Ballou ER, May RC. An in vitro method for inducing titan cells reveals novel features of yeast-to-titan switching in the human fungal pathogen Cryptococcus gattii. PLoS Pathog 2022; 18:e1010321. [PMID: 35969643 PMCID: PMC9426920 DOI: 10.1371/journal.ppat.1010321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/30/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cryptococcosis is a potentially lethal fungal infection of humans caused by organisms within the Cryptococcus neoformans/gattii species complex. Whilst C. neoformans is a relatively common pathogen of immunocompromised individuals, C. gattii is capable of acting as a primary pathogen of immunocompetent individuals. Within the host, both species undergo morphogenesis to form titan cells: exceptionally large cells that are critical for disease establishment. To date, the induction, defining attributes, and underlying mechanism of titanisation have been mainly characterized in C. neoformans. Here, we report the serendipitous discovery of a simple and robust protocol for in vitro induction of titan cells in C. gattii. Using this in vitro approach, we reveal a remarkably high capacity for titanisation within C. gattii, especially in strains associated with the Pacific Northwest Outbreak, and characterise strain-specific differences within the clade. In particular, this approach demonstrates for the first time that cell size changes, DNA amplification, and budding are not always synchronous during titanisation. Interestingly, however, exhibition of these cell cycle phenotypes was correlated with genes associated with cell cycle progression including CDC11, CLN1, BUB2, and MCM6. Finally, our findings reveal exogenous p-Aminobenzoic acid to be a key inducer of titanisation in this organism. Consequently, this approach offers significant opportunities for future exploration of the underlying mechanism of titanisation in this genus.
Collapse
Affiliation(s)
- Lamin Saidykhan
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- Division of Physical and Natural Science, University of The Gambia, Brikama, The Gambia
| | - Joao Correia
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Andrey Romanyuk
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston, United Kingdom
| | - Anna F. A. Peacock
- School of Chemistry, University of Birmingham, Edgbaston, United Kingdom
| | - Guillaume E. Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Leanne Taylor-Smith
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Maria Makarova
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Elizabeth R. Ballou
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- * E-mail: (ERB); (RCM)
| | - Robin C. May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- * E-mail: (ERB); (RCM)
| |
Collapse
|
8
|
De Luca V, Angeli A, Mazzone V, Adelfio C, Carginale V, Scaloni A, Carta F, Selleri S, Supuran CT, Capasso C. Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen malassezia pachydermatis. J Enzyme Inhib Med Chem 2021; 37:62-68. [PMID: 34894958 PMCID: PMC8667878 DOI: 10.1080/14756366.2021.1994559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Warm-blooded animals may have Malassezia pachydermatis on healthy skin, but changes in the skin microenvironment or host defences induce this opportunistic commensal to become pathogenic. Malassezia infections in humans and animals are commonly treated with azole antifungals. Fungistatic treatments, together with their long-term use, contribute to the selection and the establishment of drug-resistant fungi. To counteract this rising problem, researchers must find new antifungal drugs and enhance drug resistance management strategies. Cyclic adenosine monophosphate, adenylyl cyclase, and bicarbonate have been found to promote fungal virulence, adhesion, hydrolase synthesis, and host cell death. The CO2/HCO3-/pH-sensing in fungi is triggered by HCO3- produced by metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1). It has been demonstrated that the growth of M. globosa can be inhibited in vivo by primary sulphonamides, which are the typical CA inhibitors. Here, we report the cloning, purification, and characterisation of the β-CA (MpaCA) from the pathogenic fungus M. pachydermatis, which is homologous to the enzyme encoded in the genome of M. globosa and M. restricta, that are responsible for dandruff and seborrhoeic dermatitis. Fungal CAs could be thus considered a new pharmacological target for combating fungal infections and drug resistance developed by most fungi to the already used drugs.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy.,Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Andrea Angeli
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Valeria Mazzone
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudia Adelfio
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Fabrizio Carta
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Silvia Selleri
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
9
|
De Luca V, Petreni A, Carginale V, Scaloni A, Supuran CT, Capasso C. Effect of amino acids and amines on the activity of the recombinant ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021; 36:1000-1006. [PMID: 33980103 PMCID: PMC8128165 DOI: 10.1080/14756366.2021.1919891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s-1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9-13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
- Proteomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, Naples, Italy
| | - Andrea Petreni
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, Naples, Italy
| | - Claudiu T. Supuran
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
| |
Collapse
|
10
|
