1
|
Amorim CCO, Nogueira DS, Gazzinelli-Guimarães AC, Leal-Silva T, Barbosa FS, Oliveira FMS, Kraemer LR, de Almeida RM, Souza JLN, Dias Magalhães LM, Russo RC, Caliari MV, Gaze S, Bueno LL, Fujiwara RT. Dose-response effects of multiple Ascaris suum exposures and their impact on lung protection during larval ascariasis. PLoS Negl Trop Dis 2024; 18:e0012678. [PMID: 39621794 PMCID: PMC11637409 DOI: 10.1371/journal.pntd.0012678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Human ascariasis is the most prevalent geohelminthiasis worldwide, affecting approximately 446 million individuals. In regions with endemic prevalence, the majority of infected adults are frequently exposed to the parasite and tend to have a low parasite load. Further studies are necessary to provide more evidence on the dynamics of infection and to elucidate the possible mechanisms involved in regulating protection, especially during the acute phase, also known as larval ascariasis. The aim of this study is to compare the impact of lung function between single and multiple infections in a murine model. METHODS We infected BALB/c mice considering the frequency of exposures: single-exposure-SI; twice-exposures-RE 2x and thrice-exposures-RE 3x, and considering the doses of infection: 25 eggs-RE 25; 250 eggs-RE 250 and 2,500 eggs-RE 2500, followed by infection challenge with 2,500 eggs. From this, we evaluated: parasite burden in lungs, cellular and humoral response, histopathological and physiological alterations in lungs. RESULTS The main results showed a reduction of parasite burden in the reinfected groups compared to the single-infected group, with protection increasing with higher exposure and dose. Furthermore, the RE 250 group exhibited a decrease of parasite burden close to RE 2500, but with less tissue damage, displaying the most favorable prognosis among the reinfected groups. CONCLUSION Our research indicates a dose-dependent relationship between antibody production and the intensity of the immune response required to regulate the parasite burden.
Collapse
Affiliation(s)
- Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Ana Clara Gazzinelli-Guimarães
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Thais Leal-Silva
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Fernando Sérgio Barbosa
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lucas Rocha Kraemer
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Raquel Martins de Almeida
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Luisa Mourão Dias Magalhães
- Laboratory of Interactions in ImmunoParasitology, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Soraya Gaze
- Cellular and Molecular Immunology Group, René Rachou Institute, Oswaldo Cruz Foundation–FIOCRUZ, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Parasite Control, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
2
|
Wang H, Yu Q, Wang M, Hou J, Wang M, Kang X, Hou X, Li D, Rousu Z, Jiang T, Li J, Wen H, Zhang C. Hepatic macrophages play critical roles in the establishment and growth of hydatid cysts in the liver during Echinococcus granulosus sensu stricto infection. PLoS Negl Trop Dis 2023; 17:e0011746. [PMID: 37930989 PMCID: PMC10653610 DOI: 10.1371/journal.pntd.0011746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/16/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
Cystic echinococcosis (CE) is a worldwide neglected zoonotic disease caused by infection with the larval stage of the tapeworm Echinococcus granulosus sensu lato (E. granulosus s.l.), which predominantly resides in the liver accompanied by mild inflammation. Macrophages constitute the main cellular component of the liver and play a central role in controlling the progression of inflammation and liver fibrosis. However, the role of hepatic macrophages in the establishment and growth of hydatid cysts in the liver during E. granulosus sensu stricto (E. granulosus s.s.) infection has not been fully elucidated. Here, we showed that CD68+ macrophages accumulated in pericystic areas of the liver and that the expression of CD163, a marker of anti-inflammatory macrophages, was more evident in active CE patients than in inactive CE patients. Moreover, in a mouse model of E. granulosus s.s. infection, the pool of hepatic macrophages expanded dramatically through the attraction of massive amounts of monocyte-derived macrophages (MoMFs) to the infection site. These infiltrating macrophages preferentially polarized toward an iNOS+ proinflammatory phenotype at the early stage and then toward a CD206+ anti-inflammatory phenotype at the late stage. Notably, the resident Kupffer cells (KCs) predominantly maintained an anti-inflammatory phenotype to favor persistent E. granulosus s.s. infection. In addition, depletion of hepatic macrophages promoted E. granulosus s.s. larval establishment and growth partially by inhibiting CD4+ T-cell recruitment and liver fibrosis. The above findings demonstrated that hepatic macrophages play a vital role in the progression of CE, contributing to a better understanding of the local inflammatory responses surrounding hydatid cysts and possibly facilitating the design of novel therapeutic approaches for CE.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Yu
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mingkun Wang
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiao Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuejiao Kang
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinling Hou
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dewei Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zibigu Rousu
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tiemin Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Gouveia-Eufrasio L, de Freitas GJC, Costa MC, Peres-Emidio EC, Carmo PHF, Rodrigues JGM, de Rezende MC, Rodrigues VF, de Brito CB, Miranda GS, de Lima PA, da Silva LMV, Oliveira JBS, da Paixão TA, da Glória de Souza D, Fagundes CT, Peres NTDA, Negrão-Correa DA, Santos DA. The Th2 Response and Alternative Activation of Macrophages Triggered by Strongyloides venezuelensis Is Linked to Increased Morbidity and Mortality Due to Cryptococcosis in Mice. J Fungi (Basel) 2023; 9:968. [PMID: 37888224 PMCID: PMC10607621 DOI: 10.3390/jof9100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Cryptococcosis is a systemic mycosis that causes pneumonia and meningoencephalitis. Strongyloidiasis is a chronic gastrointestinal infection caused by parasites of the genus Strongyloides. Cryptococcosis and strongyloidiasis affect the lungs and are more prevalent in the same world regions, i.e., Africa and tropical countries such as Brazil. It is undeniable that those coincidences may lead to the occurrence of coinfections. However, there are no studies focused on the interaction between Cryptococcus spp. and Strongyloides spp. In this work, we aimed to investigate the interaction between Strongyloides venezuelensis (Sv) and Cryptococcus gattii (Cg) in a murine coinfection model. Murine macrophage exposure to Sv antigens reduced their ability to engulf Cg and produce reactive oxygen species, increasing the ability of fungal growth intracellularly. We then infected mice with both pathogens. Sv infection skewed the host's response to fungal infection, increasing lethality in a murine coinfection model. In addition to increased NO levels and arginase activity, coinfected mice presented a classic Th2 anti-Sv response: eosinophilia, higher levels of alternate activated macrophages (M2), increased concentrations of CCL24 and IL-4, and lower levels of IL-1β. This milieu favored fungal growth in the lungs with prominent translocation to the brain, increasing the host's tissue damage. In conclusion, our data shows that primary Sv infection promotes Th2 bias of the pulmonary response to Cg-infection and worsens its pathological outcomes.
Collapse
Affiliation(s)
- Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Eluzia Castro Peres-Emidio
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - João Gustavo Mendes Rodrigues
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Michelle Carvalho de Rezende
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Vanessa Fernandes Rodrigues
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Guilherme Silva Miranda
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Pâmela Aparecida de Lima
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Lívia Mara Vitorino da Silva
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Jefferson Bruno Soares Oliveira
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Tatiane Alves da Paixão
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Daniele da Glória de Souza
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Caio Tavares Fagundes
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Nalu Teixeira de Aguiar Peres
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Deborah Aparecida Negrão-Correa
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Daniel Assis Santos
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| |
Collapse
|
4
|
Kummola L, Salomaa T, Ortutay Z, Savan R, Young HA, Junttila IS. IL-4, IL-13 and IFN-γ -induced genes in highly purified human neutrophils. Cytokine 2023; 164:156159. [PMID: 36809715 DOI: 10.1016/j.cyto.2023.156159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Interleukin (IL)-4 and IL-13 are related cytokines with well-known specific roles in type 2 immune response. However, their effects on neutrophils are not completely understood. For this, we studied human primary neutrophil responses to IL-4 and IL-13. Neutrophils are dose-dependently responsive to both IL-4 and IL-13 as indicated by signal transducer and activator of transcription 6 (STAT6) phosphorylation upon stimulation, with IL-4 being more potent inducer of STAT6. IL-4-, IL-13- and Interferon (IFN)-γ-stimulated gene expression in highly purified human neutrophils induced both overlapping and unique gene expression in highly purified human neutrophils. IL-4 and IL-13 specifically regulate several immune-related genes, including IL-10, tumor necrosis factor (TNF) and leukemia inhibitory factor (LIF), while type1 immune response-related IFN-γ induced gene expression related for example, to intracellular infections. In analysis of neutrophil metabolic responses, oxygen independent glycolysis was specifically regulated by IL-4, but not by IL-13 or IFN-γ, suggesting specific role for type I IL-4 receptor in this process. Our results provide a comprehensive analysis of IL-4, IL-13 and IFN-γ -induced gene expression in neutrophils while also addressing cytokine-mediated metabolic changes in neutrophils.
