1
|
Bach K, Dohnálek J, Škerlová J, Kuzmík J, Poláchová E, Stanchev S, Majer P, Fanfrlík J, Pecina A, Řezáč J, Lepšík M, Borshchevskiy V, Polovinkin V, Strisovsky K. Extensive targeting of chemical space at the prime side of ketoamide inhibitors of rhomboid proteases by branched substituents empowers their selectivity and potency. Eur J Med Chem 2024; 275:116606. [PMID: 38901105 DOI: 10.1016/j.ejmech.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes. Here we explore the structure-activity relationship principles of rhomboid inhibiting ketoamides by medicinal chemistry and enzymatic in vitro and in-cell assays with recombinant rhomboid proteases GlpG, human mitochondrial rhomboid PARL and human RHBDL2. We use X-ray crystallography in lipidic cubic phase to understand the binding mode of one of the best ketoamide inhibitors synthesized here containing a branched terminal substituent bound to GlpG. In addition, to extend the interpretation of the co-crystal structure, we use quantum mechanical calculations and quantify the relative importance of interactions along the inhibitor molecule. These combined experimental analyses implicates that more extensive exploration of chemical space at the prime side is unexpectedly powerful for the selectivity of rhomboid inhibiting ketoamides. Together with variations in the peptide sequence at the non-prime side, or its non-peptidic alternatives, this strategy enables targeted tailoring of potent and selective ketoamides towards diverse rhomboid proteases including disease-relevant ones such as PARL and RHBDL2.
Collapse
Affiliation(s)
- Kathrin Bach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; Department of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; University of Chemistry and Technology, Technická 5, Prague, 166 28, Czech Republic
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Ján Kuzmík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Edita Poláchová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry) Forschungszentrum Jülich 52428 Jülich, Germany
| | - Vitaly Polovinkin
- ELI Beamlines Centre, ELI ERIC, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic.
| |
Collapse
|
2
|
Poláchová E, Bach K, Heuten E, Stanchev S, Tichá A, Lampe P, Majer P, Langer T, Lemberg MK, Stříšovský K. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy. J Med Chem 2022; 66:251-265. [PMID: 36540942 PMCID: PMC9841525 DOI: 10.1021/acs.jmedchem.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.
Collapse
Affiliation(s)
- Edita Poláchová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,First
Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Kathrin Bach
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,Department
of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Elena Heuten
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Stancho Stanchev
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Anežka Tichá
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Philipp Lampe
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Thomas Langer
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Center
for Molecular Medicine (CMMC), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Max-Planck-Institute
for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Marius K. Lemberg
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,
| | - Kvido Stříšovský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,
| |
Collapse
|
3
|
Yap A, Glarcher I, Misslinger M, Haas H. Characterization and engineering of the xylose-inducible xylP promoter for use in mold fungal species. Metab Eng Commun 2022; 15:e00214. [DOI: 10.1016/j.mec.2022.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
4
|
Rajasenan S, Osmani AH, Osmani SA. Modulation of sensitivity to gaseous signaling by sterol-regulatory hypoxic transcription factors in Aspergillus nidulans biofilm cells. Fungal Genet Biol 2022; 163:103739. [PMID: 36089227 DOI: 10.1016/j.fgb.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/06/2023]
Abstract
Fungal biofilm founder cells experience self-generated hypoxia leading to dramatic changes in their cell biology. For example, during Aspergillus nidulans biofilm formation microtubule (MT) disassembly is triggered causing dispersal of EB1 from MT tips. This process is dependent on SrbA, a sterol regulatory element-binding transcription factor required for adaptation to hypoxia. We show that SrbA, an ER resident protein prior to activation, is proteolytically activated during early stages of biofilm formation and that, like SrbA itself, its activating proteases are also required for normal biofilm MT disassembly. In addition to SrbA, the AtrR transcription factor is also found to be required to modulate cellular responses to gaseous signaling during biofilm development. Using co-cultures, we further show that cells lacking srbA or atrR are capable of responding to biofilm generated gaseous microenvironments but are actually more sensitive to this signal than wild type cells. SrbA is a regulator of ergosterol biosynthetic genes and we find that the levels of seven GFP-tagged Erg proteins differentially accumulate during biofilm formation with various dependencies on SrbA for their accumulation. This uncovers a complex pattern of regulation with biofilm accumulation of only some Erg proteins being dependent on SrbA with others accumulating to higher levels in its absence. Because different membrane sterols are known to influence cell permeability to gaseous molecules, including oxygen, we propose that differential regulation of ergosterol biosynthetic proteins by SrbA potentially calibrates the cell's responsiveness to gaseous signaling which in turn modifies the cell biology of developing biofilm cells.
