1
|
Vezzani G, Mancini F, Raso MM, Giannelli C, Nappini R, Gasperini G, Rappuoli R, Berlanda Scorza F, Iturriza M, Micoli F, Rossi O. Development and Characterization of a 13-Plex Binding Assay to Detect Shigella Antibodies in Human Samples. Open Forum Infect Dis 2024; 11:ofae675. [PMID: 39660019 PMCID: PMC11630041 DOI: 10.1093/ofid/ofae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Shigella is the leading bacterial cause of diarrhea worldwide, with increasing levels of antibiotic resistance. The greatest burden is among children aged <5 years in low- and middle-income countries, and efforts are ongoing to develop vaccines against this pathogen. One of the challenges associated with the development of a vaccine against Shigella is the need for a multivalent vaccine covering the most prevalent Shigella serotypes. Epidemiologic studies to better understand the prevalence of the Shigella serotypes and inform vaccination schedules are very useful, with clinical data showing the ability of vaccines to elicit cross-reactive antibodies. Here, we set up a Luminex-based method able to reproducibly measure antibodies specific to 13 Shigella antigens in human sera. This method will allow the rapid collection of large amounts of data based on the analysis of serum samples from vaccinated individuals or people naturally exposed to Shigella, supporting the development of a vaccine against this disease.
Collapse
Affiliation(s)
- G Vezzani
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - F Mancini
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - M M Raso
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - C Giannelli
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - R Nappini
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - R Rappuoli
- Fondazione Biotecnopolo di Siena, Siena, Italy
| | | | - M Iturriza
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - O Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
2
|
Barker SA, Bernard AR, Morales Y, Johnson SJ, Dickenson NE. Structural and functional characterization of the IpaD π-helix reveals critical roles in DOC interaction, T3SS apparatus maturation, and Shigella virulence. J Biol Chem 2024; 300:107613. [PMID: 39079629 PMCID: PMC11400957 DOI: 10.1016/j.jbc.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.
Collapse
Affiliation(s)
- Samuel A Barker
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abram R Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
3
|
Felegary A, Nazarian S, Zafarmand-Samarin M, Sadeghi D, Fathi J, Samiei-Abianeh H. Evaluation of the prophylactic effect of egg yolk antibody (IgY) produced against the recombinant protein containing IpaD, IpaB, StxB, and VirG proteins from Shigella. Mol Immunol 2024; 173:53-60. [PMID: 39053389 DOI: 10.1016/j.molimm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/03/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Shigellosis is a gastrointestinal disease causes high morbidity and mortality worldwide, however, there is no anti-Shigella vaccine. The use of antibiotics in shigellosis treatment exacerbates antibiotic resistance. Antibodies, particularly egg yolk antibody (IgY), offer a promising approach to address this challenge. This study aimed to investigate the prophylactic effect of IgY produced against a recombinant chimeric protein containing the immunogens IpaD, IpaB, StxB, and VirG from Shigella. METHODS The chimeric protein, comprising IpaD, IpaB, StxB, and VirG, was expressed in E. coli BL21 and purified using the Ni-NTA column. Following immunization of chickens, IgY was extracted from egg yolk using the PEG-6000 method and analyzed through SDS-PAGE and ELISA techniques. Subsequently, the prophylactic efficacy of IgY was assessed by challenging of mice with 10 LD50 of S. dysenteriae and administering different concentrations of IgY (1.25, 2.5, 5, and 10 mg/kg) under various time conditions. RESULTS The recombinant protein, weighing 82 kDa, was purified and confirmed by western blotting. The IgY concentration was determined as 9.5 mg/ml of egg yolk and the purity of the extracted IgY was over 90 %. The results of the ELISA showed that at least 19 ng of pure antibody identified recombinant protein and reacts with it. The challenge test employing IgY and Shigella demonstrated a direct correlation between the survival rate and antibody concentration, with increased concentrations leading to decreased mortality rates. Treatment of mice with 10 mg/kg IgY leads to 80 % survival of the mice against 10 LD50 S. dysenteriae. CONCLUSION Our findings suggest that IgY may offer therapeutic potential in treating Shigella infections and combating antibiotic resistance.
Collapse
Affiliation(s)
- Alireza Felegary
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | | | - Davoud Sadeghi
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Samiei-Abianeh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Li S, Zhang W. Mapping the functional B-cell epitopes of Shigella invasion plasmid antigen D (IpaD). Appl Environ Microbiol 2024; 90:e0098824. [PMID: 39082807 PMCID: PMC11337796 DOI: 10.1128/aem.00988-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Lu T, Raju M, Howlader DR, Dietz ZK, Whittier SK, Varisco DJ, Ernst RK, Coghill LM, Picking WD, Picking WL. Vaccination with a Protective Ipa Protein-Containing Nanoemulsion Differentially Alters the Transcriptomic Profiles of Young and Elderly Mice following Shigella Infection. Vaccines (Basel) 2024; 12:618. [PMID: 38932347 PMCID: PMC11209624 DOI: 10.3390/vaccines12060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Shigella spp. are responsible for bacillary dysentery or shigellosis transmitted via the fecal-oral route, causing significant morbidity and mortality, especially among vulnerable populations. There are currently no licensed Shigella vaccines. Shigella spp. use a type III secretion system (T3SS) to invade host cells. We have shown that L-DBF, a recombinant fusion of the T3SS needle tip (IpaD) and translocator (IpaB) proteins with the LTA1 subunit of enterotoxigenic E. coli labile toxin, is broadly protective against Shigella spp. challenge in a mouse lethal pulmonary model. Here, we assessed the effect of LDBF, formulated with a unique TLR4 agonist called BECC470 in an oil-in-water emulsion (ME), on the murine immune response in a high-risk population (young and elderly) in response to Shigella challenge. Dual RNA Sequencing captured the transcriptome during Shigella infection in vaccinated and unvaccinated mice. Both age groups were protected by the L-DBF formulation, while younger vaccinated mice exhibited more adaptive immune response gene patterns. This preliminary study provides a step toward identifying the gene expression patterns and regulatory pathways responsible for a protective immune response against Shigella. Furthermore, this study provides a measure of the challenges that need to be addressed when immunizing an aging population.
Collapse
Affiliation(s)
- Ti Lu
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Murugesan Raju
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA (L.M.C.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Debaki R. Howlader
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Zackary K. Dietz
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Sean K. Whittier
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Lyndon M. Coghill
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA (L.M.C.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Wendy L. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| |
Collapse
|
6
|
Batani G, Vezzani G, Lashchuk S, Allaoui A, Cardamone D, Raso MM, Boero E, Roscioli E, Ridelfi M, Gasperini G, Pizza M, Rossi O, Berlanda Scorza F, Micoli F, Rappuoli R, Sala C. Development of a visual Adhesion/Invasion Inhibition Assay to assess the functionality of Shigella-specific antibodies. Front Immunol 2024; 15:1374293. [PMID: 38680489 PMCID: PMC11045934 DOI: 10.3389/fimmu.2024.1374293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.