Collapse
Affiliation(s)
- Laura Kummola
- Biodiversity Interventions for Well-being, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Tanja Salomaa
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | | | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, 98195 Seattle, WA, USA
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute, 21702 Frederick, MD, USA
| | - Ilkka S Junttila
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; Fimlab Laboratories, 33520 Tampere, Finland; Northern Finland Laboratory Centre (NordLab), 90220 Oulu, Finland; Research Unit of Biomedicine, University of Oulu, 90570 Oulu, Finland.
| |
Collapse
|
5
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
6
|
Herbert DR, Stoltzfus JDC, Rossi HL, Abraham D. Is Strongyloides stercoralis hyperinfection induced by glucocorticoids a result of both suppressed host immunity and altered parasite genetics? Mol Biochem Parasitol 2022; 251:111511. [PMID: 36007683 DOI: 10.1016/j.molbiopara.2022.111511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
The gastrointestinal (GI) nematode Strongyloides stercoralis (S.s.) causes human strongyloidiasis, a potentially life-threatening disease that currently affects over 600 million people globally. The uniquely pernicious aspect of S.s. infection, as compared to all other GI nematodes, is its autoinfective larval stage (L3a) that maintains a low-grade chronic infection, allowing undetectable persistence for decades. Infected individuals who are administered glucocorticoid therapy can develop a rapid and often lethal hyperinfection syndrome within days. Hyperinfection patients often present with dramatic increases in first- and second-stage larvae and L3a in their GI tract, with L3a widely disseminating throughout host organs leading to sepsis. How glucocorticoid administration drives hyperinfection remains a critical unanswered question; specifically, it is unknown whether these steroids promote hyperinfection through eliminating essential host protective mechanisms and/or through dysregulating parasite development. This current deficiency in understanding is largely due to the previous absence of a genetically defined mouse model that would support all S.s. life-cycle stages and the lack of successful approaches for S.s. genetic manipulation. However, there are currently new possibilities through the recent demonstration that immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice support sub-clinical infections that can be transformed to lethal hyperinfection syndrome following glucocorticoid administration. This is coupled with advances in transcriptomics, transgenesis, and gene inactivation strategies that now allow rigorous scientific inquiry into S.s. biology. We propose that combining in vivo manipulation of host immunity and deep immunoprofiling strategies with the latest advances in S.s. transcriptomics, piggyBac transposon-mediated transgene insertion, and CRISPR/Cas-9-mediated gene inactivation will facilitate new insights into the mechanisms that could be targeted to block lethality in humans with S.s. hyperinfection.
Collapse
Affiliation(s)
- De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 10104, USA.
| | - Jonathan D C Stoltzfus
- Department of Biology, Millersville University of Pennsylvania, 50 E. Frederick St., Millersville, PA 17551, USA.
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 10104, USA.
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St., Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Egholm C, Özcan A, Breu D, Boyman O. Type 2 immune predisposition results in accelerated neutrophil aging causing susceptibility to bacterial infection. Sci Immunol 2022; 7:eabi9733. [PMID: 35594340 DOI: 10.1126/sciimmunol.abi9733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atopic individuals show enhanced type 2 immune cell responses and a susceptibility to infections with certain bacteria and viruses. Although patients with allergic diseases harbor normal counts of circulating neutrophils, these cells exert deficient effector functions. However, the underlying mechanism of this dysregulation of neutrophils remains ill defined. Here, we find that development, aging, and elimination of neutrophils are accelerated in mice with a predisposition to type 2 immunity, which, in turn, causes susceptibility to infection with several bacteria. Neutrophil-mediated immunity to bacterial infection was greatly decreased in mice with a genetic or induced bias to type 2 immunity. Abrogation of interleukin-4 (IL-4) receptor signaling in these animals fully restored their antibacterial defense, which largely depended on Ly6G+ neutrophils. IL-4 signals accelerated the maturation of neutrophils in the bone marrow and caused their rapid release to the circulation and periphery. IL-4-stimulated neutrophils aged more rapidly in the periphery, as evidenced by their phenotypic and functional changes, including their decreased phagocytosis of bacterial particles. Moreover, neutrophils from type 2 immune predisposed mice were eliminated at a higher rate by apoptosis and phagocytosis by macrophages and dendritic cells. Collectively, IL-4 signaling-mediated neutrophil aging constitutes an important adaptive deficiency in type 2 inflammation, contributing to recurrent bacterial infections.
Collapse
Affiliation(s)
- Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Alaz Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Breu
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
Strongyloidiasis has been estimated to affect over 600 million people worldwide. It is caused by Strongyloides stercoralis, a roundworm endemic to the tropics and subtropics, especially areas where sanitation is suboptimal Autochthonous transmission has been documented in rural areas of the USA and Europe. Humans are infected when larvae penetrate the skin or are ingested. Autoinfection, in which larvae generated in the host go on to re-infect the host, leads to a state of chronic asymptomatic infection often with eosinophilia. Hyperinfection syndrome may develop when patients develop immune suppression, due to medications such as corticosteroids or following solid-organ transplantation. Hyperinfection is characterized by exponential increase in parasitic burden, leading to tissue invasion and life-threatening disease and associated bloodstream infections due to enteric organisms. Cases following use of corticosteroids for COVID-19 pneumonia have been described. Strongyloidiasis can be diagnosed by direct visualization of larvae in stool or other body fluids, or by serology. Ivermectin is highly effective in treating the disease. Patients with exposure to endemic areas and those expected to become immune suppressed should be screened and treated before starting immune suppressive agents. Empiric treatment should be considered when timely testing is not readily available.
Collapse
|
9
|
Impellizzieri D, Egholm C, Valaperti A, Distler O, Boyman O. Patients with systemic sclerosis show phenotypic and functional defects in neutrophils. Allergy 2022; 77:1274-1284. [PMID: 34467524 PMCID: PMC9293168 DOI: 10.1111/all.15073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a multiorgan autoimmune disease characterized by inflammation, vascular modification, and progressive fibrosis of the skin and several visceral organs. Innate and adaptive immune cells, including myeloid, B and T cells, are believed to be central to the pathogenesis of SSc. However, the role and functional state of neutrophil granulocytes (neutrophils) are ill-defined in SSc. METHODS We performed a prospective study of neutrophils freshly isolated from SSc patients and healthy donors (HD) by measuring in these neutrophils (i) functional cell surface markers, including CD16, CD62L, CD66b, CD66c, CXCR1, CXCR2, and CXCR4; (ii) cytokine-activated intracellular signal transducer and activator of transcription (STAT) pathways, such as phosphorylated STAT3 (pSTAT3), pSTAT5, and pSTAT6; (iii) production of neutrophil extracellular traps (NET) and intracellular myeloperoxidase (MPO); and (iv) phagocytosis of bacteria by the neutrophils. RESULTS Neutrophils of SSc patients expressed lower CD16 and CD62L and higher pSTAT3 and pSTAT6 compared to HD. Moreover, neutrophils of SSc patients lacked CXCR1 and CXCR2, the receptors responding to the potent neutrophil chemoattractant CXCL8. Neutrophils of SSc patients were also deficient in MPO levels, NET formation, and phagocytosis of bacteria. CONCLUSIONS Neutrophils of patients with SSc display several functional defects affecting cell migration, NET formation, and phagocytosis of bacteria.
Collapse
Affiliation(s)
| | - Cecilie Egholm
- Department of Immunology University Hospital Zurich Zurich Switzerland
| | - Alan Valaperti
- Department of Immunology University Hospital Zurich Zurich Switzerland
| | - Oliver Distler
- Department of Rheumatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
| | - Onur Boyman
- Department of Immunology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
| |
Collapse
|
10
|
Abstract
Viral infections are often studied in model mammalian organisms under specific pathogen-free conditions. However, in nature, coinfections are common, and infection with one organism can alter host susceptibility to infection with another. Helminth parasites share a long coevolutionary history with mammalian hosts and have shaped host physiology, metabolism, immunity, and the composition of the microbiome. Published studies suggest that helminth infection can either be beneficial or detrimental during viral infection. Here, we discuss coinfection studies in mouse models and use them to define key determinants that impact outcomes, including the type of antiviral immunity, the tissue tropism of both the helminth and the virus, and the timing of viral infection in relation to the helminth lifecycle. We also explore the current mechanistic understanding of how helminth-virus coinfection impacts host immunity and viral pathogenesis. While much attention has been placed on the impact of the gut bacterial microbiome on immunity to infection, we suggest that enteric helminths, as a part of the eukaryotic macrobiome, also represent an important modulator of disease pathogenesis and severity following virus infection.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, United States,Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States,The Andrew M. And Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,CONTACT Larissa B. Thackray Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110, United States
| |
Collapse
|
11
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
12
|
|
13
|
Barbosa MMF, Kanno AI, Barazzone GC, Rodriguez D, Pancakova V, Trentini M, Faquim-Mauro EL, Freitas AP, Khouri MI, Lobo-Silva J, Goncalves VM, Schenkman RPF, Tanizaki MM, Boraschi D, Malley R, Farias LP, Leite LCC. Robust Immune Response Induced by Schistosoma mansoni TSP-2 Antigen Coupled to Bacterial Outer Membrane Vesicles. Int J Nanomedicine 2021; 16:7153-7168. [PMID: 34712047 PMCID: PMC8548026 DOI: 10.2147/ijn.s315786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The use of adjuvants can significantly strengthen a vaccine’s efficacy. We sought to explore the immunization efficacy of bacterial outer membrane vesicles (OMVs) displaying the Schistosoma mansoni antigen, SmTSP-2, through a biotin-rhizavidin coupling approach. The rationale is to exploit the nanoparticulate structure and the adjuvant properties of OMVs to induce a robust antigen-specific immune response, in light of developing new vaccines against S. mansoni. Materials and Methods OMVs were obtained from Neisseria lactamica and conjugated with biotin. The recombinant SmTSP-2 in fusion with the biotin-binding protein rhizavidin (rRzvSmTSP-2) was produced in E. coli and coupled to biotinylated OMVs to generate an OMV complex displaying SmTSP-2 on the membrane surface (OMV:rSmTSP-2). Transmission electron microscopy (TEM) and dynamic light scattering analysis were used to determine particle charge and size. The immunogenicity of the vaccine complex was evaluated in C57BL/6 mice. Results The rRzvSmTSP-2 protein was successfully coupled to biotinylated OMVs and purified by size-exclusion chromatography. The OMV:rSmTSP-2 nanoparticles showed an average size of 200 nm, with zeta potential around – 28 mV. Mouse Bone Marrow Dendritic Cells were activated by the nanoparticles as determined by increased expression of the co-stimulatory molecules CD40 and CD86, and the proinflammatory cytokines (TNF-α, IL-6 and IL-12) or IL-10. Splenocytes of mice immunized with OMV:rSmTSP-2 nanoparticles reacted to an in vitro challenge with SmTSP-2 with an increased production of IL-6, IL-10 and IL-17 and displayed a higher number of CD4+ and CD8+ T lymphocytes expressing IFN-γ, IL-4 and IL-2, compared to mice immunized with the antigen alone. Immunization of mice with OMV:rSmTSP-2 induced a 100-fold increase in specific anti-SmTSP-2 IgG antibody titers, as compared to the group receiving the recombinant rSmTSP-2 protein alone or even co-administered with unconjugated OMV. Conclusion Our results demonstrate that the SmTSP-2 antigen coupled with OMVs is highly immunogenic in mice, supporting the potential effectiveness of this platform for improved antigen delivery in novel vaccine strategies.
