1
|
Voss OH, Moin I, Gaytan H, Sadik M, Ullah S, Rahman MS. Phosphatidylserine-binding receptor, CD300f, on macrophages mediates host invasion of pathogenic and non-pathogenic rickettsiae. Infect Immun 2025:e0005925. [PMID: 40310290 DOI: 10.1128/iai.00059-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding of how Rickettsia species invade host cells, including MΦ, remains poorly defined. In this study, we describe a mechanism of host invasion by Rickettsia species, involving rickettsial phosphatidylserine (PS), as a ligand, and the CD300f receptor on MΦ. Our data reveal that engulfment of both pathogenic Rickettsia typhi (the etiologic agent of murine typhus) and Rickettsia rickettsii (the etiologic agent of Rocky Mountain spotted fever) species, as well as the non-pathogenic Rickettsia montanensis, is significantly reduced in bone marrow-derived macrophages (BMDMΦ) from CD300f-/- mice, as compared to that of wild-type (WT) animals. Furthermore, our mechanistic analysis suggests bacterial PS as the potential source for the CD300f-mediated rickettsiae engulfment by MΦ. In vivo infection studies using WT and CD300f-/- C57BL/6J mice show that CD300f-/- animals are protected against R. typhi- or R. rickettsii-induced fatal rickettsiosis, which corroborates with the level of the bacterial burden detected in the spleens of the mice. Adoptive transfer studies reveal that CD300f-expressing MΦ are important mediators to control rickettsiosis in vivo. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment of rickettsiae within the host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Imran Moin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hodalis Gaytan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Sadik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saif Ullah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Voss OH, Moin I, Gaytan H, Ullah S, Sadik M, Rahman MS. Phosphatidylserine-binding receptor, CD300f, on macrophages mediates host invasion of pathogenic and non-pathogenic rickettsiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.10.593542. [PMID: 38766217 PMCID: PMC11100818 DOI: 10.1101/2024.05.10.593542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. In particular, MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding on how Rickettsia species invade host cells, including MΦ, remain poorly defined. In this study, we describe a mechanism of host invasion by Rickettsia species, involving rickettsial phosphatidylserine (PS), as a ligand, and the CD300f receptor on MΦ. Using bone marrow-derived macrophages (BMDMΦ) from wild-type (WT) and CD300f-/- mice, we demonstrated that engulfment of both pathogenic R. typhi (the etiologic agent of murine typhus) and R. rickettsii (the etiologic agent of Rocky Mountain spotted fever) species as well as the non-pathogenic R. montanensis was significantly reduced in CD300f-/- BMDMΦ as compared to that of WT BMDMΦ. Furthermore, our mechanistic analysis suggests bacterial PS as the potential source for the CD300f-mediated rickettsiae engulfment by MΦ. In vivo infection studies using WT and CD300f-/- C57BL/6J mice showed that CD300f-/- animals were protected against R. typhi- or R. rickettsii-induced fatal rickettsiosis, which correlated with levels of bacterial burden detected in the spleens of mice. Adoptive transfer studies further revealed that CD300f-expressing MΦ are important mediators to control rickettsiosis in vivo. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment of rickettsiae within the host.
Collapse
|
3
|
Willson R, Zhao Y, Brosamer K, Pal Y, Blanton LS, Arroyave E, Roach C, Walker DH, Kourentzi K, Fang R. Development of a rapid antigen-based lateral flow assay for tick-borne spotted fever rickettsioses. PLoS One 2025; 20:e0312819. [PMID: 39823491 PMCID: PMC11741651 DOI: 10.1371/journal.pone.0312819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/14/2024] [Indexed: 01/19/2025] Open
Abstract
Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs. The concentrations of RC0497 in sera of Rickettsia rickettsii-infected guinea pigs and R. conorii-infected mice were determined by stable isotope dilution-parallel reaction monitoring mass spectrometry (SID-PRM-MS), ranging from 0.1 to 1.1 ng/ml. Using europium chelate nanoparticle reporters, we developed a lateral flow assay (LFA) and evaluated the test with a panel of serum samples of mock and experimentally infected animals. Interestingly, 21 of 22 (95.5%) serum samples from R. rickettsii-infected guinea pigs and R. conorii-infected mice yielded positive results with a ratio of test line / control line greater than the cutoff value determined for non-infected animals. All uninfected samples were in agreement with the intended results, suggesting that the initially assessed specificity of the test is 100%, among these samples. Mice infected with a lethal dose of R. conorii and treated with doxycycline on day 3 post-infection (p.i.), upon RC0497 detection by LFA, displayed significantly decreased rickettsial loads, comparable to the sublethal infection group on day 5 p.i.. A panel of human serum samples spiked with various concentrations of recombinant RC0497 were analyzed by LFA, suggesting that the limit of detection of the LFA was 0.64 ng/mL. These findings suggest that the timely detection of RC0497 by a europium LFA offers guidance for treatment, leading to a significant improvement in infection outcomes. This work, for the first time, shows significant promise for a rapid and easy-to-use platform offering a timely diagnostic assay for severe SFRs.
Collapse
Affiliation(s)
- Richard Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kristen Brosamer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Yogita Pal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Lucas S. Blanton
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Carsen Roach
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
4
|
Londoño AF, Farner JM, Dillon M, Grab DJ, Kim Y, Scorpio DG, Dumler JS. Benidipine impairs innate immunity converting sublethal to lethal infections in a murine model of spotted fever rickettsiosis. PLoS Negl Trop Dis 2024; 18:e0011993. [PMID: 38408129 PMCID: PMC10919851 DOI: 10.1371/journal.pntd.0011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/07/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Spotted fever group rickettsiae are tick-borne obligate intracellular bacteria that infect microvascular endothelial cells. Humans and mammalian infection results in endothelial cell barrier dysfunction and increased vascular permeability. We previously demonstrated that treatment of Rickettsia parkeri-infected cells with the calcium channel blocker benidipine significantly delayed vascular barrier permeability. Thus, we hypothesized that benidipine, known to be safe and effective for other clinical processes, could reduce rickettsia-induced vascular permeability in vivo in an animal model of spotted fever rickettsiosis. Based on liver, lung and brain vascular FITC-dextran extravasation studies, benidipine did not reliably impact vascular permeability. However, it precipitated a deleterious effect on responses to control sublethal R. parkeri infection. Animals treated with benidipine alone had no clinical signs or changes in histopathology and splenic immune cell distributions. Benidipine-treated infected animals had marked increases in tissue and blood bacterial loads, more extensive inflammatory histopathologic injury, and changes in splenic architecture and immune cell distributions potentially reflecting diminished Ca2+ signaling, reduced innate immune cell activation, and loss of rickettsial propagation control. Impaired T cell activation by R. parkeri antigen in the presence of benidipine was confirmed in vitro with the use of NKT cell hybridomas. The unexpected findings stand in stark contrast to recent discussions of the benefits of calcium channel blockers for viral infections and chronic infectious or inflammatory diseases. A role for calcium channel blockers in exacerbation of human rickettsiosis and acute inflammatory infections should be evaluated by a retrospective review of patient's outcomes and medications.
