1
|
Campo-Pérez V, Julián E, Torrents E. Interplay of Mycobacterium abscessus and Pseudomonas aeruginosa in experimental models of coinfection: Biofilm dynamics and host immune response. Virulence 2025; 16:2493221. [PMID: 40237819 PMCID: PMC12064063 DOI: 10.1080/21505594.2025.2493221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The incidence of infection by nontuberculous mycobacteria, mainly Mycobacterium abscessus, is increasing in patients with cystic fibrosis and other chronic pulmonary diseases, leading to an accelerated lung function decline. In most cases, M. abscessus coinfects Pseudomonas aeruginosa, the most common pathogen in these conditions. However, how these two bacterial species interact during infection remains poorly understood. This study explored their behaviour in three relevant pathogenic settings: dual-species biofilm development using a recently developed method to monitor individual species in dual-species biofilms, coinfection in bronchial epithelial cells, and in vivo coinfection in the Galleria mellonella model. The results demonstrated that both species form stable mixed biofilms and reciprocally inhibit single-biofilm progression. Coinfections in bronchial epithelial cells significantly decreased cell viability, whereas in G. mellonella, coinfections induced lower survival rates than individual infections. Analysis of the immune response triggered by each bacterium in bronchial epithelial cell assays and G. mellonella larvae revealed that P. aeruginosa induces the overexpression of proinflammatory and melanization cascade responses, respectively. In contrast, M. abscessus and P. aeruginosa coinfection significantly inhibited the immune response in both models, resulting in worse consequences for the host than those generated by a single P. aeruginosa infection. Overall, this study highlights the novel role of M. abscessus in suppressing immune responses during coinfection with P. aeruginosa, emphasizing the clinical implications for the management of cystic fibrosis and other pulmonary diseases. Understanding these interactions could inform the development of new therapeutic strategies to mitigate the severity of coinfections in vulnerable patients.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Rojas-Villalobos C, Ossandon FJ, Castillo-Vilcahuaman C, Sepúlveda-Rebolledo P, Castro-Salinas D, Zapata-Araya A, Arisan D, Perez-Acle T, Issotta F, Quatrini R, Moya-Beltrán A. MOBHunter: a data integration platform for identification and classification of mobile genetic elements in microbial genomes. Nucleic Acids Res 2025:gkaf396. [PMID: 40366029 DOI: 10.1093/nar/gkaf396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Horizontal gene transfer plays a critical role in microbial genome evolution and adaptation. Integrated foreign DNA fragments encompass various types of mobile genetic elements (MGEs), ranging from small transposons to conspicuous integrative and conjugative elements. These regions often confer advantageous traits, including antibiotic resistance or novel metabolic capabilities, and contain foreign sequence signatures and hallmark genes such as transposases, integrases, etc. While bioinformatic tools target specific MGE subsets using alignments, compositional signatures, or diagnostic gene mapping, no single platform offers a unified framework for comprehensive, evidence-based, MGE identification and classification. To address this challenge, we developed MOBHunter, an advanced bioinformatic pipeline that consolidates standalone tools and in-house algorithms. Unlike basic tool concatenation, MOBHunter yields consensus identifications, score-supported classifications, and enhanced web visualizations. The platform reduces end user analysis time by integrating data collection, processing, and interpretation into a unified workflow. It delivers robust classifications of MGEs into distinct families and provides a comprehensive overview of the flexible regions of any given input genome. URL: https://informatica.utem.cl/mobhunter/.
Collapse
Affiliation(s)
- Camila Rojas-Villalobos
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile
| | - Francisco J Ossandon
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
| | - Camila Castillo-Vilcahuaman
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Perú
| | | | - David Castro-Salinas
- Programa de Doctorado en Informática Aplicada a Salud y Medio Ambiente, Escuela de Postgrado, Universidad Tecnológica Metropolitana, Santiago 8330300, Chile
| | - Abraham Zapata-Araya
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Medicina, Universidad San Sebastián, Santiago 7510602, Chile
| | - Dilanaz Arisan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Medicina, Universidad San Sebastián, Santiago 7510602, Chile
| | - Tomás Perez-Acle
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile
| | - Francisco Issotta
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Ciencias, Universidad San Sebastián, Santiago 7510602, Chile
| | - Ana Moya-Beltrán
- Departamento de Informática y Computación, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago 7800002, Chile
| |
Collapse
|
3
|
Wang X, Gao K, Pan B, Wang B, Song Y, Guo W. The virulence trait and genotype distribution amongst the Pseudomonas aeruginosa clinical strains. BMC Microbiol 2025; 25:82. [PMID: 39979804 PMCID: PMC11841163 DOI: 10.1186/s12866-025-03754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is notorious for its complex virulence system and rapid adaptive drug resistance. This study aimed to compare the prevalence and genotype distribution of virulence genes in multidrug-sensitive and multidrug-resistant clinical strains of Pseudomonas aeruginosa. It is possible to better understand the genetic characteristics of Pseudomonas aeruginosa and carry out effective treatment and prevention measures. METHODS The genes phzS, aprA, plcH, toxA, pilA and exoU were detected amongst 184 clinical strains, whose cytotoxicity and biofilm formation ability were evaluated as well. Phenotypic screening for drug susceptibility was conducted by standard antimicrobial susceptibility test and interpreted according to standards established by CLSI. RESULTS A total of 94 multidrug-sensitive and 90 multidrug-resistant isolates were included in this study. Statistically significant relationship was observed in the frequency of the toxA (p = 0.002) and plcH (p = 0.001) genes between multidrug-resistant and multidrug-sensitive strains. Moreover, thirteen genotypes were observed in multidrug-sensitive strains, and seven of them were included in multidrug-resistant groups. There was statistically significant correlation found between the presence of genotype IV (p = 0.001) and genotype VII (p = 0.001) in two subgroups. Additionally, It was found that genotype III isolates exhibited most obvious cytotoxicity, and multidrug-resistant isolates of genotype III showed the most significant cytotoxicity. Moreover, the strains of strong biofilm-formation accounted for a relatively high proportion in genotype III and VI groups. CONCLUSION These virulence genes could form abundant genotype varieties, whose overall number is greater in multi-sensitive strains. In addition, particular genotypes were characteristically distributed and exhibited different cytotoxicity and biofilm-formation abilities.
Collapse
Affiliation(s)
- Xiaohuan Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 111 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Kaijing Gao
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 111 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 111 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng lin Road, Shanghai, 200032, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 111 Yi Xue Yuan Road, Shanghai, 200032, China.
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Laboratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, China.
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
4
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Compendium-Wide Analysis of Pseudomonas aeruginosa Core and Accessory Genes Reveals Transcriptional Patterns across Strains PAO1 and PA14. mSystems 2023; 8:e0034222. [PMID: 36541762 PMCID: PMC9948736 DOI: 10.1128/msystems.00342-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes difficult-to-treat infections. Two well-studied divergent P. aeruginosa strain types, PAO1 and PA14, have significant genomic heterogeneity, including diverse accessory genes present in only some strains. Genome content comparisons find core genes that are conserved across both PAO1 and PA14 strains and accessory genes that are present in only a subset of PAO1 and PA14 strains. Here, we use recently assembled transcriptome compendia of publicly available P. aeruginosa RNA sequencing (RNA-seq) samples to create two smaller compendia consisting of only strain PAO1 or strain PA14 samples with each aligned to their cognate reference genome. We confirmed strain annotations and identified other samples for inclusion by assessing each sample's median expression of PAO1-only or PA14-only accessory genes. We then compared the patterns of core gene expression in each strain. To do so, we developed a method by which we analyzed genes in terms of which genes showed similar expression patterns across strain types. We found that some core genes had consistent correlated expression patterns across both compendia, while others were less stable in an interstrain comparison. For each accessory gene, we also determined core genes with correlated expression patterns. We found that stable core genes had fewer coexpressed neighbors that were accessory genes. Overall, this approach for analyzing expression patterns across strain types can be extended to other groups of genes, like phage genes, or applied for analyzing patterns beyond groups of strains, such as samples with different traits, to reveal a deeper understanding of regulation. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous pathogen. There is much diversity among P. aeruginosa strains, including two divergent but well-studied strains, PAO1 and PA14. Understanding how these different strain-level traits manifest is important for identifying targets that regulate different traits of interest. With the availability of thousands of PAO1 and PA14 samples, we created two strain-specific RNA-seq compendia where each one contains hundreds of samples from PAO1 or PA14 strains and used them to compare the expression patterns of core genes that are conserved in both strain types and to determine which core genes have expression patterns that are similar to those of accessory genes that are unique to one strain or the other using an approach that we developed. We found a subset of core genes with different transcriptional patterns across PAO1 and PA14 strains and identified those core genes with expression patterns similar to those of strain-specific accessory genes.