Collapse
Affiliation(s)
- Mayra M F Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Giovana C Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Violeta Pancakova
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, 69100, France
| | - Monalisa Trentini
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | | - Amanda P Freitas
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
| | - Mariana I Khouri
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Jessica Lobo-Silva
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Viviane M Goncalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | | - Martha M Tanizaki
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Napoli, Italy.,Stazione Zoologica Anton Dohrn, Napoli, Italy.,Shenzhen Institute of Advanced Technologies (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Leonardo P Farias
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
14
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
15
|
Integrative biology defines novel biomarkers of resistance to strongylid infection in horses. Sci Rep 2021; 11:14278. [PMID: 34253752 PMCID: PMC8275762 DOI: 10.1038/s41598-021-93468-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The widespread failure of anthelmintic drugs against nematodes of veterinary interest requires novel control strategies. Selective treatment of the most susceptible individuals could reduce drug selection pressure but requires appropriate biomarkers of the intrinsic susceptibility potential. To date, this has been missing in livestock species. Here, we selected Welsh ponies with divergent intrinsic susceptibility (measured by their egg excretion levels) to cyathostomin infection and found that their divergence was sustained across a 10-year time window. Using this unique set of individuals, we monitored variations in their blood cell populations, plasma metabolites and faecal microbiota over a grazing season to isolate core differences between their respective responses under worm-free or natural infection conditions. Our analyses identified the concomitant rise in plasma phenylalanine level and faecal Prevotella abundance and the reduction in circulating monocyte counts as biomarkers of the need for drug treatment (egg excretion above 200 eggs/g). This biological signal was replicated in other independent populations. We also unravelled an immunometabolic network encompassing plasma beta-hydroxybutyrate level, short-chain fatty acid producing bacteria and circulating neutrophils that forms the discriminant baseline between susceptible and resistant individuals. Altogether our observations open new perspectives on the susceptibility of equids to strongylid infection and leave scope for both new biomarkers of infection and nutritional intervention.
Collapse
|
16
|
Venestatin from parasitic helminths interferes with receptor for advanced glycation end products (RAGE)-mediated immune responses to promote larval migration. PLoS Pathog 2021; 17:e1009649. [PMID: 34081755 PMCID: PMC8205142 DOI: 10.1371/journal.ppat.1009649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/15/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Parasitic helminths can reside in humans owing to their ability to disrupt host protective immunity. Receptor for advanced glycation end products (RAGE), which is highly expressed in host skin, mediates inflammatory responses by regulating the expression of pro-inflammatory cytokines and endothelial adhesion molecules. In this study, we evaluated the effects of venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic helminth Strongyloides venezuelensis, on RAGE activity and immune responses. Our results demonstrated that venestatin bound to RAGE and downregulated the host immune response. Recombinant venestatin predominantly bound to the RAGE C1 domain in a Ca2+-dependent manner. Recombinant venestatin effectively alleviated RAGE-mediated inflammation, including footpad edema in mice, and pneumonia induced by an exogenous RAGE ligand. Infection experiments using S. venezuelensis larvae and venestatin silencing via RNA interference revealed that endogenous venestatin promoted larval migration from the skin to the lungs in a RAGE-dependent manner. Moreover, endogenous venestatin suppressed macrophage and neutrophil accumulation around larvae. Although the invasion of larvae upregulated the abundance of RAGE ligands in host skin tissues, mRNA expression levels of tumor necrosis factor-α, cyclooxygenase-2, endothelial adhesion molecules vascular cell adhesion protein-1, intracellular adhesion molecule-1, and E-selectin were suppressed by endogenous venestatin. Taken together, our results indicate that venestatin suppressed RAGE-mediated immune responses in host skin induced by helminthic infection, thereby promoting larval migration. The anti-inflammatory mechanism of venestatin may be targeted for the development of anthelminthics and immunosuppressive agents for the treatment of RAGE-mediated inflammatory diseases. Parasitic helminths have evolved smart strategies to thrive in diverse hosts. For example, parasitic helminths secrete various immunomodulators in the host to establish successful tissue migration to their reproductive niche and chronic parasitism. Identification and functional analyses have revealed these immunomodulators may have potential therapeutic effects in the treatment of immune-related diseases. However, few immunomodulators from parasitic helminths have been identified and analyzed to date. In this study, we determined that venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic nematode Strongyloides venezuelensis, bound to receptor for advanced glycation end products (RAGE), a host pro-inflammatory receptor, which downregulated RAGE-mediated inflammatory responses. S. venezuelensis larvae successfully migrated to their niche owing to the anti-inflammatory functions of venestatin. Venestatin could provide a novel therapeutic target for the treatment of RAGE-mediated inflammatory diseases, such as Alzheimer’s disease, rheumatoid arthritis, asthma, ulcerative colitis, and diabetes.
Collapse
|
17
|
Kang SA, Yu HS. Acceleration of Trichinella spiralis worm expulsion by leukotriene B4 receptor binding inhibition. Parasite Immunol 2021; 43:e12843. [PMID: 33977540 DOI: 10.1111/pim.12843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
AIMS Helminth infection typically induces a Th2 inflammatory response that is characterized by eosinophilia, high levels of IgE and mast cells. LTB4 is generated from innate immune cells, such as neutrophils, macrophages and mast cells, in response to a range of stimuli. It mainly acts on myeloid leukocytes, inducing the activation of integrins, adhesion to endothelium walls, and chemotaxis. METHODS AND RESULTS The objective of the present study was to determine the role of the LTB4 receptor in Trichinella spiralis expulsion. We treated mice with the LTB4 receptor antagonist before infection with T. spiralis. We observed that the number of mast cells and worm infection decreased following treatment with the BLT antagonist during the intestinal phase. We also demonstrated that blocking the LTB4 receptor inhibited neutrophil and eosinophil infiltration. CONCLUSIONS Further studies are required to investigate the specific mechanism of mast cell number decrease and worm infection and the in vitro interactions between LTB4 and worm expulsion.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Rep. of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan-si, Rep. of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, Rep. of Korea
| |
Collapse
|
18
|
Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BMJ, Drynan LF, Hodskinson M, Pannell R, King G, Wing M, Easton AJ, Oedekoven CA, Kent DG, Fallon PG, Barlow JL, McKenzie ANJ. Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol 2021; 14:26-37. [PMID: 32457448 PMCID: PMC7790759 DOI: 10.1038/s41385-020-0298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023]
Abstract
Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.
Collapse
Affiliation(s)
- Veera Panova
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, NW1 1AT UK
| | - Mayuri Gogoi
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Noe Rodriguez-Rodriguez
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Meera Sivasubramaniam
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Helen E. Jolin
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Morgan W. D. Heycock
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Jennifer A. Walker
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Batika M. J. Rana
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Lesley F. Drynan
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Michael Hodskinson
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Richard Pannell
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Gareth King
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Mark Wing
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Andrew J. Easton
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | | | - David G. Kent
- Stem Cell Institute, Clifford-Allbutt Building, Hills Road, Cambridge, CB2 0AH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Padraic G. Fallon
- grid.8217.c0000 0004 1936 9705Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jillian L. Barlow
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Andrew N. J. McKenzie
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| |
Collapse
|
19
|
IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog 2020; 16:e1009121. [PMID: 33351862 PMCID: PMC7787685 DOI: 10.1371/journal.ppat.1009121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.
Collapse
|
20
|
Obata-Ninomiya K, Domeier PP, Ziegler SF. Basophils and Eosinophils in Nematode Infections. Front Immunol 2020; 11:583824. [PMID: 33335529 PMCID: PMC7737499 DOI: 10.3389/fimmu.2020.583824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths remain one of the most prolific pathogens in the world. Following infection helminths interact with various epithelial cell surfaces, including skin, lung, and gut. Recent works have shown that epithelial cells produce a series of cytokines such as TSLP, IL-33, and IL-25 that lead to the induction of innate and acquired type 2 immune responses, which we named Type 2 epithelial cytokines. Although basophils and eosinophils are relatively rare granulocytes under normal conditions (0.5% and 5% in peripheral blood, respectively), both are found with increased frequency in type 2 immunity, including allergy and helminth infections. Recent reports showed that basophils and eosinophils not only express effector functions in type 2 immune reactions, but also manipulate the response toward helminths. Furthermore, basophils and eosinophils play non-redundant roles in distinct responses against various nematodes, providing the potential to intervene at different stages of nematode infection. These findings would be helpful to establish vaccination or therapeutic drugs against nematode infections.