Collapse
Affiliation(s)
- Andrés F. Londoño
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Department of Pathology, School of Medicine, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Jennifer M. Farner
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Emerging Infectious Disease Graduate Program, School of Medicine, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Marlon Dillon
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis J. Grab
- Department of Pathology, School of Medicine, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Yuri Kim
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Diana G. Scorpio
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Szulc-Dąbrowska L, Biernacka Z, Koper M, Struzik J, Gieryńska M, Schollenberger A, Lasocka I, Toka FN. Differential Activation of Splenic cDC1 and cDC2 Cell Subsets following Poxvirus Infection of BALB/c and C57BL/6 Mice. Cells 2023; 13:13. [PMID: 38201217 PMCID: PMC10778474 DOI: 10.3390/cells13010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Conventional dendritic cells (cDCs) are innate immune cells that play a pivotal role in inducing antiviral adaptive immune responses due to their extraordinary ability to prime and polarize naïve T cells into different effector T helper (Th) subsets. The two major subpopulations of cDCs, cDC1 (CD8α+ in mice and CD141+ in human) and cDC2 (CD11b+ in mice and CD1c+ in human), can preferentially polarize T cells toward a Th1 and Th2 phenotype, respectively. During infection with ectromelia virus (ECTV), an orthopoxvirus from the Poxviridae family, the timing and activation of an appropriate Th immune response contributes to the resistance (Th1) or susceptibility (Th2) of inbred mouse strains to the lethal form of mousepox. Due to the high plasticity and diverse properties of cDC subpopulations in regulating the quality of a specific immune response, in the present study we compared the ability of splenic cDC1 and cDC2 originating from different ECTV-infected mouse strains to mature, activate, and polarize the Th immune response during mousepox. Our results demonstrated that during early stages of mousepox, both cDC subsets from resistant C57BL/6 and susceptible BALB/c mice were activated upon in vivo ECTV infection. These cells exhibited elevated levels of surface MHC class I and II, and co-stimulatory molecules and showed enhanced potential to produce cytokines. However, both cDC subsets from BALB/c mice displayed a higher maturation status than that of their counterparts from C57BL/6 mice. Despite their higher activation status, cDC1 and cDC2 from susceptible mice produced low amounts of Th1-polarizing cytokines, including IL-12 and IFN-γ, and the ability of these cells to stimulate the proliferation and Th1 polarization of allogeneic CD4+ T cells was severely compromised. In contrast, both cDC subsets from resistant mice produced significant amounts of Th1-polarizing cytokines and demonstrated greater capability in differentiating allogeneic T cells into Th1 cells compared to cDCs from BALB/c mice. Collectively, our results indicate that in the early stages of mousepox, splenic cDC subpopulations from the resistant mouse strain can better elicit a Th1 cell-mediated response than the susceptible strain can, probably contributing to the induction of the protective immune responses necessary for the control of virus dissemination and for survival from ECTV challenge.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Zuzanna Biernacka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
| | - Justyna Struzik
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Ada Schollenberger
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland;
| | - Felix N. Toka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
6
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
7
|
IL-1 Superfamily Member ( IL-1A, IL-1B and IL-18) Genetic Variants Influence Susceptibility and Clinical Course of Mediterranean Spotter Fever. Biomolecules 2022; 12:biom12121892. [PMID: 36551320 PMCID: PMC9816934 DOI: 10.3390/biom12121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mediterranean Spotted Fever (MSF) is one of the most common spotted fever Rickettsioses. Most cases of MSF follow a benign course, with a minority of cases being fatal. The severity of the infection depends on bacterial virulence, dose and host factors such as effective immune response and genetic background. Herein, we reported data on typing by competitive allele-specific PCR of functionally relevant polymorphisms of genes coding for MyD88 adapter-like (Mal/TIRAP) protein (rs8177374), interleukin(IL)-1 cluster (IL-1A rs1800587, IL-1B rs16944 and rs1143634) and IL-18 (rs187238), which might be crucial for an efficient immune response. The results enlighten the role that IL-1 gene cluster variants might play in susceptibility against Rickettsia conorii infection. In particular, the IL-1A rs1800587TT genotype was significantly increased in patients alone and combined in a haplotype composed by minor alleles rs1800587T, rs16944A and rs1143634A. This result was confirmed using the decision tree heuristic approach. Using this methodology, IL-1A rs1800587TT genotype was the better discrimination key among MSF patients and controls. In addition, the IL-1 gene cluster SNP genotypes containing minor alleles and IL-18 rs187238G positive genotypes were found as associated with risk of severe complications such as sepsis, septic shock, acute respiratory distress syndrome and coma. In conclusion, these data suggest that the evaluation of IL-1A, IL-1B and IL-18 gene SNPs can add useful information on the clinical course of patients affected by Mediterranean Spotted Fever, even if further confirmatory studies will be necessary.
Collapse
|
8
|
Walker DH, Blanton LS, Laroche M, Fang R, Narra HP. A Vaccine for Canine Rocky Mountain Spotted Fever: An Unmet One Health Need. Vaccines (Basel) 2022; 10:1626. [PMID: 36298491 PMCID: PMC9610744 DOI: 10.3390/vaccines10101626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Outbreaks of life-threatening Rocky Mountain spotted fever in humans and dogs associated with a canine-tick maintenance cycle constitute an important One Health opportunity. The reality of the problem has been observed strikingly in Mexico, Brazil, Colombia, and Native American tribal lands in Arizona. The brown dog tick, Rhipicephalus sanguineus sensu lato, acquires the rickettsia from bacteremic dogs and can maintain the bacterium transtadially to the next tick stage. The subsequent adult tick can then transmit infection to a new host, as shown by guinea pig models. These brown dog ticks maintain spotted fever group rickettsiae transovarially through many generations, thus serving as both vector and reservoir. Vaccine containing whole-killed R. rickettsii does not stimulate sufficient immunity. Studies of Rickettsia subunit antigens have demonstrated that conformationally preserved outer-membrane autotransporter proteins A and B are the leading vaccine candidates. The possibility of a potentially safe and effective live attenuated vaccine has only begun to be explored as gene knockout methods are applied to these obligately intracellular pathogens.
Collapse
Affiliation(s)
- David H. Walker
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Lucas S. Blanton
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0435, USA
| | - Maureen Laroche
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1019, USA
| | - Rong Fang
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Hema P. Narra
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| |
Collapse
|
9
|
Arroyave E, Hyseni I, Burkhardt N, Kuo YF, Wang T, Munderloh U, Fang R. Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens 2021; 10:pathogens10070819. [PMID: 34208806 PMCID: PMC8308654 DOI: 10.3390/pathogens10070819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Although rickettsiae can cause life-threatening infections in humans worldwide, no licensed vaccine is currently available. To evaluate the suitability of live-attenuated vaccine candidates against rickettsioses, we generated a Rickettsia parkeri mutant RPATATE_0245::pLoxHimar (named 3A2) by insertion of a modified pLoxHimar transposon into the gene encoding a phage integrase protein. For visualization and selection, R. parkeri 3A2 expressed mCherry fluorescence and resistance to spectinomycin. Compared to the parent wild type (WT) R. parkeri, the virulence of R. parkeri 3A2 was significantly attenuated as demonstrated by significantly smaller size of plaque, failure to grow in human macrophage-like cells, rapid elimination of Rickettsia and ameliorated histopathological changes in tissues in intravenously infected mice. A single dose intradermal (i.d.) immunization of R. parkeri 3A2 conferred complete protection against both fatal R. parkeri and R. conorii rickettsioses in mice, in association with a robust and durable rickettsiae-specific IgG antibody response. In summary, the disruption of RPATATE_0245 in R. parkeri resulted in a mutant with a significantly attenuated phenotype, potent immunogenicity and protective efficacy against two spotted fever group rickettsioses. Overall, this proof-of-concept study highlights the potential of R. parkeri mutants as a live-attenuated and multivalent vaccine platform in response to emergence of life-threatening spotted fever rickettsioses.