Collapse
Affiliation(s)
- Shobhana Rajasenan
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
5
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
6
|
Reimer C, Kufs JE, Rautschek J, Regestein L, Valiante V, Hillmann F. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides. Nat Biotechnol 2022; 40:751-758. [PMID: 34992245 DOI: 10.1038/s41587-021-01143-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Aromatic polyketides are natural polyphenolic compounds with a broad spectrum of pharmacological activities. Production of those metabolites in the model organisms Escherichia coli and Saccharomyces cerevisiae has been limited by the extensive cellular engineering needed for the coordinated biosynthesis of polyketides and their precursors. In contrast, the amoeba Dictyostelium discoideum is a native producer of secondary metabolites and harbors a wide, but largely unexplored, repertoire of genes for the biosynthesis of polyketides and terpenoids. Here we present D. discoideum as an advantageous chassis for the production of aromatic polyketides. By expressing its native and cognate plant polyketide synthase genes in D. discoideum, we demonstrate production of phlorocaprophenone, methyl-olivetol, resveratrol and olivetolic acid (OA), which is the central intermediate in the biosynthesis of cannabinoids. To facilitate OA synthesis, we further engineered an amoeba/plant inter-kingdom hybrid enzyme that produced OA from primary metabolites in two enzymatic steps, providing a shortcut in a synthetic cannabinoid pathway using the D. discoideum host system.
Collapse
Affiliation(s)
- Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Johann E Kufs
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Julia Rautschek
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
7
|
Burchacka E, Pięta P, Łupicka-Słowik A. Recent advances in fungal serine protease inhibitors. Biomed Pharmacother 2021; 146:112523. [PMID: 34902742 DOI: 10.1016/j.biopha.2021.112523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Four types of antifungal drugs are available that include inhibitors of ergosterol synthesis, of fungal RNA biosynthesis, and of cell wall biosynthesis as well as physiochemical regulators of fungal membrane sterols. Increasing resistance to antifungal drugs can severely limit treatment options of fungal nail infections, vaginal candidiasis, ringworm, blastomycosis, histoplasmosis, and Candida infections of the mouth, throat, and esophagus, among other infections. Development of strategies focused on new fungicides can effectively help tackle troublesome fungal diseases. The virulence and optimal growth of fungi depend on various extracellular secreted factors, among which proteases, such as serine proteases, are of particular interest. A specific extracellular proteolytic system enables fungi to survive and penetrate the tissues. Given the role of fungal proteases in infection, any molecule capable of selectively and specifically inhibiting their activity can lead to the development of potential drugs. Owing to their specific mode of action, fungal protease inhibitors can avoid fungal resistance observed with currently available treatments. Although fungal secreted proteases have been extensively studied as potential virulence factors, our understanding of the substrate specificity of such proteases remains poor. In this review, we summarize the recent advances in the design and development of specific serine protease inhibitors and provide a brief history of the compounds that inhibit fungal serine protease activity.
Collapse
Affiliation(s)
- E Burchacka
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland.
| | - P Pięta
- Department of Bionic and Medical Experimental Biology, Poznań University of Medical Sciences, Parkowa 2 St, 60-775 Poznań, Poland
| | - A Łupicka-Słowik
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland
| |
Collapse
|
8
|
Zhang C, Gao L, Ren Y, Gu H, Zhang Y, Lu L. The CCAAT-binding complex mediates azole susceptibility of Aspergillus fumigatus by suppressing SrbA expression and cleavage. Microbiologyopen 2021; 10:e1249. [PMID: 34964293 PMCID: PMC8608569 DOI: 10.1002/mbo3.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
In fungal pathogens, the transcription factor SrbA (a sterol regulatory element-binding protein, SREBP) and CBC (CCAAT binding complex) have been reported to regulate azole resistance by competitively binding the TR34 region (34 mer) in the promoter of the drug target gene, erg11A. However, current knowledge about how the SrbA and CBC coordinately mediate erg11A expression remains limited. In this study, we uncovered a novel relationship between HapB (a subunit of CBC) and SrbA in which deletion of hapB significantly prolongs the nuclear retention of SrbA by increasing its expression and cleavage under azole treatment conditions, thereby enhancing Erg11A expression for drug resistance. Furthermore, we verified that loss of HapB significantly induces the expression of the rhomboid protease RbdB, Dsc ubiquitin E3 ligase complex, and signal peptide peptidase SppA, which are required for the cleavage of SrbA, suggesting that HapB acts as a repressor for these genes which contribute to the activation of SrbA by proteolytic cleavage. Together, our study reveals that CBC functions not only to compete with SrbA for binding to erg11A promoter region but also to affect SrbA expression, cleavage, and translocation to nuclei for the function, which ultimately regulate Erg11A expression and azole resistance.