Collapse
Affiliation(s)
| | - Phillip P Domeier
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
21
|
Shepherd E, Greiner SP, Russ B, Bowdridge SA. Interleukin-13 induces paralysis of Haemonchus contortus larvae in vitro. Parasite Immunol 2020; 42:e12758. [PMID: 32460352 DOI: 10.1111/pim.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/28/2022]
Abstract
AIMS Interleukin-13 (IL-13) is a Th2-associated cytokine that typically induces gut contractility and mucus secretion to eliminate helminth parasites from the digestive tract. Little evidence exists of IL-13's direct effect on Haemonchus contortus larvae (L3) and thus was the objective of this study. METHODS To test effects of IL-13 on H contortus, L3 were treated with ovine recombinant (r) IL-13 (1 μg/mL); motility and morbidity were assessed. Monocytes isolated from H contortus-resistant St. Croix (STC) and susceptible Suffolk (SUF) sheep were treated with anti-IL-13 blocking antibody to elucidate differences in host immune response. RESULTS rIL-13 treatment reduced L3 speed (27 μm/s) and distance (7.5 μm) compared to untreated L3 (speed: 94 μm/s; distance: 27 μm) (P < .001). Comparison of larval speed to known paralytic levamisole (LEV) revealed no difference between treatments (rIL13: 23 μm/s; LEV 27 μm/s). Additionally, rIL-13 had no effect on larval morbidity. Blocking IL-13 reduced monocyte-driven larval morbidity (0.13 μmol/L ATP) and increased larval motility (88 μm/s; 27 μm) compared to larvae treated with STC-monocytes alone (0.07 μM ATP; 34 μm/s; 8 μm) (P < .05). CONCLUSIONS These data indicate IL-13 has a dual capability paralysing L3 and contributing to monocyte-driven larval morbidity, and also indicate breed differences.
Collapse
Affiliation(s)
- Elizabeth Shepherd
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Scott P Greiner
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA, USA
| | - Brynnan Russ
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Scott A Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Coakley G, Volpe B, Bouchery T, Shah K, Butler A, Geldhof P, Hatherill M, Horsnell WGC, Esser-von Bieren J, Harris NL. Immune serum-activated human macrophages coordinate with eosinophils to immobilize Ascaris suum larvae. Parasite Immunol 2020; 42:e12728. [PMID: 32394439 DOI: 10.1111/pim.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Helminth infection represents a major health problem causing approximately 5 million disability-adjusted life years worldwide. Concerns that repeated anti-helminthic treatment may lead to drug resistance render it important that vaccines are developed but will require increased understanding of the immune-mediated cellular and antibody responses to helminth infection. IL-4 or antibody-activated murine macrophages are known to immobilize parasitic nematode larvae, but few studies have addressed whether this is translatable to human macrophages. In the current study, we investigated the capacity of human macrophages to recognize and attack larval stages of Ascaris suum, a natural porcine parasite that is genetically similar to the human helminth Ascaris lumbricoides. Human macrophages were able to adhere to and trap A suum larvae in the presence of either human or pig serum containing Ascaris-specific antibodies and other factors. Gene expression analysis of serum-activated macrophages revealed that CCL24, a potent eosinophil attractant, was the most upregulated gene following culture with A suum larvae in vitro, and human eosinophils displayed even greater ability to adhere to, and trap, A suum larvae. These data suggest that immune serum-activated macrophages can recruit eosinophils to the site of infection, where they act in concert to immobilize tissue-migrating Ascaris larvae.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Beatrice Volpe
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Tiffany Bouchery
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Kathleen Shah
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mark Hatherill
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Julia Esser-von Bieren
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.,Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
23
|
Evolution and function of interleukin-4 receptor signaling in adaptive immunity and neutrophils. Genes Immun 2020; 21:143-149. [PMID: 32139893 PMCID: PMC7274943 DOI: 10.1038/s41435-020-0095-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
The cytokines interleukin (IL)-4 and IL-13, signaling via the IL-4 receptor (IL-4R), orchestrate type 2 immunity to helminth infections and toxins. Activation of epithelial and myeloid cells, and a transient neutrophils influx initiates type 2 immune responses, which are dominated by basophils, eosinophils, mast cells, B cell immunoglobulin E production, and type 2 T helper and T follicular helper cells. Interestingly, IL-4 and IL-13 can curtail chemotaxis and several effector functions of neutrophils in mice and humans. This inhibitory role of IL-4 and IL-13 probably developed to limit tissue damage by neutrophils during type 2 immunity where a "weep and sweep" response aims at expulsion and decreased fecundity, instead of killing, of macroparasites. Here, we review when IL-4R signaling cytokines appeared during evolution relative to neutrophils and adaptive immunity. Neutrophil-like granular phagocytes were present in invertebrates throughout the bilaterian clade, but we were unable to find data on IL-4, IL-13, or their receptors in invertebrates. Conversely, vertebrates had both adaptive immunity and IL-4, IL-13, and IL-4Rs, suggesting that type 2 cytokines evolved together with adaptive immunity. Further studies are necessary to determine whether IL-4R signaling in neutrophils was established simultaneously with the appearance of adaptive immunity or later.
Collapse
|
24
|
Guo AJ, Wang L, Meng XL, Zhang SH, Sheng ZA, Wei ZK, Luo XN, Huang WY, Zhu XQ, Zhang XC, Cai XP. Newly excysted juveniles of Fasciola gigantica trigger the release of water buffalo neutrophil extracellular traps in vitro. Exp Parasitol 2020; 211:107828. [PMID: 31917163 DOI: 10.1016/j.exppara.2019.107828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/18/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant leukocytes and are among the first line of immune system defense. PMNs can form neutrophil extracellular traps (NETs) in response to some pathogens. The release of NETs plays an important role in trapping and killing invading parasites. However, the effects of NETs on parasitic trematode infections remain unclear. In the present study, water buffalo NET formation, triggered by the newly excysted juveniles (NEJs) of Fasciola gigantica, was visualized by scanning electron microscopy. The major components of the structure of NETs were characterized by immunofluorescence. Viability of flukes incubated with water buffalo PMNs were examined under light microscopy. The results revealed that F. gigantic juveniles triggered PMN-mediated NETs. These NETs were confirmed to comprise the classic characteristics of NETs: DNA, histones, myeloperoxidase and neutrophil elastase. Although NETs were formed in response to viable larvae, the larvae were not killed in vitro. These results suggest that NET formation may serve as a mechanism to hamper the migration of large larvae to facilitate immune cells to kill them. This study demonstrates, for the first time, that parasitic trematode juveniles can trigger NET formation.
Collapse
Affiliation(s)
- Ai-Jiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Xue-Lian Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shao-Hua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zheng-Kai Wei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Nong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xi-Chen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Peng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
25
|
Egholm C, Heeb LEM, Impellizzieri D, Boyman O. The Regulatory Effects of Interleukin-4 Receptor Signaling on Neutrophils in Type 2 Immune Responses. Front Immunol 2019; 10:2507. [PMID: 31708926 PMCID: PMC6821784 DOI: 10.3389/fimmu.2019.02507] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4 (IL-4) receptor (IL-4R) signaling plays a pivotal role in type 2 immune responses. Type 2 immunity ensures several host-protective processes such as defense against helminth parasites and wound repair, however, type 2 immune responses also drive the pathogenesis of allergic diseases. Neutrophil granulocytes (neutrophils) have not traditionally been considered a part of type 2 immunity. While neutrophils might be beneficial in initiating a type 2 immune response, their involvement and activation is rather unwanted at later stages. This is evidenced by examples of type 2 immune responses where increased neutrophil responses are able to enhance immunity, however, at the cost of increased tissue damage. Recent studies have linked the type 2 cytokines IL-4 and IL-13 and their signaling via type I and type II IL-4Rs on neutrophils to inhibition of several neutrophil effector functions. This mechanism directly curtails neutrophil chemotaxis toward potent intermediary chemoattractants, inhibits the formation of neutrophil extracellular traps, and antagonizes the effects of granulocyte colony-stimulating factor on neutrophils. These effects are observed in both mouse and human neutrophils. Thus, we propose for type 2 immune responses that neutrophils are, as in other immune responses, the first non-resident cells to arrive at a site of inflammation or infection, thereby guiding and attracting other innate and adaptive immune cells; however, as soon as the type 2 cytokines IL-4 and IL-13 predominate, neutrophil recruitment, chemotaxis, and effector functions are rapidly shut off by IL-4/IL-13-mediated IL-4R signaling in neutrophils to prevent them from damaging healthy tissues. Insight into this neutrophil checkpoint pathway will help understand regulation of neutrophilic type 2 inflammation and guide the design of targeted therapeutic approaches for modulating neutrophils during inflammation and neutropenia.