Collapse
Affiliation(s)
- Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Ilirjana Hyseni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Nicole Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Tian Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| |
Collapse
|
10
|
Bechelli J, Rumfield CS, Walker DH, Widen S, Khanipov K, Fang R. Subversion of Host Innate Immunity by Rickettsia australis via a Modified Autophagic Response in Macrophages. Front Immunol 2021; 12:638469. [PMID: 33912163 PMCID: PMC8071864 DOI: 10.3389/fimmu.2021.638469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
We recently reported that the in vitro and in vivo survivals of Rickettsia australis are Atg5-dependent, in association with an inhibited level of anti-rickettsial cytokine, IL-1β. In the present study, we sought to investigate how R. australis interacts with host innate immunity via an Atg5-dependent autophagic response. We found that the serum levels of IFN-γ and G-CSF in R. australis-infected Atg5flox/floxLyz-Cre mice were significantly less compared to Atg5flox/flox mice, accompanied by significantly lower rickettsial loads in tissues with inflammatory cellular infiltrations including neutrophils. R. australis infection differentially regulated a significant number of genes in bone marrow-derived macrophages (BMMs) in an Atg5-depdent fashion as determined by RNA sequencing and Ingenuity Pathway Analysis, including genes in the molecular networks of IL-1 family cytokines and PI3K-Akt-mTOR. The secretion levels of inflammatory cytokines, such as IL-1α, IL-18, TNF-α, and IL-6, by R. australis-infected Atg5flox/floxLyz-Cre BMMs were significantly greater compared to infected Atg5flox/flox BMMs. Interestingly, R. australis significantly increased the levels of phosphorylated mTOR and P70S6K at a time when the autophagic response is induced. Rapamycin treatment nearly abolished the phosphorylated mTOR and P70S6K but did not promote significant autophagic flux during R. australis infection. These results highlight that R. australis modulates an Atg5-dependent autophagic response, which is not sensitive to regulation by mTORC1 signaling in macrophages. Overall, we demonstrate that R. australis counteracts host innate immunity including IL-1β-dependent inflammatory response to support the bacterial survival via an mTORC1-resistant autophagic response in macrophages.
Collapse
Affiliation(s)
- Jeremy Bechelli
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States
| | - Claire S Rumfield
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Changing the Recipe: Pathogen Directed Changes in Tick Saliva Components. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041806. [PMID: 33673273 PMCID: PMC7918122 DOI: 10.3390/ijerph18041806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Ticks are obligate hematophagous parasites and are important vectors of a wide variety of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease, rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large number of pharmacologically active molecules that are secreted in their saliva, which inhibits or modulates host immune defenses and wound healing responses upon injection into the bite site. These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted pathogens manipulate tick saliva composition to enhance their own survival, transmission, and evasion of host defenses. We review what is known about specific and functionally characterized tick saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies analyzing sialome-level responses to pathogen challenge.
Collapse
|
12
|
Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, La Manna MP, Di Liberto D, de la Fuente J, Sireci G. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci 2020; 21:ijms21228813. [PMID: 33233869 PMCID: PMC7699928 DOI: 10.3390/ijms21228813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tick-transmitted pathogens cause infectious diseases in both humans and animals. Different types of adaptive immune mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen antigens or indirectly through soluble factors, such as cytokines and/or chemokines, secreted by host cells as response. Adaptive immunity effectors, such as antibody secretion and cytotoxic and/or T helper cell responses, are mainly involved in the late and long-lasting protective immune response. Proteins and/or epitopes derived from pathogens and tick vectors have been isolated and characterized for the immune response induced in different hosts. This review was focused on the interactions between tick-borne pathogenic hemoparasites and different host effector mechanisms of T- and/or B cell-mediated adaptive immunity, describing the efforts to define immunodominant proteins or epitopes for vaccine development and/or immunotherapeutic purposes. A better understanding of these mechanisms of host immunity could lead to the assessment of possible new immunotherapies for these pathogens as well as to the prediction of possible new candidate vaccine antigens.
Collapse
Affiliation(s)
- Alessandra Torina
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Valeria Blanda
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
- Correspondence:
| | - Sara Villari
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Antonio Piazza
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesco La Russa
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesca Grippi
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| |
Collapse
|
13
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
14
|
Torina A, Villari S, Blanda V, Vullo S, La Manna MP, Shekarkar Azgomi M, Di Liberto D, de la Fuente J, Sireci G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int J Mol Sci 2020; 21:ijms21155437. [PMID: 32751625 PMCID: PMC7432002 DOI: 10.3390/ijms21155437] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Many pathogens are transmitted by tick bites, including Anaplasma spp., Ehrlichia spp., Rickettsia spp., Babesia and Theileria sensu stricto species. These pathogens cause infectious diseases both in animals and humans. Different types of immune effector mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen-derived antigens or indirectly by molecules released by host cells binding to these antigens. The components of innate immunity, such as natural killer cells, complement proteins, macrophages, dendritic cells and tumor necrosis factor alpha, cause a rapid and intense protection for the acute phase of infectious diseases. Moreover, the onset of a pro-inflammatory state occurs upon the activation of the inflammasome, a protein scaffold with a key-role in host defense mechanism, regulating the action of caspase-1 and the maturation of interleukin-1β and IL-18 into bioactive molecules. During the infection caused by different microbial agents, very similar profiles of the human innate immune response are observed including secretion of IL-1α, IL-8, and IFN-α, and suppression of superoxide dismutase, IL-1Ra and IL-17A release. Innate immunity is activated immediately after the infection and inflammasome-mediated changes in the pro-inflammatory cytokines at systemic and intracellular levels can be detected as early as on days 2–5 after tick bite. The ongoing research field of “inflammasome biology” focuses on the interactions among molecules and cells of innate immune response that could be responsible for triggering a protective adaptive immunity. The knowledge of the innate immunity mechanisms, as well as the new targets of investigation arising by bioinformatics analysis, could lead to the development of new methods of emergency diagnosis and prevention of tick-borne infections.
Collapse
Affiliation(s)
- Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
- Correspondence:
| | - Stefano Vullo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| |
Collapse
|
15
|
Activation of ASC Inflammasome Driven by Toll-Like Receptor 4 Contributes to Host Immunity against Rickettsial Infection. Infect Immun 2020; 88:IAI.00886-19. [PMID: 32014896 DOI: 10.1128/iai.00886-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Rickettsiae are cytosolically replicating, obligately intracellular bacteria causing human infections worldwide with potentially fatal outcomes. We previously showed that Rickettsia australis activates ASC inflammasome in macrophages. In the present study, host susceptibility of ASC inflammasome-deficient mice to R. australis was significantly greater than that of C57BL/6 (B6) controls and was accompanied by increased rickettsial loads in various organs. Impaired host control of R. australis in vivo in ASC-/- mice was associated with dramatically reduced levels of interleukin 1β (IL-1β), IL-18, and gamma interferon (IFN-γ) in sera. The intracellular concentrations of R. australis in bone marrow-derived macrophages (BMMs) of TLR4-/- and ASC-/- mice were significantly greater than those in BMMs of B6 controls, highlighting the important role of inflammasome and these molecules in controlling rickettsiae in macrophages. Compared to B6 BMMs, TLR4-/- BMMs failed to secrete a significant level of IL-1β and had reduced expression levels of pro-IL-1β in response to infection with R. australis, suggesting that rickettsiae activate ASC inflammasome via a Toll-like receptor 4 (TLR4)-dependent mechanism. Further mechanistic studies suggest that the lipopolysaccharide (LPS) purified from R. australis together with ATP stimulation led to cleavage of pro-caspase-1 and pro-IL-1β, resulting in TLR4-dependent secretion of IL-1β. Taken together, these observations indicate that activation of ASC inflammasome, most likely driven by interaction of TLR4 with rickettsial LPS, contributes to host protective immunity against R. australis These findings provide key insights into defining the interactions of rickettsiae with the host innate immune system.
Collapse
|
16
|
Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat Microbiol 2019; 4:2538-2551. [PMID: 31611642 PMCID: PMC6988571 DOI: 10.1038/s41564-019-0583-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Rickettsia are obligate intracellular bacteria that evade antimicrobial autophagy in the host cell cytosol by unknown mechanisms. Other cytosolic pathogens block different steps of autophagy targeting, including the initial step of polyubiquitin-coat formation. One mechanism of evasion is to mobilize actin to the bacterial surface. Here, we show that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri. Instead, R. parkeri employs outer membrane protein B (OmpB) to block ubiquitylation of the bacterial surface proteins, including OmpA, and subsequent recognition by autophagy receptors. OmpB is also required for the formation of a capsule-like layer. Although OmpB is dispensable for bacterial growth in endothelial cells, it is essential for R. parkeri to block autophagy in macrophages and to colonize mice because of its ability to promote autophagy evasion in immune cells. Our results indicate that OmpB acts as a protective shield to obstruct autophagy recognition, thereby revealing a distinctive bacterial mechanism to evade antimicrobial autophagy.