De Luca V, Angeli A, Mazzone V, Adelfio C, Carta F, Selleri S, Carginale V, Scaloni A, Supuran CT, Capasso C. Inhibitory Effects of Sulfonamide Derivatives on the β-Carbonic Anhydrase (MpaCA) from Malassezia pachydermatis, a Commensal, Pathogenic Fungus Present in Domestic Animals. Int J Mol Sci 2021; 22:ijms222212601. [PMID: 34830480 PMCID: PMC8620791 DOI: 10.3390/ijms222212601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Fungi are exposed to various environmental variables during their life cycle, including changes in CO2 concentration. CO2 has the potential to act as an activator of several cell signaling pathways. In fungi, the sensing of CO2 triggers cell differentiation and the biosynthesis of proteins involved in the metabolism and pathogenicity of these microorganisms. The molecular machineries involved in CO2 sensing constitute a promising target for the development of antifungals. Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial enzymes in the CO2 sensing systems of fungi, because they catalyze the reversible hydration of CO2 to proton and HCO3-. Bicarbonate in turn boots a cascade of reactions triggering fungal pathogenicity and metabolism. Accordingly, CAs affect microorganism proliferation and may represent a potential therapeutic target against fungal infection. Here, the inhibition of the unique β-CA (MpaCA) encoded in the genome of Malassezia pachydermatis, a fungus with substantial relevance in veterinary and medical sciences, was investigated using a series of conventional CA inhibitors (CAIs), namely aromatic and heterocyclic sulfonamides. This study aimed to describe novel candidates that can kill this harmful fungus by inhibiting their CA, and thus lead to effective anti-dandruff and anti-seborrheic dermatitis agents. In this context, current antifungal compounds, such as the azoles and their derivatives, have been demonstrated to induce the selection of resistant fungal strains and lose therapeutic efficacy, which might be restored by the concomitant use of alternative compounds, such as the fungal CA inhibitors.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, P.le Enrico Fermi 1, 80055 Portici (Napoli), Italy;
| | - Andrea Angeli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
| | - Valeria Mazzone
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
| | - Claudia Adelfio
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
| | - Fabrizio Carta
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
| | - Silvia Selleri
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
| | - Vincenzo Carginale
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, P.le Enrico Fermi 1, 80055 Portici (Napoli), Italy;
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| |
Collapse
|
11
|
Urbański LJ, Angeli A, Mykuliak VV, Azizi L, Kuuslahti M, Hytönen VP, Supuran CT, Parkkila S. Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis. J Mol Med (Berl) 2021; 100:115-124. [PMID: 34652457 PMCID: PMC8724216 DOI: 10.1007/s00109-021-02148-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/05/2022]
Abstract
Abstract Trichomonas vaginalis is a unicellular parasite and responsible for one of the most common sexually transmittable infections worldwide, trichomoniasis. Carbonic anhydrases (CAs) are enzymes found in all lifeforms and are known to play a vital role in many biochemical processes in organisms including the maintenance of acid–base homeostasis. To date, eight evolutionarily divergent but functionally convergent forms of CAs (α, β, γ, δ, ζ, η, θ, and ι) have been discovered. The human genome contains only α-CAs, whereas many clinically significant pathogens express only β-CAs and/or γ-CAs. The characterization of pathogenic β- and γ-CAs provides important knowledge for targeting these biomolecules to develop novel anti-invectives against trichomoniasis. Here, we report the recombinant production and characterization of the second β-CA of T. vaginalis (TvaCA2). Light scattering analysis revealed that TvaCA2 is a dimeric protein, which was further supported with in silico modeling, suggesting similar structures between TvaCA2 and the first β-CA of T. vaginalis (TvaCA1). TvaCA2 exhibited moderate catalytic activity with the following kinetic parameters: kcat of 3.8 × 105 s−1 and kcat/KM of 4.4 × 107 M−1 s−1. Enzyme activity inhibition was studied with a set of clinically used sulfonamides and sulfonamide derivates. Twenty-seven out of the 39 compounds resulted in inhibition with a nanomolar range. These initial results encourage for future work entailing the design of more potent inhibitors against TvaCA2, which may provide new assets to fight trichomoniasis. Key messages • Protozoan parasite Trichomonas vaginalis has two β-carbonic anhydrases (TvaCA1/2). • TvaCA1/TvaCA2 represents promising targets for antitrichomonal drug development. • TvaCA2 is a dimer of 20.3 kDa and possesses moderate catalytic activity. • The most efficient inhibitor was clinical drug acetazolamide with KI of 222.9 nM. • The 39 tested sulfonamides form the basis for the design of more potent inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02148-1.
Collapse
Affiliation(s)
- Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Andrea Angeli
- Neurofarba Department, Sezione Di Chimica Farmaceutica E Nutraceutica, Università Degli Studi Di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino (Firenze), Italy
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Arvo Ylpön katu 4, 33520, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione Di Chimica Farmaceutica E Nutraceutica, Università Degli Studi Di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino (Firenze), Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Arvo Ylpön katu 4, 33520, Tampere, Finland
| |
Collapse
|
12
|
Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 36:1988-1995. [PMID: 34482770 PMCID: PMC8425729 DOI: 10.1080/14756366.2021.1972995] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) have been studied for decades and have been classified as a superfamily of enzymes which includes, up to date, eight gene families or classes indicated with the Greek letters α, β, γ, δ, ζ, η, θ, ι. This versatile enzyme superfamily is involved in multiple physiological processes, catalysing a fundamental reaction for all living organisms, the reversible hydration of carbon dioxide to bicarbonate and a proton. Recently, the ι-CA (LCIP63) from the diatom Thalassiosira pseudonana and a bacterial ι-CA (BteCAι) identified in the genome of Burkholderia territorii were characterised. The recombinant BteCAι was observed to act as an excellent catalyst for the physiologic reaction. Very recently, the discovery of a novel ι-CAs (COG4337) in the eukaryotic microalga Bigelowiella natans and the cyanobacterium Anabaena sp. PCC7120 has brought to light an unexpected feature for this ancient superfamily: this ι-CAs was catalytically active without a metal ion cofactor, unlike the previous reported ι-CAs as well as all known CAs investigated so far. This review reports recent investigations on ι-CAs obtained in these last three years, highlighting their peculiar features, and hypothesising that possibly this new CA family shows catalytic activity without the need of metal ions.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
13
|
