1
|
Wang Y, Xu W, Guo S, Xu S, Wang J, Zhang S, Kuang Y, Jin P. Enterococci for human health: A friend or foe? Microb Pathog 2025; 201:107381. [PMID: 39983880 DOI: 10.1016/j.micpath.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Enterococci are widely distributed in nature and exhibit good temperature and pH tolerance, making them suitable for industrial fermentation. It can produce bacteriocins, natural antibacterial substances utilized in food preservation. Some Enterococci are employed as probiotics to regulate human immunity and maintain healthy intestinal environments. However, recent scientific studies have highlighted the pathogenicity and multidrug resistance of Enterococci, classifying it as an important pathogen in clinical infections. Moreover, increasing evidence has linked Enterococcus sp., particularly Enterococcus faecalis and Enterococcus faecium, to clinical diseases, raising concerns about their safety and posing the question, how should we approach the conflicting nature of the pathogenic and beneficial effects of Enterococci? This review provides the recent advancements in Enterococci research and incorporates the perspectives of international authoritative organizations and institutions to comprehensively analyze the beneficial and harmful characteristics of Enterococci in the fields of science, clinical and industrial applications, aiming to address three important questions: whether Enterococci are beneficial or harmful to humans, their potential use in medical treatments, and the criteria to evaluate their safety. The goal is to explore the feasibility of the standardized use of Enterococci and provide guidance on the scientific selection and utilization of probiotics.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Wenfeng Xu
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Sirui Guo
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Shuo Xu
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Jing Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Shanshan Zhang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Yongmei Kuang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China.
| |
Collapse
|
2
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
3
|
Imani S, Lv S, Qian H, Cui Y, Li X, Babaeizad A, Wang Q. Current innovations in mRNA vaccines for targeting multidrug-resistant ESKAPE pathogens. Biotechnol Adv 2025; 79:108492. [PMID: 39637949 DOI: 10.1016/j.biotechadv.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The prevalence of multidrug-resistant (MDR) ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, represents a critical global public health challenge. In response, mRNA vaccines offer an adaptable and scalable platform for immunotherapy against ESKAPE pathogens by encoding specific antigens that stimulate B-cell-driven antibody production and CD8+ T-cell-mediated cytotoxicity, effectively neutralizing these pathogens and combating resistance. This review examines recent advancements and ongoing challenges in the development of mRNA vaccines targeting MDR ESKAPE pathogens. We explore antigen selection, the nuances of mRNA vaccine technology, and the complex interactions between bacterial infections and antibiotic resistance. By assessing the potential efficacy of mRNA vaccines and addressing key barriers to their paraclinical implementation, this review highlights the promising function of mRNA-based immunization in combating MDR ESKAPE pathogens.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shuojie Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Hongbo Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yulan Cui
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - XiaoYan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
4
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
5
|
Repac Antić D, Kovač B, Kolenc M, Brčić Karačonji I, Gobin I, Petković Didović M. Combinatory Effect of Nitroxoline and Gentamicin in the Control of Uropathogenic Enterococci Infections. Antibiotics (Basel) 2024; 13:829. [PMID: 39335003 PMCID: PMC11428728 DOI: 10.3390/antibiotics13090829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Enterococcus faecalis, responsible for a majority of human and nosocomial enterococcal infections, is intrinsically resistant to aminoglycoside antibiotics (such as gentamicin, GEN), which must be used in a combined therapy to be effective. Nitroxoline (NTX) is an old antibiotic, underused for decades, but rediscovered now in an era of growing antibiotic resistance. In this in vitro study, the types of interactions between NTX and GEN on 29 E. faecalis strains were analyzed with an aim to find synergistic antimicrobial and antiadhesion combinations. Transmission electron microscopy (TEM) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to analyze changes in cell morphology and bacterial proteome after monotreatments and combined treatments. The results showed the synergistic effect for six combinations on eight strains, including the ATCC29212, and an additive effect for most strains. Combinations causing a complete inhibition of adhesion were established. Cell membrane integrity was affected by NTX, while combined NTX/GEN treatment caused dramatic changes in cell morphology. Upregulation of the expression of many proteins was established, with some emerging only after combined treatment. The results strongly imply that NTX has the potential for use in combined therapy with GEN against enterococci and it could further provide a substantial contribution to an ongoing fight against antimicrobial resistance and nosocomial infections.
Collapse
Affiliation(s)
- Davorka Repac Antić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Bruno Kovač
- Chair of Buildings and Constructional Complexes, Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Irena Brčić Karačonji
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Department of Basic Medical Sciences, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mirna Petković Didović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Amuasi GR, Dsani E, Owusu-Nyantakyi C, Owusu FA, Mohktar Q, Nilsson P, Adu B, Hendriksen RS, Egyir B. Enterococcus species: insights into antimicrobial resistance and whole-genome features of isolates recovered from livestock and raw meat in Ghana. Front Microbiol 2023; 14:1254896. [PMID: 38192291 PMCID: PMC10773571 DOI: 10.3389/fmicb.2023.1254896] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Enterococcus spp. have gradually evolved from commensals to causing life-threatening hospital-acquired infections globally due to their inherent antimicrobial resistance ability and virulence potential. Enterococcus spp. recovered from livestock and raw meat samples were characterized using antimicrobial susceptibility testing and whole-genome sequencing. Materials and methods Isolates were confirmed using the MALDI-ToF mass spectrometer, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Whole genome sequencing was performed on isolates resistant to two or more antibiotics. Bioinformatics analysis was performed to determine sequence types, resistance and virulence gene content and evolutionary relationships between isolates from meat and livestock samples, and other enterococci genomes curated by PATRIC. eBURST analysis was used to assign genomes to clonal complexes. Results Enterococcus spp. were predominantly E. faecalis (96/236; 41%) and E. faecium (89/236; 38%). Overall, isolates showed resistance to erythromycin (78/236; 33%), tetracycline (71/236; 30%), ciprofloxacin (20/236; 8%), chloramphenicol (12/236; 5%), linezolid (7/236; 3%), ampicillin (4/236; 2%) and vancomycin (1/236, 0.4%). Resistance to two or more antimicrobial agents was detected among 17% (n = 40) Enterococcus spp. Resistance genes for streptogramins [lsa(A), lsa(E), msr(C)], aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia, aac(6')-aph(2″), str], amphenicol [cat], macrolides [erm(B), erm(T), msr(C)], tetracyclines [tet(M), tet(L), tet(S)] and lincosamides [lsa(A), lsa(E), lnu(B)] were detected among the isolates. Genes for biofilm formation, adhesins, sex pheromones, cytolysins, hyaluronidase, oxidative stress resistance, quorum-sensing and anti-phagocytic activity were also identified. Potential plasmids with replicon sequences (rep1, rep2, repUS43, repUS47, rep9a, rep9b) and other mobile genetic elements (Tn917, cn_5536_ISEnfa1, Tn6009, ISEnfa1, ISEfa10) were detected. Clinically relevant E. faecium ST32 and ST416 clones were identified in meat samples. Conclusion The occurrence of antimicrobial-resistant Enterococcus spp. in livestock and raw meat samples, carrying multiple resistance and virulence genes, including known clones associated with hospital-acquired infections, underscores the critical need for employing robust tools like whole genome sequencing. Such tools provide detailed data essential for ongoing surveillance efforts aimed at addressing the challenge of antimicrobial resistance with a focus on one health.
Collapse
Affiliation(s)
- Grebstad Rabbi Amuasi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Esther Dsani
- Veterinary Services Department, Ministry of Food and Agriculture, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Felicia A. Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Pernille Nilsson
- National Food Institute, Research Group for Global Capacity Building, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Rene S. Hendriksen
- National Food Institute, Research Group for Global Capacity Building, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Permana B, Harris PNA, Runnegar N, Lindsay M, Henderson BC, Playford EG, Paterson DL, Beatson SA, Forde BM. Using Genomics To Investigate an Outbreak of Vancomycin-Resistant Enterococcus faecium ST78 at a Large Tertiary Hospital in Queensland. Microbiol Spectr 2023; 11:e0420422. [PMID: 37191518 PMCID: PMC10269735 DOI: 10.1128/spectrum.04204-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
To investigate an outbreak of vancomycin-resistant Enterococcus faecium (VREfm) sequence type 78 (ST78) in a large tertiary Australian hospital. A collection of 63 VREfm ST78 isolates, identified during a routine genomic surveillance program, were subjected to genomic epidemiological analysis based on whole-genome sequencing (WGS) data. The population structure was reconstructed using phylogenetic analysis, and a collection of publicly available VREfm ST78 genomes were used to provide global context. Core genome single nucleotide polymorphism (SNP) distances and available clinical metadata were used to characterize outbreak clusters and reconstruct transmission events. In silico genotyping confirmed that all study isolates were vanB-type VREfm carrying virulence characteristics of the hospital-associated E. faecium. Phylogenetic analysis identified two distinct phylogenetic clades, only one of which was responsible for a hospital outbreak. Four outbreak subtypes could be defined with examples of recent transmissions. Inference on transmission trees suggested complex transmission routes with unknown environmental reservoirs mediating the outbreak. WGS-based cluster analysis with publicly available genomes identified closely related Australian ST78 and ST203 isolates, highlighting the capacity for WGS to resolve complex clonal relationships between the VREfm lineages. Whole genome-based analysis has provided a high-resolution description of an outbreak of vanB-type VREfm ST78 in a Queensland hospital. Combined routine genomic surveillance and epidemiological analysis have facilitated better understanding of the local epidemiology of this endemic strain, providing valuable insight for better targeted control of VREfm. IMPORTANCE Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of health care-associated infections (HAIs) globally. In Australia, the spread of hospital-adapted VREfm is largely driven by a single clonal group (clonal complex [CC]), CC17, to which the lineage ST78 belongs. While implementing a genomic surveillance program in Queensland, we observed increased incidence of ST78 colonizations and infections among patients. Here, we demonstrate the use of real-time genomic surveillance as a tool to support and enhance infection control (IC) practices. Our results show that real-time whole-genome sequencing (WGS) can efficiently disrupt outbreaks by identifying transmission routes that in turn can be targeted using resource-limited interventions. Additionally, we demonstrate that by placing local outbreaks in a global context, high-risk clones can be identified and targeted prior to them becoming established within clinical environments. Finally, the persistence of these organism within the hospital highlights the need for routine genomic surveillance as a management tool to control VRE transmission.