Collapse
|
17
|
Curto P, Santa C, Allen P, Manadas B, Simões I, Martinez JJ. A Pathogen and a Non-pathogen Spotted Fever Group Rickettsia Trigger Differential Proteome Signatures in Macrophages. Front Cell Infect Microbiol 2019; 9:43. [PMID: 30895174 PMCID: PMC6414445 DOI: 10.3389/fcimb.2019.00043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
We have previously reported that Rickettsia conorii and Rickettsia montanensis have distinct intracellular fates within THP-1 macrophages, suggesting that the ability to proliferate within macrophages may be a distinguishable factor between pathogenic and non-pathogenic Spotted fever group (SFG) members. To start unraveling the molecular mechanisms underlying the capacity (or not) of SFG Rickettsia to establish their replicative niche in macrophages, we have herein used quantitative proteomics by SWATH-MS to profile the alterations resulted by the challenge of THP-1 macrophages with R. conorii and R. montanensis. We show that the pathogenic, R. conorii, and the non-pathogenic, R. montanensis, member of SFG Rickettsia trigger differential proteomic signatures in macrophage-like cells upon infection. R. conorii specifically induced the accumulation of several enzymes of the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid β-oxidation, and glutaminolysis, as well as of several inner and outer membrane mitochondrial transporters. These results suggest a profound metabolic rewriting of macrophages by R. conorii toward a metabolic signature of an M2-like, anti-inflammatory activation program. Moreover, several subunits forming the proteasome and immunoproteasome are found in lower abundance upon infection with both rickettsial species, which may help bacteria to escape immune surveillance. R. conorii-infection specifically induced the accumulation of several host proteins implicated in protein processing and quality control in ER, suggesting that this pathogenic Rickettsia may be able to increase the ER protein folding capacity. This work reveals novel aspects of macrophage-Rickettsia interactions, expanding our knowledge of how pathogenic rickettsiae explore host cells to their advantage.
Collapse
Affiliation(s)
- Pedro Curto
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Cátia Santa
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paige Allen
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Juan J. Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
18
|
Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, Wowk PF, Timóteo RP, Labruna MB, Silva Junior PI, Silva CL, Faccioli LH, Fogaça AC, Sorgi CA, Sá-Nunes A. Amblyomma sculptum Salivary PGE 2 Modulates the Dendritic Cell- Rickettsia rickettsii Interactions in vitro and in vivo. Front Immunol 2019; 10:118. [PMID: 30778355 PMCID: PMC6369204 DOI: 10.3389/fimmu.2019.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Amblyomma sculptum is an important vector of Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever and the most lethal tick-borne pathogen affecting humans. To feed on the vertebrate host's blood, A. sculptum secretes a salivary mixture, which may interact with skin resident dendritic cells (DCs) and modulate their function. The present work was aimed at depicting the A. sculptum saliva-host DC network and the biochemical nature of the immunomodulatory component(s) involved in this interface. A. sculptum saliva inhibits the production of inflammatory cytokines by murine DCs stimulated with LPS. The fractionation of the low molecular weight salivary content by reversed-phase chromatography revealed active fractions eluting from 49 to 55% of the acetonitrile gradient. Previous studies suggested that this pattern of elution matches with that observed for prostaglandin E2 (PGE2) and the molecular identity of this lipid mediator was unambiguously confirmed by a new high-resolution mass spectrometry methodology. A productive infection of murine DCs by R. rickettsii was demonstrated for the first time leading to proinflammatory cytokine production that was inhibited by both A. sculptum saliva and PGE2, a result also achieved with human DCs. The adoptive transfer of murine DCs incubated with R. rickettsii followed by treatment with A. sculptum saliva or PGE2 did not change the cytokine profile associated to cellular recall responses while IgG2a-specific antibodies were decreased in the serum of these mice. Together, these findings emphasize the role of PGE2 as a universal immunomodulator of tick saliva. In addition, it contributes to new approaches to explore R. rickettsii-DC interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Borges Costa
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alejandro Ramírez-Hernández
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Rodolfo Pessato Timóteo
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Célio Lopes Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Andréa Cristina Fogaça
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Carlos Arterio Sorgi
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Atg5 Supports Rickettsia australis Infection in Macrophages In Vitro and In Vivo. Infect Immun 2018; 87:IAI.00651-18. [PMID: 30297526 PMCID: PMC6300621 DOI: 10.1128/iai.00651-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 01/26/2023] Open
Abstract
Rickettsiae can cause life-threatening infections in humans. Macrophages are one of the initial targets for rickettsiae after inoculation by ticks. However, it remains poorly understood how rickettsiae remain free in macrophages prior to establishing their infection in microvascular endothelial cells. Here, we demonstrated that the concentration of Rickettsia australis was significantly greater in infected tissues of Atg5flox/flox mice than in the counterparts of Atg5flox/flox Lyz-Cre mice, in association with a reduced level of interleukin-1β (IL-1β) in serum. The greater concentration of R. australis in Atg5flox/flox bone marrow-derived macrophages (BMMs) than in Atg5flox/flox Lyz-Cre BMMs in vitro was abolished by exogenous treatment with recombinant IL-1β. Rickettsia australis induced significantly increased levels of light chain 3 (LC3) form II (LC3-II) and LC3 puncta in Atg5-competent BMMs but not in Atg5-deficient BMMs, while no p62 turnover was observed. Further analysis found the colocalization of LC3 with a small portion of R. australis and Rickettsia-containing double-membrane-bound vacuoles in the BMMs of B6 mice. Moreover, treatment with rapamycin significantly increased the concentrations of R. australis in B6 BMMs compared to those in the untreated B6 BMM controls. Taken together, our results demonstrate that Atg5 favors R. australis infection in mouse macrophages in association with a suppressed level of IL-1β production but not active autophagy flux. These data highlight the contribution of Atg5 in macrophages to the pathogenesis of rickettsial diseases.
Collapse
|
20
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
21
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
22
|
Abstract
In every epidemic some individuals become sick and some may die, whereas others recover from illness and still others show no signs or symptoms of disease. These differences highlight a fundamental question of microbial pathogenesis: why are some individuals susceptible to infectious diseases while others who acquire the same microbe remain well? For most of human history, the answer assumed the hand of providence. With the advent of the germ theory of disease, the focus on disease causality became the microbe, but this did not explain how there can be different outcomes of infection in different individuals with the same microbe. Here we examine the attributes of susceptibility in the context of the "damage-response framework" of microbial pathogenesis. We identify 11 attributes that, although not independent, are sufficiently distinct to be considered separately: microbiome, inoculum, sex, temperature, environment, age, chance, history, immunity, nutrition, and genetics. We use the first letter of each to create the mnemonic MISTEACHING, underscoring the need for caution in accepting dogma and attributing disease causality to any single factor. For both populations and individuals, variations in the attributes that assemble into MISTEACHING can create an enormity of combinations that can in turn translate into different outcomes of host-microbe encounters. Combinatorial diversity among the 11 attributes makes identifying "signatures" of susceptibility possible. However, with their inevitable uncertainties and propensity to change, there may still be a low likelihood for prediction with regard to individual host-microbe interactions, although probabilistic prediction may be possible.
Collapse
|
23
|
Osterloh A. Immune response against rickettsiae: lessons from murine infection models. Med Microbiol Immunol 2017; 206:403-417. [PMID: 28770333 PMCID: PMC5664416 DOI: 10.1007/s00430-017-0514-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Rickettsiae are small intracellular bacteria that can cause life-threatening febrile diseases. Rickettsioses occur worldwide with increasing incidence. Therefore, a vaccine is highly desired. A prerequisite for the development of a vaccine is the knowledge of the immune response against these bacteria, in particular protective immunity. In recent years murine models of rickettsial infections have been established, and the study of immune response against rickettsiae in mice provided many new insights into protective and pathological immune reactions. This review summarizes the current knowledge about immune mechanisms in protection and pathology in rickettsial infections.
