1
|
Walker RI. Conserved antigens for enteric vaccines. Vaccine 2025; 50:126828. [PMID: 39914256 PMCID: PMC11878282 DOI: 10.1016/j.vaccine.2025.126828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC), Shigella, and Campylobacter have been identified as major causes of diarrheal diseases worldwide. In addition to overt disease and death, they are responsible for stunting in children with the risk of lifelong consequences on health and economic opportunities. All three of these bacterial pathogens, which collectively account for approximately 30 % of the cases of diarrheal diseases, are recognized as antimicrobial resistance (AMR) threats. In spite of the dangers these pathogens represent for both children and adults, there is as yet no licensed vaccine available for any of them. Fortunately, much has been accomplished to identify conserved antigens against each of these pathogens so that now relatively simple vaccines have the potential to be developed into multi-pathogen vaccines which could have a major impact on reduction of diarrheal diseases. Conserved antigens may be used even more efficiently if consolidated and expressed on a cellular vector or as part of a conjugate vaccine. A new mucosal adjuvant, double mutant heat-labile toxin (dmLT), has been shown to not only be among the conserved antigens against ETEC, but to also have properties which drive robust mucosal and systemic immune responses for antigens given orally or intramuscularly. Conserved antigens and the strategies for their use such as co-administration with dmLT will be presented in this review.
Collapse
Affiliation(s)
- Richard I Walker
- PATH, 455 Massachusetts Ave, Suite 1000, Washington, DC, 20001-2621, USA.
| |
Collapse
|
2
|
Guezala MC, Schilling MA. One Health Networks for Infectious Diseases Surveillance and Pandemic Preparedness in Central and South America. J Infect Dis 2025; 231:S80-S85. [PMID: 39928381 DOI: 10.1093/infdis/jiae571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
The SARS-CoV-2 2019 pandemic prompted the emergence of collaborative initiatives within South America and the Caribbean, to tackle common challenges. Many initiatives included local government, international entities, military, academia, and research institutions, united to face the challenges brought by the pandemic. Some collaborations were new, but most were built on top of existing networks developed to prevent and control challenges like zoonotic diseases. In the last 40 years, the U.S. Naval Medical Research Unit (NAMRU) SOUTH has helped ensure the readiness and health of U.S. service members, Peruvian partners, and civilian population through research, surveillance, and global health, covering One Health interconnectedness of human, animal, and environmental health to address zoonotic diseases, antimicrobial resistance, and vector-borne diseases. This article puts together the different communications, data sharing, and initiatives developed throughout South America towards One Health surveillance, focusing on zoonotic pathogens, and to describe the best practices for these networks.
Collapse
Affiliation(s)
- Maria Claudia Guezala
- Virology Research and Development Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Megan A Schilling
- Virology Research and Development Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| |
Collapse
|
3
|
Gaspar C, Rios P, Moeller TD. Landscape of Bacterial Enteric Disease and Traveler´s Diarrhea in South America. J Infect Dis 2025; 231:S10-S18. [PMID: 39928383 DOI: 10.1093/infdis/jiae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Diarrheal disease is a global public health threat. Cases of enteric disease caused by bacterial enteropathogens result in a significant health burden and can lead to antimicrobial resistance patterns that increase and evolve over time and geography, posing serious health challenges for local populations as well as civilian travelers and military personnel deployed to endemic regions. This review describes the prevalence of the most common bacterial agents of diarrheal disease in South America, as well as the distribution patterns of antibiotic resistance and predominant strains that are present in the region. Furthermore, the development of relevant prevention and treatment strategies are described, and United States Naval Medical Research Unit SOUTH disease surveillance and enteric disease research efforts in this regional context are highlighted.