Collapse
Affiliation(s)
- Budi Permana
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Australia
| | - Patrick N. A. Harris
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Central Laboratory, Brisbane, Australia
| | - Naomi Runnegar
- Princess Alexandra–Southside Clinical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Margaret Lindsay
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | | | - E. G. Playford
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
| | - Brian M. Forde
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Liu HF, Huang XY, Li ZM, Zhou ZY, Zhong ZJ, Peng GN. Virulence gene detection and antimicrobial resistance analysis of Enterococcus faecium in captive giant pandas (Ailuropoda melanoleuca) in China. Acta Vet Scand 2023; 65:4. [PMID: 36737784 PMCID: PMC9898886 DOI: 10.1186/s13028-023-00668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The emergence of multidrug resistance among enterococci makes effective treatment of enterococcal infections more challenging. Giant pandas (Ailuropoda melanoleuca) are vulnerable to oral trauma and lesions as they feast on bamboo. Enterococci may contaminate such oral lesions and cause infection necessitating treatment with antibiotics. However, few studies have focused on the virulence and drug resistance of oral-derived enterococci, including Enterococcus faecium, in giant pandas. In this study, we analyzed the prevalence of 8 virulence genes and 14 drug resistance genes in E. faecium isolates isolated from saliva samples of giant pandas held in captivity in China and examined the antimicrobial drug susceptibility patterns of the E. faecium isolates. RESULTS Twenty-eight isolates of E. faecium were successfully isolated from the saliva samples. Four virulence genes were detected, with the acm gene showing the highest prevalence (89%). The cylA, cpd, esp, and hyl genes were not detected. The isolated E. faecium isolates possessed strong resistance to a variety of drugs; however, they were sensitive to high concentrations of aminoglycosides. The resistance rates to vancomycin, linezolid, and nitrofurantoin were higher than those previously revealed by similar studies in China and other countries. CONCLUSIONS The findings of the present study indicate the drugs of choice for treatment of oral E. faecium infection in the giant panda.
Collapse
Affiliation(s)
- Hai-Feng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Xiao-Yao Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zhe-Meng Li
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zi-Yao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zhi-Jun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Guang-Neng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
9
|
García-Vela S, Ben Said L, Soltani S, Guerbaa R, Fernández-Fernández R, Ben Yahia H, Ben Slama K, Torres C, Fliss I. Targeting Enterococci with Antimicrobial Activity against Clostridium perfringens from Poultry. Antibiotics (Basel) 2023; 12:antibiotics12020231. [PMID: 36830142 PMCID: PMC9952055 DOI: 10.3390/antibiotics12020231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, is an emerging issue in poultry farming. New approaches, other than antibiotics, are necessary to prevent NE development and the emergence of multidrug-resistant bacteria. Enterococci are commensal microorganisms that can produce enterocins, antimicrobial peptides with activities against pathogens, and could be excellent candidates for protective cultures. This study aimed to screen and characterize Enterococcus strains of poultry origin for their inhibitory activity against C. perfringens. In total, 251 Enterococcus strains of poultry origin plus five bacteriocin-producing (BP+) E. durans strains of other origins were screened for antimicrobial activity against the indicator C. perfringens X2967 strain using the "spot on the lawn" method. We detected thirty-two BP+ strains (eleven Enterococcus faecium, nine E. gallinarum, eight E. faecalis, three E. durans, and one E. casseliflavus). We further studied the antimicrobial activity of the supernatants of these 32 BP+ strains using agar well diffusion and microtitration against a collection of 20 C. perfringens strains. Twelve BP+ enterococci that were found to exhibit antimicrobial activity against C. perfringens were characterized using whole genome sequencing. Among these, E. faecium X2893 and X2906 were the most promising candidates for further studies as protective cultures for poultry farming. Both strains belong to the sequence type ST722, harbor the genes encoding for enterocin A and enterocin B, do not possess acquired resistance genes, do not carry plasmids, and present the acm gene, which is implicated in host colonization. Further research is needed to determine the utility of these strains as protective cultures.
Collapse
Affiliation(s)
- Sara García-Vela
- Department of Food Science, University of Laval, Quebec, QC G1V 0A6, Canada
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | - Laila Ben Said
- Department of Food Science, University of Laval, Quebec, QC G1V 0A6, Canada
| | - Samira Soltani
- Department of Food Science, University of Laval, Quebec, QC G1V 0A6, Canada
| | - Ramzi Guerbaa
- Department of Food Science, University of Laval, Quebec, QC G1V 0A6, Canada
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia
| | - Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | - Houssem Ben Yahia
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia
| | - Karim Ben Slama
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
- Correspondence: (C.T.); (I.F.)
| | - Ismail Fliss
- Department of Food Science, University of Laval, Quebec, QC G1V 0A6, Canada
- Correspondence: (C.T.); (I.F.)
| |
Collapse
|
10
|
Sadaqat MH, Mobarez AM, Nikkhah M. Curcumin carbon dots inhibit biofilm formation and expression of esp and gelE genes of Enterococcus faecium. Microb Pathog 2022; 173:105860. [DOI: 10.1016/j.micpath.2022.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
11
|
Kang X, Wei Y, Fan X, Luo S, Luo X, Zhao S, Wang G. Analysis of virulence genes, drug resistance detection, and pathogenicity in Enterococcus from farm animals. Microb Pathog 2022; 171:105745. [PMID: 36057414 DOI: 10.1016/j.micpath.2022.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the presence of eight virulence genes (ace, asa1, esp, efaA, gelE, cylA, agg, fsr) in Enterococcus from a variety of animals and to explore the drug resistance and pathogenicity. This could provide a theoretical basis for clinical treatment of Enterococcus infections. Anal swabs from pigs, chickens, cattle, and dogs in farms and pet hospitals were collected for Enterococcus isolation and identification. Eight virulence genes were detected (PCR method), and drug resistance was assessed (drug-sensitive paper method). The strains containing different virulence genes were then divided into EV1, EV2, and EV3 groups. The LD50 and pathogenicity was examined by intra-peritoneal injection to infect mice. Differences were found in the detection rates of virulence genes in Enterococcus from the different animals. The highest overall detection rate was for the esp gene (78.0%), and the lowest for the cylA gene (15.5%). Eight genes were detected most frequently in Enterococcus from dogs and least frequently from cattle. Among the Enterococcus strains from four variety of animals, drug resistance was highest against sulfamethoxazole (100%), cefotaxime (>97%), and cefotaxitin (>93%). Drug resistance was lowest against vancomycin (0%), levofloxacin (<12%) and ciprofloxacin (<13%). The LD50 for each of the three groups was EV1LD50=8.71×109CFU, EV2LD50=2.34×1010CFU,and EV3LD50=9.33×1010CFU. The Enterococcus12LD50 dose group caused significant clinical symptoms in mice, with pathological effects on the heart, liver, lungs, and kidneys, and particularly on the urinary system. The abundance of Enterococcus virulence genes, drug resistance, and pathogenicity vary among different animal origins, and the pathology caused by Enterococcus requires effective treatment protocols based on species and regional characteristics.