Supuran CT, Capasso C. A Highlight on the Inhibition of Fungal Carbonic Anhydrases as Drug Targets for the Antifungal Armamentarium. Int J Mol Sci 2021; 22:4324. [PMID: 33919261 PMCID: PMC8122340 DOI: 10.3390/ijms22094324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon dioxide (CO2), a vital molecule of the carbon cycle, is a critical component in living organisms' metabolism, performing functions that lead to the building of compounds fundamental for the life cycle. In all living organisms, the CO2/bicarbonate (HCO3-) balancing is governed by a superfamily of enzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the pivotal physiological reaction, consisting of the reversible hydration of the CO2 to HCO3- and protons. Opportunistic and pathogenic fungi can sense the environmental CO2 levels, which influence their virulence or environmental subsistence traits. The fungal CO2-sensing is directly stimulated by HCO3- produced in a CA-dependent manner, which directly activates adenylyl cyclase (AC) involved in the fungal spore formation. The interference with CA activity may impair fungal growth and virulence, making this approach interesting for designing antifungal drugs with a novel mechanism of action: the inhibition of CAs linked to the CO2/HCO3-/pH chemosensing and signaling. This review reports that sulfonamides and their bioisosteres as well as inorganic anions can inhibit in vitro the β- and α-CAs from the fungi, suggesting how CAs may be considered as a novel "pathogen protein" target of many opportunistic, pathogenic fungi.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
14
|
Kim S, Yeon J, Sung J, Kim NJ, Hong S, Jin MS. Structural insights into novel mechanisms of inhibition of the major β-carbonic anhydrase CafB from the pathogenic fungus Aspergillus fumigatus. J Struct Biol 2021; 213:107700. [PMID: 33545350 DOI: 10.1016/j.jsb.2021.107700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023]
Abstract
In fungi the β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes that are essential for growth, survival, differentiation, and virulence. Aspergillus fumigatus is the most important pathogen responsible for invasive aspergillosis and possesses two major β-CAs, CafA and CafB. Recently we reported the biochemical characterization and 1.8 Å crystal structure of CafA. Here, we report a crystallographic analysis of CafB revealing the mechanism of enzyme catalysis and establish the relationship of this enzyme to other β-CAs. While CafA has a typical open conformation, CafB, when exposed to acidic pH and/or an oxidative environment, has a novel type of active site in which a disulfide bond is formed between two zinc-ligating cysteines, expelling the zinc ion and stabilizing the inactive form of the enzyme. Based on the structural data, we generated an oxidation-resistant mutant (Y159A) of CafB. The crystal structure of the mutant under reducing conditions retains a catalytic zinc at the expected position, tetrahedrally coordinated by three residues (C57, H113 and C116) and an aspartic acid (D59), and replacing the zinc-bound water molecule in the closed form. Furthermore, the active site of CafB crystals grown under zinc-limiting conditions has a novel conformation in which the solvent-exposed catalytic cysteine (C116) is flipped out of the metal coordination sphere, facilitating release of the zinc ion. Taken together, our results suggest that A. fumigatus use sophisticated activity-inhibiting strategies to enhance its survival during infection.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jungyoon Yeon
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongmin Sung
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Na Jin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Semi Hong
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
15
|
Milanesi R, Coccetti P, Tripodi F. The Regulatory Role of Key Metabolites in the Control of Cell Signaling. Biomolecules 2020; 10:biom10060862. [PMID: 32516886 PMCID: PMC7356591 DOI: 10.3390/biom10060862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism.
Collapse
|
16
|
Pandaranayaka EP, Frenkel O, Elad Y, Prusky D, Harel A. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens. BMC Genomics 2019; 20:1020. [PMID: 31878885 PMCID: PMC6933724 DOI: 10.1186/s12864-019-6409-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Genomic studies demonstrate that components of virulence mechanisms in filamentous eukaryotic pathogens (FEPs, fungi and oomycetes) of plants are often highly conserved, or found in gene families that include secreted hydrolytic enzymes (e.g., cellulases and proteases) and secondary metabolites (e.g., toxins), central to the pathogenicity process. However, very few large-scale genomic comparisons have utilized complete proteomes from dozens of FEPs to reveal lifestyle-associated virulence mechanisms. Providing a powerful means for exploration, and the discovery of trends in large-scale datasets, network analysis has been used to identify core functions of the primordial cyanobacteria, and ancient evolutionary signatures in oxidoreductases. Results We used a sequence-similarity network to study components of virulence mechanisms of major pathogenic lifestyles (necrotroph (ic), N; biotroph (ic), B; hemibiotroph (ic), H) in complete pan-proteomes of 65 FEPs and 17 saprobes. Our comparative analysis highlights approximately 190 core functions found in 70% of the genomes of these pathogenic lifestyles. Core functions were found mainly in: transport (in H, N, B cores); carbohydrate metabolism, secondary metabolite synthesis, and protease (H and N cores); nucleic acid metabolism and signal transduction (B core); and amino acid metabolism (H core). Taken together, the necrotrophic core contains functions such as cell wall-associated degrading enzymes, toxin metabolism, and transport, which are likely to support their lifestyle of killing prior to feeding. The biotrophic stealth growth on living tissues is potentially controlled by a core of regulatory functions, such as: small G-protein family of GTPases, RNA modification, and cryptochrome-based light sensing. Regulatory mechanisms found in the hemibiotrophic core contain light- and CO2-sensing functions that could mediate important roles of this group, such as transition between lifestyles. Conclusions The selected set of enriched core functions identified in our work can facilitate future studies aimed at controlling FEPs. One interesting example would be to facilitate the identification of the pathogenic potential of samples analyzed by metagenomics. Finally, our analysis offers potential evolutionary scenarios, suggesting that an early-branching saprobe (identified in previous studies) has probably evolved a necrotrophic lifestyle as illustrated by the highest number of shared gene families between saprobes and necrotrophs.
Collapse
Affiliation(s)
- Eswari Pj Pandaranayaka
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dov Prusky
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Arye Harel
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel.