Collapse
Affiliation(s)
- Carlos Gaspar
- Vysnova Partners LLC - Global Advisory & Management Services (GAMS), Alexandria, Virginia, USA
| | - Paul Rios
- Bacteriology Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Tyler D Moeller
- Bacteriology Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| |
Collapse
|
4
|
Gutiérrez RL, Porter CK, Harro C, Talaat K, Riddle MS, DeNearing B, Brubaker J, Maciel M, Laird RM, Poole S, Chakraborty S, Maier N, Sack DA, Savarino SJ. Efficacy Evaluation of an Intradermally Delivered Enterotoxigenic Escherichia coli CF Antigen I Fimbrial Tip Adhesin Vaccine Coadministered with Heat-Labile Enterotoxin with LT(R192G) against Experimental Challenge with Enterotoxigenic E. coli H10407 in Healthy Adult Volunteers. Microorganisms 2024; 12:288. [PMID: 38399692 PMCID: PMC10892241 DOI: 10.3390/microorganisms12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Enterotoxigenic E. coli (ETEC) is a principal cause of diarrhea in travelers, deployed military personnel, and children living in low to middle-income countries. ETEC expresses a variety of virulence factors including colonization factors (CF) that facilitate adherence to the intestinal mucosa. We assessed the protective efficacy of a tip-localized subunit of CF antigen I (CFA/I), CfaE, delivered intradermally with the mutant E. coli heat-labile enterotoxin, LTR192G, in a controlled human infection model (CHIM). METHODS Three cohorts of healthy adult subjects were enrolled and given three doses of 25 μg CfaE + 100 ng LTR192G vaccine intradermally at 3-week intervals. Approximately 28 days after the last vaccination, vaccinated and unvaccinated subjects were admitted as inpatients and challenged with approximately 2 × 107 cfu of CFA/I+ ETEC strain H10407 following an overnight fast. Subjects were assessed for moderate-to-severe diarrhea for 5 days post-challenge. RESULTS A total of 52 volunteers received all three vaccinations; 41 vaccinated and 43 unvaccinated subjects were challenged and assessed for moderate-to-severe diarrhea. Naïve attack rates varied from 45.5% to 64.7% across the cohorts yielding an overall efficacy estimate of 27.8% (95% confidence intervals: -7.5-51.6%). In addition to reducing moderate-severe diarrhea rates, the vaccine significantly reduced loose stool output and overall ETEC disease severity. CONCLUSIONS This is the first study to demonstrate protection against ETEC challenge after intradermal vaccination with an ETEC adhesin. Further examination of the challenge methodology is necessary to address the variability in naïve attack rate observed among the three cohorts in the present study.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Clayton Harro
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Kawsar Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Barbara DeNearing
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Jessica Brubaker
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Steven Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Subra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | | | - David A. Sack
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| |
Collapse
|
5
|
Clarkson KA, Porter CK, Talaat KR, Kapulu MC, Chen WH, Frenck RW, Bourgeois AL, Kaminski RW, Martin LB. Shigella-Controlled Human Infection Models: Current and Future Perspectives. Curr Top Microbiol Immunol 2024; 445:257-313. [PMID: 35616717 PMCID: PMC7616482 DOI: 10.1007/82_2021_248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.
Collapse
Affiliation(s)
- Kristen A Clarkson
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway Street Hampton House, Baltimore, MD, 21205, USA
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi County Hospital, Off Bofa Road, Kilifi, 80108, Kenya
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Robert W Frenck
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - A Louis Bourgeois
- PATH Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
6
|
Islam D, Ruamsap N, Imerbsin R, Khanijou P, Gonwong S, Wegner MD, McVeigh A, Poly FM, Crawford JM, Swierczewski BE, Kaminski RW, Laird RM. Bioactivity and efficacy of a hyperimmune bovine colostrum product- Travelan, against shigellosis in a non-Human primate model (Macaca mulatta). PLoS One 2023; 18:e0294021. [PMID: 38091314 PMCID: PMC10718440 DOI: 10.1371/journal.pone.0294021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Infectious diarrhea is a World Health Organization public health priority area due to the lack of effective vaccines and an accelerating global antimicrobial resistance crisis. New strategies are urgently needed such as immunoprophylactic for prevention of diarrheal diseases. Hyperimmune bovine colostrum (HBC) is an established and effective prophylactic for infectious diarrhea. The commercial HBC product, Travelan® (Immuron Ltd, Australia) targets multiple strains of enterotoxigenic Escherichia coli (ETEC) is highly effective in preventing diarrhea in human clinical studies. Although Travelan® targets ETEC, preliminary studies suggested cross-reactivity with other Gram-negative enteric pathogens including Shigella