Collapse
Affiliation(s)
- Xinyun Kang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yanqin Wei
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofei Fan
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Shuangyan Luo
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofeng Luo
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Sijun Zhao
- Chinese Center for Animal Health and Epidemiology, Qingdao, Shandong, China.
| | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
12
|
Ability of Two Strains of Lactic Acid Bacteria To Inhibit Listeria monocytogenes by Spot Inoculation and in an Environmental Microbiome Context. Microbiol Spectr 2022; 10:e0101822. [PMID: 35852346 PMCID: PMC9431016 DOI: 10.1128/spectrum.01018-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We evaluated the ability of two strains of lactic acid bacteria (LAB) to inhibit L. monocytogenes using spot inoculation and environmental microbiome attached-biomass assays. LAB strains (PS01155 and PS01156) were tested for antilisterial activity toward 22 phylogenetically distinct L. monocytogenes strains isolated from three fruit packing environments (F1, F2, and F3). LAB strains were tested by spot inoculation onto L. monocytogenes lawns (108 and 107 CFU/mL) and incubated at 15, 20, 25, or 30°C for 3 days. The same LAB strains were also cocultured at 15°C for 3, 5, and 15 days in polypropylene conical tubes with L. monocytogenes and environmental microbiome suspensions collected from F1, F2, and F3. In the spot inoculation assay, PS01156 was significantly more inhibitory toward less concentrated L. monocytogenes lawns than more concentrated lawns at all the tested temperatures, while PS01155 was significantly more inhibitory toward less concentrated lawns only at 15 and 25°C. Furthermore, inhibition of L. monocytogenes by PS01156 was significantly greater at 15°C than higher temperatures, whereas the temperature did not have an effect on the inhibitory activity of PS01155. In the assay using attached environmental microbiome biomass, L. monocytogenes concentration was significantly reduced by PS01156, but not PS01155, when cocultured with microbiomes from F1 and F3 and incubated for 3 days at 15°C. Attached biomass microbiota composition was significantly affected by incubation time but not by LAB strain. This study demonstrates that LAB strains that may exhibit inhibitory properties toward L. monocytogenes in a spot inoculation assay may not maintain antilisterial activity within a complex microbiome. IMPORTANCEListeria monocytogenes has previously been associated with outbreaks of foodborne illness linked to consumption of fresh produce. In addition to conventional cleaning and sanitizing, lactic acid bacteria (LAB) have been studied for biocontrol of L. monocytogenes in food processing environments that are challenging to clean and sanitize. We evaluated whether two specific LAB strains, PS01155 and PS01156, can inhibit the growth of L. monocytogenes strains in a spot inoculation and in an attached-biomass assay, in which they were cocultured with environmental microbiomes collected from tree fruit packing facilities. LAB strains PS01155 and PS01156 inhibited L. monocytogenes in a spot inoculation assay, but the antilisterial activity was lower or not detected when they were grown with environmental microbiota. These results highlight the importance of conducting biocontrol challenge tests in the context of the complex environmental microbiomes present in food processing facilities to assess their potential for application in the food industry.
Collapse
|
13
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
14
|
Akpınar Kankaya D, Tuncer Y. Detection of Virulence Factors, Biofilm Formation and Biogenic Amine Production in
Vancomycin‐Resistant
Lactic Acid Bacteria (
VRLAB
) Isolated From Foods of Animal Origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Technology, Gelendost Vocational School Isparta University of Applied Sciences Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
15
|
Fu X, Lyu L, Wang Y, Zhang Y, Guo X, Chen Q, Liu C. Safety assessment and probiotic characteristics of Enterococcus lactis JDM1. Microb Pathog 2022; 163:105380. [PMID: 34979271 DOI: 10.1016/j.micpath.2021.105380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The aims of this study were to evaluate the safety and probiotic characteristics of the newly isolated Enterococcus lactis strain JDM1. METHODS Safety assessment of E. lactis JDM1 was accomplished by the combination of whole genome sequence information analysis and phenotypic assays, including antimicrobial susceptibility test, haemolysis assay, biogenic amine production assay, cytotoxicity assay. The bacteriostatic experiment and gastrointestinal tolerance experiment were also conducted to evaluate its applicability. RESULTS E. lactis JDM1 possesses good gastrointestinal tolerance and can inhibit the growth of the pathogenic bacteria Clostridioides difficile and Listeria monocytogenes. The chromosome size of JDM1 was 2,570,998 bp with a GC content of 38.46%, which contained a plasmid. One intact prophage, 13 genomic islands and 19 IS elements were predicted in the JDM1 chromosome. Five resistance-related genes and seven virulence-related genes were predicted in the genome. Most resistance genes were conserved, and virulence factors were not related to functional pathogenicity. Antimicrobial susceptibility tests showed that JDM1 was sensitive to tedizolid, ciprofloxacin, levofloxacin, penicillin, ampicillin, vancomycin, linezolid, tetracycline, high-level gentamicin and high-level streptomycin. Genes encoding putative enzymes responsible for adverse metabolites were not found and JDM1 was unable to produce the six main biogenic amines. Cytotoxicity test showed that the JDM1 supernatant had no toxic effect. CONCLUSION E. lactis JDM1 is expected to be developed as a probiotic, and its probiotic properties are worthy of further exploration.
Collapse
Affiliation(s)
- Xiaomei Fu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Lyu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Chen
- Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
| | - Chang Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9091900. [PMID: 34576796 PMCID: PMC8470767 DOI: 10.3390/microorganisms9091900] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus spp. are Gram-positive, facultative, anaerobic cocci, which are found in the intestinal flora and, less frequently, in the vagina or mouth. Enterococcus faecalis and Enterococcus faecium are the most common species found in humans. As commensals, enterococci colonize the digestive system and participate in the modulation of the immune system in humans and animals. For many years reference enterococcal strains have been used as probiotic food additives or have been recommended as supplements for the treatment of intestinal dysbiosis and other conditions. The use of Enterococcus strains as probiotics has recently become controversial due to the ease of acquiring different virulence factors and resistance to various classes of antibiotics. Enterococci are also seen as opportunistic pathogens. This problem is especially relevant in hospital environments, where enterococcal outbreaks often occur. Their ability to translocate from the gastro-intestinal tract to various tissues and organs as well as their virulence and antibiotic resistance are risk factors that hinder eradication. Due to numerous reports on the plasticity of the enterococcal genome and the acquisition of pathogenic microbial features, we ask ourselves, how far is this commensal genus from acquiring pathogenicity? This paper discusses both the beneficial properties of these microorganisms and the risk factors related to their evolution towards pathogenicity.
Collapse
|
17
|
Eisenberger D, Tuschak C, Werner M, Bogdan C, Bollinger T, Hossain H, Friedrich P, Hussein Z, Pöhlmann C, Würstl B, Nickel S, Lehner-Reindl V, Höller C, Liebl B, Valenza G. Whole-genome analysis of vancomycin-resistant Enterococcus faecium causing nosocomial outbreaks suggests the occurrence of few endemic clonal lineages in Bavaria, Germany. J Antimicrob Chemother 2021; 75:1398-1404. [PMID: 32083651 DOI: 10.1093/jac/dkaa041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Infections caused by vancomycin-resistant Enterococcus faecium (VREfm) represent a major public health concern due to limited treatment options. Among invasive isolates of VREfm, ST117, ST80 and ST78 represent the most frequently detected STs by MLST in Germany. In this study, we investigated the genetic diversity of isolates of VREfm recovered from different nosocomial outbreaks in Bavaria, Germany, by WGS. METHODS Between January 2018 and April 2019, 99 non-replicate isolates of VREfm originating from nosocomial outbreaks at eight different hospitals in Bavaria were investigated for genetic diversity by WGS. In detail, complex types (CTs) were identified by core-genome MLST. Furthermore, an SNP analysis was performed for all VREfm strains. RESULTS Most of the isolates of this study (76%) belonged to three major clonal groups, which occurred in at least three hospitals: ST80/CT1065 vanB (n = 45; six hospitals), ST117/CT71 vanB (n = 11; four hospitals) and ST78/CT894like vanA (n = 19; three hospitals). Moreover, isolates of the predominant lineage ST80/CT1065 vanB showed a maximum difference of 36 SNPs as revealed by SNP analysis. CONCLUSIONS Whole-genome analysis of VREfm causing nosocomial outbreaks suggests the occurrence of few endemic clonal lineages in Bavarian hospital settings, namely ST80/CT1065 vanB, ST117/CT71 vanB and ST78/CT894like vanA. Further studies are needed for a better understanding of the factors affecting the successful spread of the above-mentioned lineages.
Collapse
Affiliation(s)
| | | | - Markus Werner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Bollinger
- Institut für Laboratoriumsmedizin, Mikrobiologie und Krankenhaushygiene (ILMH), Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Hamid Hossain
- Institut für Laboratoriumsmedizin und Mikrobiologie, Klinikum St Marien Amberg, Amberg, Germany.,Institut für Laboratoriumsmedizin und Mikrobiologie, Kliniken Nordoberpfalz AG, Weiden, Germany
| | - Petra Friedrich
- Deutsches Beratungszentrum für Hygiene BZH GmbH, Freiburg, Germany
| | - Ziyad Hussein
- Institut für Laboratoriumsdiagnostik und Transfusionsmedizin, DONAUISAR Klinikum, Deggendorf, Germany
| | - Christoph Pöhlmann
- Abteilung für Hygiene und Mikrobiologie, Klinikum Memmingen, Memmingen, Germany
| | - Benjamin Würstl
- Stabsstelle Krankenhaushygiene und Infektionsprävention, München Klinik, München, Germany
| | - Silke Nickel
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | | | | | - Bernhard Liebl
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Giuseppe Valenza
- Bavarian Health and Food Safety Authority, Erlangen, Germany.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Nisar S, Kirkpatrick LD, Shupp JW. Bacterial Virulence Factors and Their Contribution to Pathophysiology after Thermal Injury. Surg Infect (Larchmt) 2020; 22:69-76. [PMID: 32735479 DOI: 10.1089/sur.2020.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Bacterial infections are the leading cause of morbidity and mortality in burn-injured patients. Pseudomonas aeruginosa and Staphylococcus aureus are among the most common pathogens responsible for infections in thermally injured patients. These and other pathogens have developed a variety of virulence factors to colonize and infect hosts. Methods: A comprehensive literature review was conducted to best summarize the current knowledge of how virulence factors contribute to bacterial pathogenicity. Results: The review highlights the unique mechanisms bacteria utilize to evade host defense systems and further complicate the treatment of burn-injured patients. Conclusion: Further research on virulence factors and their contribution to bacterial pathogenicity is warranted and could potentially lead to development of neutralizing pharmacotherapy that would complement antimicrobial treatment.