Collapse
Affiliation(s)
- Chi Zhang
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yiran Ren
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Huiyu Gu
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
9
|
Gómez M, Baeza M, Cifuentes V, Alcaíno J. The SREBP (Sterol Regulatory Element-Binding Protein) pathway: a regulatory bridge between carotenogenesis and sterol biosynthesis in the carotenogenic yeast Xanthophyllomyces dendrorhous. Biol Res 2021; 54:34. [PMID: 34702374 PMCID: PMC8549280 DOI: 10.1186/s40659-021-00359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a basidiomycete yeast that naturally produces the red–orange carotenoid astaxanthin, which has remarkable antioxidant properties. The biosynthesis of carotenoids and sterols share some common elements that have been studied in X. dendrorhous. For example, their synthesis requires metabolites derived from the mevalonate pathway and in both specific pathways, cytochrome P450 enzymes are involved that share a single cytochrome P450 reductase, CrtR, which is essential for astaxanthin biosynthesis, but is replaceable for ergosterol biosynthesis. Research on the regulation of carotenoid biosynthesis is still limited in X. dendrorhous; however, it is known that the Sterol Regulatory Element-Binding Protein (SREBP) pathway, which is a conserved regulatory pathway involved in the control of lipid metabolism, also regulates carotenoid production in X. dendrorhous. This review addresses the similarities and differences that have been observed between mammal and fungal SREBP pathways and what it is known about this pathway regarding the regulation of the production of carotenoids and sterols in X. dendrorhous.
Collapse
Affiliation(s)
- Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile. .,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
10
|
Abdulrachman D, Eurwilaichitr L, Champreda V, Chantasingh D, Pootanakit K. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277. BMC Biotechnol 2021; 21:15. [PMID: 33573639 PMCID: PMC7879532 DOI: 10.1186/s12896-021-00669-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND CRISPR-Cas genome editing technologies have revolutionized biotechnological research particularly in functional genomics and synthetic biology. As an alternative to the most studied and well-developed CRISPR/Cas9, a new class 2 (type V) CRISPR-Cas system called Cpf1 has emerged as another versatile platform for precision genome modification in a wide range of organisms including filamentous fungi. RESULTS In this study, we developed AMA1-based single CRISPR/Cpf1 expression vector that targets pyrG gene in Aspergillus aculeatus TBRC 277, a wild type filamentous fungus and potential enzyme-producing cell factory. The results showed that the Cpf1 codon optimized from Francisella tularensis subsp. novicida U112, FnCpf1, works efficiently to facilitate RNA-guided site-specific DNA cleavage. Specifically, we set up three different guide crRNAs targeting pyrG gene and demonstrated that FnCpf1 was able to induce site-specific double-strand breaks (DSBs) followed by an endogenous non-homologous end-joining (NHEJ) DNA repair pathway which caused insertions or deletions (indels) at these site-specific loci. CONCLUSIONS The use of FnCpf1 as an alternative class II (type V) nuclease was reported for the first time in A. aculeatus TBRC 277 species. The CRISPR/Cpf1 system developed in this study highlights the feasibility of CRISPR/Cpf1 technology and could be envisioned to further increase the utility of the CRISPR/Cpf1 in facilitating strain improvements as well as functional genomics of filamentous fungi.
Collapse
Affiliation(s)
- Dede Abdulrachman
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Lily Eurwilaichitr
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathumthani, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathumthani, Thailand
| | - Duriya Chantasingh
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathumthani, Thailand.