Collapse
Affiliation(s)
- Giampiero Batani
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giacomo Vezzani
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Sabrina Lashchuk
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Abdelmounaaim Allaoui
- The Microbiology Laboratory, University Mohammed VI Polytechnic, Ben, Guerir, Morocco
| | - Dario Cardamone
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Elena Boero
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Emanuele Roscioli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Matteo Ridelfi
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Gianmarco Gasperini
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Mariagrazia Pizza
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Omar Rossi
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Francesca Micoli
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
7
|
Halder S, Jaiswal N, Koley H, Mahata N. Cloning, improved expression and purification of invasion plasmid antigen D (IpaD): an effector protein of enteroinvasive Escherichia coli (EIEC). Biotechnol Genet Eng Rev 2024; 40:409-435. [PMID: 36871167 DOI: 10.1080/02648725.2023.2184027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
The widespread increase in broad-spectrum antimicrobial resistance is making it more difficult to treat gastrointestinal infections. Enteroinvasive Escherichia coli is a prominent etiological agent of bacillary dysentery, invading via the fecal-oral route and exerting virulence on the host via the type III secretion system. IpaD, a surface-exposed protein on the T3SS tip that is conserved among EIEC and Shigella, may serve as a broad immunogen for bacillary dysentery protection. For the first time, we present an effective framework for improving the expression level and yield of IpaD in the soluble fraction for easy recovery, as well as ideal storage conditions, which may aid in the development of new protein therapies for gastrointestinal infections in the future. To achieve this, uncharacterized full length IpaD gene from EIEC was cloned into pHis-TEV vector and induction parameters were optimized for enhanced expression in the soluble fraction. After affinity-chromatography based purification, 61% pure protein with a yield of 0.33 mg per litre of culture was obtained. The purified IpaD was retained its secondary structure with a prominent α-helical structure as well as functional activity during storage, at 4°C, -20°C and -80°C using 5% sucrose as cryoprotectants, which is a critical criterion for protein-based treatments.
Collapse
Affiliation(s)
- Sudeshna Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Namita Jaiswal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Hemanta Koley
- Department Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
8
|
Gershberg J, Morhaim M, Rostrovsky I, Eichler J, Sal-Man N. The sequence of events of enteropathogenic E. coli's type III secretion system translocon assembly. iScience 2024; 27:109108. [PMID: 38375228 PMCID: PMC10875159 DOI: 10.1016/j.isci.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Many bacterial pathogens employ the type III secretion system (T3SS), a specialized complex that transports effector proteins that manipulate various cellular processes. The T3SS forms a translocon pore within the host-cell membrane consisting of two secreted proteins that transition from a soluble state into a transmembrane complex. Still, the exact sequence of events leading to the formation of a membranous functional pore remains uncertain. Here, we utilized the translocon proteins of enteropathogenic E. coli (EPEC) to investigate the sequence of those steps leading to translocon assembly, including self-oligomerization, hetero-oligomerization, interprotein interaction, and membrane insertion. We found that in EPEC, EspD (SctE) plays a dominant role in pore formation as it assembles into an oligomeric state, regardless of pH, membrane contact, or the presence of EspB (SctB). Subsequently, EspB subunits integrate into EspD homo-oligomers to create EspB-EspD hetero-oligomers that adopt a transmembrane orientation to create a functional pore complex.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - May Morhaim
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irina Rostrovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
9
|
Lu T, Howlader DR, Das S, Dietz ZK, Nagel AC, Whittier SK, Picking WD, Picking WL. The L-DBF vaccine cross protects mice against different Shigella serotypes after prior exposure to the pathogen. Microbiol Spectr 2023; 11:e0006223. [PMID: 37787548 PMCID: PMC10714971 DOI: 10.1128/spectrum.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Shigellosis is endemic to low- and middle-income regions of the world where children are especially vulnerable. In many cases, there are pre-existing antibodies in the local population and the effect of prior exposure should be considered in the development and testing of vaccines against Shigella infection. Our study shows that L-DBF-induced immune responses are not adversely affected by prior exposure to this pathogen. Moreover, somewhat different cytokine profiles were observed in the lungs of vaccinated mice not having been exposed to Shigella, suggesting that the immune responses elicited by Shigella infection and L-DBF vaccination follow different pathways.
Collapse
Affiliation(s)
- Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Mosadegh S, Abtahi H, Amani J, Karizi SZ, Salmanian AH. Protective immunization against Enterohemorrhagic Escherichia coli and Shigella dysenteriae Type 1 by chitosan nanoparticle loaded with recombinant chimeric antigens comprising EIT and STX1B-IpaD. Microb Pathog 2023; 184:106344. [PMID: 37704060 DOI: 10.1016/j.micpath.2023.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Increasing evidence demonstrated that Enterohemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae type 1 (S. dysenteriae1) are considered pathogens, that are connected with diarrhea and are still the greatest cause of death in children under the age of five years, worldwide. EHEC and S. dysenteriae 1 infections can be prevented and managed using a vaccination strategy against pathogen attachment stages. In this study, the chitosan nanostructures were loaded with recombinant EIT and STX1B-IpaD polypeptides. The immunogenic properties of this nano-vaccine candidate were investigated. The EIT and STX1B-IpaD recombinant proteins were heterologous expressed, purified, and confirmed by western blotting. The chitosan nanoparticles, were used to encapsulate the purified proteins. The immunogenicity of recombinant nano vaccine candidate, was examined in three groups of BalB/c mice by injection, oral delivery, and combination of oral-injection. ELISA and antibody titer, evaluated the humoral immune response. Finally, all three mice groups were challenged by two pathogens to test the ability of the nano-vaccine candidate to protect against bacterial infection. The Sereny test in guinea pigs was used to confirm the neutralizing effect of immune sera in controlling S. dysenteriae 1, infections. SDS-PAGE and western blotting, confirmed the presence and specificity of 63 and 27 kDa recombinant EIT and STX1B-IpaD, respectively. The results show that the nanoparticles containing recombinant proteins could stimulate the systemic and mucosal immune systems by producing IgG and IgA, respectively. The challenge test showed that, the candidate nano-vaccine could protect the animal model from bacterial infection. The combination of multiple recombinant proteins, carrying several epitopes and natural nanoparticles could evocate remarkable humoral and mucosal responses and improve the protection properties of synthetic antigens. Furthermore, compared with other available antigen delivery methods, using oral delivery as immune priming and injection as a booster method, could act as combinatorial methods to achieve a higher level of immunity. This approach could present an appropriate vaccine candidate against both EHEC and S. dysenteriae 1.