Collapse
Affiliation(s)
- Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas E M Heeb
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
George PJ, Hess JA, Jain S, Patton JB, Zhan T, Tricoche N, Zhan B, Bottazzi ME, Hotez PJ, Abraham D, Lustigman S. Antibody responses against the vaccine antigens Ov-103 and Ov-RAL-2 are associated with protective immunity to Onchocerca volvulus infection in both mice and humans. PLoS Negl Trop Dis 2019; 13:e0007730. [PMID: 31525197 PMCID: PMC6762197 DOI: 10.1371/journal.pntd.0007730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/26/2019] [Accepted: 08/25/2019] [Indexed: 11/23/2022] Open
Abstract
Background The current strategy for the elimination of onchocerciasis is based on annual or bi-annual mass drug administration with ivermectin. However, due to several limiting factors there is a growing concern that elimination of onchocerciasis cannot be achieved solely through the current strategy. Additional tools are critically needed including a prophylactic vaccine. Presently Ov-103 and Ov-RAL-2 are the most promising vaccine candidates against an Onchocerca volvulus infection. Methodology/Principal findings Protection induced by immunization of mice with the alum-adjuvanted Ov-103 or Ov-RAL-2 vaccines appeared to be antibody dependent since AID-/- mice that could not mount antigen-specific IgG antibody responses were not protected from an Onchocerca volvulus challenge. To determine a possible association between antigen-specific antibody responses and anti-larvae protective immunity in humans, we analyzed the presence of anti-Ov-103 and anti-Ov-RAL-2 cytophilic antibody responses (IgG1 and IgG3) in individuals classified as putatively immune, and in infected individuals who developed concomitant immunity with age. It was determined that 86% of putatively immune individuals and 95% individuals with concomitant immunity had elevated IgG1 and IgG3 responses to Ov-103 and Ov-RAL-2. Based on the elevated chemokine levels associated with protection in the Ov-103 or Ov-RAL-2 immunized mice, the profile of these chemokines was also analyzed in putatively immune and infected individuals; both groups contained significantly higher levels of KC, IP-10, MCP-1 and MIP-1β in comparison to normal human sera. Moreover, human monospecific anti-Ov-103 antibodies but not anti-Ov-RAL-2 significantly inhibited the molting of third-stage larvae (L3) in vitro by 46% in the presence of naïve human neutrophils, while both anti-Ov-103 and anti-Ov-RAL-2 antibodies significantly inhibited the molting by 70–80% when cultured in the presence of naive human monocytes. Interestingly, inhibition of molting by Ov-103 antibodies and monocytes was only in part dependent on contact with the cells, while inhibition of molting with Ov-RAL-2 antibodies was completely dependent on contact with the monocytes. In comparison, significant levels of parasite killing in Ov-103 and Ov-RAL-2 vaccinated mice only occurred when cells enter the parasite microenvironment. Taken together, antibodies to Ov-103 and Ov-RAL-2 and cells are required for protection in mice as well as for the development of immunity in humans. Conclusions/Significance Alum-adjuvanted Ov-103 and Ov-RAL-2 vaccines have the potential of reducing infection and thus morbidity associated with onchocerciasis in humans. The development of cytophilic antibodies, that function in antibody-dependent cellular cytotoxicity, is essential for a successful prophylactic vaccine against this infection. Onchocerca volvulus is the causative agent of river blindness that infects approximately 17 million people, mostly in Africa. The current strategy for elimination of O. volvulus focuses on controlling transmission through ivermectin-based mass drug administration programs. Due to potential ivermectin resistance, the lack of macrofilaricidal activity by ivermectin, and the prolonged time (>20 years) needed for successful interruption of transmission in endemic areas, additional tools are critically needed including a vaccine against onchocerciasis. Ov-103 and Ov-RAL-2 are presently the most promising vaccine candidates for a prophylactic vaccine. The mechanism of protective immunity induced in mice by the alum-adjuvanted Ov-103 or Ov-RAL-2 vaccines appear to be multifactorial with essential roles for antibodies, chemokines and the specific effector cells they recruit. In this study, we show for the first time that, anti-Ov-103 and anti-Ov-RAL-2 antibodies, chemokines and innate cells also appear to be associated with protective immunity against O. volvulus infection in humans, similar to the vaccine studies observed in the O. volvulus mouse model.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail:
| | - Jessica A. Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sonia Jain
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - John B. Patton
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
27
|
Hrabar J, Trumbić Ž, Bočina I, Bušelić I, Vrbatović A, Mladineo I. Interplay between proinflammatory cytokines, miRNA, and tissue lesions in Anisakis-infected Sprague-Dawley rats. PLoS Negl Trop Dis 2019; 13:e0007397. [PMID: 31091271 PMCID: PMC6538193 DOI: 10.1371/journal.pntd.0007397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/28/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022] Open
Abstract
Background Anisakiasis is an emerging public health problem, caused by Anisakis spp. nematode larvae. Anisakiasis presents as variable and unspecific gastrointestinal and/or allergic clinical symptoms, which accounts for the high rate of misdiagnosed cases. Methodology/Principal findings The aim of this study was to characterize the early cellular (6–72 h p.i.) and molecular (6 h p.i.) immune response and general underlying regulatory mechanism in Anisakis infected rats. Each Sprague-Dawley rat was infected with 10 Anisakis spp. larvae by gastric intubation. Tissues with visible lesions were processed for: i) classic histopathology (HE), immunofluorescence (CD3, iNOS, S100A8/A9), and transmission electron microscopy (TEM); ii) target genes (Il1b, Il6, Il18, Ccl3, Icam1, Mmp9) and microRNA (Rat Immunopathology MIRN-104ZF plate, Quiagen) expression analysis; and iii) global DNA methylation. Histopathology revealed that Anisakis larval migration caused moderate to extensive hemorrhages in submucosal and epimysial/perimysial connective tissue. In stomach and muscle, moderate to abundant mixed inflammatory infiltrate was present, dominated by neutrophils and macrophages, while only mild infiltration was seen in intestine. Lesions were characterized by the presence of CD3+, iNOS+, and S100A8/A9+ cells. The greatest number of iNOS+ and S100A8/A9+ cells was seen in muscle. Il6, Il1b, and Ccl3 showed particularly strong expression in stomach and visceral adipose tissues, but the order of expression differed between tissues. In total, three miRNAs were differentially expressed, two in stomach (miRNA-451 and miRNA-223) and two in intestine (miRNA-451 and miRNA-672). No changes in global DNA methylation were observed in infected tissues relative to controls. Conclusions/Significance Anisakis infection induces strong immune responses in infected rats with marked induction of specific proinflammatory cytokines and miRNA expression. Deciphering the functional role of these cytokines and miRNAs will help in understanding the anisakiasis pathology and controversies surrounding Anisakis infection in humans. Anisakiasis is a zoonotic disease (infection transmitted between animals and humans) contracted by consumption of raw or undercooked seafood contaminated with Anisakis spp. nematode larvae. Anisakiasis usually presents with variable and unspecific gastrointestinal and/or allergic symptoms, which accounts for the high rate of misdiagnosed cases. Due to changes in dietary habits, such as eating raw or undercooked seafood, anisakiasis is considered an emerging public health problem. Despite the increase in number of reported cases worldwide, mechanisms of immune response to this unspecific human pathogen are poorly known. We have shown that in experimentally infected rats, Anisakis larvae cause severe hemorrhages and necrotic changes of affected tissues in the early phase of infections. Neutrophils and macrophages were abundantly present in tissue lesions, while eosinophils, hallmark of helminth infections, were scarcely present. We have also demonstrated particularly strong expression of several inflammatory genes. Moreover, we give for the first-time insight into putative regulatory mechanism mediated via a distinct class of RNA molecules. Our study may provide new opportunities for better understanding of cellular and molecular response to Anisakis spp., aiming at development of more specific therapeutics and alleviation of pathologies associated with Anisakis spp. infection.
Collapse
Affiliation(s)
- Jerko Hrabar
- Laboratory of Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
- * E-mail:
| | - Željka Trumbić
- Department of Marine Studies, University of Split, Split, Croatia
| | - Ivana Bočina
- Faculty of Science, University of Split, Split, Croatia
| | - Ivana Bušelić
- Laboratory of Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| | - Anamarija Vrbatović
- Laboratory of Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| | - Ivona Mladineo
- Laboratory of Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| |
Collapse
|
28
|
Vasquez-Rios G, Pineda-Reyes R, Pineda-Reyes J, Marin R, Ruiz EF, Terashima A. Strongyloides stercoralis hyperinfection syndrome: a deeper understanding of a neglected disease. J Parasit Dis 2019; 43:167-175. [PMID: 31263320 DOI: 10.1007/s12639-019-01090-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
Strongyloides stercoralis hyperinfection syndrome (SHS) is a life-threatening condition that warrants early detection and management. We describe the pathogenesis, organ-specific clinical manifestations, and risk factors associated to this condition. A comprehensive review of the literature was conducted in PubMed, LILACS, EBSCO and SciELO by using the keywords: "hyperinfection syndrome"; "Strongyloides stercoralis"; "disseminated strongyloidiasis"; "systemic strongyloidiasis", "pathogenesis" and "pathophysiology". Relevant articles on this topic were evaluated and included by consensus. Also, a secondary search of the literature was performed. Articles in English and Spanish language were included. SHS has been described in tropical and sub-tropical regions. However, there is growing evidence of cases detected in developed countries favored by increasing migration and the advance in immunosuppressive therapies for oncologic and inflammatory diseases. SHS is characterized by massive multiplication of larvae, typically in immunocompromised hosts. Clinical manifestations vary according to the organ involved and include diarrhea, intestinal bleeding, alveolar hemorrhages, heart failure, jaundice, bacteremia among others. Despite advances in the understanding of this condition, fatality rates are near 90%. Clinicians should consider SHS in the differential diagnosis of acutely ill patients with multiple organ damage and epidemiological risk factors. Adverse outcomes are common, especially with delayed anti-parasitic treatment.
Collapse
Affiliation(s)
- George Vasquez-Rios
- 1Laboratory of Parasitology, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Roberto Pineda-Reyes
- 1Laboratory of Parasitology, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Pineda-Reyes
- 2Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ricardo Marin
- 2Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Eloy F Ruiz
- 1Laboratory of Parasitology, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Angélica Terashima
- 1Laboratory of Parasitology, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,2Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
29
|
Patton JB, Bennuru S, Eberhard ML, Hess JA, Torigian A, Lustigman S, Nutman TB, Abraham D. Development of Onchocerca volvulus in humanized NSG mice and detection of parasite biomarkers in urine and serum. PLoS Negl Trop Dis 2018; 12:e0006977. [PMID: 30540742 PMCID: PMC6306240 DOI: 10.1371/journal.pntd.0006977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/26/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The study of Onchocerca volvulus has been limited by its host range, with only humans and non-human primates shown to be susceptible to the full life cycle infection. Small animal models that support the development of adult parasites have not been identified. METHODOLOGY/PRINCIPAL FINDINGS We hypothesized that highly immunodeficient NSG mice would support the survival and maturation of O. volvulus and alteration of the host microenvironment through the addition of various human cells and tissues would further enhance the level of parasite maturation. NSG mice were humanized with: (1) umbilical cord derived CD34+ stem cells, (2) fetal derived liver, thymus and CD34+ stem cells or (3) primary human skeletal muscle cells. NSG and humanized NSG mice were infected with 100 O. volvulus infective larvae (L3) for 4 to 12 weeks. When necropsies of infected animals were performed, it was observed that parasites survived and developed throughout the infection time course. In each of the different humanized mouse models, worms matured from L3 to advanced fourth stage larvae, with both male and female organ development. In addition, worms increased in length by up to 4-fold. Serum and urine, collected from humanized mice for identification of potential biomarkers of infection, allowed for the identification of 10 O. volvulus-derived proteins found specifically in either the urine or the serum of the humanized O. volvulus-infected NSG mice. CONCLUSIONS/SIGNIFICANCE The newly identified mouse models for onchocerciasis will enable the development of O. volvulus specific biomarkers, screening for new therapeutic approaches and potentially studying the human immune response to infection with O. volvulus.