Collapse
Affiliation(s)
- Saira Nisar
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Liam D Kirkpatrick
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA.,The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA.,Department of Surgery, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
19
|
Seishima J, Iida N, Kitamura K, Yutani M, Wang Z, Seki A, Yamashita T, Sakai Y, Honda M, Yamashita T, Kagaya T, Shirota Y, Fujinaga Y, Mizukoshi E, Kaneko S. Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biol 2019; 20:252. [PMID: 31767028 PMCID: PMC6876129 DOI: 10.1186/s13059-019-1879-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Recent metagenomic analyses have revealed dysbiosis of the gut microbiota of ulcerative colitis (UC) patients. However, the impacts of this dysbiosis are not fully understood, particularly at the strain level. Results We perform whole-genome shotgun sequencing of fecal DNA extracts from 13 healthy donors and 16 UC and 8 Crohn’s disease (CD) patients. The microbiota of UC and CD patients is taxonomically and functionally divergent from that of healthy donors, with E. faecium being the most differentially abundant species between the two microbial communities. Transplantation of feces from UC or CD patients into Il10−/− mice promotes pathological inflammation and cytokine expression in the mouse colon, although distinct cytokine expression profiles are observed between UC and CD. Unlike isolates derived from healthy donors, E. faecium isolates from the feces of UC patients, along with E. faecium strain ATCC 19434, promotes colitis and colonic cytokine expression. Inflammatory E. faecium strains, including ATCC 19434 and a UC-derived strain, cluster separately from commercially available probiotic strains based on whole-genome shotgun sequencing analysis. The presence of E. faecium in fecal samples is associated with large disease extent and the need for multiple medications in UC patients. Conclusions E. faecium strains derived from UC patients display an inflammatory genotype that causes colitis.
Collapse
Affiliation(s)
- Jun Seishima
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medicinal Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ziyu Wang
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Akihiro Seki
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masao Honda
- Department of Advanced Medical Technology, Graduate School of Health Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takashi Kagaya
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yukihiro Shirota
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medicinal Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
20
|
O'Dea M, Sahibzada S, Jordan D, Laird T, Lee T, Hewson K, Pang S, Abraham R, Coombs GW, Harris T, Pavic A, Abraham S. Genomic, Antimicrobial Resistance, and Public Health Insights into Enterococcus spp. from Australian Chickens. J Clin Microbiol 2019; 57:e00319-19. [PMID: 31118269 PMCID: PMC6663891 DOI: 10.1128/jcm.00319-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Due to Australia's management of antimicrobial use in poultry, particularly the discontinued use of avoparcin for nearly 20 years, it is hypothesized that vancomycin-resistant enterococci associated with human disease are not derived from poultry isolates. This study evaluated antimicrobial resistance (AMR) of five enterococcal species isolated from Australian meat chickens, genomic features of Enterococcus faecium and Enterococcus faecalis, and the phylogenetic relationship of the poultry-derived E. faecium with isolates from human sepsis cases. All enterococcal isolates from chicken ceca were subjected to antimicrobial susceptibility testing. E. faecium and E. faecalis underwent whole-genome sequencing. E. faecium was compared at the core genome level to a collection of human isolates (n = 677) obtained from cases of sepsis over a 2-year period spanning 2015 to 2016. Overall, 205 enterococci were isolated consisting of five different species. E. faecium was the most frequently isolated species (37.6%), followed by E. durans (29.7%), E. faecalis (20%), E. hirae (12.2%), and E. gallinarum (0.5%). All isolates were susceptible to vancomycin and gentamicin, while one isolate was linezolid resistant (MIC 16 mg/liter). Core genome analysis of the E. faecium demonstrated two clades consisting predominantly of human or chicken isolates in each clade, with minimal overlap. Principal component analysis for total gene content revealed three clusters comprised of vanA-positive, vanB-positive, and both vanA- and vanB-negative E. faecium populations. The results of this study provide strong evidence that Australian chicken E. faecium isolates are unlikely to be precursor strains to the currently circulating vancomycin-resistant strains being isolated in Australian hospitals.
Collapse
Affiliation(s)
- Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
| | - Tanya Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Terence Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Kylie Hewson
- Australian Chicken Meat Federation, North Sydney, NSW, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Taha Harris
- Birling Avian Laboratories, Bringelly, NSW, Australia
| | - Anthony Pavic
- Birling Avian Laboratories, Bringelly, NSW, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
21
|
Sattari-Maraji A, Jabalameli F, Node Farahani N, Beigverdi R, Emaneini M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol 2019; 19:156. [PMID: 31286887 PMCID: PMC6615243 DOI: 10.1186/s12866-019-1539-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Enterococcus species continues to be an important cause of hospital-acquired infection worldwide. This study was designed to determine the antibiotic resistance profiles, virulence genes and molecular characteristics of Enterococcus faecium strains isolated from an Iranian children hospital in a four-years period. RESULTS A total 189 Enterococcus strains, comprising 108 (57%) E. faecium, 67 (35%) E. faecalis and 14 (7%) isolates of other spp. were isolated during the collection period. More than 92% of E. faecium isolates were resistant to ampicillin (92.5%), ciprofloxacin (96%), erythromycin (100%) and clindamycin (96%). A high frequency of resistance to clindamycin (100%), erythromycin (98.5%) and ciprofloxacin (80.5%) was observed among E. faecalis isolates, while resistance to ampicillin (7%) was less frequent. The prevalence of vanA gene among vancomycin resistant E. faecium and vancomycin resistant E. faecalis was 95 and 50%, respectively. The analysis of 108 E. faecium isolates revealed 34 variable number tandem repeat (VNTR) patterns and 27 Multi Locus VNTR Analysis (MLVA) types (MTs). CONCLUSIONS The results show a shift from E. faecalis to E. faecium as the dominant enterococcal species among patients at the children Hospital. Our data revealed that the majority of E. faecium isolates (66%) belonged to three common MTs and these types were isolated from different wards in children hospital.
Collapse
Affiliation(s)
- Azin Sattari-Maraji
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Narges Node Farahani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
22
|
Archambaud C, Derré-Bobillot A, Lapaque N, Rigottier-Gois L, Serror P. Intestinal translocation of enterococci requires a threshold level of enterococcal overgrowth in the lumen. Sci Rep 2019; 9:8926. [PMID: 31222056 PMCID: PMC6586816 DOI: 10.1038/s41598-019-45441-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Enterococci are subdominant members of the human gastrointestinal microbiota. Enterococcus faecalis is generally harmless for healthy individuals, but it can cause a diverse range of infections in immunodeficient or elderly patients with severe underlying diseases. In this study, we analysed the levels of intestinal translocation of indigenous enterococci in C57BL/6, CF-1 and CX3CR1−/− mice upon clindamycin antibiotic-induced dysbiosis. We found that C57BL/6 was the most permissive model for enterococcal translocation and that initiation of E. faecalis translocation coincided with a threshold of enterococcal colonisation in the gut lumen, which once reached, triggered E. faecalis dissemination to deeper organs. We showed that the extent to which E. faecalis clinical strain VE14821 competed with indigenous enterococci differed between the C57BL/6 and CX3CR1−/− models. Finally, using a simplified gnotobiotic model, we observed E. faecalis crossing an intact intestinal tract using intestinal epithelial cells as one route to reach the lamina propria. Our study opens new perspectives for assessing the effect of various immunodeficiencies and for investigating mechanisms underlying enterococcal translocation.
Collapse
Affiliation(s)
- Cristel Archambaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy en Josas, France.
| | - Aurélie Derré-Bobillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy en Josas, France
| | - Nicolas Lapaque
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy en Josas, France
| | - Lionel Rigottier-Gois
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy en Josas, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy en Josas, France.
| |
Collapse
|
23
|
Zhou R, Zeng S, Hou D, Liu J, Weng S, He J, Huang Z. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. J Environ Sci (China) 2019; 80:248-256. [PMID: 30952342 DOI: 10.1016/j.jes.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Ayala DI, Cook PW, Franco JG, Bugarel M, Kottapalli KR, Loneragan GH, Brashears MM, Nightingale KK. A Systematic Approach to Identify and Characterize the Effectiveness and Safety of Novel Probiotic Strains to Control Foodborne Pathogens. Front Microbiol 2019; 10:1108. [PMID: 31156609 PMCID: PMC6533568 DOI: 10.3389/fmicb.2019.01108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
A total of 44 lactic acid bacteria (LAB) strains originally isolated from cattle feces and different food sources were screened for their potential probiotic features. The antimicrobial activity of all isolates was tested by well-diffusion assay and competitive exclusion on broth against Salmonella Montevideo, Escherichia coli O157:H7 and Listeria monocytogenes strain N1-002. Thirty-eight LAB strains showed antagonistic effect against at least one of the pathogens tested in this study. Improved inhibitory effect was observed against L. monocytogenes with zones of inhibition up to 24 mm when LAB overnight cultures were used, and up to 21 mm when cell-free filtrates were used. For E. coli O157:H7 and Salmonella maximum inhibitions of 12 and 11.5 mm were observed, respectively. On broth, 43 strains reduced L. monocytogenes up to 9.06 log10 CFU/ml, 41 reduced E. coli O157:H7 up to 0.84 log10 CFU/ml, and 32 reduced Salmonella up to 0.94 log10 CFU/ml 24 h after co-inoculation. Twenty-eight LAB isolates that exhibited the highest inhibitory effect among pathogens were further analyzed to determine their antimicrobial resistance profile, adhesion potential, and cytotoxicity to Caco-2 cells. All LAB strains tested were susceptible to ampicillin, linezolid, and penicillin. Twenty-six were able to adhere to Caco-2 cells, five were classified as highly adhesive with > 40 bacterial cells/Caco-2 cells. Low cytotoxicity percentages were observed for the candidate LAB strains with values ranging from -5 to 8%. Genotypic identification by whole genome sequencing confirmed all as members of the LAB group; Enterococcus was the genus most frequently isolated with 21 isolates, followed by Pediococcus with 4, and Lactobacillus with 3. In this study, a systematic approach was used for the improved identification of novel LAB strains able to exert antagonistic effect against important foodborne pathogens. Our findings suggest that the selected panel of LAB probiotic strains can be used as biocontrol cultures to inhibit and/or reduce the growth of L. monocytogenes, Salmonella, and E. coli O157:H7 in different matrices, and environments.