Collapse
Affiliation(s)
- Shadi Mosadegh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
11
|
Lu T, Das S, Howlader DR, Jain A, Hu G, Dietz ZK, Zheng Q, Ratnakaram SSK, Whittier SK, Varisco DJ, Ernst RK, Picking WD, Picking WL. Impact of the TLR4 agonist BECC438 on a novel vaccine formulation against Shigella spp. Front Immunol 2023; 14:1194912. [PMID: 37744341 PMCID: PMC10512073 DOI: 10.3389/fimmu.2023.1194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Shigellosis (bacillary dysentery) is a severe gastrointestinal infection with a global incidence of 90 million cases annually. Despite the severity of this disease, there is currently no licensed vaccine against shigellosis. Shigella's primary virulence factor is its type III secretion system (T3SS), which is a specialized nanomachine used to manipulate host cells. A fusion of T3SS injectisome needle tip protein IpaD and translocator protein IpaB, termed DBF, when admixed with the mucosal adjuvant double-mutant labile toxin (dmLT) from enterotoxigenic E. coli was protective using a murine pulmonary model. To facilitate the production of this platform, a recombinant protein that consisted of LTA-1, the active moiety of dmLT, and DBF were genetically fused, resulting in L-DBF, which showed improved protection against Shigella challenge. To extrapolate this protection from mice to humans, we modified the formulation to provide for a multivalent presentation with the addition of an adjuvant approved for use in human vaccines. Here, we show that L-DBF formulated (admix) with a newly developed TLR4 agonist called BECC438 (a detoxified lipid A analog identified as Bacterial Enzymatic Combinatorial Chemistry candidate #438), formulated as an oil-in-water emulsion, has a very high protective efficacy at low antigen doses against lethal Shigella challenge in our mouse model. Optimal protection was observed when this formulation was introduced at a mucosal site (intranasally). When the formulation was then evaluated for the immune response it elicits, protection appeared to correlate with high IFN-γ and IL-17 secretion from mucosal site lymphocytes.
Collapse
Affiliation(s)
- Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Gelfat I, Aqeel Y, Tremblay JM, Jaskiewicz JJ, Shrestha A, Lee JN, Hu S, Qian X, Magoun L, Sheoran A, Bedenice D, Giem C, Manjula-Basavanna A, Pulsifer AR, Tu HX, Li X, Minus ML, Osburne MS, Tzipori S, Shoemaker CB, Leong JM, Joshi NS. Single domain antibodies against enteric pathogen virulence factors are active as curli fiber fusions on probiotic E. coli Nissle 1917. PLoS Pathog 2022; 18:e1010713. [PMID: 36107831 PMCID: PMC9477280 DOI: 10.1371/journal.ppat.1010713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.
Collapse
Affiliation(s)
- Ilia Gelfat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yousuf Aqeel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Justyna J. Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James N. Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Xi Qian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Loranne Magoun
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Abhineet Sheoran
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniela Bedenice
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Colter Giem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Amanda R. Pulsifer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hann X. Tu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Xiaoli Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilyn L. Minus
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Neel S. Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Wu HP, Derilo RC, Chen HL, Li TR, Lagitnay RBJS, Chan YC, Chuang Y, Chuang DY. Injectisome T3SS subunits as potential chaperones in the extracellular export of Pectobacterium carotovorum subsp. carotovorum bacteriocins Carocin S1 and Carocin S3 secreted via flagellar T3SS. BMC Microbiol 2021; 21:345. [PMID: 34911446 PMCID: PMC8672553 DOI: 10.1186/s12866-021-02405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) causes soft-rot disease in a wide variety of plants resulting in economic losses worldwide. It produces various types of bacteriocin to compete against related plant pathogens. Studies on how bacteriocins are extracellularly secreted are conducted to understand the mechanism of interbacterial competition. In this study, the secretion of the low-molecular-weight bacteriocins (LMWB) Carocin S1 and Carocin S3 produced by a multiple-bacteriocin producing strain of Pcc, 89-H-4, was investigated. Tn5 insertional mutagenesis was used to generate a mutant, TH22-6, incapable of LMWBs secretion. Sequence and homology analyses of the gene disrupted by transposon Tn5 insertion revealed that the gene sctT, an essential component of the injectisome type III secretion machinery (T3aSS), is required for the secretion of the bacteriocins. This result raised a question regarding the nature of the secretion mechanism of Pcc bacteriocins which was previously discovered to be secreted via T3bSS, a system that utilizes the bacterial flagellum for extracellular secretions. Our previous report has shown that bacteriocin Carocin S1 cannot be secreted by mutants that are defective of T3bSS-related genes such as flhA, flhC, flhD and fliC. We knocked out several genes making up the significant structural components of both T3aSS and T3bSS. The findings led us to hypothesize the potential roles of the T3aSS-related proteins, SctT, SctU and SctV, as flagellar T3SS chaperones in the secretion of Pcc bacteriocins. This current discovery and the findings of our previous study helped us to conceptualize a unique Type III secretion system for bacteriocin extracellular export which is a hybrid of the injectisome and flagellar secretion systems.
Collapse
Affiliation(s)
- Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reymund C Derilo
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Teacher Education, Nueva Vizcaya State University Bambang Campus, Bambang, Nueva Vizcaya, Philippines
| | - Han-Ling Chen
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Tzu-Rung Li
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Ruchi Briam James S Lagitnay
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Arts and Sciences, Nueva Vizcaya State University Bayombong Campus, Bayombong, Nueva Vizcaya, Philippines
| | - Yung-Chieh Chan
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Yutin Chuang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan.
| |
Collapse
|
14
|
Choh LC, Ong GH, Chua EG, Vellasamy KM, Mariappan V, Khan AM, Wise MJ, Wong KT, Vadivelu J. Absence of BapA type III effector protein affects Burkholderia pseudomallei intracellular lifecycle in human host cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Tachiyama S, Skaar R, Chang Y, Carroll BL, Muthuramalingam M, Whittier SK, Barta ML, Picking WL, Liu J, Picking WD. Composition and Biophysical Properties of the Sorting Platform Pods in the Shigella Type III Secretion System. Front Cell Infect Microbiol 2021; 11:682635. [PMID: 34150677 PMCID: PMC8211105 DOI: 10.3389/fcimb.2021.682635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 01/28/2023] Open
Abstract
Shigella flexneri, causative agent of bacillary dysentery (shigellosis), uses a type III secretion system (T3SS) as its primary virulence factor. The T3SS injectisome delivers effector proteins into host cells to promote entry and create an important intracellular niche. The injectisome's cytoplasmic sorting platform (SP) is a critical assembly that contributes to substrate selection and energizing secretion. The SP consists of oligomeric Spa33 "pods" that associate with the basal body via MxiK and connect to the Spa47 ATPase via MxiN. The pods contain heterotrimers of Spa33 with one full-length copy associated with two copies of a C-terminal domain (Spa33C). The structure of Spa33C is known, but the precise makeup and structure of the pods in situ remains elusive. We show here that recombinant wild-type Spa33 can be prepared as a heterotrimer that forms distinct stable complexes with MxiK and MxiN. In two-hybrid analyses, association of the Spa33 complex with these proteins occurs via the full-length Spa33 component. Furthermore, these complexes each have distinct biophysical properties. Based on these properties, new high-resolution cryo-electron tomography data and architectural similarities between the Spa33 and flagellar FliM-FliN complexes, we provide a preliminary model of the Spa33 heterotrimers within the SP pods. From these findings and evolving models of SP interfaces and dynamics in the Yersinia and Salmonella T3SS, we suggest a model for SP function in which two distinct complexes come together within the context of the SP to contribute to form the complete pod structures during the recruitment of T3SS secretion substrates.
Collapse
Affiliation(s)
- Shoichi Tachiyama
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - Ryan Skaar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - Brittany L. Carroll
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Michael L. Barta
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States,*Correspondence: William D. Picking,
| |
Collapse
|
16
|
A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog 2021; 17:e1009615. [PMID: 34048506 PMCID: PMC8191917 DOI: 10.1371/journal.ppat.1009615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity. Parasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.