| |
Collapse
|
17
|
Kim S, Kim NJ, Hong S, Kim S, Sung J, Jin MS. The structural basis of the low catalytic activities of the two minor β-carbonic anhydrases of the filamentous fungus Aspergillus fumigatus. J Struct Biol 2019; 208:61-68. [PMID: 31376470 DOI: 10.1016/j.jsb.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
The β-carbonic anhydrases (β-CAs) are widely distributed zinc-metalloenzymes that play essential roles in growth, survival, development and virulence in fungi. The majority of filamentous ascomycetes possess multiple β-CA isoforms among which major and minor forms have been characterized. We examined the catalytic behavior of the two minor β-CAs, CafC and CafD, of Aspergillus fumigatus, and found that both enzymes exhibited low CO2 hydration activities. To understand the structural basis of their low activities, we performed X-ray crystallographic and site-directed mutagenesis studies. Both enzymes exist as homodimers. Like other Type-I β-CAs, the CafC active site has an "open" conformation in which the zinc ion is tetrahedrally coordinated by three residues (C36, H88 and C91) and a water molecule. However, L25 and L78 on the rim of the catalytic entry site protrude into the active site cleft, partially occluding access to it. Single (L25G or L78G) and double mutants provided evidence that widening the entrance to the active site greatly accelerates catalytic activity. By contrast, CafD has a typical Type-II "closed" conformation in which the zinc-bound water molecule is replaced by aspartic acid (D36). The most likely explanation for this result is that an arginine that is largely conserved within the β-CA family is replaced by glycine (G38), so that D36 cannot undergo a conformational change by forming a D-R pair that creates the space for a zinc-bound water molecule and switches the enzyme to the active form. The CafD structure also reveals the presence of a "non-catalytic" zinc ion in the dimer interface, which may contribute to stabilizing the dimeric assembly.
Collapse
Affiliation(s)
- Songwon Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Na Jin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Semi Hong
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongmin Sung
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Annunziato G, Giovati L, Angeli A, Pavone M, Del Prete S, Pieroni M, Capasso C, Bruno A, Conti S, Magliani W, Supuran CT, Costantino G. Discovering a new class of antifungal agents that selectively inhibits microbial carbonic anhydrases. J Enzyme Inhib Med Chem 2018; 33:1537-1544. [PMID: 30284487 PMCID: PMC6179086 DOI: 10.1080/14756366.2018.1516652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infections caused by pathogens resistant to the available antimicrobial treatments represent nowadays a threat to global public health. Recently, it has been demonstrated that carbonic anhydrases (CAs) are essential for the growth of many pathogens and their inhibition leads to growth defects. Principal drawbacks in using CA inhibitors (CAIs) as antimicrobial agents are the side effects due to the lack of selectivity toward human CA isoforms. Herein we report a new class of CAIs, which preferentially interacts with microbial CA active sites over the human ones. The mechanism of action of these inhibitors was investigated against an important fungal pathogen, Cryptococcus neoformans, revealing that they are also able to inhibit CA in microbial cells growing in vitro. At our best knowledge, this is the first report on newly designed synthetic compounds selectively targeting β-CAs and provides a proof of concept of microbial CAs suitability as an antimicrobial drug target.
Collapse
Affiliation(s)
| | - Laura Giovati
- b Department of Medicine and Surgery, Ospedale Maggiore di Parma , University of Parma , Parma , Italy
| | - Andrea Angeli
- c Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Firenze , Italy
| | - Marialaura Pavone
- a Department of Food and Drugs , University of Parma , Parma , Italy
| | - Sonia Del Prete
- c Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Firenze , Italy
| | - Marco Pieroni
- a Department of Food and Drugs , University of Parma , Parma , Italy
| | - Clemente Capasso
- d National Council of Research (CNR) , Istituto di Bioscenze e Biorisorse , Napoli , Italy
| | - Agostino Bruno
- a Department of Food and Drugs , University of Parma , Parma , Italy.,e Experimental Therapeutics Program , IFOM the FIRC Institute for Molecular Oncology Foundation , Milano , Italy
| | - Stefania Conti
- b Department of Medicine and Surgery, Ospedale Maggiore di Parma , University of Parma , Parma , Italy
| | - Walter Magliani
- b Department of Medicine and Surgery, Ospedale Maggiore di Parma , University of Parma , Parma , Italy
| | - Claudiu T Supuran
- c Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Firenze , Italy
| | | |
Collapse
|
20
|
Zhou X, Ballou ER. The Cryptococcus neoformans Titan Cell: From In Vivo Phenomenon to In Vitro Model. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Darabian S, Hashemi SJ, Khodavaisy S, Sharifynia S, Kord M, Akbari Dana M, Aala F, Rezaie S. Morphological changes and induction of antifungal resistance in Aspergillus fumigatus due to different CO2 levels. Curr Med Mycol 2018; 3:21-26. [PMID: 29707670 PMCID: PMC5914923 DOI: 10.29252/cmm.3.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background and Purpose Aspergillosis is one of the most common opportunistic fungal infections in immunocompromised and neutropenic patients. Aspergillus fumigatus (A. fumigatus) is the most common causative agent of this infection. Due to variable CO2 concentrations that pathogens are exposed to during the infection process and to understand the role of CO2, we examined the effects of various CO2 concentrations as one of the environmental factors on morphological changes and induction of antifungal resistance in A. fumigatus. Materials and Methods A. fumigatus strains were cultured and incubated under 1%, 3%, 5%, and 12% CO2 atmospheres, each time for one, two, and four weeks. The control culture was maintained for one week without CO2 atmosphere. Morphological changes were investigated and antifungal susceptibility test was performed according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The results of different CO2 atmospheres were compared with that of the control sample. Results We found that 1%, 3%, 5%, and 12% CO2 atmospheres were associated with morphological colony changes. Macroscopically, the colonies were shallow dark green, smooth, crisp to powdery with reduced growth; microscopic examination revealed the absence of conidiation. The induction of antifungal resistance in the susceptible strains to itraconazole, voriconazole, and amphotericin B increased after exposure to 12% CO2 atmosphere and four weeks of incubation. The MIC values for itraconazole, voriconazole, and amphotericin B were 16 g/ml, 1 g/ml, and 16 g/ml, respectively. These values for the control group were 0.125 g/ml, 0.125 g/ml, and 2 g/ml, respectively. Conclusion Exposure to different CO2 atmospheres induced morphological changes in A. fumigatus, it seems to increase the MIC values, as well. In parallel, resistance to both itraconazole and voriconazole was also observed.