Collapse
Affiliation(s)
- Diana I Ayala
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Peter W Cook
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States.,Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jorge G Franco
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Marie Bugarel
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kameswara R Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Guy H Loneragan
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mindy M Brashears
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kendra K Nightingale
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
25
|
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: Enterococcus faecalis and Enterococcus faecium Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remarkably plastic genome allows these two species to readily acquire resistance to further antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resistance, and vancomycin resistance, either through mutation or by horizontal transfer of genetic elements conferring resistance determinants.
Collapse
Affiliation(s)
- Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
26
|
ARSHADI M, MAHMOUDI M, MOTAHAR MS, SOLTANI S, POURMAND MR. Virulence Determinants and Antimicrobial Resistance Patterns of Vancomycin-resistant Enterococcus faecium Isolated from Different Sources in Southwest Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:264-272. [PMID: 29445637 PMCID: PMC5810390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND This study aimed to investigate the incidence of antibiotic-resistance and virulence genes in vancomycin-resistant Enterococcus faecium isolated from different sources in southwest Iran from Mar to Sep 2015. METHODS Overall, 120 E. faecium isolates (80 VRE and 40 vancomycin-susceptible enterococci [VSE] isolates) were obtained from four hospitals. The resistance of the VRE isolates was determined by disk diffusion method. Multiplex PCR was performed to detect the virulence genes carried by the E. faecium isolates, namely, enterococcal surface protein (esp), hyaluronidase (hyl), and collagen-binding adhesin (acm). RESULTS All the VRE isolates exhibited multidrug resistance, with the rates of resistance to ampicillin, erythromycin, and ciprofloxacin reaching high levels. The isolates were least resistant to chloramphenicol and nitrofurantoin, but all of them were susceptible to linezolid. 46.6%, 20.8%, and 86.6% of the E.faecium isolates carried the esp, hyl, and acm genes, respectively. CONCLUSION There is a significant difference between the prevalence of esp and hyl genes in the VRE and VSE isolates. In the VRE isolates, the high prevalence of multidrug resistance were found and the difference in the prevalence of esp among various sources was significant. The findings reflected a relationship between the prevalence of esp and hyl and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Maniya ARSHADI
- Dept. of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood MAHMOUDI
- Dept. of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Sadat MOTAHAR
- Dept. of Microbiology, School of Medicine, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Saber SOLTANI
- Dept. of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza POURMAND
- Dept. of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| |
Collapse
|
27
|
Belmouhand M, Krohn PS, Svendsen LB, Henriksen A, Hansen CP, Achiam MP. The occurrence of Enterococcus faecium and faecalis Is significantly associated With anastomotic leakage After pancreaticoduodenectomy. Scand J Surg 2017; 107:107-113. [PMID: 28980499 DOI: 10.1177/1457496917731188] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Enterococcus has emerged as a virulent species; Enterococcus faecium especially has arisen as a source of nosocomial infections. Furthermore, specific Enterococcus faecalis species are significantly associated with anastomotic leakage in rodent studies. The objective of this study was to investigate whether the occurrence of Enterococci ( E. faecium and E. faecalis) obtained from drain samples was associated with leakage in humans undergoing pancreaticoduodenectomy. MATERIALS AND METHODS All patients undergoing pancreaticoduodenectomy had a peritoneal drain sample sent for culturing between postoperative days 3 and 10. Postoperative pancreatic fistulas were defined and classified according to the International Study Group of Pancreatic Fistula. Bile leakage was radiologically verified. Postoperative complications were classified according to the Dindo-Clavien classification. RESULTS A total of 70 patients were eligible and enrolled in this study. Anastomosis leakage was observed in 19 patients; 1 leakage corresponding to the hepaticojejunostomy and 18 pancreatic fistulas were identified. In total, 10 patients (53%) with leakage had Enterococci-positive drain samples versus 12 patients (24%) without leakage [odds ratio (OR) = 5.1, 95% confidence interval (CI) = 1.4-19.4, p = 0.02]. Preoperative biliary drainage with either endoscopic stenting or a percutaneous transhepatic cholangiography catheter was associated with the occurrence of Enterococci in drain samples (OR = 5.67, 95% CI = 1.8-12.9, p = 0.003), but preoperative biliary drainage was not associated with leakage (OR = 0.45, 95% CI = 0.1-1.7, p = 0.23). CONCLUSION Enterococci in drain sample cultures in patients undergoing pancreaticoduodenectomy occurs significantly more among patients with anastomotic leakage compared to patients without leakage.
Collapse
Affiliation(s)
- M Belmouhand
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - P S Krohn
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - L B Svendsen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - A Henriksen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - C P Hansen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - M P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
28
|
Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect Dis Clin North Am 2017; 30:415-439. [PMID: 27208766 DOI: 10.1016/j.idc.2016.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vancomycin-resistant enterococci are serious health threats due in part to their ability to persist in rugged environments and their propensity to acquire antibiotic resistance determinants. Enterococci have now established a home in our hospitals and possess mechanisms to defeat most currently available antimicrobials. This article reviews the history of the struggle with this pathogen, what is known about the traits associated with its rise in the modern medical environment, and the current understanding of therapeutic approaches in severe infections caused by these microorganisms. As the 21st century progresses, vancomycin-resistant enterococci continue to pose a daunting clinical challenge.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louis B Rice
- Departments of Medicine, Microbiology and Immunology, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Avenue Cra 9 No. 131 A - 02, Bogotá, Colombia.
| |
Collapse
|
29
|
Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02763-16. [PMID: 28193670 DOI: 10.1128/aac.02763-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo, with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB-positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy.
Collapse
|
30
|
Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell MDLÁ, Urdaci MC. Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate sIgA and to Increase Faecalibacterium prausnitzii Abundance. Front Immunol 2017; 8:88. [PMID: 28239378 PMCID: PMC5300979 DOI: 10.3389/fimmu.2017.00088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022] Open
Abstract
Enterococcus species, principally Enterococcus faecium are used as probiotics since a long time with preference in animal applications but safety considerations were updated and also new uses as probiotics can be envisaged. Fifteen Enterococcus strains isolated from different foods were identified and analyzed for virulence factors and antibiotic resistance. Three Enterococcus durans strains were selected to study their immunomodulatory properties on PBMC and Caco2 cells. Two strains presented a profile toward a mild inflammatory Th1 response considering TNF-α/IL-10 and IL-1β/IL-10 cytokines ratios. The third strain EP1, presented an anti-inflammatory potential and was selected for in vivo studies. In mice, the strain was well tolerated and did not cause any adverse effects. EP1 administration increased the amount of IgA+ cells in mesenteric lymph node (MLN) after 7 days of administration. In fecal samples, the IgA content increased gradually and significantly from day 7 to day 21 in treated group. Additionally, IL-17, IL-6, IL-1β, IFN-γ, and CXCL1 gene expression significantly decreased on day 21 in Peyer’s patches and IL-17 decreased in MLN. Mice treated with the probiotic showed significant lower mRNA levels of pro-inflammatory cytokines and mucins in the ileum at day 7 while their expression was normalized at day 21. Colonic expression of il-1β, il6, and mucins remain diminished at day 21. Ileum and colon explants from treated mice stimulated in vitro with LPS showed a significant reduction in IL-6 and an increase in IL-10 secretion suggesting an in vivo protective effect of the probiotic treatment against a proinflammatory stimulus. Interestingly, analysis of feces microbiota demonstrated that EP1 administration increase the amount of Faecalibacterium prausnitzii, a butyrate-producing bacteria, which is known for its anti-inflammatory effects. In conclusion, we demonstrated that EP1 strain is a strong sIgA inducer and possess mucosal anti-inflammatory properties. This strain also modulates gut microbiota increasing Faecalibacterium prausnitzii, a functionally important bacterium. Thus, E. durans EP1 is not only a good candidate to increases F. prausnitzii in some cases of dysbiosis but can also be interesting in gut inflammatory disorders therapy.