Collapse
Affiliation(s)
- John B. Patton
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mark L. Eberhard
- Division of Parasitic Diseases and Malaria, CDC, Atlanta, Georgia, United States of America
| | - Jessica A. Hess
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
| | - April Torigian
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta. Biosci Rep 2018; 38:BSR20180687. [PMID: 30341242 PMCID: PMC6265620 DOI: 10.1042/bsr20180687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden.
Collapse
|
31
|
Reitz M, Brunn ML, Voehringer D, Breloer M. Basophils are dispensable for the establishment of protective adaptive immunity against primary and challenge infection with the intestinal helminth parasite Strongyloides ratti. PLoS Negl Trop Dis 2018; 12:e0006992. [PMID: 30496188 PMCID: PMC6289456 DOI: 10.1371/journal.pntd.0006992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/11/2018] [Accepted: 11/12/2018] [Indexed: 01/16/2023] Open
Abstract
Infections with helminth parasites are controlled by a concerted action of innate and adaptive effector cells in the frame of a type 2 immune response. Basophils are innate effector cells that may also contribute to the initiation and amplification of adaptive immune responses. Here, we use constitutively basophil-deficient Mcpt8-Cre mice to analyze the impact of basophils during initiation and execution of the protective type 2 responses to both, a primary infection and a challenge infection of immune mice with the helminth parasite Strongyloides ratti. Basophil numbers expanded during parasite infection in blood and mesenteric lymph nodes. Basophil deficiency significantly elevated intestinal parasite numbers and fecal release of eggs and larvae during a primary infection. However, basophils were neither required for the initiation of a S. ratti-specific cellular and humoral type 2 immune response nor for the efficient protection against a challenge infection. Production of Th2 cytokines, IgG1 and IgE as well as mast cell activation were not reduced in basophil-deficient Mcpt8-Cre mice compared to basophil-competent Mcpt8-WT littermates. In addition, a challenge infection of immune basophil-deficient and WT mice resulted in a comparable reduction of tissue migrating larvae, parasites in the intestine and fecal release of eggs and L1 compared to mice infected for the first time. We have shown previously that S. ratti infection induced expansion of Foxp3+ regulatory T cells that interfered with efficient parasite expulsion. Here we show that depletion of regulatory T cells reduced intestinal parasite burden also in absence of basophils. Thus basophils were not targeted specifically by S. ratti-mediated immune evasive mechanisms. Our collective data rather suggests that basophils are non-redundant innate effector cells during murine Strongyloides infections that contribute to the early control of intestinal parasite burden.
Collapse
Affiliation(s)
- Martina Reitz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
32
|
Inclan-Rico JM, Siracusa MC. First Responders: Innate Immunity to Helminths. Trends Parasitol 2018; 34:861-880. [PMID: 30177466 PMCID: PMC6168350 DOI: 10.1016/j.pt.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Helminth infections represent a significant public health concern resulting in devastating morbidity and economic consequences across the globe. Helminths migrate through mucosal sites causing tissue damage and the induction of type 2 immune responses. Antihelminth protection relies on the mobilization and activation of multiple immune cells, including type 2 innate lymphocytes (ILC2s), basophils, mast cells, macrophages, and hematopoietic stem/progenitor cells. Further, epithelial cells and neurons have been recognized as important regulators of type 2 immunity. Collectively, these pathways stimulate host-protective responses necessary for worm expulsion and the healing of affected tissues. In this review we focus on the innate immune pathways that regulate immunity to helminth parasites and describe how better understanding of these pathways may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
33
|
Graves N, Venu VP, Yipp BG, Petri B, Hirota S, Gilleard J, McKay DM, Lopes F. A Trypsin-Sensitive Proteoglycan from the Tapeworm Hymenolepis diminuta Inhibits Murine Neutrophil Chemotaxis in vitro by Suppressing p38 MAP Kinase Activation. J Innate Immun 2018; 11:136-149. [PMID: 30205385 PMCID: PMC6738252 DOI: 10.1159/000492303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
It has emerged that neutrophils can play important roles in the host response following infection with helminth parasites. Mice infected with the tapeworm, Hymenolepis diminuta, are protected from some inflammatory conditions, accompanied by reduced neutrophil tissue infiltration. Thus, the ability of a phosphate-buffered saline-soluble extract of the worm (H. diminuta extract [HdE]) was tested for (1) its ability to activate murine neutrophils (Ca2+ mobilization, reactive oxygen species (ROS) and cytokine production); and (2) affect neutrophil chemotaxis in vitro to the penta-peptide, WKYMVm, the chemokine, KC, and leukotriene B4. HdE was not cytotoxic to neutrophils, elicited a Ca2+ response and ROS, but not, cytokine (KC, interleukin-10, tumour necrosis factor-α) generation. HdE is not a chemotactic stimulus for murine neutrophils. However, a heat- and trypsin-sensitive, acid-insensitive proteoglycan (sensitive to sodium metaperiodate) in the HdE significantly reduced neutrophil chemotaxis towards WKYMVm or KC, but not LTB4. The latter suggested that the HdE interfered with p38 mitogen-activated protein kinase signalling, which is important in WKYMVm chemotaxis. Corroborating this, immunoblotting revealed reduced phosphorylated p38, and the downstream signal heat-shock protein-27, in protein extracts from HdE + WkYMVm treated cells compared to those exposed to the penta-peptide only. We speculate that HdE can be used to modify the outcome of neutrophilic disease and that purification of the bioactive proteoglycan(s) from the extract could be used as a template to design immunomodulatory drugs targeting neutrophils.
Collapse
Affiliation(s)
- Nicholas Graves
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vivek P Venu
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bryan G Yipp
- Department of Critical Care Medicine, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Björn Petri
- Mouse Phenomics Resource Laboratory, Department of Microbiology, Immunology and Infectious Diseases, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon Hirota
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta,
| | - Fernando Lopes
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Regulation of neutrophils in type 2 immune responses. Curr Opin Immunol 2018; 54:115-122. [PMID: 30015087 DOI: 10.1016/j.coi.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
Abstract
Type 2 immune responses contribute to the resistance to helminths and toxins as well as several physiological processes. Although they usually do not participate in type 2 immune responses, neutrophils have been shown in mice to enhance the anti-helminth response, but they also contribute to increased target tissue damage. Increased pathology and morbidity is also observed in type 2 immune-mediated disorders, such as allergic asthma, when neutrophils become a predominant subset of the infiltrate. How neutrophil recruitment is regulated during type 2 immune responses is now starting to become clear, with recent data showing that signaling via the prototypic type 2 cytokine interleukin-4 receptor mediates direct and indirect inhibitory actions on neutrophils in mice and humans.
Collapse
|
35
|
Batugedara HM, Li J, Chen G, Lu D, Patel JJ, Jang JC, Radecki KC, Burr AC, Lo DD, Dillman AR, Nair MG. Hematopoietic cell-derived RELMα regulates hookworm immunity through effects on macrophages. J Leukoc Biol 2018; 104:855-869. [PMID: 29992625 DOI: 10.1002/jlb.4a0917-369rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Resistin-like molecule α (RELMα) is a highly secreted protein in type 2 (Th2) cytokine-induced inflammation including helminth infection and allergy. In infection with Nippostrongylus brasiliensis (Nb), RELMα dampens Th2 inflammatory responses. RELMα is expressed by immune cells, and by epithelial cells (EC); however, the functional impact of immune versus EC-derived RELMα is unknown. We generated bone marrow (BM) chimeras that were RELMα deficient (RELMα-/ - ) in BM or non BM cells and infected them with Nb. Non BM RELMα-/- chimeras had comparable inflammatory responses and parasite burdens to RELMα+/+ mice. In contrast, both RELMα-/- and BM RELMα-/- mice exhibited increased Nb-induced lung and intestinal inflammation, correlated with elevated Th2 cytokines and Nb killing. CD11c+ lung macrophages were the dominant BM-derived source of RELMα and can mediate Nb killing. Therefore, we employed a macrophage-worm co-culture system to investigate whether RELMα regulates macrophage-mediated Nb killing. Compared to RELMα+ /+ macrophages, RELMα-/- macrophages exhibited increased binding to Nb and functionally impaired Nb development. Supplementation with recombinant RELMα partially reversed this phenotype. Gene expression analysis revealed that RELMα decreased cell adhesion and Fc receptor signaling pathways, which are associated with macrophage-mediated helminth killing. Collectively, these studies demonstrate that BM-derived RELMα is necessary and sufficient to dampen Nb immune responses, and identify that one mechanism of action of RELMα is through inhibiting macrophage recruitment and interaction with Nb. Our findings suggest that RELMα acts as an immune brake that provides mutually beneficial effects for the host and parasite by limiting tissue damage and delaying parasite expulsion.