Collapse
|
17
|
Gershberg J, Braverman D, Sal-Man N. Transmembrane domains of type III-secreted proteins affect bacterial-host interactions in enteropathogenic E. coli. Virulence 2021; 12:902-917. [PMID: 33729090 PMCID: PMC7993127 DOI: 10.1080/21505594.2021.1898777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
18
|
Sierocki R, Jneid B, Orsini Delgado ML, Plaisance M, Maillère B, Nozach H, Simon S. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections. PLoS Negl Trop Dis 2021; 15:e0009231. [PMID: 33711056 PMCID: PMC7990167 DOI: 10.1371/journal.pntd.0009231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/24/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents. Salmonella and Shigella are responsible for gastrointestinal diseases and continue to remain a serious health hazard in South and South-East Asia and African countries, even more with the new emergence of multi drug resistances. Developed vaccines are either not commercialized (for Shigella) or cover only a limited number of serotypes (for Salmonella). There is thus a crucial need to develop cross-protective therapies. By targeting proteins SipD and IpaD belonging respectively to the injectisome of Salmonella and Shigella and necessary to their virulence, we have shown that a monoclonal antibody (mAb) directed against a conserved common region of their apical part provides good cross-protection prophylactic efficacy. We have determined the region targeted by this mAb which could explain why it is conserved among Salmonella and Shigella bacteria.
Collapse
Affiliation(s)
- Raphaël Sierocki
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Marc Plaisance
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
19
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
20
|
Montoya NA, Barr KE, Morales SV, Umana JE, Ny C, Roth RE, Reyes EJ, Kirchhoff BC, Hartman ER, Higgins LL, Nichol KM, Morais ARC, Allgeier AM, Gao P, Picking WD, Corbin DR, Shiflett MB. Protein Stabilization and Delivery: A Case Study of Invasion Plasmid Antigen D Adsorbed on Porous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14276-14287. [PMID: 33095588 DOI: 10.1021/acs.langmuir.0c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Approximately half of all vaccines produced annually are wasted because effectivity is dependent on protein structure and heat exposure disrupts the intermolecular interactions needed to maintain the structure. Thus, most vaccines require a temperature-controlled supply chain to minimize waste. A more sustainable technology was developed via the adsorption of invasion plasmid antigen D (IpaD) onto mesoporous silica, improving the thermal stability of this protein-based therapeutic. Seven silicas were characterized to determine the effects of pore diameter, pore volume, and surface area on protein adsorption. The silica-IpaD complex was then heated above the IpaD denaturing temperature and N,N-dimethyldodecylamine N-oxide was used to remove IpaD from the silica. Circular dichroism confirmed that the adsorbed IpaD after the heat treatment maintained a native secondary structure rich in α-helix content. In contrast, the unprotected IpaD after heat treatment lost its secondary structure. Isotherms using Langmuir, Freundlich, and Temkin models demonstrated that the adsorption of IpaD onto silicas is best fit by the Langmuir model. If pores are less than 15 nm, adsorption is negligible. If the pores are between 15 and 25 nm, then monolayer coverage is achieved and IpaD is protected from thermal denaturing. If pores are larger than 25 nm, the adsorption is a multilayer coverage and it is easier to remove the protein from the silica because of a less-developed hydrogen bond network. This case study provides strong evidence that IpaD is thermally stabilized via adsorption on mesoporous silica with the proper range of pore sizes.
Collapse
Affiliation(s)
- Nicole A Montoya
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Kaylee E Barr
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Simon Velasquez Morales
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Jorge E Umana
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Channary Ny
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Rhianna E Roth
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Edward J Reyes
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Brian C Kirchhoff
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Eric R Hartman
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Lillian L Higgins
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Kalena M Nichol
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Ana Rita C Morais
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
| | - Alan M Allgeier
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr, Lawrence, Kansas 66047, United States
| | - Phillip Gao
- Shankel Structural Biology Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - David R Corbin
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr, Lawrence, Kansas 66047, United States
| | - Mark B Shiflett
- Institute for Sustainable Engineering, Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas 66045, United States
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr, Lawrence, Kansas 66047, United States
| |
Collapse
|
21
|
Wang X, Sun J, Wan L, Yang X, Lin H, Zhang Y, He X, Zhong H, Guan K, Min M, Sun Z, Yang X, Wang B, Dong M, Wei C. The Shigella Type III Secretion Effector IpaH4.5 Targets NLRP3 to Activate Inflammasome Signaling. Front Cell Infect Microbiol 2020; 10:511798. [PMID: 33117724 PMCID: PMC7561375 DOI: 10.3389/fcimb.2020.511798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Activation of the NLRP3 inflammasome requires the expression of NLRP3, which is strictly regulated by its capacity to directly recognize microbial-derived substances. Even though the involvement of caspase-1 activation in macrophages via NLRP3 and NLRC4 has been discovered, the accurate mechanisms by which Shigella infection triggers NLRP3 activation remain inadequately understood. Here, we demonstrate that IpaH4.5, a Shigella T3SS effector, triggers inflammasome activation by regulating NLRP3 expression through the E3 ubiquitin ligase activity of IpaH4.5. First, we found that IpaH4.5 interacted with NLRP3. As a result, IpaH4.5 modulated NLRP3 protein stability and inflammasome activation. Bacteria lacking IpaH4.5 had dramatically reduced ability to induce pyroptosis. Our results identify a previously unrecognized target of IpaH4.5 in the regulation of inflammasome signaling and clarify the molecular basis for the cytosolic response to the T3SS effector.
Collapse
Affiliation(s)
- Xiaolin Wang
- Basic Medical College, Qingdao University, Qingdao, China.,Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jin Sun
- Basic Medical College, Qingdao University, Qingdao, China.,Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Luming Wan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Haotian Lin
- Basic Medical College, Qingdao University, Qingdao, China.,Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanhong Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang He
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Kai Guan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Min Min
- Department of Gastroenterology and Hepatology, The Fifth Medical Center of Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Zhenxue Sun
- Third Medical Center of Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Xiaoli Yang
- Third Medical Center of Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Bin Wang
- Basic Medical College, Qingdao University, Qingdao, China
| | - Mingxin Dong
- Basic Medical College, Qingdao University, Qingdao, China
| | - Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
22
|
Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System Needle Complex. Curr Top Microbiol Immunol 2020; 427:67-90. [PMID: 31667599 DOI: 10.1007/82_2019_178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.
Collapse
Affiliation(s)
- Sean Miletic
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany
| | | | - Thomas C Marlovits
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany.
| |
Collapse
|
23
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
24
|
Type three secretion system in Salmonella Typhimurium: the key to infection. Genes Genomics 2020; 42:495-506. [PMID: 32112371 DOI: 10.1007/s13258-020-00918-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection. OBJECTIVE To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation. METHODS With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review. CONCLUSION This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.