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
11
|
Zelante T, Choera T, Beauvais A, Fallarino F, Paolicelli G, Pieraccini G, Pieroni M, Galosi C, Beato C, De Luca A, Boscaro F, Romoli R, Liu X, Warris A, Verweij PE, Ballard E, Borghi M, Pariano M, Costantino G, Calvitti M, Vacca C, Oikonomou V, Gargaro M, Wong AYW, Boon L, den Hartog M, Spáčil Z, Puccetti P, Latgè JP, Keller NP, Romani L. Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Rep 2021; 34:108673. [PMID: 33503414 PMCID: PMC7844877 DOI: 10.1016/j.celrep.2020.108673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenases (IDOs) degrade l-tryptophan to kynurenines and drive the de novo synthesis of nicotinamide adenine dinucleotide. Unsurprisingly, various invertebrates, vertebrates, and even fungi produce IDO. In mammals, IDO1 also serves as a homeostatic regulator, modulating immune response to infection via local tryptophan deprivation, active catabolite production, and non-enzymatic cell signaling. Whether fungal Idos have pleiotropic functions that impact on host-fungal physiology is unclear. Here, we show that Aspergillus fumigatus possesses three ido genes that are expressed under conditions of hypoxia or tryptophan abundance. Loss of these genes results in increased fungal pathogenicity and inflammation in a mouse model of aspergillosis, driven by an alternative tryptophan degradation pathway to indole derivatives and the host aryl hydrocarbon receptor. Fungal tryptophan metabolic pathways thus cooperate with the host xenobiotic response to shape host-microbe interactions in local tissue microenvironments.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Anne Beauvais
- Unitè des Aspergillus, Pasteur Institute, 75724 Paris, France
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Marco Pieroni
- P4T group, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Claudia Galosi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Claudia Beato
- Interdepartmental Centre for Measures (CIM) "G. Casnati," University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Xin Liu
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paul E Verweij
- Department of Medical Microbiology, Centre of Expertise in Mycology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eloise Ballard
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Costantino
- P4T group, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Alicia Yoke Wei Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | | | - Zdeněk Spáčil
- Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jean-Paul Latgè
- Unitè des Aspergillus, Pasteur Institute, 75724 Paris, France
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
12
|
van Rhijn N, Furukawa T, Zhao C, McCann BL, Bignell E, Bromley MJ. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol 2020; 145:103479. [PMID: 33122116 PMCID: PMC7768092 DOI: 10.1016/j.fgb.2020.103479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Aspergillus fumigatus is a saprophytic fungal pathogen that is the cause of more than 300,000 life-threatening infections annually. Our understanding of pathogenesis and factors contributing to disease progression are limited. Development of rapid and versatile gene editing methodologies for A. fumigatus is essential. CRISPR-Cas9 mediated transformation has been widely used as a novel genome editing tool and has been used for a variety of editing techniques, such as protein tagging, gene deletions and site-directed mutagenesis in A. fumigatus. However, successful genome editing relies on time consuming, multi-step cloning procedures paired with the use of selection markers, which can result in a metabolic burden for the host and/or unintended transcriptional modifications at the site of integration. We have used an in vitro CRISPR-Cas9 assembly methodology to perform selection-free genome editing, including epitope tagging of proteins and site-directed mutagenesis. The repair template used during this transformation use 50 bp micro-homology arms and can be generated with a single PCR reaction or by purchasing synthesised single stranded oligonucleotides, decreasing the time required for complex construct synthesis.
Collapse
Affiliation(s)
- Norman van Rhijn
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bethany L McCann
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
13
|
Ma Y, Ji Y, Yang J, Li W, Li J, Cen W, Wang Y, Feng W. Deletion of bem46 retards spore germination and may be related to the polar growth of Aspergillus fumigatus. Med Mycol 2020; 58:690-697. [PMID: 31711175 DOI: 10.1093/mmy/myz108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Bud emergence 46 (BEM46), a member of the α/β hydrolase superfamily, has been reported to be essential for polarized growth in Neurospora crassa. However, the role of BEM46 in aspergillus fumigatus (A. fumigatus) remains unclear. In this study, we constructed an A. fumigatus strain expressing BEM46 fused with enhanced green fluorescent protein, and a Δbem46 mutant, to explore the localization and the role of growth of BEM46 in A. fumigatus, respectively. Confocal laser scanning microscopy revealed that BEM46 was dominantly expressed in the sites where hyphae germinated from conidia in A. fumigatus. When compared with the control strain, the Δbem46 mutant exhibited insignificant morphological changes but delayed germination. No significant changes were found regarding the radial growth of both strains in response to various antifungal agents. These results suggest that BEM46 plays an essential role in timely germination in A. fumigatus. From the observation of fluorescence localization, we infer that that BEM46 might be involved in polarized growth in A. fumigatus.