Collapse
Affiliation(s)
- Paula Carasi
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux, Gradignan, France; Cátedra de Microbiología, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; CCT-La Plata, CONICET, La Plata, Argentina
| | - Silvia María Racedo
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| | - Claudine Jacquot
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| | - Anne Marie Elie
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; CCT-La Plata, CONICET, La Plata, Argentina
| | - María C Urdaci
- UMR 5248, Laboratoire de Microbiologie et Biochimie Appliquée (LBMA), Bordeaux Sciences Agro, Université de Bordeaux , Gradignan , France
| |
Collapse
|
31
|
Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. Virulence factors of Enterococcus spp. presented in food. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Abstract
Enterococci belong to the group of lactic acid bacteria (LAB), and inhabit the gastrointestinal tracts of a wide variety of animals from insects and to human, and the commensal organism in humans and animals. The commensal/probiotic role of enterococci has evolved through thousands of years in mutual coexistence. Enterococcus have many favorable traits that have been appreciated in food fermentation and preservation, and many serve as probiotics to promote health. While lactobacillus have been shown to confer numerous benefits on and often regarded as health bringing organisms, enterococci have become more recognized as emerging human pathogens in recent years. Mac Callum and Hastings characterized an organism, now known to be Enterococcal faecalis, which was isolated from a lethal case of endocarditis on 1899. The report was the first detailed description of its pathogenic capabilities. Over the past few decades, multi-drug resistance enterococci have become as important health-care associated pathogen, and leading causes of drug resistance infection. The modern life style including the broad use of antibiotics in medical practice and animal husbandry have selected for the convergence of potential virulence factors to the specific enterococcus species such as E. faecium and E. faecalis. The development of modern medical care of intensive and invasive medical therapies and treatments for human disease, and existence of severe compromised patients in hospitals has contributed to the increased prevalence of these opportunistic organisms. The virulence factors converged in E. faecalis and E. faecium which have been isolated in nosocomial infections, include antibiotic resistance, extracellular proteins (toxins), extrachromosome and mobile genetic elements, cell wall components, biofilm formation, adherence factors, and colonization factor such as bacteriocin, etc. In these potential virulence factors, I presented characteristics of enterococcal conjugative plasmid, cytolysin, collagen binding protein of adhesion, bacteriocins, and drug resistances. I made reference to our original reports, and review books for this review. The review books are "Enterococci: from Commensals to Leading Causes of Drug Resistant Infection, NCBI Bookshelf. A service of the National Library of Medicine, National Institute of Health. Ed. by Michael S Gilmore, Don B Clewell, Yasuyoshi Ike, and Nathan Shankar", and "The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance, Gilmore M., Clewell D., Courvadin P., Dunny G., Murray B., Rice L., (ed) 2002. ASM Press".
Collapse
Affiliation(s)
- Yasuyoshi Ike
- Professor Emeritus, Gunma University Graduate School of Medicine
- Representative Director, Association for Education in Bacterial Drug Resistance
| |
Collapse
|
33
|
Detection of Virulence Genes in Enterococci Isolated From the Human Normal Flora by Multiplex-Polymerase Chain Reaction. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Desole M, Schrenk KG, Schnetzke U, Hochhaus A, Scholl S. Detection of Enterococcus spp. in bronchoalveolar lavage fluid of patients with high-risk neutropenia: May it be ignored? J Cancer Res Clin Oncol 2016; 142:1133-6. [PMID: 26621154 DOI: 10.1007/s00432-015-2084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Max Desole
- Klinik für Innere Medizin II (Abteilung Hämatologie und Internistische Onkologie), Universitätsklinikum Jena, Erlanger Allee 101, 07740, Jena, Germany
| | - Karin G Schrenk
- Klinik für Innere Medizin II (Abteilung Hämatologie und Internistische Onkologie), Universitätsklinikum Jena, Erlanger Allee 101, 07740, Jena, Germany
| | - Ulf Schnetzke
- Klinik für Innere Medizin II (Abteilung Hämatologie und Internistische Onkologie), Universitätsklinikum Jena, Erlanger Allee 101, 07740, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II (Abteilung Hämatologie und Internistische Onkologie), Universitätsklinikum Jena, Erlanger Allee 101, 07740, Jena, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II (Abteilung Hämatologie und Internistische Onkologie), Universitätsklinikum Jena, Erlanger Allee 101, 07740, Jena, Germany.
| |
Collapse
|
35
|
The fibronectin-binding protein Fnm contributes to adherence to extracellular matrix components and virulence of Enterococcus faecium. Infect Immun 2015; 83:4653-61. [PMID: 26371130 DOI: 10.1128/iai.00885-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 12/29/2022] Open
Abstract
The interaction between bacteria and fibronectin is believed to play an important role in the pathogenicity of clinically important Gram-positive cocci. In the present study, we identified a gene encoding a predicted fibronectin-binding protein of Enterococcus faecium (fnm), a homologue of Streptococcus pneumoniae pavA, in the genomes of E. faecium strain TX82 and all other sequenced E. faecium isolates. Full-length recombinant Fnm from strain TX82 bound to immobilized fibronectin in a concentration-dependent manner and also appeared to bind collagen type V and laminin, but not other proteins, such as transferrin, heparin, bovine serum albumin, mucin, or collagen IV. We demonstrated that the N-terminal fragment of Fnm is required for full fibronectin binding, since truncation of this region caused a 2.4-fold decrease (P < 0.05) in the adhesion of E. faecium TX82 to fibronectin. Deletion of fnm resulted in a significant reduction (P < 0.001) in the ability of the mutant, TX6128, to bind fibronectin relative to that of the wild-type strain; in situ reconstitution of fnm in the deletion mutant strain restored adherence. In addition, the Δfnm mutant was highly attenuated relative to TX82 (P ≤ 0.0001) in a mixed-inoculum rat endocarditis model. Taken together, these results demonstrate that Fnm affects the adherence of E. faecium to fibronectin and is important in the pathogenesis of experimental endocarditis.
Collapse
|
36
|
Sánchez-Díaz AM, Cuartero C, Rodríguez JD, Lozano S, Alonso JM, Rodríguez-Domínguez M, Tedim AP, Del Campo R, López J, Cantón R, Ruiz-Garbajosa P. The rise of ampicillin-resistant Enterococcus faecium high-risk clones as a frequent intestinal colonizer in oncohaematological neutropenic patients on levofloxacin prophylaxis: a risk for bacteraemia? Clin Microbiol Infect 2015; 22:59.e1-59.e8. [PMID: 26321668 DOI: 10.1016/j.cmi.2015.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/08/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023]
Abstract
Levofloxacin extended prophylaxis (LEP), recommended in oncohaematological neutropenic patients to reduce infections, might select resistant bacteria in the intestine acting as a source of endogenous infection. In a prospective observational study we evaluated intestinal emergence and persistence of ampicillin-resistant Enterococcus faecium (AREfm), a marker of hospital adapted high-risk clones. AREfm was recovered from the faeces of 52 patients with prolonged neutropenia after chemotherapy, at admission (Basal), during LEP, and twice weekly until discharge (Pos-LEP). Antibiotic susceptibility, virulence traits and population structure (pulsed-field gel electrophoresis and multilocus sequence typing) were determined and compared with bacteraemic isolates. Gut enterococcal population was monitored using a quantitative PCR quantification approach. AREfm colonized 61.4% of patients (194/482 faecal samples). Sequential AREfm acquisition (25% Basal, 36.5% LEP, 50% Pos-LEP) and high persistent colonization rates (76.9-89.5%) associated with a decrease in clonal diversity were demonstrated. Isolates were clustered into 24 PFGE-patterns within 13 sequence types, 95.8% of them belonging to hospital-associated Bayesian analysis of population structure subgroups 2.1a and 3.3a. Levofloxacin resistance and high-level streptomycin resistance were a common trait of these high-risk clones. AREfm-ST117, the most persistent clone, was dominant (60.0% isolates, 32.6% patients). It presented esp gene and caused 18.2% of all bacteraemia episodes in 21% of patients previously colonized by this clone. In AREfm-colonized patients, intestinal enrichment in the E. faecium population with a decline in total bacterial load was observed. AREfm intestinal colonization increases during hospital stay and coincides with enterococci population enrichment in the gut. Dominance and intestinal persistence of the ST117 clone might increase the risk of bacteraemia.
Collapse
Affiliation(s)
- A M Sánchez-Díaz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - C Cuartero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - J D Rodríguez
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - S Lozano
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - J M Alonso
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Rodríguez-Domínguez
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - A P Tedim
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - R Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - J López
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain.
| | - P Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| |
Collapse
|
37
|
Yu J, Shi J, Zhao R, Han Q, Qian X, Gu G, Zhang X, Xu J. Molecular Characterization and Resistant Spectrum of Enterococci Isolated from a Haematology Unit in China. J Clin Diagn Res 2015; 9:DC04-7. [PMID: 26266119 DOI: 10.7860/jcdr/2015/12864.6097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/09/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The present study screened clinical isolates of E. faecalis and E. faecium to determine resistant spectrum and the potential virulence genes characterization among them of haematology patients. METHODS Clinical Enterococci isolates were obtained from a haematology unit in a tertiary care hospital in China. RESULTS Among 125 isolates available for the investigation, 46 were identified as E. faecium, and 79 were E. faecalis. Urine was the most common source (82, 65.6%). E. faecium isolates were more resistant than E. faecalis. Among E. faecium, maximum resistance was seen against PEN 93.5% and AMP 93.5% followed by CIP 87%. Eight vancomycin-resistant E. faecium (VREfm) isolates were obtained, positive for vanA genotype. Of 125 Enterococci isolates, 67(53.6%) were acm, and 42.4%, 25.6%, 25.6%, 24.8%, 23.2%, 20.8%, 10.4% and 7.2% of isolates were positive for esp, cylL-A, asa 1, cylL-S, cpd, cylL-L, gel-E and ace, respectively. E. faecalis isolates have more virulence genes (VGs) than E. faecium. MLST analysis of VREfm identified three different STs (ST17, ST78 and ST203). CONCLUSION The study provides the molecular characterization and resistant spectrum of Enterococci isolated from a haematology unit in China. Molecular analysis showed that all VREfm isolates belonged to pandemic clonal complex-17(CC17), associated with hospital-related isolates. Therefore, determining resistant spectrum and virulence characterization is crucial for the prevention and control of the spread of nosocomial infections caused by Enterococci in the haematology unit.