Collapse
|
6
|
Genome-scale model of Pseudomonas aeruginosa metabolism unveils virulence and drug potentiation. Commun Biol 2023; 6:165. [PMID: 36765199 PMCID: PMC9918512 DOI: 10.1038/s42003-023-04540-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of hospital-acquired infections. To decipher the metabolic mechanisms associated with virulence and antibiotic resistance, we have developed an updated genome-scale model (GEM) of P. aeruginosa. The model (iSD1509) is an extensively curated, three-compartment, and mass-and-charge balanced BiGG model containing 1509 genes, the largest gene content for any P. aeruginosa GEM to date. It is the most accurate with prediction accuracies as high as 92.4% (gene essentiality) and 93.5% (substrate utilization). In iSD1509, we newly added a recently discovered pathway for ubiquinone-9 biosynthesis which is required for anaerobic growth. We used a modified iSD1509 to demonstrate the role of virulence factor (phenazines) in the pathogen survival within biofilm/oxygen-limited condition. Further, the model can mechanistically explain the overproduction of a drug susceptibility biomarker in the P. aeruginosa mutants. Finally, we use iSD1509 to demonstrate the drug potentiation by metabolite supplementation, and elucidate the mechanisms behind the phenotype, which agree with experimental results.
Collapse
|
7
|
Zhang D, Hu M, Chi S, Chen H, Lin C, Yu F, Zheng Z. Molecular Characteristics and Gonococcal Genetic Island Carrying Status of Thirty-Seven Neisseria gonorrhoeae Isolates in Eastern China. Infect Drug Resist 2022; 15:6545-6553. [DOI: 10.2147/idr.s385079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
|
8
|
Effect of Biogenic Silver Nanoparticles on the Quorum-Sensing System of Pseudomonas aeruginosa PAO1 and PA14. Microorganisms 2022; 10:microorganisms10091755. [PMID: 36144357 PMCID: PMC9504124 DOI: 10.3390/microorganisms10091755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in multidrug-resistant microorganisms represents a global threat requiring the development novel strategies to fight bacterial infection. This study aimed to assess the effect of silver nanoparticles (bio-AgNPs) on bacterial growth, biofilm formation, production of virulence factors, and expression of genes related to the quorum-sensing (QS) system of P. aeruginosa PAO1 and PA14. Biofilm formation and virulence assays were performed with bio-AgNPs. RT-qPCR was carried out to determine the effect of bio-AgNPs on the QS regulatory genes lasI, lasR, rhlI, rhlR, pqsA, and mvfR. Bio-AgNPs had an MIC value of 62.50 μM, for both strains. Phenotypic and genotypic assays were carried out using sub-MIC values. Experimental results showed that treatment with sub-MICs of bio-AgNPs reduced (p < 0.05) the motility and rhamnolipids and elastase production in P. aeruginosa PAO1. In PA14, bio-AgNPs stimulated swarming and twitching motilities as well as biofilm formation and elastase and pyocyanin production. Bio-AgNP treatment increased (p < 0.05) the expression of QS genes in PAO1 and PA14. Despite the different phenotypic behaviors in both strains, both showed an increase in the expression of QS genes. Demonstrating that the bio-AgNPs acted in the induction of regulation. The possible mechanism underlying the action of bio-AgNPs involves the induction of the rhl and/or pqs system of PAO1 and of the las and/or pqs system of PA14. These results suggest that exposure to low concentrations of bio-AgNPs may promote the expression of QS regulatory genes in P. aeruginosa, consequently inducing the production of virulence factors such as elastase, pyocyanin, and biofilms.
Collapse
|
9
|
Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1716087. [PMID: 35655484 PMCID: PMC9155974 DOI: 10.1155/2022/1716087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Introduction Biofilm formation is one of the main virulence factors in Pseudomonas aeruginosa infections. This study is aimed at investigating the presence of genes involved in biofilm formation in clinical P. aeruginosa isolates. Material and Methods. A cross-sectional study was conducted on 112 P. aeruginosa isolates. The biofilm formation assay was performed on all isolates. Antimicrobial resistance was determined by the disk diffusion method, and the presence of genes was detected by polymerase chain reaction. Isolates were typed with Rep-PCR. Results The results of biofilm formation demonstrated that 85 strains (75.9%) were biofilm producers, and 27 strains (24.1%) were nonproducer isolates. Antibiotic susceptibility pattern in biofilm-positive and biofilm-negative isolates obtained from hospitalized patients showed a high rate of antibiotic resistance to amoxicillin with 95.7% and 92.3%, respectively. Based on PCR amplification results, the frequency of genes involved in biofilm formation among all isolates was as follows: algD (78.6%), pelF (70.5%), pslD (36.6%), Ppgl (0%), and PAPI-1 (77.6%). Rep-PCR typing demonstrated that 112 P. aeruginosa isolates were classified into 57 types according to 70% cut-off. The predominant type was A which contained 15 isolates. Moreover, 7 isolates were clustered in genotype B, followed by C type (6), D (4), E (4), F (4), G (4), H (3), I (3), J (3 isolates), and 12 genotypes, each containing two isolates. Also, 35 isolates were distributed in scattered patterns and showed single types. Conclusion Study results showed significant association between biofilm formation and resistance to antibiotics such as ceftazidime and meropenem. Analysis of Rep-PCR patterns indicated that the evaluated isolates were heterogeneous, relatively.
Collapse
|
10
|
Veetilvalappil VV, Manuel A, Aranjani JM, Tawale R, Koteshwara A. Pathogenic arsenal of Pseudomonas aeruginosa: an update on virulence factors. Future Microbiol 2022; 17:465-481. [PMID: 35289684 DOI: 10.2217/fmb-2021-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The emergence of Pseudomonas aeruginosa as a potential threat in persistent infections can be attributed to the plethora of virulence factors expressed by it. This review discusses the various virulence factors that help this pathogen to establish an infection and regulatory systems controlling these virulence factors. Cell-associated virulence factors such as flagella, type IV pili and non-pilus adhesins have been reviewed. Extracellular virulence factors have also been explained. Quorum-sensing systems present in P. aeruginosa play a cardinal role in regulating the expression of virulence factors. The identification of novel virulence factors in hypervirulent strains indicate that the expression of virulence is dynamic and constantly evolving. An understanding of this is critical for the better clinical management of infections.
Collapse
Affiliation(s)
- Vimal V Veetilvalappil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Atulya Manuel
- Central Frozen Semen Production and Training Institute, Bengaluru, Karnataka, 560088, India
| | - Jesil M Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Roshan Tawale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
11
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms222312892. [PMID: 34884697 PMCID: PMC8657582 DOI: 10.3390/ijms222312892] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, the effectiveness of antimicrobials in the treatment of Pseudomonas aeruginosa infections has gradually decreased. This pathogen can be observed in several clinical cases, such as pneumonia, urinary tract infections, sepsis, in immunocompromised hosts, such as neutropenic cancer, burns, and AIDS patients. Furthermore, Pseudomonas aeruginosa causes diseases in both livestock and pets. The highly flexible and versatile genome of P. aeruginosa allows it to have a high rate of pathogenicity. The numerous secreted virulence factors, resulting from its numerous secretion systems, the multi-resistance to different classes of antibiotics, and the ability to produce biofilms are pathogenicity factors that cause numerous problems in the fight against P. aeruginosa infections and that must be better understood for an effective treatment. Infections by P. aeruginosa represent, therefore, a major health problem and, as resistance genes can be disseminated between the microbiotas associated with humans, animals, and the environment, this issue needs be addressed on the basis of an One Health approach. This review intends to bring together and describe in detail the molecular and metabolic pathways in P. aeruginosa's pathogenesis, to contribute for the development of a more targeted therapy against this pathogen.