Collapse
Affiliation(s)
- Yan Ma
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Ji
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Yang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen Li
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiajuan Li
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen Cen
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenli Feng
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Takahashi-Nakaguchi A, Shishido E, Yahara M, Urayama SI, Sakai K, Chibana H, Kamei K, Moriyama H, Gonoi T. Analysis of an Intrinsic Mycovirus Associated With Reduced Virulence of the Human Pathogenic Fungus Aspergillus fumigatus. Front Microbiol 2020; 10:3045. [PMID: 32010101 PMCID: PMC6978690 DOI: 10.3389/fmicb.2019.03045] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is an airborne fungal pathogen that causes severe infections with invasive growth in immunocompromised patients. Several mycoviruses have recently been isolated from A. fumigatus strains, but there are presently no reports of mycoviral-mediated reduction or elimination of fungal pathogenicity in vertebrate models. Here, we report the biological features of a novel mycovirus, A. fumigatus chrysovirus 41362 (AfuCV41362), isolated from the hypovirulent A. fumigatus strain IFM 41362. The AfuCV41362 genome is comprised of four dsRNAs, each of which contains a single ORF (ORF1-4). ORF1 encodes a protein with sequence similarity to RNA-dependent RNA polymerases of viruses in the family Chrysoviridae, while ORF3 encodes a putative capsid protein. Viral RNAs are expressed primarily during the germination stage, and RNA-seq analysis of virus-infected A. fumigatus at the germination stage suggested that the virus suppressed expression of several pathogenicity-associated host genes, including hypoxia adaptation and nitric oxide detoxification genes. In vitro functional analysis revealed that the virus-infected strain had reduced tolerance to environmental stressors. Virus-infected A. fumigatus strain IFM 41362 had reduced virulence in vivo compared to the virus-free strain in a mouse infection model. Furthermore, introduction of the mycovirus to a natively virus-free KU A. fumigatus strain induced virus-infected phenotypes. To identify mycovirus genes responsible for the reduced virulence of A. fumigatus, each viral ORF was ectopically expressed in the virus-free KU strain. Ectopic expression of the individual ORFs only nominally reduced virulence of the host fungus in a mouse infection model. However, we found that ORF3 and ORF4 reduced tolerance to environmental stresses in in vitro analysis. Based on these results, we suggest that the AfuCV41362 mycovirus ORF3 and ORF4 reduce fungal virulence by suppressing stress tolerance together with other viral genes, rather than alone.
Collapse
Affiliation(s)
| | - Erika Shishido
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Misa Yahara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
16
|
Bauer I, Misslinger M, Shadkchan Y, Dietl AM, Petzer V, Orasch T, Abt B, Graessle S, Osherov N, Haas H. The Lysine Deacetylase RpdA Is Essential for Virulence in Aspergillus fumigatus. Front Microbiol 2019; 10:2773. [PMID: 31866965 PMCID: PMC6905131 DOI: 10.3389/fmicb.2019.02773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Current suboptimal treatment options of invasive fungal infections and emerging resistance of the corresponding pathogens urge the need for alternative therapy strategies and require the identification of novel antifungal targets. Aspergillus fumigatus is the most common airborne opportunistic mold pathogen causing invasive and often fatal disease. Establishing a novel in vivo conditional gene expression system, we demonstrate that downregulation of the class 1 lysine deacetylase (KDAC) RpdA leads to avirulence of A. fumigatus in a murine model for pulmonary aspergillosis. The xylP promoter used has previously been shown to allow xylose-induced gene expression in different molds. Here, we demonstrate for the first time that this promoter also allows in vivo tuning of A. fumigatus gene activity by supplying xylose in the drinking water of mice. In the absence of xylose, an A. fumigatus strain expressing rpdA under control of the xylP promoter, rpdA xylP , was avirulent and lung histology showed significantly less fungal growth. With xylose, however, rpdA xylP displayed full virulence demonstrating that xylose was taken up by the mouse, transported to the site of fungal infection and caused rpdA induction in vivo. These results demonstrate that (i) RpdA is a promising target for novel antifungal therapies and (ii) the xylP expression system is a powerful new tool for in vivo gene silencing in A. fumigatus.
Collapse
Affiliation(s)
- Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Anna-Maria Dietl
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Orasch
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Beate Abt
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Au-Yeung RKH, Cai JP, Chong KTK, Sze KH, Kao RY, Hao Q, Yuen KY. Mp1p homologues as virulence factors in Aspergillus fumigatus. Med Mycol 2019; 56:350-360. [PMID: 28992243 DOI: 10.1093/mmy/myx052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, we showed that Mp1p is an important virulence factor of Talaromyces marneffei, a dimorphic fungus phylogenetically closely related to Aspergillus fumigatus. In this study, we investigated the virulence properties of the four Mp1p homologues (Afmp1p, Afmp2p, Afmp3p, and Afmp4p) in A. fumigatus using a mouse model. All mice died 7 days after challenge with wild-type A. fumigatus QC5096, AFMP1 knockdown mutant, AFMP2 knockdown mutant and AFMP3 knockdown mutant and 28 days after challenge with AFMP4 knockdown mutant (P<.0001). Only 11% of mice died 30 days after challenge with AFMP1-4 knockdown mutant (P<.0001). For mice challenge with AFMP1-4 knockdown mutant, lower abundance of fungal elements was observed in brains, kidneys, and spleens compared to mice challenge with QC5096 at day 4 post-infection. Fungal counts in brains of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.01 and P<.05). Fungal counts in kidneys of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.001 and P<.001) and those of mice challenge with QC5096 were significantly higher than those challenge with AFMP4 knockdown mutant (P<.05). There is no difference among the survival rates of wild-type A. fumigatus, AFMP4 knockdown mutant and AFMP1-4 knockdown mutant, suggesting that Mp1p homologues in A. fumigatus do not mediate its virulence via improving its survival in macrophage as in the case in T. marneffei. Afmp1p, Afmp2p, Afmp3p, and Afmp4p in combination are important virulence factors of A. fumigatus.