Collapse
Affiliation(s)
- Sima Darabian
- Department of Medical Mycology and Parasitology, School of Public Health, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Jamal Hashemi
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Khodavaisy
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Sharifynia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kord
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akbari Dana
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Aala
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sassan Rezaie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I, Zaballos Á, Janbon G, Ariño J, Zaragoza Ó. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 2018; 14:e1007007. [PMID: 29775477 PMCID: PMC5959073 DOI: 10.1371/journal.ppat.1007007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Haroldo Cesar de Oliveira
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brazil
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Suélen Andreia Rossi
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Irene Llorente
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Genomics Unit, Core Scientific Services, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
23
|
Battistone MA, Nair AV, Barton CR, Liberman RN, Peralta MA, Capen DE, Brown D, Breton S. Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 2017; 29:545-556. [PMID: 29222395 DOI: 10.1681/asn.2017060643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claire R Barton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel N Liberman
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Peralta
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Sherrington SL, Kumwenda P, Kousser C, Hall RA. Host Sensing by Pathogenic Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:159-221. [PMID: 29680125 DOI: 10.1016/bs.aambs.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to cause disease extends from the ability to grow within the host environment. The human host provides a dynamic environment to which fungal pathogens must adapt to in order to survive. The ability to grow under a particular condition (i.e., the ability to grow at mammalian body temperature) is considered a fitness attribute and is essential for growth within the human host. On the other hand, some environmental conditions activate signaling mechanisms resulting in the expression of virulence factors, which aid pathogenicity. Therefore, pathogenic fungi have evolved fitness and virulence attributes to enable them to colonize and infect humans. This review highlights how some of the major pathogenic fungi respond and adapt to key environmental signals within the human host.
Collapse
Affiliation(s)
- Sarah L Sherrington
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Pizga Kumwenda
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Courtney Kousser
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
25
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
26
|
Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms. mBio 2016; 7:mBio.01597-16. [PMID: 27923918 PMCID: PMC5142616 DOI: 10.1128/mbio.01597-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular DNA (eDNA) is an integral biofilm matrix component of numerous pathogens, including nontuberculous mycobacteria (NTM). Cell lysis is the source of eDNA in certain bacteria, but the source of eDNA remains unidentified for NTM, as well as for other eDNA-containing bacterial species. In this study, conditions affecting eDNA export were examined, and genes involved with the eDNA export mechanism were identified. After a method for monitoring eDNA in real time in undisturbed biofilms was established, different conditions affecting eDNA were investigated. Bicarbonate positively influenced eDNA export in a pH-independent manner in Mycobacterium avium, M. abscessus, and M. chelonae The surface-exposed proteome of M. avium in eDNA-containing biofilms revealed abundant carbonic anhydrases. Chemical inhibition of carbonic anhydrases with ethoxzolamide significantly reduced eDNA export. An unbiased transposon mutant library screen for eDNA export in M. avium identified many severely eDNA-attenuated mutants, including one not expressing a unique FtsK/SpoIIIE-like DNA-transporting pore, two with inactivation of carbonic anhydrases, and nine with inactivation of genes belonging to a unique genomic region, as well as numerous mutants involved in metabolism and energy production. Complementation of nine mutants that included the FtsK/SpoIIIE and carbonic anhydrase significantly restored eDNA export. Interestingly, several attenuated eDNA mutants have mutations in genes encoding proteins that were found with the surface proteomics, and many more mutations are localized in operons potentially encoding surface proteins. Collectively, our data strengthen the evidence of eDNA export being an active mechanism that is activated by the bacterium responding to bicarbonate. IMPORTANCE Many bacteria contain extracellular DNA (eDNA) in their biofilm matrix, as it has various biological and physical functions. We recently reported that nontuberculous mycobacteria (NTM) can contain significant quantities of eDNA in their biofilms. In some bacteria, eDNA is derived from dead cells, but that does not appear to be the case for all eDNA-containing organisms, including NTM. In this study, we found that eDNA export in NTM is conditionally dependent on the molecules to which the bacteria are exposed and that bicarbonate positively influences eDNA export. We also identified genes and proteins important for eDNA export, which begins to piece together a description of a mechanism for eDNA. Better understanding of eDNA export can give new targets for the development of antivirulence drugs, which are attractive because resistance to classical antibiotics is currently a significant problem.
Collapse
|
27
|
Voisey CR, Christensen MT, Johnson LJ, Forester NT, Gagic M, Bryan GT, Simpson WR, Fleetwood DJ, Card SD, Koolaard JP, Maclean PH, Johnson RD. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne. FRONTIERS IN PLANT SCIENCE 2016; 7:1546. [PMID: 27833620 PMCID: PMC5082231 DOI: 10.3389/fpls.2016.01546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3', 5'-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling.
Collapse
Affiliation(s)
- Christine R. Voisey
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Michael T. Christensen
- Formally of Forage Improvement, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Linda J. Johnson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Natasha T. Forester
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Milan Gagic
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Gregory T. Bryan
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Wayne R. Simpson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Damien J. Fleetwood
- Biotelliga Ltd., Institute for Innovation in BiotechnologyAuckland, New Zealand
| | - Stuart D. Card
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - John P. Koolaard
- Bioinformatics and Statistics Team, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Paul H. Maclean
- Bioinformatics and Statistics Team, AgResearch Ltd., Lincoln Research CentreChristchurch, New Zealand
| | - Richard D. Johnson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| |
Collapse
|
28
|
Tomazett MV, Zanoelo FF, Bailão EFC, Bailão AM, Borges CL, Soares CMDA. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides. Genet Mol Biol 2016; 39:416-25. [PMID: 27560991 PMCID: PMC5004831 DOI: 10.1590/1678-4685-gmb-2015-0213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze
the reversible hydration of carbon dioxide to bicarbonate. In the present work, we
characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3,
and CA4). In the presence of CO2, there was not a significant increase in
fungal ca1, ca2 and ca4 gene
expression. The ca1 transcript was induced during the
mycelium-to-yeast transition, while ca2 and ca4
gene expression was much higher in yeast cells, when compared to mycelium and
mycelium-to-yeast transition. The ca1 transcript was induced in
yeast cells recovered directly from liver and spleen of infected mice, while
transcripts for ca2 and ca4 were down-regulated.
Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were
obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were
characterized regarding pH, temperature, ions and amino acids addition influence.
Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes
were dramatically inhibited by Hg+2 and activated by Zn+2,
while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all
in L configuration), arginine, lysine, tryptophan and histidine enhanced residual
activity of rCA1 and rCA4.
Collapse
Affiliation(s)
- Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Fabiana Fonseca Zanoelo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.,Laboratório de Bioquímica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Elisa Flávia Cardoso Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
29
|
Bortezomib inhibits bacterial and fungal β-carbonic anhydrases. Bioorg Med Chem 2016; 24:4406-4409. [PMID: 27469982 DOI: 10.1016/j.bmc.2016.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/16/2016] [Indexed: 12/28/2022]
Abstract
Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition.
Collapse
|
30
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
31
|
Eminoğlu A, Vullo D, Aşık A, Çolak DN, Çanakçı S, Beldüz AO, Supuran CT. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13. Bioorg Med Chem Lett 2016; 26:1821-6. [PMID: 26920803 DOI: 10.1016/j.bmcl.2016.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence.
Collapse
Affiliation(s)
- Ayşenur Eminoğlu
- Recep Tayyip Erdogan University, Faculty of Art and Science, Department of Biology, Molecular Biology Research Laboratories, Rize, Turkey
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipaertimento di Chimica, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Aycan Aşık
- Selcuk University, Faculty of Medicine, Medical Biology Department, Konya, Turkey
| | - Dilşat Nigar Çolak
- Giresun University, Bulancak School of Applied Sciences, Giresun, Turkey
| | - Sabriye Çanakçı
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey
| | - Ali Osman Beldüz
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipaertimento di Chimica, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
32
|
Isatin analogs as novel inhibitors of Candida spp. β-carbonic anhydrase enzymes. Bioorg Med Chem 2016; 24:1648-52. [PMID: 26951893 DOI: 10.1016/j.bmc.2016.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Enzyme inhibition data of structurally novel isatin-containing sulfonamides were determined for two carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic Candida species (CaNce103 from C. albicans and CgNce103 from C. glabrata). The compounds show KI values in the low nanomolar range for the fungal CAs, while they have significantly higher KI values for the human CAs. Homology models were constructed for the CaNce103 and CgNce103 and subsequently the ligands were docked into these models to rationalize their enzyme inhibitory properties.
Collapse
|
33
|
Carbonic anhydrase activators: Activation of the β-carbonic anhydrase from Malassezia globosa with amines and amino acids. Bioorg Med Chem Lett 2016; 26:1381-5. [PMID: 26856923 DOI: 10.1016/j.bmcl.2016.01.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/09/2023]
Abstract
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the dandruff producing fungus Malassezia globosa, MgCA, was investigated for its activation with amines and amino acids. MgCA was weakly activated by amino acids such as L-/D-His, L-Phe, D-DOPA, D-Trp, L-/D-Tyr and by the amine serotonin (KAs of 12.5-29.3μM) but more effectively activated by d-Phe, l-DOPA, l-Trp, histamine, dopamine, pyridyl-alkylamines, and 4-(2-aminoethyl)-morpholine, with KAs of 5.82-10.9μM. The best activators were l-adrenaline and 1-(2-aminoethyl)piperazine, with activation constants of 0.72-0.81μM. This study may help a better understanding of the activation mechanisms of β-CAs from pathogenic fungi as well as the design of tighter binding ligands for this enzyme which is a drug target for novel types of anti-dandruff agents.
Collapse
|
34
|
Abstract
Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology.
Collapse
|
35
|
Ceruso M, Carta F, Osman SM, Alothman Z, Monti SM, Supuran CT. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg Med Chem 2015; 23:4181-4187. [DOI: 10.1016/j.bmc.2015.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
|
36
|
Affiliation(s)
- Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065; ,
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
37
|
Li YP, Tang X, Wu W, Xu Y, Huang ZB, He QH. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:577-83. [PMID: 25482072 DOI: 10.1080/19440049.2014.990993] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Citrinin, a fungal secondary metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. Citrinin is synthesised by condensation of acetyl-CoA and malonyl-CoA. Six genes involved in the citrinin biosynthesis, including pksCT, ctnA and ctnB, have been cloned in Monascus purpureus. The pksCT gene encodes a polyketide synthase; ctnA is a regulatory factor; and ctnB encodes an oxidoreductase. When the three genes were respectively disrupted, the disruption strains drastically decreased citrinin production or barely produced citrinin. Ten new genes have been discovered in Monascus aurantiacus besides the above six genes. One of these gene displayed the highest similarity to the β-carbonic anhydrase gene from Aspergillus oryzae (74% similarity) and was designated ctnG. To learn more about the citrinin biosynthetic pathway, a ctnG-replacement vector was constructed to disrupt ctnG with the hygromycin resistance gene as the selection marker, then transformed into M. aurantiacus Li AS3.4384 by a protoplast-PEG method. The citrinin content of three disruptants was reduced to about 50%, meanwhile pigment production decreased by 23%, respectively, over those of the wild-type strains. ctnG was deduced to be involved in the formation of malonyl-CoA as a common precursor of red pigments and citrinin. Therefore, the disruption of the ctnG gene decreased citrinin and pigment production. M. aurantiacus Li AS3.4384 can produce higher concentrations of citrinin than other strains such as M. purpureus and M. ruber. Establishing the function of citrinin biosynthetic genes in M. aurantiacus is helpful in understanding the citrinin synthetic pathway and adopting some strategies to control contamination.