Collapse
Affiliation(s)
- Hashini M Batugedara
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Gang Chen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Dihong Lu
- Department of Nematology, University of California Riverside, Riverside, California, USA
| | - Jay J Patel
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jessica C Jang
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Abigail C Burr
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, California, USA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| |
Collapse
|
36
|
Turner JD, Pionnier N, Furlong-Silva J, Sjoberg H, Cross S, Halliday A, Guimaraes AF, Cook DAN, Steven A, Van Rooijen N, Allen JE, Jenkins SJ, Taylor MJ. Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia. PLoS Pathog 2018; 14:e1006949. [PMID: 29547639 PMCID: PMC5874077 DOI: 10.1371/journal.ppat.1006949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/28/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection. Helminths parasitize approximately one quarter of the global population. Medically-important helminths, including filariae responsible for elephantiasis and river blindness, are targeted for elimination as a public health problem. Currently there are no vaccines or immunotherapeutics available for filarial worms or other human helminth pathogens. Here we define a cellular mechanism whereby the interlukin-4 dependent activation of tissue macrophages are essential to sustain the recruitment of larvicidal eosinophil granulocytes, leading to immunity against filarial infection at a sterile tissue site of parasitism. This work delineates the relative non-redundant functional roles of both myeloid cell types in ‘type-2’ immunity to helminth infection. The study represents a mechanistic advance in our understanding of how immunity operates against metazoan macroparasites invading sterile tissues and may be used in the rational design of new therapeutics to limit helminth disease.
Collapse
Affiliation(s)
- Joseph D. Turner
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Nicolas Pionnier
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julio Furlong-Silva
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hanna Sjoberg
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen Cross
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alice Halliday
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ana F. Guimaraes
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Darren A. N. Cook
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nico Van Rooijen
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, Netherlands
| | - Judith E. Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Stephen J. Jenkins
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Taylor
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
37
|
Sharma A, Sharma P, Ganga L, Satoeya N, Mishra S, Vishwakarma AL, Srivastava M. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion. Front Immunol 2018; 9:194. [PMID: 29483912 PMCID: PMC5816041 DOI: 10.3389/fimmu.2018.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3) and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs) and polarized M2 MΦs to regulatory MΦs (Mregs) by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.
Collapse
Affiliation(s)
- Aditi Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Pankaj Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Laxmi Ganga
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Neha Satoeya
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Mishra
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility (SAIF), CSIR-Central Drug Research Institute, Lucknow, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
38
|
Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Elevated Systemic Levels of Eosinophil, Neutrophil, and Mast Cell Granular Proteins in Strongyloides Stercoralis Infection that Diminish following Treatment. Front Immunol 2018; 9:207. [PMID: 29479356 PMCID: PMC5811458 DOI: 10.3389/fimmu.2018.00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 01/21/2023] Open
Abstract
Infection with the helminth parasite Strongyloides stercoralis (Ss) is commonly clinically asymptomatic that is often accompanied by peripheral eosinophilia. Granulocytes are activated during helminth infection and can act as immune effector cells. Plasma levels of eosinophil and neutrophil granular proteins convey an indirect measure of granulocyte degranulation and are prominently augmented in numerous helminth-infected patients. In this study, we sought to examine the levels of eosinophil, neutrophil, and mast cell activation-associated granule proteins in asymptomatic Ss infection and to understand their kinetics following anthelmintic therapy. To this end, we measured the plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, neutrophil elastase, myeloperoxidase, neutrophil proteinase-3, mast cell tryptase, leukotriene C4, and mast cell carboxypeptidase-A3 in individuals with asymptomatic Ss infection or without Ss infection [uninfected (UN)]. We also estimated the levels of all of these analytes in infected individuals following definitive treatment of Ss infection. We demonstrated that those infected individuals have significantly enhanced plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, elastase, myeloperoxidase, mast cell tryptase, leukotriene C4, and carboxypeptidase-A3 compared to UN individuals. Following the treatment of Ss infection, each of these granulocyte-associated proteins drops significantly. Our data suggest that eosinophil, neutrophil, and mast cell activation may play a role in the response to Ss infection.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India
| | - Yukthi Bhootra
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India
| | | | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Campbell SM, Knipper JA, Ruckerl D, Finlay CM, Logan N, Minutti CM, Mack M, Jenkins SJ, Taylor MD, Allen JE. Myeloid cell recruitment versus local proliferation differentiates susceptibility from resistance to filarial infection. eLife 2018; 7. [PMID: 29299998 PMCID: PMC5754202 DOI: 10.7554/elife.30947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
Both TH2-dependent helminth killing and suppression of the TH2 effector response have been attributed to macrophages (MΦ) activated by IL-4 (M(IL-4)). To investigate how M(IL-4) contribute to diverse infection outcomes, the MΦ compartment of susceptible BALB/c mice and more resistant C57BL/6 mice was profiled during infection of the pleural cavity with the filarial nematode, Litomosoides sigmodontis. C57BL/6 mice exhibited a profoundly expanded resident MΦ (resMΦ) population, which was gradually replenished from the bone marrow in an age-dependent manner. Infection status did not alter the bone-marrow derived contribution to the resMΦ population, confirming local proliferation as the driver of resMΦ expansion. Significantly less resMΦ expansion was observed in the susceptible BALB/c strain, which instead exhibited an influx of monocytes that assumed an immunosuppressive PD-L2+ phenotype. Inhibition of monocyte recruitment enhanced nematode killing. Thus, the balance of monocytic vs. resident M(IL-4) numbers varies between inbred mouse strains and impacts infection outcome.
Collapse
Affiliation(s)
- Sharon M Campbell
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna A Knipper
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik Ruckerl
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Conor M Finlay
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nicola Logan
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos M Minutti
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew D Taylor
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Nuclear option prevents hyperinfection in the Strongyloides worm war. Proc Natl Acad Sci U S A 2017; 115:9-11. [PMID: 29242212 DOI: 10.1073/pnas.1719538115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
41
|
Methylprednisolone acetate induces, and Δ7-dafachronic acid suppresses, Strongyloides stercoralis hyperinfection in NSG mice. Proc Natl Acad Sci U S A 2017; 115:204-209. [PMID: 29203662 DOI: 10.1073/pnas.1712235114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Strongyloides stercoralis hyperinfection causes high mortality rates in humans, and, while hyperinfection can be induced by immunosuppressive glucocorticoids, the pathogenesis remains unknown. Since immunocompetent mice are resistant to infection with S. stercoralis, we hypothesized that NSG mice, which have a reduced innate immune response and lack adaptive immunity, would be susceptible to the infection and develop hyperinfection. Interestingly, despite the presence of large numbers of adult and first-stage larvae in S. stercoralis-infected NSG mice, no hyperinfection was observed even when the mice were treated with a monoclonal antibody to eliminate residual granulocyte activity. NSG mice were then infected with third-stage larvae and treated for 6 wk with methylprednisolone acetate (MPA), a synthetic glucocorticoid. MPA treatment of infected mice resulted in 50% mortality and caused a significant >10-fold increase in the number of parasitic female worms compared with infected untreated mice. In addition, autoinfective third-stage larvae, which initiate hyperinfection, were found in high numbers in MPA-treated, but not untreated, mice. Remarkably, treatment with Δ7-dafachronic acid, an agonist of the parasite nuclear receptor Ss-DAF-12, significantly reduced the worm burden in MPA-treated mice undergoing hyperinfection with S. stercoralis Overall, this study provides a useful mouse model for S. stercoralis autoinfection and suggests a therapeutic strategy for treating lethal hyperinfection.
Collapse
|
42
|
Henry EK, Inclan-Rico JM, Siracusa MC. Type 2 cytokine responses: regulating immunity to helminth parasites and allergic inflammation. ACTA ACUST UNITED AC 2017; 3:346-359. [PMID: 29399438 DOI: 10.1007/s40495-017-0114-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of Review It is well established that T helper type 2 (TH2) immune responses are necessary to provide protection against helminth parasites but also to promote the detrimental inflammation associated with allergies and asthma. Given the importance of type 2 immunity and inflammation, many studies have focused on better understanding the factors that regulate TH2 cell development and activation. As a result, significant progress has been made in understanding the signaling pathways and molecular events necessary to promote TH2 cell polarization. In addition to the adaptive compartment, emerging studies are better defining the innate immune pathways needed to promote TH2 cell responses. Given the recent and substantial growth of this field, the purpose of this review is to highlight recent studies defining the innate immune events that promote immunity to helminth parasites and allergic inflammation. Recent Findings Emerging studies have begun to elucidate the importance of cytokine alarmins such as thymic stromal lymphopoietin (TSLP), IL-25 (IL-17E) and IL-33 in promoting type 2 immunity and inflammation following helminth challenge or exposure to allergens. Specifically, recent reports have begun to define the complex cellular networks these alarmins activate and their contribution to type 2 immunity and inflammation. Summary Our increased understanding of the pathways that regulate type 2 cytokine-mediated immunity and inflammation have revealed novel therapeutic targets to treat both helminth infections and allergic disease states.
Collapse
Affiliation(s)
- Everett K Henry
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA.,Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Juan M Inclan-Rico
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA.,Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA.,Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
43
|
Abstract
Many major tropical diseases are caused by long-lived helminth parasites that are able to survive by modulation of the host immune system, including the innate compartment of myeloid cells. In particular, dendritic cells and macrophages show markedly altered phenotypes during parasite infections. In addition, many specialized subsets such as eosinophils and basophils expand dramatically in response to these pathogens. The changes in phenotype and function, and their effects on both immunity to infection and reactivity to bystander antigens such as allergens, are discussed.