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Edward T K Tung
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, The University of Hong -Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ken T K Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Menacing Mold: Recent Advances in Aspergillus Pathogenesis and Host Defense. J Mol Biol 2019; 431:4229-4246. [PMID: 30954573 DOI: 10.1016/j.jmb.2019.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/21/2019] [Accepted: 03/30/2019] [Indexed: 02/08/2023]
Abstract
The genus Aspergillus is ubiquitous in the environment and contains a number of species, primarily A. fumigatus, that cause mold-associated disease in humans. Humans inhale several hundred to several thousand Aspergillus conidia (i.e., vegetative spores) daily and typically clear these in an asymptomatic manner. In immunocompromised individuals, Aspergillus conidia can germinate into tissue-invasive hyphae, disseminate, and cause invasive aspergillosis. In this review, we first discuss novel concepts in host defense against Aspergillus infections and emphasize new insights in fungal recognition and signaling, innate immune activation, and fungal killing. Second, the review focuses on novel concepts of Aspergillus pathogenesis and highlights emerging knowledge regarding fungal strain heterogeneity, stress responses, and metabolic adaptations on infectious outcomes. Mechanistic insight into the host-pathogen interplay is thus critical to define novel druggable fungal targets and to exploit novel immune-based strategies to improve clinical outcomes associated with aspergillosis in vulnerable patient populations.
Collapse
|
19
|
Zarrin M, Faramarzi S. Study of Azole - Resistant and Cyp51a Gene in Aspergillus Fumigatus. Open Access Maced J Med Sci 2018; 6:747-750. [PMID: 29875840 PMCID: PMC5985858 DOI: 10.3889/oamjms.2018.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022] Open
Abstract
AIM The main goal of the present study was to find azole-resistant and molecular analysis of cyp51A gene in Aspergillus fumigatus. MATERIALS AND METHODS Fifty-eight A. fumigatus strains including environmental, clinical and reference isolates were assessed in this investigation. Azole susceptibility testing for itraconazole and voriconazole was carried out for A. fumigatus isolates. PCR was performed based on cyp51A gene sequence for all isolates. RESULTS Susceptibility testing verified the minimum inhibitory concentrations (MICs) for itraconazole (0.125 to 2 µg/ml) and voriconazole (0.125 to 4 µg/ml). Nine (15.5%) A. fumigatus isolates were resistant to voriconazole with MIC 4 µg/ml. A 1500 bp DNA fragment was amplified using cyp51A gene for all tested Aspergillus isolates. The sequences of the fragments showed 99% identity with A. fumigatus cyp51A gene in the GenBank. No point mutation was found at cyp51A gene codons. CONCLUSION In the current study, we detected the voriconazile resistant in A. fumigatus isolates. Susceptibility tests should be considered in patients who infected by A. fumigatus.
Collapse
Affiliation(s)
- Majid Zarrin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Faramarzi
- Department of Medical Mycology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother 2018; 72:2263-2272. [PMID: 28475687 DOI: 10.1093/jac/dkx117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Objectives Over the last 30 years, the number of invasive fungal infections among immunosuppressed patients has increased significantly, while the number of effective systemic antifungal drugs remains low. The aim of this study was to identify and characterize antifungal compounds that inhibit fungus-specific metabolic pathways not conserved in humans. Methods We screened a diverse compound library for antifungal activity in the pathogenic mould Aspergillus fumigatus . We determined the in vitro activity of bromoquinol by MIC determination against a panel of fungi, bacteria and cell lines. The mode of action of bromoquinol was determined by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring genes and by RNAseq analysis in A. fumigatus . In vivo efficacy was tested in Galleria mellonella and murine models of A. fumigatus infection. Results Screening of a diverse chemical library identified three compounds interfering with fungal iron utilization. The most potent, bromoquinol, shows potent wide-spectrum antifungal activity that was blocked in the presence of exogenous iron. Mode-of-action analysis revealed that overexpression of the dba secondary metabolite cluster gene dbaD , encoding a metabolite transporter, confers bromoquinol resistance in A. nidulans , possibly by efflux. RNAseq analysis and subsequent experimental validation revealed that bromoquinol induces oxidative stress and apoptosis in A. fumigatus . Bromoquinol significantly reduced mortality rates of G. mellonella infected with A. fumigatus , but was ineffective in a murine model of infection. Conclusions Bromoquinol is a promising antifungal candidate with a unique mode of action. Its activity is potentiated by iron starvation, as occurs during in vivo growth.