Collapse
|
13
|
Ibarra-Chávez R, Hansen MF, Pinilla-Redondo R, Seed KD, Trivedi U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol Rev 2021; 45:fuab031. [PMID: 34104956 PMCID: PMC8632786 DOI: 10.1093/femsre/fuab031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The arms race between (bacterio)phages and their hosts is a recognised hot spot for genome evolution. Indeed, phages and their components have historically paved the way for many molecular biology techniques and biotech applications. Further exploration into their complex lifestyles has revealed that phages are often parasitised by distinct types of hyperparasitic mobile genetic elements. These so-called phage satellites exploit phages to ensure their own propagation and horizontal transfer into new bacterial hosts, and their prevalence and peculiar lifestyle has caught the attention of many researchers. Here, we review the parasite-host dynamics of the known phage satellites, their genomic organisation and their hijacking mechanisms. Finally, we discuss how these elements can be repurposed for diverse biotech applications, kindling a new catalogue of exciting tools for microbiology and synthetic biology.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Dangla-Pélissier G, Roux N, Schmidt V, Chambonnier G, Ba M, Sebban-Kreuzer C, de Bentzmann S, Giraud C, Bordi C. The horizontal transfer of Pseudomonas aeruginosa PA14 ICE PAPI-1 is controlled by a transcriptional triad between TprA, NdpA2 and MvaT. Nucleic Acids Res 2021; 49:10956-10974. [PMID: 34643711 PMCID: PMC8565334 DOI: 10.1093/nar/gkab827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. Genome sequences reveal that most P. aeruginosa strains contain a significant number of accessory genes gathered in genomic islands. Those genes are essential for P. aeruginosa to invade new ecological niches with high levels of antibiotic usage, like hospitals, or to survive during host infection by providing pathogenicity determinants. P. aeruginosa pathogenicity island 1 (PAPI-1), one of the largest genomic islands, encodes several putative virulence factors, including toxins, biofilm genes and antibiotic-resistance traits. The integrative and conjugative element (ICE) PAPI-1 is horizontally transferable by conjugation via a specialized GI-T4SS, but the mechanism regulating this transfer is currently unknown. Here, we show that this GI-T4SS conjugative machinery is directly induced by TprA, a regulator encoded within PAPI-1. Our data indicate that the nucleotide associated protein NdpA2 acts in synergy with TprA, removing a repressive mechanism exerted by MvaT. In addition, using a transcriptomic approach, we unravelled the regulon controlled by Ndpa2/TprA and showed that they act as major regulators on the genes belonging to PAPI-1. Moreover, TprA and NdpA2 trigger an atypical biofilm structure and enhance ICE PAPI-1 transfer.
Collapse
Affiliation(s)
| | - Nicolas Roux
- LISM, IMM, Aix-Marseille University, Marseille 13402, France
| | | | | | - Moly Ba
- LISM, IMM, Aix-Marseille University, Marseille 13402, France
| | | | | | - Caroline Giraud
- U2RM Stress/Virulence, Normandy University, UNICAEN, 14000 Caen, France
| | | |
Collapse
|
15
|
Espinosa-Camacho LF, Delgado G, Cravioto A, Morales-Espinosa R. Diversity in the composition of the accessory genome of Mexican Pseudomonas aeruginosa strains. Genes Genomics 2021; 44:53-77. [PMID: 34410625 DOI: 10.1007/s13258-021-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.
Collapse
Affiliation(s)
- Luis F Espinosa-Camacho
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Alejandro Cravioto
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
16
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
17
|
Callens M, Scornavacca C, Bedhomme S. Evolutionary responses to codon usage of horizontally transferred genes in Pseudomonas aeruginosa: gene retention, amelioration and compensatory evolution. Microb Genom 2021; 7:000587. [PMID: 34165421 PMCID: PMC8461475 DOI: 10.1099/mgen.0.000587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Prokaryote genome evolution is characterized by the frequent gain of genes through horizontal gene transfer (HGT). For a gene, being horizontally transferred can represent a strong change in its genomic and physiological context. If the codon usage of a transferred gene deviates from that of the receiving organism, the fitness benefits it provides can be reduced due to a mismatch with the expression machinery. Consequently, transferred genes with a deviating codon usage can be selected against or elicit evolutionary responses that enhance their integration, such as gene amelioration and compensatory evolution. Within bacterial species, the extent and relative importance of these different mechanisms has never been considered altogether. In this study, a phylogeny-based method was used to investigate the occurrence of these different evolutionary responses in Pseudomonas aeruginosa. Selection on codon usage of genes acquired through HGT was observed over evolutionary time, with the overall codon usage converging towards that of the core genome. Gene amelioration, through the accumulation of synonymous mutations after HGT, did not seem to systematically affect transferred genes. This pattern therefore seemed to be mainly driven by selective retention of transferred genes with an initial codon usage similar to that of the core genes. Additionally, variation in the copy number of tRNA genes was often associated with the acquisition of genes for which the observed variation could enhance their expression. This provides evidence that compensatory evolution might be an important mechanism for the integration of horizontally transferred genes.
Collapse
Affiliation(s)
- Martijn Callens
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Stéphanie Bedhomme
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
18
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
19
|
Saeki EK, Yamada AY, de Araujo LA, Anversa L, Garcia DDO, de Souza RLB, Martins HM, Kobayashi RKT, Nakazato G. Subinhibitory Concentrations of Biogenic Silver Nanoparticles Affect Motility and Biofilm Formation in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:656984. [PMID: 33869087 PMCID: PMC8047417 DOI: 10.3389/fcimb.2021.656984] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Biogenic silver nanoparticles (bio-AgNPs) are increasingly recognized as an antibiofilm and antivirulence strategy against P. aeruginosa, a bacterium that causes chronic infections in immunocompromised and cystic fibrosis patients. This study aimed to investigate the effects of subinhibitory concentrations of bio-AgNPs on motility and biofilm formation in P. aeruginosa. Bio-AgNPs were synthesized via reduction of ionic silver catalyzed by cell-free culture filtrate from Fusarium oxysporum. A total of 17 P. aeruginosa isolates and strains were evaluated for swarming, swimming, and twitching motility in the presence and absence (control) of bio-AgNPs, including 10 clinical isolates from patients with and without cystic fibrosis, 5 environmental isolates obtained from the public water supply system, and 2 reference strains (PAO1 and PA14). Isolates were identified by biochemical and molecular methods. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. Swarming, swimming, and twitching motility assays were performed in Petri dishes. Biofilm formation capacity was assessed quantitatively by the crystal violet method. MIC values ranged from 15.62 to 62.50 µM. The results showed that subinhibitory concentrations of bio-AgNPs (½ MIC, 7.81-31.25 µM) significantly increased (p < 0.05) swarming, swimming, and twitching motility in 40.0, 40.0, and 46.7% of isolates, respectively. Subinhibitory bio-AgNP treatment enhanced (p < 0.05) biofilm formation capacity in PA14 and a cystic fibrosis isolate (P11). It is concluded that subinhibitory concentrations of bio-AgNPs increased biofilm formation and swarming, swimming, and twitching motility in PA14 and some P. aeruginosa isolates. These virulence factors are directly involved with quorum-sensing systems. Further research should investigate the effects of AgNPs on P. aeruginosa quorum sensing to help elucidate their mechanism of action at subinhibitory concentrations.