Collapse
Affiliation(s)
- Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
24
|
Kader M, Alaoui-EL-Azher M, Vorhauer J, Kode BB, Wells JZ, Stolz D, Michalopoulos G, Wells A, Scott M, Ismail N. MyD88-dependent inflammasome activation and autophagy inhibition contributes to Ehrlichia-induced liver injury and toxic shock. PLoS Pathog 2017; 13:e1006644. [PMID: 29049365 PMCID: PMC5663626 DOI: 10.1371/journal.ppat.1006644] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/31/2017] [Accepted: 09/11/2017] [Indexed: 01/19/2023] Open
Abstract
Severe hepatic inflammation is a common cause of acute liver injury following systemic infection with Ehrlichia, obligate Gram-negative intracellular bacteria that lack lipopolysaccharide (LPS). We have previously shown that type I IFN (IFN-I) and inflammasome activation are key host-pathogenic mediators that promote excessive inflammation and liver damage following fatal Ehrlichia infection. However, the underlying signals and mechanisms that regulate protective immunity and immunopathology during Ehrlichia infection are not well understood. To address this issue, we compared susceptibility to lethal Ixodes ovatus Ehrlichia (IOE) infection between wild type (WT) and MyD88-deficient (MyD88-/-) mice. We show here that MyD88-/- mice exhibited decreased inflammasome activation, attenuated liver injury, and were more resistant to lethal infection than WT mice, despite suppressed protective immunity and increased bacterial burden in the liver. MyD88-dependent inflammasome activation was also dependent on activation of the metabolic checkpoint kinase mammalian target of rapamycin complex 1 (mTORC1), inhibition of autophagic flux, and defective mitophagy in macrophages. Blocking mTORC1 signaling in infected WT mice and primary macrophages enhanced bacterial replication and attenuated inflammasome activation, suggesting autophagy promotes bacterial replication while inhibiting inflammasome activation. Finally, our data suggest TLR9 and IFN-I are upstream signaling mechanisms triggering MyD88-mediated mTORC1 and inflammasome activation in macrophages following Ehrlichia infection. This study reveals that Ehrlichia-induced liver injury and toxic shock are mediated by MyD88-dependent inflammasome activation and autophagy inhibition.
Collapse
MESH Headings
- Animals
- Autophagy/immunology
- Blotting, Western
- Disease Models, Animal
- Ehrlichia/immunology
- Ehrlichiosis/immunology
- Ehrlichiosis/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Image Processing, Computer-Assisted
- In Situ Nick-End Labeling
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Myeloid Differentiation Factor 88/immunology
- Myeloid Differentiation Factor 88/metabolism
- Real-Time Polymerase Chain Reaction
- Shock, Septic/immunology
- Shock, Septic/metabolism
Collapse
Affiliation(s)
- Muhamuda Kader
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mounia Alaoui-EL-Azher
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennie Vorhauer
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bhushan B Kode
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jakob Z. Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - George Michalopoulos
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Scott
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
25
|
Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: Role of TH1 and TH17 cytokines in protection and pathology. PLoS Negl Trop Dis 2017; 11:e0005404. [PMID: 28222146 PMCID: PMC5336310 DOI: 10.1371/journal.pntd.0005404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/03/2017] [Accepted: 02/12/2017] [Indexed: 01/05/2023] Open
Abstract
Endemic typhus caused by Rickettsia (R.) typhi is an emerging febrile disease that can be fatal due to multiple organ pathology. Here we analyzed the requirements for protection against R. typhi by T cells in the CB17 SCID model of infection. BALB/c wild-type mice generate CD4+ TH1 and cytotoxic CD8+ T cells both of which are sporadically reactivated in persistent infection. Either adoptively transferred CD8+ or CD4+ T cells protected R. typhi-infected CB17 SCID mice from death and provided long-term control. CD8+ T cells lacking either IFNγ or Perforin were still protective, demonstrating that the cytotoxic function of CD8+ T cells is not essential for protection. Immune wild-type CD4+ T cells produced high amounts of IFNγ, induced the release of nitric oxide in R. typhi-infected macrophages and inhibited bacterial growth in vitro via IFNγ and TNFα. However, adoptive transfer of CD4+IFNγ-/- T cells still protected 30-90% of R. typhi-infected CB17 SCID mice. These cells acquired a TH17 phenotype, producing high amounts of IL-17A and IL-22 in addition to TNFα, and inhibited bacterial growth in vitro. Surprisingly, the neutralization of either TNFα or IL-17A in CD4+IFNγ-/- T cell recipient mice did not alter bacterial elimination by these cells in vivo, led to faster recovery and enhanced survival compared to isotype-treated animals. Thus, collectively these data show that although CD4+ TH1 cells are clearly efficient in protection against R. typhi, CD4+ TH17 cells are similarly protective if the harmful effects of combined production of TNFα and IL-17A can be inhibited.
Collapse
|
26
|
Moderzynski K, Papp S, Rauch J, Heine L, Kuehl S, Richardt U, Fleischer B, Osterloh A. CD4+ T Cells Are as Protective as CD8+ T Cells against Rickettsia typhi Infection by Activating Macrophage Bactericidal Activity. PLoS Negl Trop Dis 2016; 10:e0005089. [PMID: 27875529 PMCID: PMC5119731 DOI: 10.1371/journal.pntd.0005089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/02/2016] [Indexed: 01/07/2023] Open
Abstract
Rickettsia typhi is an intracellular bacterium that causes endemic typhus, a febrile disease that can be fatal due to complications including pneumonia, hepatitis and meningoencephalitis, the latter being a regular outcome in T and B cell-deficient C57BL/6 RAG1-/- mice upon Rickettsia typhi infection. Here, we show that CD4+ TH1 cells that are generated in C57BL/6 mice upon R. typhi infection are as protective as cytotoxic CD8+ T cells. CD4+- as well as CD8+-deficient C57BL/6 survived the infection without showing symptoms of disease at any point in time. Moreover, adoptively transferred CD8+ and CD4+ immune T cells entered the CNS of C57BL/6 RAG1-/- mice with advanced infection and both eradicated the bacteria. However, immune CD4+ T cells protected only approximately 60% of the animals from death. They induced the expression of iNOS in infiltrating macrophages as well as in resident microglia in the CNS which can contribute to bacterial killing but also accelerate pathology. In vitro immune CD4+ T cells inhibited bacterial growth in infected macrophages which was in part mediated by the release of IFNγ. Collectively, our data demonstrate that CD4+ T cells are as protective as CD8+ T cells against R. typhi, provided that CD4+ TH1 effector cells are present in time to support bactericidal activity of phagocytes via the release of IFNγ and other factors. With regard to vaccination against TG Rickettsiae, our findings suggest that the induction of CD4+ TH1 effector cells is sufficient for protection. Endemic typhus caused by Rickettsia typhi usually is a relatively mild disease. However, CNS inflammation and neurological symptoms are complications that can occur in severe cases. This outcome of disease is regularly observed in T and B cell-deficient C57BL/6 RAG1-/- mice upon infection with R. typhi. We show here that CD4+ T cells are as protective as cytotoxic CD8+ T cells against R. typhi as long as they are present in time. This is evidenced by the fact that neither CD8+ nor CD4+ T cell-deficient C57BL/6 mice develop disease which is also true for R. typhi-infected C57BL/6 RAG1-/- mice that receive immune CD8+ or CD4+ at an early point in time. Moreover, adoptive transfer of immune CD4+ T cells still protects approximately 60% of C57BL/6 RAG1-/- mice when applied later in advanced infection when the bacteria start to rise. Although CD8+ T cells are faster and more efficient in bacterial elimination, R. typhi is not detectable in CD4+ T cell recipients anymore. We further show that immune CD4+ T cells activate bactericidal functions of microglia and macrophages in the CNS in vivo and inhibit bacterial growth in infected macrophages in vitro which is in part mediated by the release of IFNγ. Collectively, we demonstrate for the first time that CD4+ T cells alone are sufficient to protect against R. typhi infection. With regard to vaccination our findings suggest that the induction of R. typhi-specific CD4+ TH1 effector T cells may be as effective as the much more difficult targeting of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Kristin Moderzynski
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefanie Papp
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Rauch
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Liza Heine
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Svenja Kuehl
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Osterloh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, Mueller H, Fleischer B, Osterloh A. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis 2016; 10:e0004935. [PMID: 27548618 PMCID: PMC4993389 DOI: 10.1371/journal.pntd.0004935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/31/2016] [Indexed: 12/31/2022] Open
Abstract
Rickettsia (R.) typhi is the causative agent of endemic typhus, an emerging febrile disease that is associated with complications such as pneumonia, encephalitis and liver dysfunction. To elucidate how innate immune mechanisms contribute to defense and pathology we here analyzed R. typhi infection of CB17 SCID mice that are congenic to BALB/c mice but lack adaptive immunity. CB17 SCID mice succumbed to R. typhi infection within 21 days and showed high bacterial load in spleen, brain, lung, and liver. Most evident pathological changes in R. typhi-infected CB17 SCID mice were massive liver necrosis and splenomegaly due to the disproportionate accumulation of neutrophils and macrophages (MΦ). Both neutrophils and MΦ infiltrated the liver and harbored R. typhi. Both cell populations expressed iNOS and produced reactive oxygen species (ROS) and, thus, exhibited an inflammatory and bactericidal phenotype. Surprisingly, depletion of neutrophils completely prevented liver necrosis but neither altered bacterial load nor protected CB17 SCID mice from death. Furthermore, the absence of neutrophils had no impact on the overwhelming systemic inflammatory response in these mice. This response was predominantly driven by activated MΦ and NK cells both of which expressed IFNγ and is considered as the reason of death. Finally, we observed that iNOS expression by MΦ and neutrophils did not correlate with R. typhi uptake in vivo. Moreover, we demonstrate that MΦ hardly respond to R. typhi in vitro. These findings indicate that R. typhi enters MΦ and also neutrophils unrecognized and that activation of these cells is mediated by other mechanisms in the context of tissue damage in vivo.