Collapse
|
25
|
Development of Silica-Immobilized Vaccines for Improving Thermo-Tolerance and Shelf-Life. Kans J Med 2020; 13:6-9. [PMID: 32256968 PMCID: PMC7107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION It is estimated that 50% of vaccines produced annually are wasted because effectivity is dependent on protein structure and heat exposure disrupts the intermolecular interactions that maintain this structure. Since 90% of vaccines require a temperature-controlled supply chain, it is necessary to create a cold chain system to minimize vaccine waste. We have developed a more sustainable technology via the adsorption of Invasion Plasmid Antigen D (IpaD) onto mesoporous silica gels, improving the thermal stability of protein-based therapeutics. METHODS The solution depletion method using UV-Vis was utilized to study the adsorption of IpaD onto silica gels. The silica-IpaD complex is heated above the denaturing temperature of the protein and then the IpaD is removed using N,N-Dimethyldodecylamine N-oxide (LDAO) and their secondary structure is tested using circular dichroism (CD). RESULTS Pore diameter, pore volume and surface area were characterized for seven different silica gels. Silica gels designated as 6389, 6378, and 6375 had an adsorption percentage above 95% at pore volumes of 2.2, 2.8 and 3.8 cm3 mg-1, respectively. CD analyses confirmed that the adsorbed IpaD after the heat treatment displayed a similar "W" shape CD signal as the native IpaD, indicating the conservation of α-helices. In contrast, the unprotected IpaD after being exposed to high temperature shows a flat CD signal, demonstrating the loss of secondary structure. CONCLUSION We have successfully increased the thermo-tolerance for IpaD using mesoporous silica and continue to further optimize mesoporous silica's physiochemical properties to improve adsorption and desorption yields.
Collapse
|
26
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
27
|
Picking WD, Barta ML. The Tip Complex: From Host Cell Sensing to Translocon Formation. Curr Top Microbiol Immunol 2019; 427:173-199. [PMID: 31218507 DOI: 10.1007/82_2019_171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.
Collapse
Affiliation(s)
- William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, 66047, KS, USA.
| | - Michael L Barta
- Higuchi Biosciences, 2099 Constant Ave., Lawrence, 66047, KS, USA.,Catalent Pharma Solutions, 10245 Hickman Mills Drive, Kansas City, 64137, MO, USA
| |
Collapse
|
28
|
Role of a fluid-phase PRR in fighting an intracellular pathogen: PTX3 in Shigella infection. PLoS Pathog 2018; 14:e1007469. [PMID: 30532257 PMCID: PMC6317801 DOI: 10.1371/journal.ppat.1007469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
Shigella spp. are pathogenic bacteria that cause bacillary dysentery in humans by invading the colonic and rectal mucosa where they induce dramatic inflammation. Here, we have analyzed the role of the soluble PRR Pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity. Mice that had been intranasally infected with S. flexneri were rescued from death by treatment with recombinant PTX3. In vitro PTX3 exerts the antibacterial activity against Shigella, impairing epithelial cell invasion and contributing to the bactericidal activity of serum. PTX3 is produced upon LPS-TLR4 stimulation in accordance with the lipid A structure of Shigella. In the plasma of infected patients, the level of PTX3 amount only correlates strongly with symptom severity. These results signal PTX3 as a novel player in Shigella pathogenesis and its potential role in fighting shigellosis. Finally, we suggest that the plasma level of PTX3 in shigellosis patients could act as a biomarker for infection severity. Soluble pattern recognition molecules, PRMs, are components of the humoral arm of innate immunity. The long pentraxin 3, PTX3, is a prototypic soluble PRM that is produced in response to primary inflammatory signals. Shigella spp. are human entero-pathogens which invade colonic and rectal mucosa where they cause deleterious inflammation. We show that PTX3 acts as an ante-antibody and contributes to the clearance of extracellular Shigella. As a countermeasure, Shigella uses invasiveness and low-inflammatory LPS to control PTX3 release in infected cells. This study highlights that the extracellular phase of the invasion process can be considered the “Achille heels” of Shigella pathogenesis.
Collapse
|
29
|
Nagy E, Nagy G, Power CA, Badarau A, Szijártó V. Anti-bacterial Monoclonal Antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:119-153. [PMID: 29549638 DOI: 10.1007/978-3-319-72077-7_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The failing efficacy of antibiotics and the high mortality rate among high-risk patients calls for new treatment modalities for bacterial infections. Due to the vastly divergent pathogenesis of human pathogens, each microbe requires a tailored approach. The main modes of action of anti-bacterial antibodies are virulence factor neutralization, complement-mediated bacterial lysis and enhancement of opsonophagocytic uptake and killing (OPK). Gram-positive bacteria cannot be lysed by complement and their pathogenesis often involves secreted toxins, therefore typically toxin-neutralization and OPK activity are required to prevent and ameliorate disease. In fact, the success stories in terms of approved products, in the anti-bacterial mAb field are based on toxin neutralization (Bacillus anthracis, Clostridium difficile). In contrast, Gram-negative bacteria are vulnerable to antibody-dependent complement-mediated lysis, while their pathogenesis rarely relies on secreted exotoxins, and involves the pro-inflammatory endotoxin (lipopolysaccharide). Given the complexity of bacterial pathogenesis, antibody therapeutics are expected to be most efficient upon targeting more than one virulence factor and/or combining different modes of action. The improved understanding of bacterial pathogenesis combined with the versatility and maturity of antibody discovery technologies available today are pivotal for the design of novel anti-bacterial therapeutics. The intensified research generating promising proof-of-concept data, and the increasing number of clinical programs with anti-bacterial mAbs, indicate that the field is ready to fulfill its promise in the coming years.
Collapse
Affiliation(s)
- Eszter Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria.
| | - Gábor Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Barta ML, Tachiyama S, Muthuramalingam M, Arizmendi O, Villanueva CE, Ramyar KX, Geisbrecht BV, Lovell S, Battaile KP, Picking WL, Picking WD. Using disruptive insertional mutagenesis to identify the in situ structure-function landscape of the Shigella translocator protein IpaB. Protein Sci 2018; 27:1392-1406. [PMID: 29672980 DOI: 10.1002/pro.3428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/11/2022]
Abstract
Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle "tip complex" (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction. IpaB insertion into the host membrane is the first step of translocon pore formation and secretion induction. We employed disruptive insertional mutagenesis, using bacteriophage T4 lysozyme (T4L), within predicted IpaB loops to show how topological features affect TC functions (secretion control, translocon formation and effector secretion). Insertions within the N-terminal half of IpaB were most likely to result in a loss of steady-state secretion control, however, all but the two that were not recognized by the T3SA retained nearly wild-type hemolysis (translocon formation) and invasiveness levels (effector secretion). In contrast, all but one insertion in the C-terminal half of IpaB maintained secretion control but were impaired for hemolysis and invasion. These nature of the data suggest the latter mutants are defective in a post-secretion event, most likely due to impaired interactions with the second translocator protein IpaC. Intriguingly, only two insertion mutants displayed readily detectable T4L on the bacterial surface. The data create a picture in which the makeup and structure of a functional T3SA TC is highly amenable to physical perturbation, indicating that the tertiary structure of IpaB within the TC is more plastic than previously realized.