Collapse
Affiliation(s)
- Jiajia Yu
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Jinfang Shi
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Ruike Zhao
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Qingzhen Han
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Xuefeng Qian
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Guohao Gu
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Xianfeng Zhang
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| | - Jie Xu
- Faculty, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou, P.R. of China
| |
Collapse
|
38
|
Nami Y, Haghshenas B, Haghshenas M, Yari Khosroushahi A. Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum. Front Microbiol 2015; 6:782. [PMID: 26284059 PMCID: PMC4518196 DOI: 10.3389/fmicb.2015.00782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/16/2015] [Indexed: 01/20/2023] Open
Abstract
Screening of lactic acid bacteria (LAB) isolated from ewe colostrum led to the identification and isolation of Enterococcus faecium CM33 with interesting features like high survival rates under acidic or bile salts condition, high tolerance for the simulated gastrointestinal condition, and high adhesive potential to Caco-2 cells. According the inhibition of pathogen adhesion test results, this strain can reduce more than 50% adhesion capacity of Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Listeria monocytogenes, and Staphylococcus aureus to Caco-2 cells. Based on the antibiotic sensitivity test findings, E. faecium CM33 was susceptible to gentamycin, vancomycin, erythromycin, ampicillin, penicillin, tetracycline, and rifampicin, but resistant to chloramphenicol, clindamycin, and kanamycin. Upon assessment of the virulence determinants for E. faecium CM33, this strain was negative for all tested virulence genes. Furthermore, the genome of this strain was evaluated for the incidence of the known enterocin genes by specific PCR amplification and discovered the genes encoding enterocins A, 31, X, and Q. Based on this study findings, the strain E. faecium CM33 can be considered as a valuable nutraceutical and can be introduced as a new potential probiotic.
Collapse
Affiliation(s)
- Yousef Nami
- Institute of Biosciences, University Putra Malaysia Selangor, Malaysia
| | - Babak Haghshenas
- Institute of Biosciences, University Putra Malaysia Selangor, Malaysia
| | - Minoo Haghshenas
- School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz, Iran ; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz, Iran
| |
Collapse
|
39
|
Iweriebor BC, Obi LC, Okoh AI. Virulence and antimicrobial resistance factors of Enterococcusspp. isolated from fecal samples from piggery farms in Eastern Cape, South Africa. BMC Microbiol 2015; 15:136. [PMID: 26141237 PMCID: PMC4491265 DOI: 10.1186/s12866-015-0468-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/18/2015] [Indexed: 11/15/2022] Open
Abstract
Background Enterococci have emerged as an important opportunistic pathogen causing life-threatening infections in hospitals. The emergence of this pathogen is associated with a remarkable capacity to accumulate resistance to antimicrobials and multidrug-resistance particularly to vancomycin, erythromycin and streptomycin have become a major cause of concern for the infectious diseases community. In this paper, we report the prevalence of Enterococcus in respect to species distribution, their virulence and antibiogram profiles. Methods Four hundred fecal samples were collected from two piggery farms in the Eastern Cape Province of South Africa. Enterococcus species were isolated and confirmed with generic specific primers targeting the tuf gene (encoding elongation factor). The confirmed isolates were speciated with enterococci species specific primers that aimed at delineating them into six species that are commonly associated with infections in humans. Antibiotic susceptibility testing was performed by disc diffusion method. Six virulence genes and antimicrobial resistance profiles of the isolates were evaluated molecularly. Results Molecular identification of the presumptive isolates confirmed 320 isolates as Enterococcus spp. Attempt at speciation of the isolates with primers specific for E. faecalis, E. durans, E. casseliflavus, E. hirae and E. faecium delineated them as follows: E. faecalis (12.5 %), E. hirae (31.25 %), E. durans (18.75 %) and E. faecium (37.5 %) while E. casseliflavus was not detected. All the isolates were resistant to vancomycin, streptomycin and cloxacillin, and to at least two different classes of antibiotics, with 300 (93.8 %) isolates being resistant to five or more antibiotics. Also, three out of the six virulence genes were detected in majority of the isolates and they are Adhesion of collagen in E. faecalis (ace) (96.88 %), gelatinase (gelE) (93.13 %) and surface protein (esp) (67.8 %). Conclusion There was high prevalence of multi-resistant vancomycin Enterococcus spp. (VREs) in the fecal samples of pigs in the farms studied, and this poses health implications as vancomycin is an important drug in human medicine. Further studies are needed to determine the spread of vancomycin resistance among bacteria of human origin in the communities.
Collapse
Affiliation(s)
- Benson C Iweriebor
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, Eastern Cape, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, Eastern Cape, South Africa.
| | - Larry C Obi
- Academic and Research Division, University of Fort Hare, Alice, 5700, Eastern Cape, South Africa.
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, Eastern Cape, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, Eastern Cape, South Africa.
| |
Collapse
|
40
|
Zheng W, Zhang Y, Lu HM, Li DT, Zhang ZL, Tang ZX, Shi LE. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces. BMC Biotechnol 2015; 15:30. [PMID: 25962418 PMCID: PMC4427955 DOI: 10.1186/s12896-015-0151-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
Background The objective of this paper was to study antimicrobial activity and safety of Enterococcus faecium KQ 2.6 (E. faecium KQ 2.6) isolated from peacock feces. Methods Agar well diffusion method was adopted in antimicrobial activity assay. Disk diffusion test was used to determine the antibiotic resistance. The identification and virulence potential of E. faecium KQ 2.6 were investigated using PCR amplification. Results The results indicated that cell free supernatant (CFS) of the strain had the good antimicrobial activity against selected gram-positive and gram-negative bacteria. The biochemical characteristics of antimicrobial substances were investigated. The results indicated that the antimicrobial substances were still active after treatment with catalase and proteinase, respectively. Moreover, the stability of antimicrobial substances did not change after heat treatment at 40, 50, 60, 70 and 80°C for 30 min, respectively. The activity of antimicrobial substances remained stable at 4 and −20°C after long time storage. The antimicrobial activity of CFS was compared with that of the buffer with similar strength and pH. The inhibitory zone of the buffer was apparently smaller than that of CFS, which meant that the acid in CFS was not the only factor that was contributed to antibacterial activity of CFS. The antibiotic resistance and virulence potential were evaluated using disk diffusion test and PCR amplification. The results showed that E. faecium KQ 2.6 did not harbor any tested virulence genes such as gelE, esp, asa1, cylA, efaA and hyl. It was susceptible to most of tested antibiotics except for vancomycin and polymyxin B. Conclusion E. faecium KQ 2.6 may be used as bio-preservative cultures for the production of fermented foods.
Collapse
Affiliation(s)
- Wei Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016, Hangzhou, Zhejiang, China.
| | - Hui-Min Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016, Hangzhou, Zhejiang, China.
| | - Dan-Ting Li
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016, Hangzhou, Zhejiang, China.
| | - Zhi-Liang Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016, Hangzhou, Zhejiang, China.
| | - Zhen-Xing Tang
- College of Light Industry Science and Engineering, Nanjing Forestry University, 210037, Nanjing, Jiangsu, China.
| | - Lu-E Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, 310016, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Galloway-Peña JR, Liang X, Singh KV, Yadav P, Chang C, La Rosa SL, Shelburne S, Ton-That H, Höök M, Murray BE. The identification and functional characterization of WxL proteins from Enterococcus faecium reveal surface proteins involved in extracellular matrix interactions. J Bacteriol 2015; 197:882-92. [PMID: 25512313 PMCID: PMC4325096 DOI: 10.1128/jb.02288-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain. Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary structural analyses of locus A recombinant WxL domain-containing proteins found they are rich in β-sheet structure and disordered segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggesting a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary, these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and virulence in E. faecium and possibly other Gram-positive bacterial species.
Collapse
Affiliation(s)
- Jessica R Galloway-Peña
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| | - Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| | - Chungyu Chang
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Sabina Leanti La Rosa
- Department of Chemistry, Biotechnology and Food Science, Laboratory of Microbial Gene Technology and Food Microbiology, The Norwegian University of Life Sciences, Aas, Norway
| | - Samuel Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Barbara E Murray
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
42
|
Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol 2014; 81:1820-31. [PMID: 25548052 DOI: 10.1128/aem.03661-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium populations from hospitalized patients and from community-based individuals differ, with a predominance of certain clonal lineages, often in association with elderly individuals, occurring in the hospital setting.