Collapse
Affiliation(s)
- Stefanie Papp
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kristin Moderzynski
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Rauch
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Liza Heine
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Svenja Kuehl
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidelinde Mueller
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bernhard Fleischer
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Osterloh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
28
|
Smalley C, Bechelli J, Rockx-Brouwer D, Saito T, Azar SR, Ismail N, Walker DH, Fang R. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages. PLoS One 2016; 11:e0157231. [PMID: 27362650 PMCID: PMC4928923 DOI: 10.1371/journal.pone.0157231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8-12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved.
Collapse
Affiliation(s)
- Claire Smalley
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Jeremy Bechelli
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dedeke Rockx-Brouwer
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kang JO, Lee JB, Chang J. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells. PLoS One 2016; 11:e0157015. [PMID: 27271559 PMCID: PMC4894639 DOI: 10.1371/journal.pone.0157015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/22/2016] [Indexed: 12/02/2022] Open
Abstract
Cholera toxin (CT), an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC) populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN). Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines.
Collapse
Affiliation(s)
- Jung-Ok Kang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jee-Boong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Kyunggi-Do, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- * E-mail:
| |
Collapse
|
30
|
Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation. Infect Immun 2016; 84:1615-1632. [PMID: 26975992 DOI: 10.1128/iai.00034-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/06/2016] [Indexed: 01/03/2023] Open
Abstract
Rickettsioses are emerging febrile diseases caused by obligate intracellular bacteria belonging to the family Rickettsiaceae. Rickettsia typhi belongs to the typhus group (TG) of this family and is the causative agent of endemic typhus, a disease that can be fatal. In the present study, we analyzed the course of R. typhi infection in C57BL/6 RAG1(-/-) mice. Although these mice lack adaptive immunity, they developed only mild and temporary symptoms of disease and survived R. typhi infection for a long period of time. To our surprise, 3 to 4 months after infection, C57BL/6 RAG1(-/-) mice suddenly developed lethal neurological disorders. Analysis of these mice at the time of death revealed high bacterial loads, predominantly in the brain. This was accompanied by a massive expansion of microglia and by neuronal cell death. Furthermore, high numbers of infiltrating CD11b(+) macrophages were detectable in the brain. In contrast to the microglia, these cells harbored R. typhi and showed an inflammatory phenotype, as indicated by inducible nitric oxide synthase (iNOS) expression, which was not observed in the periphery. Having shown that R. typhi persists in immunocompromised mice, we finally asked whether the bacteria are also able to persist in resistant C57BL/6 and BALB/c wild-type mice. Indeed, R. typhi could be recultivated from lung, spleen, and brain tissues from both strains even up to 1 year after infection. This is the first report demonstrating persistence and reappearance of R. typhi, mainly restricted to the central nervous system in immunocompromised mice.
Collapse
|
31
|
MyD88 Mediates Instructive Signaling in Dendritic Cells and Protective Inflammatory Response during Rickettsial Infection. Infect Immun 2016; 84:883-93. [PMID: 26755162 DOI: 10.1128/iai.01361-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/30/2015] [Indexed: 02/02/2023] Open
Abstract
Spotted fever group rickettsiae cause potentially life-threatening infections throughout the world. Several members of the Toll-like receptor (TLR) family are involved in host response to rickettsiae, and yet the mechanisms by which these TLRs mediate host immunity remain incompletely understood. In the present study, we found that host susceptibility of MyD88(-/-)mice to infection with Rickettsia conorii or Rickettsia australis was significantly greater than in wild-type (WT) mice, in association with severely impaired bacterial clearance in vivo R. australis-infected MyD88(-/-)mice showed significantly lower expression levels of gamma interferon (IFN-γ), interleukin-6 (IL-6), and IL-1β, accompanied by significantly fewer inflammatory infiltrates of macrophages and neutrophils in infected tissues, than WT mice. The serum levels of IFN-γ, IL-12, IL-6, and granulocyte colony-stimulating factor were significantly reduced, while monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, and RANTES were significantly increased in infected MyD88(-/-)mice compared to WT mice. Strikingly, R. australis infection was incapable of promoting increased expression of MHC-II(high)and production of IL-12p40 in MyD88(-/-)bone marrow-derived dendritic cells (BMDCs) compared to WT BMDCs, although costimulatory molecules were upregulated in both types of BMDCs. Furthermore, the secretion levels of IL-1β by Rickettsia-infected BMDCs and in the sera of infected mice were significantly reduced in MyD88(-/-)mice compared to WT controls, suggesting that in vitro and in vivo production of IL-1β is MyD88 dependent. Taken together, our results suggest that MyD88 signaling mediates instructive signals in DCs and secretion of IL-1β and type 1 immune cytokines, which may account for the protective inflammatory response during rickettsial infection.
Collapse
|
32
|
Shelite TR, Liang Y, Wang H, Mendell NL, Trent BJ, Sun J, Gong B, Xu G, Hu H, Bouyer DH, Soong L. IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in Orientia tsutsugamushi-Infected Mice. PLoS Negl Trop Dis 2016; 10:e0004467. [PMID: 26943125 PMCID: PMC4778942 DOI: 10.1371/journal.pntd.0004467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/27/2016] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells (EC) are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang) 2/Ang1 ratio, increased endothelin 1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT) mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33) every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC) in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.
Collapse
Affiliation(s)
- Thomas R Shelite
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hui Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicole L Mendell
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brandon J Trent
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Guang Xu
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald H Bouyer
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.,Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
33
|
Papadopoulos A, Gorvel JP. Subversion of mouse dendritic cell subset function by bacterial pathogens. Microb Pathog 2015; 89:140-9. [PMID: 26453826 DOI: 10.1016/j.micpath.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an important role as sentinels of the immune system in initiating and controlling the quality of adaptive immune responses. Located at entry points of the host they can sense and alert the body from dangers such as infection by pathogenic bacteria. Considering their strategic localization it is not surprising that DCs have evolved in a series of DC subtypes, which are well adapted to their microenvironment. Nowadays, the advent of the identification of specific DC subtypes has opened the way for the study of pathogen-DCs interactions and the involved mechanisms of these interactions. Due to key aspect of DCs, several bacterial pathogens have taken advantage of these cells and developed mechanisms to subvert DC function and thereby evade the immune system. This review brings recent insights into DC-pathogenic bacteria cross-talk using the mouse model of infection with an emphasis on DC subtypes.