Collapse
Affiliation(s)
- Michael L Barta
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, 66047
| | - Shoichi Tachiyama
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | | | - Olivia Arizmendi
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, 66047
| | - Cecilia E Villanueva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Kasra X Ramyar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66045
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois, 60439
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047
| | - William D Picking
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, 66047.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047
| |
Collapse
|
31
|
Bernard AR, Jessop TC, Kumar P, Dickenson NE. Deoxycholate-Enhanced Shigella Virulence Is Regulated by a Rare π-Helix in the Type Three Secretion System Tip Protein IpaD. Biochemistry 2017; 56:6503-6514. [PMID: 29134812 PMCID: PMC5761661 DOI: 10.1021/acs.biochem.7b00836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type three secretion systems (T3SS) are specialized nanomachines that support infection by injecting bacterial proteins directly into host cells. The Shigella T3SS has uniquely evolved to sense environmental levels of the bile salt deoxycholate (DOC) and upregulate virulence in response to DOC. In this study, we describe a rare i + 5 hydrogen bonding secondary structure element (π-helix) within the type three secretion system tip protein IpaD that plays a critical role in DOC-enhanced virulence. Specifically, engineered mutations within the π-helix altered the pathogen's response to DOC, with one mutant construct in particular exhibiting an unprecedented reduction in virulence following DOC exposure. Fluorescence polarization binding assays showed that these altered DOC responses are not the result of differences in affinity between IpaD and DOC, but rather differences in the DOC-dependent T3SS tip maturation resulting from binding of IpaD to translocator/effector protein IpaB. Together, these findings begin to uncover the complex mechanism of DOC-enhanced Shigella virulence while identifying an uncommon structural element that may provide a much needed target for non-antibiotic treatment of Shigella infection.
Collapse
Affiliation(s)
- Abram R. Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - T. Carson Jessop
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Nicholas E. Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
32
|
Dey S, Anbanandam A, Mumford BE, De Guzman RN. Characterization of Small-Molecule Scaffolds That Bind to the Shigella Type III Secretion System Protein IpaD. ChemMedChem 2017; 12:1534-1541. [PMID: 28750143 DOI: 10.1002/cmdc.201700348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/26/2017] [Indexed: 11/08/2022]
Abstract
Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salt sterols. In this study we identified four new small-molecule scaffolds that bind to IpaD, based on the methylquinoline, pyrrolidine-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small-molecule inhibitors of IpaD that could lead to new anti-infectives.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Asokan Anbanandam
- Current address: Center for Drug Discovery and Innovation, University of South Florida, 3720 Spectrum Blvd., Suite #303, Tampa, FL, 33612, USA
| | - Ben E Mumford
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| |
Collapse
|
33
|
Barta ML, Shearer JP, Arizmendi O, Tremblay JM, Mehzabeen N, Zheng Q, Battaile KP, Lovell S, Tzipori S, Picking WD, Shoemaker CB, Picking WL. Single-domain antibodies pinpoint potential targets within Shigella invasion plasmid antigen D of the needle tip complex for inhibition of type III secretion. J Biol Chem 2017; 292:16677-16687. [PMID: 28842484 DOI: 10.1074/jbc.m117.802231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.
Collapse
Affiliation(s)
- Michael L Barta
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jonathan P Shearer
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Olivia Arizmendi
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jacqueline M Tremblay
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Qi Zheng
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois 60439
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Saul Tzipori
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - William D Picking
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Wendy L Picking
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047,
| |
Collapse
|
34
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|
35
|
A Novel Mechanism for Protein Delivery by the Type 3 Secretion System for Extracellularly Secreted Proteins. mBio 2017; 8:mBio.00184-17. [PMID: 28351918 PMCID: PMC5371411 DOI: 10.1128/mbio.00184-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The type 3 secretion system (T3SS) is essential for bacterial virulence through delivering effector proteins directly into the host cytosol. Here, we identified an alternative delivery mechanism of virulence factors mediated by the T3SS, which consists of the association of extracellularly secreted proteins from bacteria with the T3SS to gain access to the host cytosol. Both EspC, a protein secreted as an enteropathogenic Escherichia coli (EPEC) autotransporter, and YopH, a protein detected on the surface of Yersinia, require a functional T3SS for host cell internalization; here we provide biophysical and molecular evidence to support the concept of the EspC translocation mechanism, which requires (i) an interaction between EspA and an EspC middle segment, (ii) an EspC translocation motif (21 residues that are shared with the YopH translocation motif), (iii) increases in the association and dissociation rates of EspC mediated by EspA interacting with EspD, and (iv) an interaction of EspC with the EspD/EspB translocon pore. Interestingly, this novel mechanism does not exclude the injection model (i.e., EspF) operating through the T3SS conduit; therefore, T3SS can be functioning as an internal conduit or as an external railway, which can be used to reach the translocator pore, and this mechanism appears to be conserved among different T3SS-dependent pathogens. The type 3 secretion system is essential for injection of virulence factors, which are delivered directly into the cytosol of the host cells for usurping and subverting host processes. Recent studies have shown that these effectors proteins indeed travel inside an “injectisome” conduit through a single step of translocation by connecting the bacterium and host cell cytoplasms. However, all findings are not compatible with this model. For example, both YopH, a protein detected on the surface of Yersinia, and EspC, an autotransporter protein secreted by enteropathogenic E. coli, require a functional T3SS for host cell translocation. Both proteins have an intermediate extracellular step before their T3SS-dependent translocation. Here, we show an alternative delivery mechanism for these extracellularly secreted virulence factors that are then incorporated into the T3SS to enter the cells; this novel mechanism coexists with but diverges from the canonical injection model that involves the passage of the protein inside the injectisome.
Collapse
|
36
|
Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol 2017; 7:64. [PMID: 28393050 PMCID: PMC5364150 DOI: 10.3389/fcimb.2017.00064] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine.
Collapse
Affiliation(s)
- Emily Mattock
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| | - Ariel J Blocker
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| |
Collapse
|
37
|
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA. Functional relatedness in the Inv/Mxi-Spa type III secretion system family. Mol Microbiol 2017; 103:973-991. [PMID: 27997726 DOI: 10.1111/mmi.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.
Collapse
Affiliation(s)
- Jessica A Klein
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Biren M Dave
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
38
|
Burgess JL, Burgess RA, Morales Y, Bouvang JM, Johnson SJ, Dickenson NE. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation. J Biol Chem 2016; 291:25837-25852. [PMID: 27770024 DOI: 10.1074/jbc.m116.755256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Like many Gram-negative pathogens, Shigella rely on a complex type III secretion system (T3SS) to inject effector proteins into host cells, take over host functions, and ultimately establish infection. Despite these critical roles, the energetics and regulatory mechanisms controlling the T3SS and pathogen virulence remain largely unclear. In this study, we present a series of high resolution crystal structures of Spa47 and use the structures to model an activated Spa47 oligomer, finding that ATP hydrolysis may be supported by specific side chain contributions from adjacent protomers within the complex. Follow-up mutagenesis experiments targeting the predicted active site residues validate the oligomeric model and determined that each of the tested residues are essential for Spa47 ATPase activity, although they are not directly responsible for stable oligomer formation. Although N-terminal domain truncation was necessary for crystal formation, it resulted in strictly monomeric Spa47 that is unable to hydrolyze ATP, despite maintaining the canonical ATPase core structure and active site residues. Coupled with studies of ATPase inactive full-length Spa47 point mutants, we find that Spa47 oligomerization and ATP hydrolysis are needed for complete T3SS apparatus formation, a proper translocator secretion profile, and Shigella virulence. This work represents the first structure-function characterization of Spa47, uniquely complementing the multitude of included Shigella T3SS phenotype assays and providing a more complete understanding of T3SS ATPase-mediated pathogen virulence. Additionally, these findings provide a strong platform for follow-up studies evaluating regulation of Spa47 oligomerization in vivo as a much needed means of treating and perhaps preventing shigellosis.