Collapse
Affiliation(s)
- Erika Kushikawa Saeki
- Regional Laboratory of Presidente Prudente, Adolfo Lutz Institute, Presidente Prudente, Brazil
| | - Amanda Yaeko Yamada
- Regional Laboratory of Presidente Prudente, Adolfo Lutz Institute, Presidente Prudente, Brazil
| | | | - Laís Anversa
- Regional Laboratory of Bauru, Adolfo Lutz Institute, Bauru, Brazil
| | | | | | - Heloísa Moreira Martins
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
20
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
21
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
22
|
Berger C, Rückert C, Blom J, Rabaey K, Kalinowski J, Rosenbaum MA. Estimation of pathogenic potential of an environmental Pseudomonas aeruginosa isolate using comparative genomics. Sci Rep 2021; 11:1370. [PMID: 33446769 PMCID: PMC7809047 DOI: 10.1038/s41598-020-80592-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
The isolation and sequencing of new strains of Pseudomonas aeruginosa created an extensive dataset of closed genomes. Many of the publicly available genomes are only used in their original publication while additional in silico information, based on comparison to previously published genomes, is not being explored. In this study, we defined and investigated the genome of the environmental isolate P. aeruginosa KRP1 and compared it to more than 100 publicly available closed P. aeruginosa genomes. By using different genomic island prediction programs, we could identify a total of 17 genomic islands and 8 genomic islets, marking the majority of the accessory genome that covers ~ 12% of the total genome. Based on intra-strain comparisons, we are able to predict the pathogenic potential of this environmental isolate. It shares a substantial amount of genomic information with the highly virulent PSE9 and LESB58 strains. For both of these, the increased virulence has been directly linked to their accessory genome before. Hence, the integrated use of previously published data can help to minimize expensive and time consuming wetlab work to determine the pathogenetic potential.
Collapse
Affiliation(s)
- Carola Berger
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Rückert
- Center for Biotechnology - CeBiTec, University of Bielefeld, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Gießen, Giessen, Germany
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, University of Bielefeld, Bielefeld, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
23
|
Abstract
Variation in the genome of Pseudomonas aeruginosa, an important pathogen, can have dramatic impacts on the bacterium's ability to cause disease. We therefore asked whether it was possible to predict the virulence of P. aeruginosa isolates based on their genomic content. We applied a machine learning approach to a genetically and phenotypically diverse collection of 115 clinical P. aeruginosa isolates using genomic information and corresponding virulence phenotypes in a mouse model of bacteremia. We defined the accessory genome of these isolates through the presence or absence of accessory genomic elements (AGEs), sequences present in some strains but not others. Machine learning models trained using AGEs were predictive of virulence, with a mean nested cross-validation accuracy of 75% using the random forest algorithm. However, individual AGEs did not have a large influence on the algorithm's performance, suggesting instead that virulence predictions are derived from a diffuse genomic signature. These results were validated with an independent test set of 25 P. aeruginosa isolates whose virulence was predicted with 72% accuracy. Machine learning models trained using core genome single-nucleotide variants and whole-genome k-mers also predicted virulence. Our findings are a proof of concept for the use of bacterial genomes to predict pathogenicity in P. aeruginosa and highlight the potential of this approach for predicting patient outcomes.IMPORTANCE Pseudomonas aeruginosa is a clinically important Gram-negative opportunistic pathogen. P. aeruginosa shows a large degree of genomic heterogeneity both through variation in sequences found throughout the species (core genome) and through the presence or absence of sequences in different isolates (accessory genome). P. aeruginosa isolates also differ markedly in their ability to cause disease. In this study, we used machine learning to predict the virulence level of P. aeruginosa isolates in a mouse bacteremia model based on genomic content. We show that both the accessory and core genomes are predictive of virulence. This study provides a machine learning framework to investigate relationships between bacterial genomes and complex phenotypes such as virulence.
Collapse
|
24
|
High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9:10874. [PMID: 31350412 PMCID: PMC6659710 DOI: 10.1038/s41598-019-47303-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system of Pseudomonas aeruginosa is an important virulence factor contributing to the cytotoxicity and the invasion process of this microorganism. The current study aimed to determine the presence of the exoU+/exoS+ genotype in P. aeruginosa clinical isolates. The presence of exoS, exoT, exoU and exoY was determined in 189 P. aeruginosa by PCR, and the presence/absence of exoU was analysed according to source infection, clonal relationships, biofilm formation, motility and antimicrobial susceptibility. The gyrA, parC, oprD, efflux pump regulators and β-lactamases genes were also analysed by PCR/sequencing. The exoS, exoT and exoY genes were found in 100% of the isolates. Meanwhile, exoU was present in 43/189 (22.8%) of the isolates, being significantly associated with multidrug resistance, extensively drug resistance as well as with higher level quinolone resistance. However, the presence of β-lactamases, mutations in gyrA and parC, and relevant modifications in efflux pumps and OprD were not significantly associated with exoU+ isolates. MLST analysis of a subset of 25 isolates showed 8 different STs displaying the exoU+/exoS+ genotype. The MDR basis of the exoU+ isolates remain to be elucidated. Furthermore, the clinical implications and spread of exoU+/exoS+ P. aeruginosa isolates need to be established.
Collapse
|
25
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
26
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Subedi D, Kohli GS, Vijay AK, Willcox M, Rice SA. Accessory genome of the multi-drug resistant ocular isolate of Pseudomonas aeruginosa PA34. PLoS One 2019; 14:e0215038. [PMID: 30986237 PMCID: PMC6464166 DOI: 10.1371/journal.pone.0215038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteria can acquire an accessory genome through the horizontal transfer of genetic elements from non-parental lineages. This leads to rapid genetic evolution allowing traits such as antibiotic resistance and virulence to spread through bacterial communities. The study of complete genomes of bacterial strains helps to understand the genomic traits associated with virulence and antibiotic resistance. We aimed to investigate the complete accessory genome of an ocular isolate of Pseudomonas aeruginosa strain PA34. We obtained the complete genome of PA34 utilising genome sequence reads from Illumina and Oxford Nanopore Technology followed by PCR to close any identified gaps. In-depth genomic analysis was performed using various bioinformatics tools. The susceptibility to heavy metals and cytotoxicity was determined to confirm expression of certain traits. The complete genome of PA34 includes a chromosome of 6.8 Mbp and two plasmids of 95.4 Kbp (pMKPA34-1) and 26.8 Kbp (pMKPA34-2). PA34 had a large accessory genome of 1,213 genes and had 543 unique genes not present in other strains. These exclusive genes encoded features related to metal and antibiotic resistance, phage integrase and transposons. At least 24 genomic islands (GIs) were predicated in the complete chromosome, of which two were integrated into novel sites. Eleven GIs carried virulence factors or replaced pathogenic genes. A bacteriophage carried the aminoglycoside resistance gene (AAC(3)-IId). The two plasmids carried other six antibiotic resistance genes. The large accessory genome of this ocular isolate plays a large role in shaping its virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Gurjeet Singh Kohli
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Bahramian A, Khoshnood S, Shariati A, Doustdar F, Chirani AS, Heidary M. Molecular characterization of the pilS2 gene and its association with the frequency of Pseudomonas aeruginosa plasmid pKLC102 and PAPI-1 pathogenicity island. Infect Drug Resist 2019; 12:221-227. [PMID: 30666137 PMCID: PMC6333160 DOI: 10.2147/idr.s188527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Pseudomonas aeruginosa is the most common opportunistic pathogen associated with a broad range of infections, including cystic fibrosis, ocular, otitis media, and burn infections. The aim of this study was to show the frequency of the pilS2 gene, and its association with P. aeruginosa plasmid pKLC102 and PAPI-1 pathogenicity island among P. aeruginosa strains. METHODS The samples were collected from patients with cystic fibrosis, ocular, otitis media, and burn infections between January 2016 and November 2017. DNA was extracted using the DNA extraction kit and was used for PCR assay. PCR with 4 primer-pairs including 976 F/PAPI-1R, 4542 F/intF, SojR/4541 F, and intF/sojR was performed to identify PAPI-1. pKLC102 was detected using three other primer-pairs including cp10F/cp10R, cp44F/cp44R, and cp97F/cp97R. RESULTS A total of 112 P. aeruginosa isolates were collected from patients with cystic fibrosis (36), burn (20), otitis media (26), and ocular (30) infections. The results of PCR showed that pilS2 gene was identified in 96 (85%) strains. PAPI-1-attB integration was detected among 38 (33.9%) isolates and the circular form of PAPI-1 detected among 17 (14%) isolates. In addition, 79 (70.5%) strains were found to be positive for pKLC102. CONCLUSION We found that the majority of the isolates may be susceptible to transfer this significant island and the related element pKLC102 into recipient isolates lacking the island owing to high association of the PilS2 pilus with the islands in the studied strains. It is anticipated that strains isolated from burn and eye with the highest rate of PilS2, PAPI-1, and pKLC102 association have a high level of antibiotic resistance.