Collapse
Affiliation(s)
- Yan-Ping Li
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | | | | | | | | | | |
Collapse
|
38
|
Ren P, Chaturvedi V, Chaturvedi S. Carbon dioxide is a powerful inducer of monokaryotic hyphae and spore development in Cryptococcus gattii and carbonic anhydrase activity is dispensable in this dimorphic transition. PLoS One 2014; 9:e113147. [PMID: 25478697 PMCID: PMC4257545 DOI: 10.1371/journal.pone.0113147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/22/2014] [Indexed: 12/02/2022] Open
Abstract
Cryptococcus gattii is unique among human pathogenic fungi with specialized ecological niche on trees. Since leaves concentrate CO2, we investigated the role of this gaseous molecule in C. gattii biology and virulence. We focused on the genetic analyses of β-carbonic anhydrase (β-CA) encoded by C. gattii CAN1 and CAN2 as later is critical for CO2 sensing in a closely related pathogen C. neoformans. High CO2 conditions induced robust development of monokaryotic hyphae and spores in C. gattii. Conversely, high CO2 completely repressed hyphae development in sexual mating. Both CAN1 and CAN2 were dispensable for CO2 induced morphogenetic transitions. However, C. gattii CAN2 was essential for growth in ambient air similar to its reported role in C. neoformans. Both can1 and can2 mutants retained full pathogenic potential in vitro and in vivo. These results provide insight into C. gattii adaptation for arboreal growth and production of infectious propagules by β-CA independent mechanism(s).
Collapse
Affiliation(s)
- Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York, United States of America
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York, United States of America; Department of Biomedical Sciences, School of Public Health, State University at New York, Albany, New York, United States of America
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York, United States of America; Department of Biomedical Sciences, School of Public Health, State University at New York, Albany, New York, United States of America
| |
Collapse
|
39
|
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases — similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2535-47. [DOI: 10.1016/j.bbadis.2014.08.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
|
40
|
Hess KC, Liu J, Manfredi G, Mühlschlegel FA, Buck J, Levin LR, Barrientos A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. FASEB J 2014; 28:4369-80. [PMID: 25002117 PMCID: PMC4202101 DOI: 10.1096/fj.14-252890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/16/2014] [Indexed: 12/30/2022]
Abstract
Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology and
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology and Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| |
Collapse
|
41
|
Sharabi K, Charar C, Friedman N, Mizrahi I, Zaslaver A, Sznajder JI, Gruenbaum Y. The response to high CO2 levels requires the neuropeptide secretion component HID-1 to promote pumping inhibition. PLoS Genet 2014; 10:e1004529. [PMID: 25101962 PMCID: PMC4125093 DOI: 10.1371/journal.pgen.1004529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Carbon dioxide (CO2) is a key molecule in many biological processes; however, mechanisms by which organisms sense and respond to high CO2 levels remain largely unknown. Here we report that acute CO2 exposure leads to a rapid cessation in the contraction of the pharynx muscles in Caenorhabditis elegans. To uncover the molecular mechanisms underlying this response, we performed a forward genetic screen and found that hid-1, a key component in neuropeptide signaling, regulates this inhibition in muscle contraction. Surprisingly, we found that this hid-1-mediated pathway is independent of any previously known pathways controlling CO2 avoidance and oxygen sensing. In addition, animals with mutations in unc-31 and egl-21 (neuropeptide secretion and maturation components) show impaired inhibition of muscle contraction following acute exposure to high CO2 levels, in further support of our findings. Interestingly, the observed response in the pharynx muscle requires the BAG neurons, which also mediate CO2 avoidance. This novel hid-1-mediated pathway sheds new light on the physiological effects of high CO2 levels on animals at the organism-wide level.
Collapse
Affiliation(s)
- Kfir Sharabi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chayki Charar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Friedman
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Mizrahi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Zaslaver
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
42
|
Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 2014; 4:a019760. [PMID: 24985132 PMCID: PMC4066639 DOI: 10.1101/cshperspect.a019760] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually.
Collapse
Affiliation(s)
- Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhou Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guilhem Janbon
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, 75015 Paris, France
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
43
|
Lehneck R, Elleuche S, Pöggeler S. The filamentous ascomyceteSordaria macrosporacan survive in ambient air without carbonic anhydrases. Mol Microbiol 2014; 92:931-44. [DOI: 10.1111/mmi.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Ronny Lehneck
- Institute of Microbiology and Genetics; Department of Genetics of Eukaryotic Microorganisms; Georg-August-University Göttingen; Göttingen Germany
| | - Skander Elleuche
- Institute of Technical Microbiology; Hamburg University of Technology; Hamburg Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics; Department of Genetics of Eukaryotic Microorganisms; Georg-August-University Göttingen; Göttingen Germany
| |
Collapse
|
44
|
Lehneck R, Neumann P, Vullo D, Elleuche S, Supuran CT, Ficner R, Pöggeler S. Crystal structures of two tetrameric β-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. FEBS J 2014; 281:1759-72. [PMID: 24506675 DOI: 10.1111/febs.12738] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 01/11/2023]
Abstract
UNLABELLED Carbonic anhydrases (CAs) are metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate (hydrogen carbonate) and protons. CAs have been identified in archaea, bacteria and eukaryotes and can be classified into five groups (α, β, γ, δ, ζ) that are unrelated in sequence and structure. The fungal β-class has only recently attracted attention. In the present study, we investigated the structure and function of the plant-like β-CA proteins CAS1 and CAS2 from the filamentous ascomycete Sordaria macrospora. We demonstrated that both proteins can substitute for the Saccharomyces cerevisiae β-CA Nce103 and exhibit an in vitro CO2 hydration activity (kcat /Km of CAS1: 1.30 × 10(6) m(-1) ·s(-1) ; CAS2: 1.21 × 10(6 ) m(-1) ·s(-1) ). To further investigate the structural properties of CAS1 and CAS2, we determined their crystal structures to a resolution of 2.7 Å and 1.8 Å, respectively. The oligomeric state of both proteins is tetrameric. With the exception of the active site composition, no further major differences have been found. In both enzymes, the Zn(2) (+) -ion is tetrahedrally coordinated; in CAS1 by Cys45, His101 and Cys104 and a water molecule and in CAS2 by the side chains of four residues (Cys56, His112, Cys115 and Asp58). Both CAs are only weakly inhibited by anions, making them good candidates for industrial applications. STRUCTURED DIGITAL ABSTRACT CAS1 and CAS2 bind by x-ray crystallography (View interaction) DATABASE Structural data have been deposited in the Protein Data Bank database under accession numbers 4O1J for CAS1 and 4O1K for CAS2.