Collapse
Affiliation(s)
- Jamie L Burgess
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - R Alan Burgess
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Yalemi Morales
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Jenna M Bouvang
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Sean J Johnson
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Nicholas E Dickenson
- From the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| |
Collapse
|
39
|
Murillo I, Martinez-Argudo I, Blocker AJ. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip. Sci Rep 2016; 6:27649. [PMID: 27277624 PMCID: PMC4899799 DOI: 10.1038/srep27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/24/2016] [Indexed: 01/25/2023] Open
Abstract
Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB’s role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction.
Collapse
Affiliation(s)
- I Murillo
- School of Cellular &Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom
| | - I Martinez-Argudo
- School of Cellular &Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom.,Área de Genética, Facultad de Ciencias Ambientales y Bioquímica, Universitdad de Castilla-La Mancha, E-45071, Toledo, Spain
| | - A J Blocker
- Schools of Cellular &Molecular Medicine and Biochemistry, University of Bristol, BS8 1TD, Bristol, United Kingdom
| |
Collapse
|
40
|
Macrophage Apoptosis Triggered by IpaD from Shigella flexneri. Infect Immun 2016; 84:1857-1865. [PMID: 27068089 DOI: 10.1128/iai.01483-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/03/2016] [Indexed: 01/24/2023] Open
Abstract
Shigellosis, a potentially severe bacillary dysentery, is an infectious gastrointestinal disease caused by Shigella spp. Shigella invades the human colonic epithelium and avoids clearance by promoting apoptosis of resident immune cells in the gut. This process is dependent on the Shigella type III secretion system (T3SS), which injects effector proteins into target cells to alter their normal cellular functions. Invasion plasmid antigen D (IpaD) is a structural component that forms a complex at the tip of the T3SS apparatus needle. Recently, IpaD has also been shown to indirectly induce apoptosis in B lymphocytes. In this study, we explored the cytotoxicity profile during macrophage infection by Shigella and discovered that the pathogen induces macrophage cell death independent of caspase-1. Our results demonstrate that IpaD triggers apoptosis in macrophages through activation of host caspases accompanied by mitochondrial disruption. Additionally, we found that the IpaD N-terminal domain is necessary for macrophage killing and SipD, a structural homologue from Salmonella, was found to promote similar cytotoxicity. Together, these findings indicate that IpaD is a contributing factor to macrophage cell death during Shigella infection.
Collapse
|
41
|
McShan AC, Kaur K, Chatterjee S, Knight KM, De Guzman RN. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions. Proteins 2016; 84:1097-107. [PMID: 27093649 DOI: 10.1002/prot.25055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Srirupa Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Kevin M Knight
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
42
|
Kaur K, Chatterjee S, De Guzman RN. Characterization of the Shigella and Salmonella Type III Secretion System Tip-Translocon Protein-Protein Interaction by Paramagnetic Relaxation Enhancement. Chembiochem 2016; 17:745-752. [PMID: 26749041 PMCID: PMC4918631 DOI: 10.1002/cbic.201500556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Many Gram-negative pathogens, such as Shigella and Salmonella, assemble the type III secretion system (T3SS) to inject virulence proteins directly into eukaryotic cells to initiate infectious diseases. The needle apparatus of the T3SS consists of a base, an extracellular needle, a tip protein complex, and a translocon. The atomic structure of the assembled tip complex and the translocon is unknown. Here, we show by NMR paramagnetic relaxation enhancement (PRE) that the mixed α-β domain at the distal region of the Shigella and Salmonella tip proteins interacts with the N-terminal ectodomain of their major translocon proteins. Our results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and provide insights about the assembly of the needle apparatus of the T3SS.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Srirupa Chatterjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
43
|
Picking WL, Picking WD. The Many Faces of IpaB. Front Cell Infect Microbiol 2016; 6:12. [PMID: 26904511 PMCID: PMC4746235 DOI: 10.3389/fcimb.2016.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
The type III secretion system (T3SS) is Shigella's most important virulence factor. The T3SS apparatus (T3SA) is comprised of an envelope-spanning basal body and an external needle topped by a tip complex protein called IpaD. This nanomachine is used to deliver effector proteins into host cells to promote pathogen entry. A key component of the matured T3SS needle tip complex is the translocator protein IpaB. IpaB can exist in multiple states when prepared as a recombinant protein, however, it has also been described as having additional roles in Shigella pathogenesis. This mini-review will briefly describe some of the features of IpaB as a T3SS needle tip protein, as a pore-forming translocator protein and as an effector protein. Reflection on the potential importance of the different in vitro states of IpaB on its function and importance in serotype-independent vaccines is also provided.
Collapse
Affiliation(s)
- Wendy L Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas Lawrence, KS, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas Lawrence, KS, USA
| |
Collapse
|
44
|
Emanuele AA, Garcia GA. Mechanism of Action and Initial, In Vitro SAR of an Inhibitor of the Shigella flexneri Virulence Regulator VirF. PLoS One 2015; 10:e0137410. [PMID: 26352269 PMCID: PMC4564171 DOI: 10.1371/journal.pone.0137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Shigella spp. are among the main causative agents of acute diarrheal illness and claim more than 1 million lives per year worldwide. There are multiple bacterial genes that control the pathogenesis of Shigella, but the virF gene may be the most important. This gene, located on the primary pathogenicity island of Shigella, encodes VirF, an AraC-family transcriptional activator that is responsible for initiating the pathogenesis cycle in Shigella. We have previously shown that it is possible to attenuate the virulence of Shigella flexneri via small molecule inhibition of VirF. In this study, we probed the mechanism of action of our small molecule inhibitors of VirF. To enable these studies, we have developed a homologous and efficient expression and purification system for VirF and have optimized two different in vitro VirF-DNA binding assays. We have determined that one of our HTS hit compounds inhibits VirF binding to DNA with a calculated Ki similar to the effective doses seen in our transcriptional activation and virulence screens. This is consistent with inhibition of DNA binding as the mechanism of action of this hit compound. We have also screened 15 commercially sourced analogs of this compound and deduced an initial SAR from the approximately 100-fold range in activities. Our four other HTS hit compounds do not inhibit DNA binding and yet they do block VirF activity. This suggests that multiple agents with different molecular mechanisms of inhibition of VirF could be developed. Pursuing hits with different mechanisms of action could be a powerful approach to enhance activity and to circumvent resistance that could develop to any one of these agents.
Collapse
Affiliation(s)
- Anthony A. Emanuele
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ji H, Dong H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. MOLECULAR PLANT PATHOLOGY 2015; 16:762-73. [PMID: 25469869 PMCID: PMC6638502 DOI: 10.1111/mpp.12223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly.