Collapse
Affiliation(s)
- Aghil Bahramian
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Khoshnood
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farahnoosh Doustdar
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Salimi Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Botelho J, Roberts AP, León-Sampedro R, Grosso F, Peixe L. Carbapenemases on the move: it's good to be on ICEs. Mob DNA 2018; 9:37. [PMID: 30574213 PMCID: PMC6299553 DOI: 10.1186/s13100-018-0141-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background The evolution and spread of antibiotic resistance is often mediated by mobile genetic elements. Integrative and conjugative elements (ICEs) are the most abundant conjugative elements among prokaryotes. However, the contribution of ICEs to horizontal gene transfer of antibiotic resistance has been largely unexplored. Results Here we report that ICEs belonging to mating-pair formation (MPF) classes G and T are highly prevalent among the opportunistic pathogen Pseudomonas aeruginosa, contributing to the spread of carbapenemase-encoding genes (CEGs). Most CEGs of the MPFG class were encoded within class I integrons, which co-harbour genes conferring resistance to other antibiotics. The majority of the integrons were located within Tn3-like and composite transposons. Conserved attachment site could be predicted for the MPFG class ICEs. MPFT class ICEs carried the CEGs within composite transposons which were not associated with integrons. Conclusions The data presented here provides a global snapshot of the different CEG-harbouring ICEs and sheds light on the underappreciated contribution of these elements to the evolution and dissemination of antibiotic resistance on P. aeruginosa. Electronic supplementary material The online version of this article (10.1186/s13100-018-0141-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- João Botelho
- 1UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Adam P Roberts
- 2Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.,3Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ricardo León-Sampedro
- 4Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Filipa Grosso
- 1UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Luísa Peixe
- 1UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Stritzler M, Soto G, Ayub N. Plant Growth-Promoting Genes can Switch to be Virulence Factors via Horizontal Gene Transfer. MICROBIAL ECOLOGY 2018; 76:579-583. [PMID: 29476343 DOI: 10.1007/s00248-018-1163-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
There are increasing evidences that horizontal gene transfer (HGT) is a critical mechanism of bacterial evolution, while its complete impact remains unclear. A main constraint of HGT effects on microbial evolution seems to be the conservation of the function of the horizontally transferred genes. From this perspective, inflexible nomenclature and functionality criteria have been established for some mobile genetic elements such as pathogenic and symbiotic islands. Adhesion is a universal prerequisite for both beneficial and pathogenic plant-microbe interactions, and thus, adhesion systems (e.g., the Lap cluster) are candidates to have a dual function depending on the genomic background. In this study, we showed that the virulent factor Lap of the phytopathogen Erwinia carotovora SCRI1043, which is located within a genomic island, was acquired by HGT and probably derived from Pseudomonas. The transformation of the phytopathogen Erwinia pyrifoliae Ep1/96 with the beneficial factor Lap from the plant growth-promoting bacterium Pseudomonas fluorescens Pf-5 significantly increased its natural virulence, experimentally recapitulating the beneficial-to-virulence functional switch of the Lap cluster via HGT. To our knowledge, this is the first report of a functional switch of an individual gene or a cluster of genes mediated by HGT.
Collapse
Affiliation(s)
- Margarita Stritzler
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
| | - Gabriela Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina
| | - Nicolás Ayub
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina.
- Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros S/N, C25(1712), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Crespo A, Gavaldà J, Julián E, Torrents E. A single point mutation in class III ribonucleotide reductase promoter renders Pseudomonas aeruginosa PAO1 inefficient for anaerobic growth and infection. Sci Rep 2017; 7:13350. [PMID: 29042684 PMCID: PMC5645315 DOI: 10.1038/s41598-017-14051-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzyme that is essential for its cell division is the ribonucleotide reductase (RNR) enzyme that supplies the deoxynucleotides required for DNA synthesis and repair. P. aeruginosa is one of the few microorganisms that encodes three different RNR classes (Ia, II and III) in its genome, enabling it to grow and adapt to diverse environmental conditions, including during infection. In this work, we demonstrate that a lack of RNR activity induces cell elongation in P. aeruginosa PAO1. Moreover, RNR gene expression during anaerobiosis differs among P. aeruginosa strains, with class III highly expressed in P. aeruginosa clinical isolates relative to the laboratory P. aeruginosa PAO1 strain. A single point mutation was identified in the P. aeruginosa PAO1 strain class III RNR promoter region that disrupts its anaerobic transcription by the Dnr regulator. An engineered strain that induces the class III RNR expression allows P. aeruginosa PAO1 anaerobic growth and increases its virulence to resemble that of clinical strains. Our results demonstrate that P. aeruginosa PAO1 is adapted to laboratory conditions and is not the best reference strain for anaerobic or infection studies.
Collapse
Affiliation(s)
- Anna Crespo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology. Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Joan Gavaldà
- Infectious Diseases Research Laboratory, Infectious Diseases Department, Vall d'Hebron Research Institute VHIR, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology. Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, 08028, Barcelona, Spain.
| |
Collapse
|
32
|
Juan C, Peña C, Oliver A. Host and Pathogen Biomarkers for Severe Pseudomonas aeruginosa Infections. J Infect Dis 2017; 215:S44-S51. [PMID: 28375513 DOI: 10.1093/infdis/jiw299] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa is among the leading causes of severe nosocomial infections, particularly affecting critically ill and immunocompromised patients. Here we review the current knowledge on the factors underlying the outcome of P. aeruginosa nosocomial infections, including aspects related to the pathogen, the host, and treatment. Intestinal colonization and previous use of antibiotics are key risk factors for P. aeruginosa infections, whereas underlying disease, source of infection, and severity of acute presentation are key host factors modulating outcome; delayed adequate antimicrobial therapy is also independently associated with increased mortality. Among pathogen-related factors influencing the outcome of P. aeruginosa infections, antibiotic resistance, and particularly multidrug-resistant profiles, is certainly of paramount relevance, given its obvious effect on the chances of appropriate empirical therapy. However, the direct impact of antibiotic resistance in the severity and outcomes of P. aeruginosa infections is not yet well established. The interplay between antibiotic resistance, virulence, and the concerning international high-risk clones (such as ST111, ST175, and ST235) still needs to be further analyzed. On the other hand, differential presence or expression of virulence factors has been shown to significantly impact disease severity and mortality. The likely more deeply studied P. aeruginosa virulence determinant is the type III secretion system (T3SS); the production of T3SS cytotoxins, and particularly ExoU, has been well established to determine a worse outcome both in respiratory and bloodstream infections. Other relevant pathogen-related biomarkers of severe infections include the involvement of specific clones or O-antigen serotypes, the presence of certain horizontally acquired genomic islands, or the expression of other virulence traits, such as the elastase. Finally, recent data suggest that host genetic factors may also modulate the severity of P. aeruginosa infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, and
| | - Carmen Peña
- Servicio de Medicina Interna, Hospital Virgen de los Lirios, Alcoy, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, and
| |
Collapse
|
33
|
Morales-Espinosa R, Delgado G, Espinosa LF, Isselo D, Méndez JL, Rodriguez C, Miranda G, Cravioto A. Fingerprint Analysis and Identification of Strains ST309 as a Potential High Risk Clone in a Pseudomonas aeruginosa Population Isolated from Children with Bacteremia in Mexico City. Front Microbiol 2017; 8:313. [PMID: 28298909 PMCID: PMC5331068 DOI: 10.3389/fmicb.2017.00313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is associated with nosocomial infections. Its ability to thrive in a broad range of environments is due to a large and diverse genome of which its accessory genome is part. The objective of this study was to characterize P. aeruginosa strains isolated from children who developed bacteremia, using pulse-field gel electrophoresis, and in terms of its genomic islands, virulence genes, multilocus sequence type, and antimicrobial susceptibility. Our results showed that P. aeruginosa strains presented the seven virulence genes: toxA, lasB, lecA, algR, plcH, phzA1, and toxR, a type IV pilin alleles (TFP) group I or II. Additionally, we detected a novel pilin and accessory gene, expanding the number of TFP alleles to group VI. All strains presented the PAPI-2 Island and the majority were exoU+ and exoS+ genotype. Ten percent of the strains were multi-drug resistant phenotype, 18% extensively drug-resistant, 68% moderately resistant and only 3% were susceptible to all the antimicrobial tested. The most prevalent acquired β-Lactamase was KPC. We identified a group of ST309 strains, as a potential high risk clone. Our finding also showed that the strains isolated from patients with bacteremia have important virulence factors involved in colonization and dissemination as: a TFP group I or II; the presence of the exoU gene within the PAPI-2 island and the presence of the exoS gene.