Collapse
|
43
|
Carasi P, Jacquot C, Romanin DE, Elie AM, De Antoni GL, Urdaci MC, Serradell MDLA. Safety and potential beneficial properties of Enterococcus strains isolated from kefir. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Sivertsen A, Billström H, Melefors Ö, Liljequist BO, Wisell KT, Ullberg M, Özenci V, Sundsfjord A, Hegstad K. A multicentre hospital outbreak in Sweden caused by introduction of a vanB2 transposon into a stably maintained pRUM-plasmid in an Enterococcus faecium ST192 clone. PLoS One 2014; 9:e103274. [PMID: 25153894 PMCID: PMC4143159 DOI: 10.1371/journal.pone.0103274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
The clonal dissemination of VanB-type vancomycin-resistant Enterococcus faecium (VREfm) strains in three Swedish hospitals between 2007 and 2011 prompted further analysis to reveal the possible origin and molecular characteristics of the outbreak strain. A representative subset of VREfm isolates (n = 18) and vancomycin-susceptible E. faecium (VSEfm, n = 2) reflecting the spread in time and location was approached by an array of methods including: selective whole genome sequencing (WGS; n = 3), multi locus sequence typing (MLST), antimicrobial susceptibility testing, virulence gene profiling, identification of mobile genetic elements conferring glycopeptide resistance and their ability to support glycopeptide resistance transfer. In addition, a single VREfm strain with an unrelated PFGE pattern collected prior to the outbreak was examined by WGS. MLST revealed a predominance of ST192, belonging to a hospital adapted high-risk lineage harbouring several known virulence determinants (n≥10). The VREfm outbreak strain was resistant to ampicillin, gentamicin, ciprofloxacin and vancomycin, and susceptible to teicoplanin. Consistently, a vanB2-subtype as part of Tn1549/Tn5382 with a unique genetic signature was identified in the VREfm outbreak strains. Moreover, Southern blot hybridisation analyses of PFGE separated S1 nuclease-restricted total DNAs and filter mating experiments showed that vanB2-Tn1549/Tn5382 was located in a 70-kb sized rep17/pRUM plasmid readily transferable between E. faecium. This plasmid contained an axe-txe toxin-antitoxin module associated with stable maintenance. The two clonally related VSEfm harboured a 40 kb rep17/pRUM plasmid absent of the 30 kb vanB2-Tn1549/Tn5382 gene complex. Otherwise, these two isolates were similar to the VREfm outbreak strain in virulence- and resistance profile. In conclusion, our observations support that the origin of the multicentre outbreak was caused by an introduction of vanB2-Tn1549/Tn5382 into a rep17/pRUM plasmid harboured in a pre-existing high-risk E. faecium ST192 clone. The subsequent dissemination of VREfm to other centres was primarily caused by clonal spread rather than plasmid transfer to pre-existing high-risk clones.
Collapse
Affiliation(s)
- Audun Sivertsen
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Hanna Billström
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | - Öjar Melefors
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | | | - Karin Tegmark Wisell
- Unit for antibiotics and infection control, the Public Health Agency of Sweden, Solna, Sweden
| | - Måns Ullberg
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Arnfinn Sundsfjord
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
45
|
Abstract
The collagen adhesin Acm was the first virulence determinant reported to be important for the pathogenesis of Enterococcus faecium in a rat infective endocarditis model. We had previously reported that there was a slight growth delay associated with acm allelic replacement (cat) mutant strain TX6051 used in that study. Recently, we generated a nonpolar markerless acm deletion mutant and did not observe a delay in growth. We therefore performed comparative genome sequence analysis of wild-type strain TX82 and TX6051 and found a single mutation, a nonsense mutation in the ccpA gene of TX6051. After correcting this mutation, the growth defect of TX6051 was abolished, implicating a role for CcpA in the growth of E. faecium. To confirm this, we created a ccpA deletion mutant of TX82, which also exhibited a slight delay in growth. Furthermore, the ccpA deletion mutant was attenuated (P = 0.0024) in a mixed-inoculum (TX82 plus TX82 ΔccpA) rat endocarditis model and also in an in vitro competitive growth assay; a ccpA-complemented strain showed neither reduced growth nor reduced virulence. We also found attenuation in the endocarditis model with the new acm deletion mutant although not as great as that previously observed with TX6051 carrying the ccpA mutation. Taken together, our data confirm the role of Acm in the pathogenesis of endocarditis. We also show that CcpA affects the growth of E. faecium, that an intact ccpA gene is important for full virulence, and that a ccpA mutation was partly responsible for the highly attenuated phenotype of TX6051.
Collapse
|
46
|
Almohamad S, Somarajan SR, Singh KV, Nallapareddy SR, Murray BE. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium. FEMS Microbiol Lett 2014; 353:151-6. [PMID: 24606170 DOI: 10.1111/1574-6968.12418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/08/2014] [Accepted: 03/04/2014] [Indexed: 11/28/2022] Open
Abstract
Enterococcus faecium, a major cause of nosocomial infections, is often isolated from conditions where biofilm is considered to be important in the establishment of infections. We investigated biofilm formation among E. faecium isolates from diverse sources and found that the occurrence and amount of biofilm formation were significantly greater in clinical isolates than fecal isolates from community volunteers. We also found that the presence of the empfm (E. faecium pilus) operon was associated with the amount of biofilm formation. Furthermore, we analyzed the possible association between the distribution of 16 putative virulence genes and the occurrence of biofilm production. Even though the prevalence of these virulence genes was significantly higher in clinical isolates, we did not observe any correlation with the occurrence of biofilm formation.
Collapse
Affiliation(s)
- Sam Almohamad
- Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
47
|
Hendrickx APA, van Schaik W, Willems RJL. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 2014; 8:993-1010. [PMID: 23902146 DOI: 10.2217/fmb.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell wall of Gram-positive bacteria functions as a surface organelle that continuously interacts with its environment through a plethora of cell wall-associated molecules. Enterococcus faecium is a normal inhabitant of the GI tract of mammals, but has recently become an important etiological agent of hospital-acquired infections in debilitated patients. Insights into the assembly and function of enterococcal cell wall components and their interactions with the host during colonization and infection are essential to explain the worldwide emergence of E. faecium as an important multiantibiotic-resistant nosocomial pathogen. Understanding the biochemistry of cell wall biogenesis and principles of antibiotic resistance at the molecular level may open up new frontiers in research on enterococci, particularly for the development of novel antimicrobial strategies. In this article, we outline the current knowledge on the most important antimicrobial resistance mechanisms that involve peptidoglycan synthesis and the role of cell wall constituents, including lipoteichoic acid, wall teichoic acid, capsular polysaccharides, LPxTG cell wall-anchored surface proteins, WxL-type surface proteins and pili, in the pathogenesis of E. faecium.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
48
|
Molecular characteristics of vancomycin-resistant Enterococcus faecium from a tertiary care hospital in Chengdu, China: molecular characteristics of VRE in China. Eur J Clin Microbiol Infect Dis 2014; 33:933-9. [PMID: 24463723 DOI: 10.1007/s10096-013-2029-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 02/05/2023]
Abstract
The aim of this study was to characterize vancomycin-resistant Enterococcus faecium (VREfm) isolates phenotypically and molecularly, and investigate associations between the virulence factors enterococcal surface protein (esp), hyaluronidase (hyl), and collagen adhesin (acm) and colonization/infection. A total of 126 E. faecium [66 VREfm and 60 vancomycin-susceptible (VSEfm)] were collected in West China Hospital. Nine E. faecium isolates (7 VREfm and 2 VSEfm) were selected at random for comparative study in a large region from China. Minimum inhibitory concentrations (MICs) were measured by Etest and agar dilution, vancomycin resistance genes (vanA, vanB, and vanC) and virulence genes (esp, acm, and hyl) were detected by polymerase chain reaction (PCR). Thirty-four VREfm underwent repetitive sequence-based PCR (rep-PCR) and multi-locus sequence typing (MLST). One linezolid-resistant isolate (MIC = 8 μg/ml) was found; none were tigecycline resistant. All 73 VREfm (28 infective strains and 45 intestinal colonizers) had the vanA gene and VanA phenotype. Positivity for esp, hyl, and acm in VREfm was 79.5, 46.6, and 86.3%, respectively, which was higher than in VSEfm (54.8, 27.4, and 56.5%, respectively). Among VSEfm, positivity for acm in isolates from pleural or cerebrospinal fluid (84.6%) was higher than that from blood (32.4%). There were 11 rep-PCR types (similarity >95%) and MLST revealed nine sequence types (STs) among the selected isolates. Most VREfm and all VSEfm belonged to clonal complex 17. A new ST was found, with allele sequence (15, 1, 38, 1, 1, 1, 1). In China, most VREfm seem to belong to the classical nosocomial CC17 clone, and many of them have acquired virulence genes, further strengthening a hospital-adapted type.
Collapse
|
49
|
Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl Environ Microbiol 2014; 80:1899-909. [PMID: 24413604 DOI: 10.1128/aem.03859-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products.
Collapse
|
50
|
Molecular characterization of vancomycin-resistant Enterococcus spp. clinical isolates recovered from hospitalized patients among several medical institutions in China. Diagn Microbiol Infect Dis 2012; 74:399-403. [DOI: 10.1016/j.diagmicrobio.2012.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/20/2023]
|