Collapse
Affiliation(s)
- Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| |
Collapse
|
46
|
Bulir DC, Waltho DA, Stone CB, Liang S, Chiang CKW, Mwawasi KA, Nelson JC, Zhang SW, Mihalco SP, Scinocca ZC, Mahony JB. Chlamydia Outer Protein (Cop) B from Chlamydia pneumoniae possesses characteristic features of a type III secretion (T3S) translocator protein. BMC Microbiol 2015; 15:163. [PMID: 26272448 PMCID: PMC4536800 DOI: 10.1186/s12866-015-0498-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/03/2015] [Indexed: 01/26/2023] Open
Abstract
Background Chlamydia spp. are believed to use a conserved virulence factor called type III secretion (T3S) to facilitate the delivery of effector proteins from the bacterial pathogen to the host cell. Important early effector proteins of the type III secretion system (T3SS) are a class of proteins called the translocators. The translocator proteins insert into the host cell membrane to form a pore, allowing the injectisome to dock onto the host cell to facilitate translocation of effectors. CopB is a predicted hydrophobic translocator protein within the chlamydial T3SS. Results In this study, we identified a novel interaction between the hydrophobic translocator, CopB, and the putative filament protein, CdsF. Furthermore, we identified a conserved PxLxxP motif in CopB (amino acid residues 166–171), which is required for interaction with its cognate chaperone, LcrH_1. Using a synthetic peptide derived from the chaperone binding motif of CopB, we were able to block the LcrH_1 interaction with either CopB or CopD; this CopB peptide was capable of inhibiting C. pneumoniae infection of HeLa cells at micromolar concentrations. An antibody raised against the N-terminus of CopB was able to inhibit C. pneumoniae infection of HeLa cells. Conclusion The inhibition of the LcrH_1:CopB interaction with a cognate peptide and subsequent inhibition of host cell infection provides strong evidence that T3S is an essential virulence factor for chlamydial infection and pathogenesis. Together, these results support that CopB plays the role of a hydrophobic translocator.
Collapse
Affiliation(s)
- David C Bulir
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Daniel A Waltho
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Christopher B Stone
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Steven Liang
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Christopher K W Chiang
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Kenneth A Mwawasi
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Jordan C Nelson
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Steven W Zhang
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Samantha P Mihalco
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - Zachariah C Scinocca
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada.
| | - James B Mahony
- M. G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada. .,Regional Virology Laboratory, St. Joseph's Healthcare, 50 Charlton Ave. E, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
47
|
Brotcke Zumsteg A, Goosmann C, Brinkmann V, Morona R, Zychlinsky A. IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 2015; 15:435-45. [PMID: 24721572 DOI: 10.1016/j.chom.2014.03.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 01/05/2023]
Abstract
Following contact with the epithelium, the enteric intracellular bacterial pathogen Shigella flexneri invades epithelial cells and escapes intracellular phagosomal destruction using its type III secretion system (T3SS). The bacterium replicates within the host cell cytosol and spreads between cells using actin-based motility, which is mediated by the virulence factor IcsA (VirG). Whereas S. flexneri invasion is well characterized, adhesion mechanisms of the bacterium remain elusive. We found that IcsA also functions as an adhesin that is both necessary and sufficient to promote contact with host cells. As adhesion can be beneficial or deleterious depending on the host cell type, S. flexneri regulates IcsA-dependent adhesion. Activation of the T3SS in response to the bile salt deoxycholate triggers IcsA-dependent adhesion and enhances pathogen invasion. IcsA-dependent adhesion contributes to virulence in a mouse model of shigellosis, underscoring the importance of this adhesin to S. flexneri pathogenesis.
Collapse
Affiliation(s)
- Anna Brotcke Zumsteg
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin 13353, Germany
| | - Christian Goosmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin 13353, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin 13353, Germany
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin 13353, Germany.
| |
Collapse
|
48
|
Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 2014; 95:31-50. [PMID: 25353930 PMCID: PMC4539596 DOI: 10.1111/mmi.12843] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 01/14/2023]
Abstract
Type III secretion systems are found in many Gram-negative bacteria. They are activated by contact with eukaryotic cells and inject virulence proteins inside them. Host cell detection requires a protein complex located at the tip of the device's external injection needle. The Shigella tip complex (TC) is composed of IpaD, a hydrophilic protein, and IpaB, a hydrophobic protein, which later forms part of the injection pore in the host membrane. Here we used labelling and crosslinking methods to show that TCs from a ΔipaB strain contain five IpaD subunits while the TCs from wild-type can also contain one IpaB and four IpaD subunits. Electron microscopy followed by single particle and helical image analysis was used to reconstruct three-dimensional images of TCs at ∼ 20 Å resolution. Docking of an IpaD crystal structure, constrained by the crosslinks observed, reveals that TC organisation is different from that of all previously proposed models. Our findings suggest new mechanisms for TC assembly and function. The TC is the only site within these secretion systems targeted by disease-protecting antibodies. By suggesting how these act, our work will allow improvement of prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Martin Cheung
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Adam PR, Dickenson NE, Greenwood JC, Picking WL, Picking WD. Influence of oligomerization state on the structural properties of invasion plasmid antigen B from Shigella flexneri in the presence and absence of phospholipid membranes. Proteins 2014; 82:3013-22. [PMID: 25103195 DOI: 10.1002/prot.24662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/14/2014] [Accepted: 08/03/2014] [Indexed: 11/10/2022]
Abstract
Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association.
Collapse
Affiliation(s)
- Philip R Adam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078
| | | | | | | | | |
Collapse
|
50
|
Banerjee A, Dey S, Chakraborty A, Datta A, Basu A, Chakrabarti S, Datta S. Binding mode analysis of a major T3SS translocator protein PopB with its chaperone PcrH from Pseudomonas aeruginosa. Proteins 2014; 82:3273-85. [PMID: 25116453 DOI: 10.1002/prot.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/10/2022]
Abstract
Pseudomonas aeruginosa, a Gram-negative pathogen uses a specialized set of Type III secretion system (T3SS) translocator proteins to establish virulence in the host cell. An understanding of the factors that govern translocation by the translocator protein-chaperone complex is thus of immense importance. In this work, experimental and computational techniques were used to probe into the structure of the major translocator protein PopB from P. aeruginosa and to identify the important regions involved in functioning of the translocator protein. This study reveals that the binding sites of the common chaperone PcrH, needed for maintenance of the translocator PopB within the bacterial cytoplasm, which are primarily localized within the N-terminal domain. However, disordered and flexible residues located both at the N- and C-terminal domains are also observed to be involved in association with the chaperone. This intrinsic disorderliness of the terminal domains is conserved for all the major T3SS translocator proteins and is functionally important to maintain the intrinsically disordered state of the translocators. Our experimental and computational analyses suggest that a "disorder-to-order" transition of PopB protein might take place upon PcrH binding. The long helical coiled-coil part of PopB protein perhaps helps in pore formation while the flexible apical region is involved in chaperone interaction. Thus, our computational model of translocator protein PopB and its binding analyses provide crucial functional insights into the T3SS translocation mechanism.
Collapse
Affiliation(s)
- Anindyajit Banerjee
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, 700 032, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|