Collapse
Affiliation(s)
- Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Gabriela Delgado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Luis F Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Dassaev Isselo
- Servicio de Pediatría, Hospital Regional 36 San Alejandro, IMSS Puebla, Mexico
| | - José L Méndez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Cristina Rodriguez
- Laboratorio de Bacteriología, Facultad de Veterinaria y Zootecnia, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Guadalupe Miranda
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación en Epidemiología Hospitalaria Mexico City, Mexico
| | | |
Collapse
|
34
|
Wang H, Wang J, Yu P, Ge P, Jiang Y, Xu R, Chen R, Liu X. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing. Int J Mol Med 2016; 39:364-372. [PMID: 28035408 PMCID: PMC5358717 DOI: 10.3892/ijmm.2016.2844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 12/07/2016] [Indexed: 01/28/2023] Open
Abstract
This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole-genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby-Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside-modifying enzymes [e.g., aac(3)-Ia, ant(2″)-Ia, aph33ib and aph(3′)-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.
Collapse
Affiliation(s)
- Hualiang Wang
- Department of Molecular Biology Laboratory, Shanghai Centre for Clinical Laboratory, Shanghai 200126, P.R. China
| | - Jinghua Wang
- Department of Microbiology Laboratory, Shanghai Centre for Clinical Laboratory, Shanghai 200126, P.R. China
| | - Peijuan Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ping Ge
- Department of Microbiology Laboratory, Shanghai Centre for Clinical Laboratory, Shanghai 200126, P.R. China
| | - Yanqun Jiang
- Department of Clinical Laboratory, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Rong Xu
- Department of Microbiology Laboratory, Shanghai Centre for Clinical Laboratory, Shanghai 200126, P.R. China
| | - Rong Chen
- Department of Microbiology Laboratory, Shanghai Centre for Clinical Laboratory, Shanghai 200126, P.R. China
| | - Xuejie Liu
- Department of Microbiology Laboratory, Shanghai Centre for Clinical Laboratory, Shanghai 200126, P.R. China
| |
Collapse
|
35
|
Agnello M, Finkel SE, Wong-Beringer A. Fitness Cost of Fluoroquinolone Resistance in Clinical Isolates of Pseudomonas aeruginosa Differs by Type III Secretion Genotype. Front Microbiol 2016; 7:1591. [PMID: 27757111 PMCID: PMC5047889 DOI: 10.3389/fmicb.2016.01591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is highly prevalent among clinical strains of Pseudomonas aeruginosa, limiting treatment options. We have reported previously that highly virulent strains containing the exoU gene of the type III secretion system are more likely to be FQ-resistant than strains containing the exoS gene, as well as more likely to acquire resistance-conferring mutations in gyrA/B and parC/E. We hypothesize that FQ-resistance imposes a lower fitness cost on exoU compared to exoS strains, thus allowing for better adaptation to the FQ-rich clinical environment. We created isogenic mutants containing a common FQ-resistance conferring point mutation in parC from three exoU to three exoS clinical isolates and tested fitness in vitro using head-to-head competition assays. The mutation differentially affected fitness in the exoU and exoS strains tested. While the addition of the parC mutation dramatically increased fitness in one of the exoU strains leaving the other two unaffected, all three exoS strains displayed a general decrease in fitness. In addition, we found that exoU strains may be able to compensate for the fitness costs associated with the mutation through better regulation of supercoiling compared to the exoS strains. These results may provide a biological explanation for the observed predominance of the virulent exoU genotype in FQ-resistant clinical subpopulations and represent the first investigation into potential differences in fitness costs of FQ-resistance that are linked to the virulence genotype of P. aeruginosa. Understanding the fitness costs of antibiotic resistance and possibilities of compensation for these costs is essential for the rational development of strategies to combat the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Melissa Agnello
- School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
36
|
Neale HC, Laister R, Payne J, Preston G, Jackson RW, Arnold DL. A low frequency persistent reservoir of a genomic island in a pathogen population ensures island survival and improves pathogen fitness in a susceptible host. Environ Microbiol 2016; 18:4144-4152. [PMID: 27491006 PMCID: PMC5573919 DOI: 10.1111/1462-2920.13482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
Abstract
The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Host resistance imposes stress on invading pathogens that can lead to changes in the bacterial genome enabling the pathogen to escape host resistance. We have observed this phenomenon with the plant pathogen Pseudomonas syringae pv. phaseolicola where isolates that have lost the genomic island PPHGI-1 carrying the effector gene avrPphB from its chromosome are infective against previously resistant plant hosts. However, we have never observed island extinction from the pathogen population within a host suggesting the island is maintained. Here, we present a mathematical model which predicts different possible fates for the island in the population; one outcome indicated that PPHGI-1 would be maintained at low frequency in the population long term, if it confers a fitness benefit. We empirically tested this prediction and determined that PPHGI-1 frequency in the bacterial population drops to a low but consistently detectable level during host resistance. Once PPHGI-1-carrying cells encounter a susceptible host, they rapidly increase in the population in a negative frequency-dependent manner. Importantly, our data show that mobile genetic elements can persist within the bacterial population and increase in frequency under favourable conditions.
Collapse
Affiliation(s)
- Helen C Neale
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Robert Laister
- Department of Engineering Design and Mathematics, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Joseph Payne
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Gail Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
37
|
Jani M, Mathee K, Azad RK. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering. Front Microbiol 2016; 7:1210. [PMID: 27536294 PMCID: PMC4971588 DOI: 10.3389/fmicb.2016.01210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as "genomic islands (GIs)." To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, "GEMINI." GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa.
Collapse
Affiliation(s)
- Mehul Jani
- Department of Biological Sciences, University of North Texas Denton, TX, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine Global Health Consortium, and Biomolecular Sciences Institute, Florida International University Miami, FL, USA
| | - Rajeev K Azad
- Department of Biological Sciences, University of North TexasDenton, TX, USA; Department of Mathematics, University of North TexasDenton, TX, USA
| |
Collapse
|
38
|
Gómez-Zorrilla S, Juan C, Cabot G, Camoez M, Tubau F, Oliver A, Dominguez MA, Ariza J, Peña C. Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies. Int J Antimicrob Agents 2016; 47:368-74. [PMID: 27079153 DOI: 10.1016/j.ijantimicag.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 01/24/2023]
Abstract
The biological cost of multidrug resistance in Pseudomonas aeruginosa (PA) remains unclear. This study aimed to evaluate the relationship between pathogenicity and the resistance profile of different PA strains, including the most common epidemic high-risk clones. Nine PA strains were studied, including two reference strains, PAO1 and PA14 [both susceptible to all antipseudomonals (multiS)], and seven clinical strains comprising three clinical multiS strains, a non-clonal multidrug-resistant (MDR) strain and the high-risk MDR clones ST111, ST235 and ST175. In vitro studies were performed to investigate growth rate, type III secretion system (TTSS) genotype, cytotoxicity and invasiveness. Additionally, a peritonitis/sepsis model was used in C57BL/6 mice. The in vitro bacterial duplication time was shorter in clinical multiS strains than in MDR-PA (0.42±0.08h vs. 0.55±0.14h; P=0.023). Among the clinical strains, exoU(+) genotype was observed only in the epidemic clone ST235. In the animal model, the probability of mortality at 48h was 70% for clinical multiS strains vs. 7.5% for clinical MDR-PA (P<0.001, log-rank). The high-risk clone ST235 was the only MDR strain that was able to cause mortality. Bacterial concentrations in peritoneal fluid were higher in mice inoculated with multiS strains compared with MDR-PA [log CFU/mL, 8.95 (IQR 3.42-9.32) vs. 1.98 (IQR 1.08-2.80); P<0.001]. These data indicate that MDR profiles are associated with a reduction in virulence of PA in a murine model. Further studies are needed to elucidate the clinical implications of these results.