Collapse
Affiliation(s)
- Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
34
|
Yang X, Jiao J, Han G, Gong W, Wang P, Xiong X, Wen B. Enhanced Expression of T-Cell Immunoglobulin and Mucin Domain Protein 3 in Endothelial Cells Facilitates Intracellular Killing of Rickettsia heilongjiangensis. J Infect Dis 2015; 213:71-9. [PMID: 26401029 DOI: 10.1093/infdis/jiv463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/11/2015] [Indexed: 11/13/2022] Open
Abstract
Rickettsia heilongjiangensis is the pathogen of Far eastern spotted fever, and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) is expressed in human vascular endothelial cells, the major target cells of rickettsiae. In the present study, we investigated the effects of altered Tim-3 expression in vivo in mice and in vitro in human endothelial cells, on day 3 after R. heilongjiangensis infection. Compared with corresponding controls, rickettsial burdens both in vivo and in vitro were significantly higher with blocked Tim-3 signaling or silenced Tim-3 and significantly lower with overexpressed Tim-3. Additionally, the expression of inducible nitric oxide synthase and interferon γ in endothelial cells with blocked Tim-3 signaling or silenced Tim-3 was significantly lower, while the expression of inducible nitric oxide synthase, interferon γ, and tumor necrosis factor α in transgenic mice with Tim-3 overexpression was significantly higher. These results reveal that enhanced Tim-3 expression facilitates intracellular rickettsial killing in a nitric oxide-dependent manner in endothelial cells during the early phase of rickettsial infection.
Collapse
Affiliation(s)
- Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Gencheng Han
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Department of Clinical Laboratory, 105th Hospital of the People's Liberation Army, Anhui, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| |
Collapse
|
35
|
Walker DH, Dumler JS. The role of CD8 T lymphocytes in rickettsial infections. Semin Immunopathol 2015; 37:289-99. [PMID: 25823954 DOI: 10.1007/s00281-015-0480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Abstract
Arthropod-borne obligately intracellular bacteria pose a difficult challenge to the immune system. The genera Rickettsia, Orientia, Ehrlichia, and Anaplasma evolved mechanisms of immune evasion, and each interacts differently with the immune system. The roles of CD8 T cells include protective immunity and immunopathology. In Rickettsia infections, CD8 T cells are protective mediated in part by cytotoxicity toward infected cells. In contrast, TNF-α overproduction by CD8 T cells is pathogenic in lethal ehrlichiosis by induction of apoptosis/necrosis in hepatocytes. Yet, CD8 T cells, along with CD4 T cells and antibodies, also contribute to protective immunity in ehrlichial infections. In granulocytic anaplasmosis, CD8 T cells impact pathogen control modestly but could contribute to immunopathology by virtue of their dysfunction. While preliminary evidence indicates that CD8 T cells are important in protection against Orientia tsutsugamushi, mechanistic studies have been neglected. Valid animal models will enable experiments to elucidate protective and pathologic immune mechanisms. The public health need for vaccines against these agents of human disease, most clearly O. tsutsugamushi, and the veterinary diseases, canine monocytotropic ehrlichiosis (Ehrlichia canis), heartwater (Ehrlichia ruminantium), and bovine anaplasmosis (A. marginale), requires detailed immunity and immunopathology investigations, including the roles of CD8 T lymphocytes.
Collapse
Affiliation(s)
- David H Walker
- Department of Pathology, Director, UTMB Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0609, USA,
| | | |
Collapse
|
36
|
Yang Q, Stevenson HL, Scott MJ, Ismail N. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:446-61. [PMID: 25481711 DOI: 10.1016/j.ajpath.2014.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1(-/-) mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3(-/-) mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1(-/-) mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1(-/-) mice also had improved protective immune responses mediated by IFN-γ and CD4(+) Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1(-/-) mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4(+) T cells and natural killer T-cell responses against ehrlichiae.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heather L Stevenson
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J Scott
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nahed Ismail
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
37
|
Soong L, Wang H, Shelite TR, Liang Y, Mendell NL, Sun J, Gong B, Valbuena GA, Bouyer DH, Walker DH. Strong type 1, but impaired type 2, immune responses contribute to Orientia tsutsugamushi-induced pathology in mice. PLoS Negl Trop Dis 2014; 8:e3191. [PMID: 25254971 PMCID: PMC4177881 DOI: 10.1371/journal.pntd.0003191] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022] Open
Abstract
Scrub typhus is a neglected, but important, tropical disease, which puts one-third of the world's population at risk. The disease is caused by Orientia tsutsugamushi, an obligately intracellular Gram-negative bacterium. Dysregulation in immune responses is known to contribute to disease pathogenesis; however, the nature and molecular basis of immune alterations are poorly defined. This study made use of a newly developed murine model of severe scrub typhus and focused on innate regulators and vascular growth factors in O. tsutsugamushi-infected liver, lungs and spleen. We found no activation or even reduction in base-line expression for multiple molecules (IL-7, IL-4, IL-13, GATA3, ROR-γt, and CXCL12) at 2, 6 and 10 days post-infection. This selective impairment in type 2-related immune responses correlated with a significant activation of the genes for IL-1β, IL-6, IL-10, TNF-α, IFN-γ, as well as CXCR3- and CXCR1-related chemokines in inflamed tissues. The elevated angiopoietin (Ang)-2 expression and Ang-2/Ang-1 ratios suggested excessive inflammation and the loss of endothelial integrity. These alterations, together with extensive recruitment of myeloperoxidase (MPO)-expressing neutrophils and the influx of CD3+ T cells, contributed to acute tissue damage and animal death. This is the first report of selective alterations in a panel of immune regulators during early O. tsutsugamushi infection in intravenously inoculated C57BL/6 mice. Our findings shed new light on the pathogenic mechanisms associated with severe scrub typhus and suggest potential targets for therapeutic investigation.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | - Hui Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas R. Shelite
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicole L. Mendell
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gustavo A. Valbuena
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald H. Bouyer
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
38
|
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 2014; 8:1265-88. [PMID: 24059918 DOI: 10.2217/fmb.13.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the 'scourge of armies', and as a major determinant of significant 'historical turning points'. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Pathology & Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
39
|
Fang R, Ismail N, Walker DH. Contribution of NK cells to the innate phase of host protection against an intracellular bacterium targeting systemic endothelium. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:185-95. [PMID: 22617213 DOI: 10.1016/j.ajpath.2012.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/10/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022]
Abstract
We investigated the mechanisms by which natural killer (NK) cells mediate innate host defense against infection with an endothelium-targeting intracellular bacterium, Rickettsia. We found that a robust Rickettsia-induced innate response in resistant mice cleared the bacteria early in the infection and was associated with significantly higher frequencies of splenic interferon (IFN)-γ (+) CD8(+) T cells and cytotoxic NK cells compared with susceptible mice. More importantly, NK cell-deficient Rag(-/-)γc(-/-) animals displayed significantly increased susceptibility to Rickettsia infection compared with NK cell-sufficient Rag(-/-) mice, as evidenced by impaired bacterial clearance, early development of severe thrombosis in the liver, and a decreased serum level of IFN-γ. Furthermore, the lack of NK cells also impaired host resistance of CB-17 scid mice to Rickettsia, similar to what was observed in Rag(-/-)γc(-/-) mice. Interestingly, perforin deficiency in Rag(-/-)Prf1(-/-) mice resulted in greater thrombosis and insignificantly different systemic levels of IFN-γ compared with Rag(-/-) mice, suggesting that perforin, which is mainly produced by NK cells, is involved in the prevention of vascular damage. Together, these findings reveal that NK cells mediate the innate phase of host protection against infection with rickettsiae, most likely via IFN-γ production. Furthermore, NK cells are involved in preventing rickettsial infection-induced endothelial cell damage, possibly via perforin production.