Collapse
Affiliation(s)
- Ronny Lehneck
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Gai CS, Lu J, Brigham CJ, Bernardi AC, Sinskey AJ. Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16. AMB Express 2014; 4:2. [PMID: 24410804 PMCID: PMC3904209 DOI: 10.1186/2191-0855-4-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022] Open
Abstract
Carbonic anhydrase (CA) enzymes catalyze the interconversion of CO2 and bicarbonate. These enzymes play important roles in cellular metabolism, CO2 transport, ion transport, and internal pH regulation. Understanding the metabolic role of CAs in the chemolithoautotropic bacterium Ralstonia eutropha is important for the development of high performance fermentation processes based on the bacterium’s capability to fix carbon using the Calvin-Benson-Bassham (CBB) cycle. Analysis of the R. eutropha H16 genome sequence revealed the presence of four CA genes: can, can2, caa and cag. We evaluated the importance of each of the CAs in the metabolism of R. eutropha by examination of growth and enzyme activity in gene deletion, complementation, and overexpression strains. All four purified CAs were capable of performing the interconversion of CO2 and HCO3–, although the equilibrium towards the formation of CO2 or HCO3– differs with each CA. Deletion of can, encoding a β-CA, affected the growth of R. eutropha; however the growth defect could be compensated by adding CO2 to the culture. Deletion of the caa, encoding an α-CA, had the strongest deleterious influence on cell growth. Strains with deletion or overexpression of can2 or cag genes exhibited similar behavior to wild type under most of the conditions tested. In this work, Caa was studied in greater detail using microscopy and complementation experiments, which helped confirm its periplasmic localization and determine its importance for robust growth of R. eutropha. A hypothesis for the coordinated role of these four enzymes in the metabolism of R. eutropha is proposed.
Collapse
|
46
|
|
47
|
Teichert I, Nowrousian M, Pöggeler S, Kück U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. ADVANCES IN GENETICS 2014; 87:199-244. [PMID: 25311923 DOI: 10.1016/b978-0-12-800149-3.00004-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Göttingen, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
48
|
Tobal JM, Balieiro MEDSF. Role of carbonic anhydrases in pathogenic micro-organisms: a focus on Aspergillus fumigatus. J Med Microbiol 2014; 63:15-27. [DOI: 10.1099/jmm.0.064444-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus responsible for organic material decomposition, and plays an important role in recycling environmental carbon and nitrogen. Besides its important role in the environment, this fungus has been reported as one of the most important fungal pathogens in immunocompromised patients. Due to changes in CO2 concentration that some pathogens face during the infection process, studies have been undertaken to understand the pathogenic roles of carbonic anhydrases (CAs), well-known CO2 hydration catalytic enzymes. As a basis for a discussion of the possible roles of CAs in A. fumigatus pathogenicity, this review describes the main characteristics of the A. fumigatus infection and the challenges for its treatment. In addition, it gathers findings from studies with CA inhibitor drugs as anti-infective agents in different pathogens.
Collapse
Affiliation(s)
- Jaqueline Moisés Tobal
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
49
|
Cummins EP, Selfridge AC, Sporn PH, Sznajder JI, Taylor CT. Carbon dioxide-sensing in organisms and its implications for human disease. Cell Mol Life Sci 2013; 71:831-45. [PMID: 24045706 DOI: 10.1007/s00018-013-1470-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.
Collapse
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
50
|
Martins LMS, de Andrade HM, Vainstein MH, Wanke B, Schrank A, Balaguez CB, dos Santos PR, Santi L, Pires SDF, da Silva AS, de Castro JAF, Brandão RMSDS, do Monte SJH. Immunoproteomics and immunoinformatics analysis of Cryptococcus gattii: novel candidate antigens for diagnosis. Future Microbiol 2013; 8:549-63. [PMID: 23534365 DOI: 10.2217/fmb.13.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To identify immunoreactive proteins of Cryptococcus gattii genotype VGII and their B-cell epitopes. MATERIALS & METHODS We combined 2D gel electrophoresis, immunoblotting and mass spectrometry to identify immunoreactive proteins from four strains of C. gattii genotype VGII (CG01, CG02, CG03 and R265). Next, we screened the identified proteins to map B-cell epitopes. RESULTS Sixty-eight immunoreactive proteins were identified. The strains and the number of proteins we found were: CG01 (12), CG02 (12), CG03 (18) and R265 (26). In addition, we mapped 374 peptides potentially targeted by B cells. CONCLUSION Both immunoreactive proteins and B-cell epitopes of C. gattii genotype VGII that were potentially targeted by a host humoral response were identified. Considering the evolutionary relevance of the identified proteins, we may speculate that they could be used as the initial targets for recombinant protein and peptide synthesis aimed at the development of immunodiagnostic tools for cryptococcosis.
Collapse
Affiliation(s)
- Liline Maria Soares Martins
- Laboratório de Imunogenética e Biologia Molecular, Universidade Federal do Piauí, Campus Ministro Petrônio Portella Bloco SG-16, 64049-550, Teresina, Piauí, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|