Collapse
Affiliation(s)
- Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Juan
- Microbiology Service, Hospital Universitario son Espases, Instituto de Investigación Sanitaria de Palma (IdiSPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - Gabriel Cabot
- Microbiology Service, Hospital Universitario son Espases, Instituto de Investigación Sanitaria de Palma (IdiSPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - Mariana Camoez
- Microbiology Service, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Fe Tubau
- Microbiology Service, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Oliver
- Microbiology Service, Hospital Universitario son Espases, Instituto de Investigación Sanitaria de Palma (IdiSPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - M Angeles Dominguez
- Microbiology Service, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Ariza
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carmen Peña
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
39
|
Rodríguez-Andrade E, Hernández-Ramírez KC, Díaz-Peréz SP, Díaz-Magaña A, Chávez-Moctezuma MP, Meza-Carmen V, Ortíz-Alvarado R, Cervantes C, Ramírez-Díaz MI. Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence. Antonie Van Leeuwenhoek 2016; 109:389-96. [PMID: 26739475 DOI: 10.1007/s10482-015-0642-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
The pUM505 plasmid was isolated from a clinical strain of Pseudomonas aeruginosa. This plasmid contains a genomic island with sequence similar to islands found in chromosomes of virulent P. aeruginosa clinical isolates. The objective of this work was to determine whether pUM505 increases the virulence of P. aeruginosa and to identify the genes responsible for this property. First, using the lettuce-leaf model, we found that pUM505 significantly increases the virulence of P. aeruginosa reference strain PAO1. pUM505 also increased the PAO1 virulence in a murine model and increased cytotoxicity of this strain toward HeLa cells. Thus, we generated a pUM505 gene library of 103 clones in the pUCP20 binary vector. The library was transferred to Escherichia coli TOP10 and P. aeruginosa PAO1 to identify genes. The lettuce-leaf model allowed us to identify three recombinant plasmids that increased the virulence of both E. coli and P. aeruginosa strains. These recombinant plasmids also increased the virulence of the PAO1 strain in mice and induced a cytotoxic effect in HeLa cells. Eleven genes were identified in the virulent transformants. Of these genes, only the pUM505 ORF 2 has homology with a gene previously implicated in virulence. These results indicate that pUM505 contains several genes that encode virulence factors, suggesting that the plasmid may contribute directly to bacterial virulence.
Collapse
Affiliation(s)
- E Rodríguez-Andrade
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - K C Hernández-Ramírez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - S P Díaz-Peréz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - A Díaz-Magaña
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - M P Chávez-Moctezuma
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - V Meza-Carmen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - R Ortíz-Alvarado
- Facultad de Químico- Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - C Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México
| | - M I Ramírez-Díaz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio B-3, 58030, Morelia, Mich, México.
| |
Collapse
|
40
|
Bi D, Xie Y, Tai C, Jiang X, Zhang J, Harrison EM, Jia S, Deng Z, Rajakumar K, Ou HY. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene. PLoS One 2016; 11:e0148367. [PMID: 26841043 PMCID: PMC4739549 DOI: 10.1371/journal.pone.0148367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.
Collapse
Affiliation(s)
- Dexi Bi
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yingzhou Xie
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Cui Tai
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Ewan M. Harrison
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Shiru Jia
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zixin Deng
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hong-Yu Ou
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Type IV pilus glycosylation mediates resistance of Pseudomonas aeruginosa to opsonic activities of the pulmonary surfactant protein A. Infect Immun 2015; 83:1339-46. [PMID: 25605768 DOI: 10.1128/iai.02874-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a major bacterial pathogen commonly associated with chronic lung infections in cystic fibrosis (CF). Previously, we have demonstrated that the type IV pilus (Tfp) of P. aeruginosa mediates resistance to antibacterial effects of pulmonary surfactant protein A (SP-A). Interestingly, P. aeruginosa strains with group I pilins are O-glycosylated through the TfpO glycosyltransferase with a single subunit of O-antigen (O-ag). Importantly, TfpO-mediated O-glycosylation is important for virulence in mouse lungs, exemplified by more frequent lung infection in CF with TfpO-expressing P. aeruginosa strains. However, the mechanism underlying the importance of Tfp glycosylation in P. aeruginosa pathogenesis is not fully understood. Here, we demonstrated one mechanism of increased fitness mediated by O-glycosylation of group 1 pilins on Tfp in the P. aeruginosa clinical isolate 1244. Using an acute pneumonia model in SP-A+/+ versus SP-A-/- mice, the O-glycosylation-deficient ΔtfpO mutant was found to be attenuated in lung infection. Both 1244 and ΔtfpO strains showed equal levels of susceptibility to SP-A-mediated membrane permeability. In contrast, the ΔtfpO mutant was more susceptible to opsonization by SP-A and by other pulmonary and circulating opsonins, SP-D and mannose binding lectin 2, respectively. Importantly, the increased susceptibility to phagocytosis was abrogated in the absence of opsonins. These results indicate that O-glycosylation of Tfp with O-ag specifically confers resistance to opsonization during host-mediated phagocytosis.
Collapse
|
42
|
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Microbiol Res 2014; 170:10-7. [PMID: 25183653 DOI: 10.1016/j.micres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|
43
|
Bigger is not always better: Transmission and fitness burden of ∼1MB Pseudomonas syringae megaplasmid pMPPla107. Plasmid 2014; 73:16-25. [DOI: 10.1016/j.plasmid.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
|
44
|
Rearrangement of a large novel Pseudomonas aeruginosa gene island in strains isolated from a patient developing ventilator-associated pneumonia. J Clin Microbiol 2014; 52:2430-8. [PMID: 24789195 DOI: 10.1128/jcm.01626-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacterial gene islands add to the genetic repertoire of opportunistic pathogens. Here, we perform comparative analyses of three Pseudomonas aeruginosa strains isolated sequentially over a 3-week period from a patient with ventilator-associated pneumonia (VAP) who received clindamycin and piperacillin-tazobactam as part of their treatment regime. While all three strains appeared to be clonal by standard pulsed-field gel electrophoresis, whole-genome sequencing revealed subtle alterations in the chromosomal organization of the last two strains; specifically, an inversion event within a novel 124-kb gene island (PAGI 12) composed of 137 open reading frames [ORFs]. Predicted ORFs in the island included metabolism and virulence genes. Overexpression of a gene island-borne putative β-lactamase gene was observed following piperacillin-tazobactam exposure and only in those strains that had undergone the inversion event, indicating altered gene regulation following genomic remodeling. Examination of a separate cohort of 76 patients with VAP for integration at this tRNA(lys) recombination site demonstrated that patients exhibiting evidence of integration at this site had significantly higher 28-day mortality. These findings provide evidence that P. aeruginosa can integrate, rapidly remodel, and express exogenous genes, which likely contributes to its fitness in a clinical setting.
Collapse
|
45
|
Wee BA, Woolfit M, Beatson SA, Petty NK. A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One 2013; 8:e82221. [PMID: 24358157 PMCID: PMC3864950 DOI: 10.1371/journal.pone.0082221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Legionella encodes multiple classes of Type IV Secretion Systems (T4SSs), including the Dot/Icm protein secretion system that is essential for intracellular multiplication in amoebal and human hosts. Other T4SSs not essential for virulence are thought to facilitate the acquisition of niche-specific adaptation genes including the numerous effector genes that are a hallmark of this genus. Previously, we identified two novel gene clusters in the draft genome of Legionella pneumophila strain 130b that encode homologues of a subtype of T4SS, the genomic island-associated T4SS (GI-T4SS), usually associated with integrative and conjugative elements (ICE). In this study, we performed genomic analyses of 14 homologous GI-T4SS clusters found in eight publicly available Legionella genomes and show that this cluster is unusually well conserved in a region of high plasticity. Phylogenetic analyses show that Legionella GI-T4SSs are substantially divergent from other members of this subtype of T4SS and represent a novel clade of GI-T4SSs only found in this genus. The GI-T4SS was found to be under purifying selection, suggesting it is functional and may play an important role in the evolution and adaptation of Legionella. Like other GI-T4SSs, the Legionella clusters are also associated with ICEs, but lack the typical integration and replication modules of related ICEs. The absence of complete replication and DNA pre-processing modules, together with the presence of Legionella-specific regulatory elements, suggest the Legionella GI-T4SS-associated ICE is unique and may employ novel mechanisms of regulation, maintenance and excision. The Legionella GI-T4SS cluster was found to be associated with several cargo genes, including numerous antibiotic resistance and virulence factors, which may confer a fitness benefit to the organism. The in-silico characterisation of this new T4SS furthers our understanding of the diversity of secretion systems involved in the frequent horizontal gene transfers that allow Legionella to adapt to and exploit diverse environmental niches.