Collapse
Affiliation(s)
- Dafna Ben Yaakov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathaniel Albert
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
21
|
Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. J Membr Biol 2017; 251:369-378. [PMID: 29260282 DOI: 10.1007/s00232-017-0008-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Proteases, sharp yet unforgivable tools of every cell, require tight regulation to ensure specific non-aberrant cleavages. The relatively recent discovered class of intramembrane proteases has gained increasing interest due to their involvement in important signaling pathways linking them to diseases including Alzheimer's disease and cancer. Despite tremendous efforts, their regulatory mechanisms have only started to unravel. There is evidence that the membrane composition itself can regulate intramembrane protease activity and specificity. In this review, we highlight the work on γ-secretase and rhomboid proteases and summarize several studies as to how different lipids impact on enzymatic activity.
Collapse
|
22
|
Dhingra S, Cramer RA. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development. Front Microbiol 2017; 8:92. [PMID: 28203225 PMCID: PMC5285346 DOI: 10.3389/fmicb.2017.00092] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Sterols are a major component of eukaryotic cell membranes. For human fungal infections caused by the filamentous fungus Aspergillus fumigatus, antifungal drugs that target sterol biosynthesis and/or function remain the standard of care. Yet, an understanding of A. fumigatus sterol biosynthesis regulatory mechanisms remains an under developed therapeutic target. The critical role of sterol biosynthesis regulation and its interactions with clinically relevant azole drugs is highlighted by the basic helix loop helix (bHLH) class of transcription factors known as Sterol Regulatory Element Binding Proteins (SREBPs). SREBPs regulate transcription of key ergosterol biosynthesis genes in fungi including A. fumigatus. In addition, other emerging regulatory pathways and target genes involved in sterol biosynthesis and drug interactions provide additional opportunities including the unfolded protein response, iron responsive transcriptional networks, and chaperone proteins such as Hsp90. Thus, targeting molecular pathways critical for sterol biosynthesis regulation presents an opportunity to improve therapeutic options for the collection of diseases termed aspergillosis. This mini-review summarizes our current understanding of sterol biosynthesis regulation with a focus on mechanisms of transcriptional regulation by the SREBP family of transcription factors.
Collapse
Affiliation(s)
- Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| |
Collapse
|
23
|
Shukla N, Osmani AH, Osmani SA. Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms. Mol Biol Cell 2017; 28:634-644. [PMID: 28057761 PMCID: PMC5328622 DOI: 10.1091/mbc.e16-10-0750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
How microtubules (MTs) are regulated during fungal biofilm formation is unknown. By tracking MT +end-binding proteins (+TIPS) in Aspergillus nidulans, we find that MTs are regulated to depolymerize within forming fungal biofilms. During this process, EB1, dynein, and ClipA form transient fibrous and then bar-like structures, novel configurations for +TIPS. Cells also respond in an autonomous manner, with cells separated by a septum able to maintain different MT dynamics. Surprisingly, all cells with depolymerized MTs rapidly repolymerize their MTs after air exchange above the static culture medium of biofilms. Although the specific gasotransmitter for this biofilm response is not known, we find that addition of hydrogen sulfide gas to growing cells recapitulates all aspects of reversible MT depolymerization and transient formation of +TIPs bars. However, as biofilms mature, physical removal of part of the biofilm is required to promote MT repolymerization, which occurs at the new biofilm edge. We further show MT depolymerization within biofilms is regulated by the SrbA hypoxic transcription factor and that without SrbA, MTs are maintained as biofilms form. This reveals a new mode of MT regulation in response to changing gaseous biofilm microenvironments, which could contribute to the unique characteristics of fungal biofilms in medical and industrial settings.
Collapse
Affiliation(s)
- Nandini Shukla
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210 .,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
24
|
Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, Watanabe A, Kamei K, Shintani T, Moye-Rowley WS, Kawamoto S, Gomi K. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions. PLoS Pathog 2017; 13:e1006096. [PMID: 28052140 PMCID: PMC5215518 DOI: 10.1371/journal.ppat.1006096] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B).
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- * E-mail: (DH); (KG)
| | - Daisuke Miura
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kiminori Shimizu
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ayumi Ohba
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takahiro Shintani
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Susumu Kawamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail: (DH); (KG)
| |
Collapse
|
25
|
Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization. Cell Res 2016; 26:1197-1211. [PMID: 27811944 PMCID: PMC5099872 DOI: 10.1038/cr.2016.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/05/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation.