Collapse
Affiliation(s)
- Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | |
Collapse
|
40
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
41
|
Ghose P, Ali AQ, Fang R, Forbes D, Ballard B, Ismail N. The interaction between IL-18 and IL-18 receptor limits the magnitude of protective immunity and enhances pathogenic responses following infection with intracellular bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1333-46. [PMID: 21715688 PMCID: PMC3140540 DOI: 10.4049/jimmunol.1100092] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The binding of IL-18 to IL-18Rα induces both proinflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild-type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes ovatus ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα(-/-) mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance, and prolonged survival compared with infected WT mice, suggesting a pathogenic role for IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreased the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of IL-18Rα(-/-) mice against Ehrlichia correlated with increased proinflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective NKT cells producing TNF-α and IFN-γ, and decreased frequency of pathogenic TNF-α-producing CD8(+) T cells. Adoptive transfer of immune WT CD8(+) T cells increased bacterial burden in IL-18Rα(-/-) mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cell maturation and their TNF-α production, suggesting that IL-18 might promote the adaptive pathogenic immune responses against Ehrlichia by influencing T cell priming functions of dendritic cells. Together, these results suggested that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology.
Collapse
Affiliation(s)
- Purnima Ghose
- Department of Pathology and Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Asim Q Ali
- Department of Pathology and Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Rong Fang
- University of Texas Medical Branch, Galveston, TX
| | - Digna Forbes
- Department of Pathology and Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Billy Ballard
- Department of Pathology and Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Nahed Ismail
- Department of Pathology and Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| |
Collapse
|
42
|
Wei Y, Wang X, Xiong X, Wen B. Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. J Infect Dis 2011; 203:283-91. [PMID: 21288829 DOI: 10.1093/infdis/jiq037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is the etiological agent of human Q fever. In this study, adaptive transfer of mouse bone marrow-derived dendritic cells (BMDCs) stimulated with C. burnetii antigen, phase I whole-cell antigen (PIAg), lipopolysaccharide (LPS)-removed PIAg (PIIAg), protein antigen Com1, or SecB significantly reduced coxiella burden in recipient mice compared with control mice. Mice that received PIIAg-pulsed BMDCs displayed substantially lower coxiella burden than recipient mice of PIAg-pulsed BMDCs after C burnetii challenge. The protection offered by the antigen-activated BMDCs was correlated with the increased proliferation of helper T (T(H)) T(H)1 CD4(+) cells, preferential development of T(H)17 cells, and impaired expansion of regulatory T lymphocytes. Our results suggest that PIIAg is far superior to PIAg in activating BMDCs to confer protection against C. burnetii in vivo, whereas Com1 and SecB are protective antigens because Com1- or SecB-pulsed BMDCs confer partial protection.
Collapse
Affiliation(s)
- Yan Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | |
Collapse
|
43
|
Schmaler M, Jann NJ, Ferracin F, Landmann R. T and B Cells Are Not Required for Clearing Staphylococcus aureus in Systemic Infection Despite a Strong TLR2–MyD88-Dependent T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2010; 186:443-52. [DOI: 10.4049/jimmunol.1001407] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Walker DH. The realities of biodefense vaccines against Rickettsia. Vaccine 2009; 27 Suppl 4:D52-5. [PMID: 19837287 PMCID: PMC2909128 DOI: 10.1016/j.vaccine.2009.07.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/15/2009] [Indexed: 11/22/2022]
Abstract
Rickettsia prowazekii, R. rickettsii, R. conorii, and R. typhi are serious biologic weapon threats because of high infectivity of low dose aerosols, stable small particle aerosol infectivity, virulence causing severe disease, difficulty in establishing a timely diagnosis, ineffectiveness of usual empiric treatments, potential for engineered complete antimicrobial resistance, lower level of immunity, availability of the agents in nature, and feasibility of propagation, stabilization, and dispersal. Infection induces long-term immunity, killed rickettsial vaccines stimulate incomplete protection, and a live attenuated mutant stimulates strong immunity but reverts to virulence. Prospects for rational development of a safe, effective live attenuated vaccine are excellent.
Collapse
Affiliation(s)
- David H Walker
- University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA.
| |
Collapse
|
45
|
Antigen display, T-cell activation, and immune evasion during acute and chronic ehrlichiosis. Infect Immun 2009; 77:4643-53. [PMID: 19635826 DOI: 10.1128/iai.01433-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How spatial and temporal changes in major histocompatibility complex/peptide antigen presentation to CD4 T cells regulate CD4 T-cell responses during intracellular bacterial infections is relatively unexplored. We have shown that immunization with an ehrlichial outer membrane protein, OMP-19, protects mice against fatal ehrlichial challenge infection, and we identified a CD4 T-cell epitope (IA(b)/OMP-19(107-122)) that elicited CD4 T cells following either immunization or infection. Here, we have used an IA(b)/OMP-19(107-122)-specific T-cell line to monitor antigen display ex vivo during acute and chronic infection with Ehrlichia muris, a bacterium that establishes persistent infection in C57BL/6 mice. The display of IA(b)/OMP-19(107-122) by host antigen-presenting cells was detected by measuring intracellular gamma interferon (IFN-gamma) production by the T-cell line. After intravenous infection, antigen presentation was detected in the spleen, peritoneal exudate cells, and lymph nodes, although the kinetics of antigen display differed among the tissues. Antigen presentation and bacterial colonization were closely linked in each anatomical location, and there was a direct relationship between antigen display and CD4 T-cell effector function. Spleen and lymph node dendritic cells (DCs) were efficient presenters of IA(b)/OMP-19(107-122), demonstrating that DCs play an important role in ehrlichial infection and immunity. Chronic infection and antigen presentation occurred within the peritoneal cavity, even in the presence of highly activated CD4 T cells. These data indicated that the ehrlichiae maintain chronic infection not by inhibiting antigen presentation or T-cell activation but, in part, by avoiding signals mediated by activated T cells.
Collapse
|
46
|
CD4+ CD25+ Foxp3- T-regulatory cells produce both gamma interferon and interleukin-10 during acute severe murine spotted fever rickettsiosis. Infect Immun 2009; 77:3838-49. [PMID: 19564386 DOI: 10.1128/iai.00349-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spotted fever group rickettsiae cause life-threatening human infections worldwide. Until now, the immune regulatory mechanisms involved in fatal rickettsial infection have been unknown. C3H/HeN mice infected with 3 x 10(5) PFU of Rickettsia conorii developed an acute progressive disease, and all mice succumbed to this infection. A sublethal infection induced protective immunity, and mice survived. Compared to splenic T cells from sublethally infected mice, splenic T cells from lethally infected mice produced significantly lower levels of interleukin-2 (IL-2) and gamma interferon (IFN-gamma) and a higher level of IL-10, but not of IL-4 or transforming growth factor beta, and there was markedly suppressed CD4(+) T-cell proliferation in response to antigen-specific stimulation with R. conorii. Furthermore, lethal infection induced significant expansion of CD4(+) CD25(+) Foxp3(-) T cells in infected organs compared to the levels in naïve and sublethally infected mice. In a lethal infection, splenic CD4(+) CD25(+) Foxp3(-) T cells, which were CTLA-4(high) T-bet(+) and secreted both IFN-gamma and IL-10, suppressed the proliferation of and IL-2 production by splenic CD4(+) CD25(-) Foxp3(-) T cells in vitro. Interestingly, depletion of CD25(+) T cells in vivo did not change the disease progression, but it increased the bacterial load in the lung and liver, significantly reduced the number of IFN-gamma-producing Th1 cells in the spleen, and increased the serum levels of IFN-gamma. These results suggested that CD4(+) CD25(+) T cells generated in acute murine spotted fever rickettsiosis are Th1-cell-related adaptive T-regulatory cells, which substantially contribute to suppressing the systemic immune response, possibly by a mechanism involving IL-10 and/or cytotoxic T-lymphocyte antigen 4.
Collapse
|
47
|
Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 2008; 6:375-86. [PMID: 18414502 DOI: 10.1038/nrmicro1866] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|