Collapse
Affiliation(s)
- Bryan A. Wee
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Megan Woolfit
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (NKP); (SAB)
| | - Nicola K. Petty
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
- * E-mail: (NKP); (SAB)
| |
Collapse
|
46
|
Garreta A, Val-Moraes SP, García-Fernández Q, Busquets M, Juan C, Oliver A, Ortiz A, Gaffney BJ, Fita I, Manresa À, Carpena X. Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. FASEB J 2013; 27:4811-21. [PMID: 23985801 DOI: 10.1096/fj.13-235952] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipoxygenases (LOXs), which are essential in eukaryotes, have no confirmed function in prokaryotes that are devoid of polyunsaturated fatty acids. The structure of a secretable LOX from Pseudomonas aeruginosa (Pa_LOX), the first available from a prokaryote, presents significant differences with respect to eukaryotic LOXs, including a cluster of helices acting as a lid to the active center. The mobility of the lid and the structural variability of the N-terminal region of Pa_LOX was confirmed by comparing 2 crystal forms. The binding pocket contains a phosphatidylethanolamine phospholipid with branches of 18 (sn-1) and 14/16 (sn-2) carbon atoms in length. Carbon atoms from the sn-1 chain approach the catalytic iron in a manner that sheds light on how the enzymatic reaction might proceed. The findings in these studies suggest that Pa_LOX has the capacity to extract and modify unsaturated phospholipids from eukaryotic membranes, allowing this LOX to play a role in the interaction of P. aeruginosa with host cells.
Collapse
Affiliation(s)
- Albert Garreta
- 1Institut de Biologia Molecular, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ledizet M, Murray TS, Puttagunta S, Slade MD, Quagliarello VJ, Kazmierczak BI. The ability of virulence factor expression by Pseudomonas aeruginosa to predict clinical disease in hospitalized patients. PLoS One 2012; 7:e49578. [PMID: 23152923 PMCID: PMC3495863 DOI: 10.1371/journal.pone.0049578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that frequently causes hospital acquired colonization and infection. Accurate identification of host and bacterial factors associated with infection could aid treatment decisions for patients with P. aeruginosa cultured from clinical sites. METHODS We identified a prospective cohort of 248 hospitalized patients with positive P. aeruginosa cultures. Clinical data were analyzed to determine whether an individual met predefined criteria for infection versus colonization. P. aeruginosa isolates were tested for the expression of multiple phenotypes previously associated with virulence in animal models and humans. Logistic regression models were constructed to determine the degree of association between host and bacterial factors with P. aeruginosa infection of the bloodstream, lung, soft tissue and urinary tract. RESULTS One host factor (i.e. diabetes mellitus), and one bacterial factor, a Type 3 secretion system positive phenotype, were significantly associated with P. aeruginosa infection in our cohort. Subgroup analysis of patients with P. aeruginosa isolated from the urinary tract revealed that the presence of a urinary tract catheter or stent was an additional factor for P. aeruginosa infection. CONCLUSIONS Among hospitalized patients with culture-documented P. aeruginosa, infection is more likely to be present in those with diabetes mellitus and those harboring a Type 3 secretion positive bacterial strain.
Collapse
Affiliation(s)
- Michel Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Thomas S. Murray
- Department of Pediatrics (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sailaja Puttagunta
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Martin D. Slade
- Department of Occupational & Environmental Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent J. Quagliarello
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine, Sections of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
48
|
Szmolka A, Cramer N, Nagy B. Comparative genomic analysis of bovine, environmental, and human strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 2012; 335:113-22. [PMID: 22827553 DOI: 10.1111/j.1574-6968.2012.02642.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 01/26/2023] Open
Abstract
Genomic analyses on versatility of the ubiquitous opportunistic pathogen Pseudomonas aeruginosa have been focusing on clinical strains from humans but much less on animal and environmental strains. Here, we aimed to compare genomic patterns of bovine, environmental, and human strains of P. aeruginosa. A collection of 71 strains, equally representing bovine (non-clinical), environmental (aquatic), and human (clinical) isolates from all main subregions of Hungary was genotyped by PCR microarray. Results were interpreted in comparison with internationally established human clinical and environmental clones, based on single nucleotide polymorphisms, on di- and multiallelic loci (fliC and fpvA) of the conserved core genome, and on genetic markers for the flexible accessory genome. As a result, a total of 33 clones were identified, with one bovine, 10 environmental, and five human clones regarded as new ones. In spite of general clonal diversity, bovine and human clones seemed to be habitat related. Bovine strains were characterized by significant overrepresentation of type III FpvA pyoverdine receptor, while the environmental and human strains showed the dominance of type I FpvA. Genotypes of non-clinical bovine strains of P. aeruginosa differed from those of human clinical strains, supporting the hypothesis about specific groups of strains colonizing specific habitats.
Collapse
Affiliation(s)
- Ama Szmolka
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
49
|
Ballarini A, Scalet G, Kos M, Cramer N, Wiehlmann L, Jousson O. Molecular typing and epidemiological investigation of clinical populations of Pseudomonas aeruginosa using an oligonucleotide-microarray. BMC Microbiol 2012; 12:152. [PMID: 22840192 PMCID: PMC3431270 DOI: 10.1186/1471-2180-12-152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/10/2012] [Indexed: 01/15/2023] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen which has the potential to become extremely harmful in the nosocomial environment, especially for cystic fibrosis (CF) patients, who are easily affected by chronic lung infections. For epidemiological purposes, discriminating P.aeruginosa isolates is a critical step, to define distribution of clones among hospital departments, to predict occurring microevolution events and to correlate clones to their source. A collection of 182 P. aeruginosa clinical strains isolated within Italian hospitals from patients with chronic infections, i.e. cystic fibrosis (CF) patients, and with acute infections were genotyped. Molecular typing was performed with the ArrayTube (AT) multimarker microarray (Alere Technologies GmbH, Jena, Germany), a cost-effective, time-saving and standardized method, which addresses genes from both the core and accessory P.aeruginosa genome. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were employed as reference genotyping techniques to estimate the ArrayTube resolution power. Results 41 AT-genotypes were identified within our collection, among which 14 were novel and 27 had been previously described in publicly available AT-databases. Almost 30% of the genotypes belonged to a main cluster of clones. 4B9A, EC2A, 3C2A were mostly associated to CF-patients whereas F469, 2C1A, 6C22 to non CF. An investigation on co-infections events revealed that almost 40% of CF patients were colonized by more than one genotype, whereas less than 4% were observed in non CF patients. The presence of the exoU gene correlated with non-CF patients within the intensive care unit (ICU) whereas the pKLC102-like island appeared to be prevalent in the CF centre. The congruence between the ArrayTube typing and PFGE or MLST was 0.077 and 0.559 (Adjusted Rand coefficient), respectively. AT typing of this Italian collection could be easily integrated with the global P. aeruginosa AT-typed population, uncovering that most AT-genotypes identified (> 80%) belonged to two large clonal clusters, and included 12 among the most abundant clones of the global population. Conclusions The ArrayTube (AT) multimarker array represented a robust and portable alternative to reference techniques for performing P. aeruginosa molecular typing, and allowed us to draw conclusions especially suitable for epidemiologists on an Italian clinical collection from chronic and acute infections.
Collapse
|
50
|
Harmer CJ, Triccas JA, Hu H, Rose B, Bye P, Elkins M, Manos J. Pseudomonas aeruginosa strains from the chronically infected cystic fibrosis lung display increased invasiveness of A549 epithelial cells over time. Microb Pathog 2012; 53:37-43. [DOI: 10.1016/j.micpath.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
|