Collapse
|
44
|
Zhao L, Shao S, Chen Y, Sun X, Sun R, Huang J, Zhan B, Zhu X. Trichinella spiralis Calreticulin Binds Human Complement C1q As an Immune Evasion Strategy. Front Immunol 2017; 8:636. [PMID: 28620388 PMCID: PMC5449505 DOI: 10.3389/fimmu.2017.00636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
As a multicellular parasitic nematode, Trichinella spiralis regulates host immune responses by producing a variety of immunomodulatory molecules to escape from host immune attack, but the mechanisms underlying the immune evasion are not well understood. Here, we identified that T. spiralis calreticulin (Ts-CRT), a Ca2+-binding protein, facilitated T. spiralis immune evasion by interacting with the first component of human classical complement pathway, C1q. In the present study, Ts-CRT was found to be expressed on the surface of different developmental stages of T. spiralis as well as in the secreted products of adult and muscle larval worms. Functional analysis identified that Ts-CRT was able to bind to human C1q, resulting in the inhibition of C1q-initiated complement classical activation pathway reflected by reduced C4/C3 generation and C1q-dependent lysis of antibody-sensitized sheep erythrocytes. Moreover, recombinant Ts-CRT (rTs-CRT) binding to C1q suppressed C1q-induced THP-1-derived macrophages chemotaxis and reduced monocyte–macrophages release of reactive oxygen intermediates (ROIs). Blocking Ts-CRT on the surface of newborn larvae (NBL) of T. spiralis with anti-Ts-CRT antibody increased the C1q-mediated adherence of monocyte–macrophages to larvae and impaired larval infectivity. All of these results suggest that T. spiralis-expressed Ts-CRT plays crucial roles in T. spiralis immune evasion and survival in host mostly by directly binding to host complement C1q, which not only reduces C1q-mediated activation of classical complement pathway but also inhibits the C1q-induced non-complement activation of macrophages.
Collapse
Affiliation(s)
- Limei Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Ran Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Research Centre of Microbiome, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
McCoy CJ, Reaves BJ, Giguère S, Coates R, Rada B, Wolstenholme AJ. Human Leukocytes Kill Brugia malayi Microfilariae Independently of DNA-Based Extracellular Trap Release. PLoS Negl Trop Dis 2017; 11:e0005279. [PMID: 28045905 PMCID: PMC5234842 DOI: 10.1371/journal.pntd.0005279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/13/2017] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Wuchereria bancrofti, Brugia malayi and Brugia timori infect over 100 million people worldwide and are the causative agents of lymphatic filariasis. Some parasite carriers are amicrofilaremic whilst others facilitate mosquito-based disease transmission through blood-circulating microfilariae (Mf). Recent findings, obtained largely from animal model systems, suggest that polymorphonuclear leukocytes (PMNs) contribute to parasitic nematode-directed type 2 immune responses. When exposed to certain pathogens PMNs release extracellular traps (NETs) in the form of chromatin loaded with various antimicrobial molecules and proteases. PRINCIPAL FINDINGS In vitro, PMNs expel large amounts of NETs that capture but do not kill B. malayi Mf. NET morphology was confirmed by fluorescence imaging of worm-NET aggregates labelled with DAPI and antibodies to human neutrophil elastase, myeloperoxidase and citrullinated histone H4. A fluorescent, extracellular DNA release assay was used to quantify and observe Mf induced NETosis over time. Blinded video analyses of PMN-to-worm attachment and worm survival during Mf-leukocyte co-culture demonstrated that DNase treatment eliminates PMN attachment in the absence of serum, autologous serum bolsters both PMN attachment and PMN plus peripheral blood mononuclear cell (PBMC) mediated Mf killing, and serum heat inactivation inhibits both PMN attachment and Mf killing. Despite the effects of heat inactivation, the complement inhibitor compstatin did not impede Mf killing and had little effect on PMN attachment. Both human PMNs and monocytes, but not lymphocytes, are able to kill B. malayi Mf in vitro and NETosis does not significantly contribute to this killing. Leukocytes derived from presumably parasite-naïve U.S. resident donors vary in their ability to kill Mf in vitro, which may reflect the pathological heterogeneity associated with filarial parasitic infections. CONCLUSIONS/SIGNIFICANCE Human innate immune cells are able to recognize, attach to and kill B. malayi microfilariae in an in vitro system. This suggests that, in vivo, the parasites can evade this ability, or that only some human hosts support an infection with circulating Mf.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
| | - Barbara J. Reaves
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
| | - Steeve Giguère
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Ruby Coates
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
46
|
Current progress toward vaccine and passive immunization approaches for Strongyloides spp. Immunol Lett 2016; 180:17-23. [DOI: 10.1016/j.imlet.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 02/02/2023]
|
47
|
Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci Rep 2016; 6:35559. [PMID: 27752109 PMCID: PMC5067710 DOI: 10.1038/srep35559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, induce neutrophilic responses to the human helminth pathogen Onchocerca volvulus. The formation of Neutrophil Extracellular Traps (NETs), has been implicated in anti-microbial defence, but has not been identified in human helminth infection. Here, we demonstrate NETs formation in human onchocerciasis. Extracellular NETs and neutrophils were visualised around O. volvulus in nodules excised from untreated patients but not in nodules from patients treated with the anti-Wolbachia drug, doxycycline. Whole Wolbachia or microspheres coated with a synthetic Wolbachia lipopeptide (WoLP) of the major nematode Wolbachia TLR2/6 ligand, peptidoglycan associated lipoprotein, induced NETosis in human neutrophils in vitro. TLR6 dependency of Wolbachia and WoLP NETosis was demonstrated using purified neutrophils from TLR6 deficient mice. Thus, we demonstrate for the first time that NETosis occurs during natural human helminth infection and demonstrate a mechanism of NETosis induction via Wolbachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6.
Collapse
|
48
|
Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun 2016; 7:12651. [PMID: 27582256 PMCID: PMC5025788 DOI: 10.1038/ncomms12651] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Fat-associated lymphoid clusters (FALC) are inducible structures that support rapid innate-like B-cell immune responses in the serous cavities. Little is known about the physiological cues that activate FALCs in the pleural cavity and more generally the mechanisms controlling B-cell activation in FALCs. Here we show, using separate models of pleural nematode infection with Litomosoides sigmodontis and Altenaria alternata induced acute lung inflammation, that inflammation of the pleural cavity rapidly activates mediastinal and pericardial FALCs. IL-33 produced by FALC stroma is crucial for pleural B1-cell activation and local IgM secretion. However, B1 cells are not the direct target of IL-33, which instead requires IL-5 for activation. Moreover, lung inflammation leads to increased IL-5 production by type 2 cytokine-producing innate lymphoid cells (ILC2) in the FALC. These findings reveal a link between inflammation, IL-33 release by FALC stromal cells, ILC2 activation and pleural B-cell activation in FALCs, resulting in local and antigen-specific IgM production. Fat-associated lymphoid clusters (FALC) in the serous cavities house rapid IgM-producing B1 cells, but how the clusters are activated to respond to infection is unclear. Here the authors show that in response to lung inflammation or pleural nematode infection adipose stromal cell-derived IL-33 activates ILC2s to produce IL-5, thus driving the B1 response in the FALCs.
Collapse
|
49
|
Hess JA, Zhan B, Torigian AR, Patton JB, Petrovsky N, Zhan T, Bottazzi ME, Hotez PJ, Klei TR, Lustigman S, Abraham D. The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice. PLoS Negl Trop Dis 2016; 10:e0004797. [PMID: 27387453 PMCID: PMC4936747 DOI: 10.1371/journal.pntd.0004797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. METHODOLOGY/ PRINCIPAL FINDINGS Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. CONCLUSIONS/SIGNIFICANCE The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans.
Collapse
Affiliation(s)
- Jessica A. Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - April R. Torigian
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - John B. Patton
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders University, Adelaide, Australia
- Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Peter J. Hotez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Thomas R. Klei
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
50
|
Pionnier N, Brotin E, Karadjian G, Hemon P, Gaudin-Nomé F, Vallarino-Lhermitte N, Nieguitsila A, Fercoq F, Aknin ML, Marin-Esteban V, Chollet-Martin S, Schlecht-Louf G, Bachelerie F, Martin C. Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae. PLoS Negl Trop Dis 2016; 10:e0004605. [PMID: 27111140 PMCID: PMC4844152 DOI: 10.1371/journal.pntd.0004605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/12/2016] [Indexed: 01/06/2023] Open
Abstract
Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4+/1013). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4+/1013 mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4+/1013 mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. Filariases are chronic debilitating diseases caused by parasitic nematodes affecting more than 150 million people worldwide. None of the current drugs are selective, neither able to eliminate the parasites nor to prevent new infections once the drug pressure has waned. Therefore, blocking the entry and the migration of the infective larvae (L3) could be an efficient way to control the infection. In the present study we investigated the early interaction between the host and the L. sigmodontis murine filariasis with a focus on the neutrophils in the innate host responses. We uncovered a key role of neutrophils in the control of infection provided by the CXCR4-gain-of-function mice (Cxcr4+/1013) that display a blood neutropenia as well as an accumulation of skin-infiltrating neutrophils. Overall, we reveal that in the early phase of filariasis, i.e. after L3 are delivered into the skin and before they reach their site for reproduction, neutrophils are critical elements of the host innate protective response arsenal. A better understanding of their indirect and/or effector role(s) may provide mechanistic clues to host factors implicated in parasitic nematode entry and potentially lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Emilie Brotin
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Gregory Karadjian
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Patrice Hemon
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
- US31-UMS3679 -Plateforme PLAIMMO, Institut Paris-Saclay d’Innovation Thérapeutique (IPSIT), Inserm, CNRS, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Françoise Gaudin-Nomé
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
- US31-UMS3679 -Plateforme PLAIMMO, Institut Paris-Saclay d’Innovation Thérapeutique (IPSIT), Inserm, CNRS, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Adélaïde Nieguitsila
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Marie-Laure Aknin
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Viviana Marin-Esteban
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Géraldine Schlecht-Louf
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
| | - Françoise Bachelerie
- UMR996—Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart and Châtenay-Malabry, France
- * E-mail: (FB); (CM)
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
- * E-mail: (FB); (CM)
| |
Collapse
|