Collapse
|
26
|
Urban S. A guide to the rhomboid protein superfamily in development and disease. Semin Cell Dev Biol 2016; 60:1-4. [PMID: 27751777 DOI: 10.1016/j.semcdb.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
Abstract
Rhomboid proteins are considered to be the most widespread membrane proteins across all forms of life. This superfamily comprises both active intramembrane serine proteases that catalyze the release of factors from the membrane, and a eukaryotic subset of non-catalytic members in which rhomboid architecture supports deviating functions. Although rhomboid was discovered in genetic studies of insect development, rhomboid research has broadened dramatically over the past 15 years; rhomboid enzymes are now the best biophysically understood of all intramembrane proteases, and are considered promising therapeutic targets for diseases ranging from parasitic infections to Parkinsonian neurodegeneration. Perhaps the most rapid progress has come with the catalytically inert rhomboid proteins, some of which regulate protein trafficking and/or function, and their prominence is underscored by clinical mutations. Such a diverse collection of advances mark an excellent point to review the state of this vibrant area of research, not because central questions have been answered, but instead because a firm grip in key areas has been established, and the field is now poised for breakthroughs.
Collapse
Affiliation(s)
- Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Al-Bader N, Sheppard DC. Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies. Virulence 2016; 7:950-966. [PMID: 27687755 DOI: 10.1080/21505594.2016.1231278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.
Collapse
Affiliation(s)
- Nadia Al-Bader
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada
| | - Donald C Sheppard
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada.,b Infectious Diseases in Global Health Program, Research Institute of the McGill University Health Center, McGill University , Montréal , Québec , Canada
| |
Collapse
|
28
|
Hwang J, Ribbens D, Raychaudhuri S, Cairns L, Gu H, Frost A, Urban S, Espenshade PJ. A Golgi rhomboid protease Rbd2 recruits Cdc48 to cleave yeast SREBP. EMBO J 2016; 35:2332-2349. [PMID: 27655872 DOI: 10.15252/embj.201693923] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Hypoxic growth of fungi requires sterol regulatory element-binding protein (SREBP) transcription factors, and human opportunistic fungal pathogens require SREBP activation for virulence. Proteolytic release of fission yeast SREBPs from the membrane in response to low oxygen requires the Golgi membrane-anchored Dsc E3 ligase complex. Using genetic interaction arrays, we identified Rbd2 as a rhomboid family protease required for SREBP proteolytic processing. Rbd2 is an active, Golgi-localized protease that cleaves the transmembrane segment of the TatA rhomboid model substrate. Epistasis analysis revealed that the Dsc E3 ligase acts on SREBP prior to cleavage by Rbd2. Using APEX2 proximity biotinylation, we demonstrated that Rbd2 binds the AAA-ATPase Cdc48 through a C-terminal SHP box. Interestingly, SREBP cleavage required Rbd2 binding of Cdc48, consistent with Cdc48 acting to recruit ubiquitinylated substrates. In support of this claim, overexpressing a Cdc48-binding mutant of Rbd2 bypassed the Cdc48 requirement for SREBP cleavage, demonstrating that Cdc48 likely plays a role in SREBP recognition. In the absence of functional Rbd2, SREBP precursor is degraded by the proteasome, indicating that Rbd2 activity controls the balance between SREBP activation and degradation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diedre Ribbens
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leah Cairns
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - He Gu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Siniša Urban
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
30
|
Dogga SK, Soldati-Favre D. Biology of rhomboid proteases in infectious diseases. Semin Cell Dev Biol 2016; 60:38-45. [PMID: 27567708 DOI: 10.1016/j.semcdb.2016.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Rhomboids are a well-conserved class of intramembrane serine proteases found in all kingdoms of life, sharing a conserved core structure of at least six transmembrane (TM) domains that contain the catalytic serine-histidine dyad. The rhomboid proteases, which cleave membrane embedded substrates within their TM domains, are emerging as an important group of enzymes controlling a myriad of biological processes. These enzymes are found in a wide variety of pathogens manifesting important roles in their pathological processes. Accordingly, they have received considerable attention as potential targets for pharmacological intervention over the past few years. This review provides a general update on rhomboid proteases and their roles in pathogenesis of human infectious agents.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
31
|
Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, Müller C, Bracher F, Bowyer P, Haas H, Brakhage AA, Bromley MJ. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. PLoS Pathog 2016; 12:e1005775. [PMID: 27438727 PMCID: PMC4954732 DOI: 10.1371/journal.ppat.1005775] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023] Open
Abstract
Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis.
Collapse
Affiliation(s)
- Fabio Gsaller
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Paul D. Carr
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Bharat Rash
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Javier Capilla
- Microbiology Unit, Medical School, Universitat Rovira i Virgili, Reus, Spain
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Paul Bowyer
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Hubertus Haas
- Division of Molecular Biology, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| |
Collapse
|