and Salmonella species. For this study we selected an invasive diarrheal/dysentery-causing enteric pathogen, Shigella, to evaluate the effectiveness of Travelan®, both in vitro and in vivo. Here we demonstrate broad cross-reactivity of Travelan® with all four Shigella spp. (S. flexneri, S. sonnei, S. dysenteriae and S. boydii) and important virulence factor Shigella antigens. Naïve juvenile rhesus macaques (NJRM) were randomized, 8 dosed with Travelan® and 4 with a placebo intragastrically twice daily over 6 days. All NJRM were challenged with S. flexneri 2a strain 2457T on the 4th day of treatment and monitored for diarrheal symptoms. All placebo-treated NJRM displayed acute dysentery symptoms within 24-36 hours of challenge. Two Travelan®-treated NJRM displayed dysentery symptoms and six animals remained healthy and symptom-free post challenge; resulting in 75% efficacy of prevention of shigellosis (p = 0.014). These results strongly indicate that Travelan® is functionally cross-reactive and an effective prophylactic for shigellosis. This has positive implications for the prophylactic use of Travelan® for protection against both ETEC and Shigella spp. diarrheal infections. Future refinement and expansion of pathogens recognized by HBC including Travelan® could revolutionize current management of gastrointestinal infections and outbreaks in travelers' including military, peacekeepers, humanitarian workers and in populations living in endemic regions of the world.
Collapse
Affiliation(s)
- Dilara Islam
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Rawiwan Imerbsin
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Patchariya Khanijou
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Siriphan Gonwong
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Matthew D. Wegner
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Annette McVeigh
- Henry M. Jackson Foundation for Military Medicine (HJF), Bethesda, Maryland, United States of America
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Frédéric M. Poly
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - John M. Crawford
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Brett E. Swierczewski
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Robert W. Kaminski
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
| | - Renee M. Laird
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
| |
Collapse
|
7
|
Zhou S, Yu KOA, Mabrouk MT, Jahagirdar D, Huang WC, Guerra JA, He X, Ortega J, Poole ST, Hall ER, Gomez-Duarte OG, Maciel M, Lovell JF. Antibody induction in mice by liposome-displayed recombinant enterotoxigenic Escherichia coli (ETEC) colonization antigens. Biomed J 2023; 46:100588. [PMID: 36925108 PMCID: PMC10711177 DOI: 10.1016/j.bj.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Karl O A Yu
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Julio A Guerra
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Steven T Poole
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Eric R Hall
- Naval Medical Research Center, Silver Spring, MD, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Milton Maciel
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Department of Microbiology and Immunology, Uniformed Services University Health System, Bethesda, MD, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
8
|
Khalil I, Anderson JD, Bagamian KH, Baqar S, Giersing B, Hausdorff WP, Marshall C, Porter CK, Walker RI, Bourgeois AL. Vaccine value profile for enterotoxigenic Escherichia coli (ETEC). Vaccine 2023; 41 Suppl 2:S95-S113. [PMID: 37951695 DOI: 10.1016/j.vaccine.2023.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/28/2022] [Accepted: 02/05/2023] [Indexed: 11/14/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the leading bacterial causes of diarrhoea, especially among children in low-resource settings, and travellers and military personnel from high-income countries. WHO's primary strategic goal for ETEC vaccine development is to develop a safe, effective, and affordable ETEC vaccine that reduces mortality and morbidity due to moderate-to-severe diarrhoeal disease in infants and children under 5 years of age in LMICs, as well as the long-term negative health impact on infant physical and cognitive development resulting from infection with this enteric pathogen. An effective ETEC vaccine will also likely reduce the need for antibiotic treatment and help limit the further emergence of antimicrobial resistance bacterial pathogens. The lead ETEC vaccine candidate, ETVAX, has shown field efficacy in travellers and has moved into field efficacy testing in LMIC infants and children. A Phase 3 efficacy study in LMIC infants is projected to start in 2024 and plans for a Phase 3 trial in travellers are under discussion with the U.S. FDA. Licensing for both travel and LMIC indications is projected to be feasible in the next 5-8 years. Given increasing recognition of its negative impact on child health and development in LMICs and predominance as the leading etiology of travellers' diarrhoea (TD), a standalone vaccine for ETEC is more cost-effective than vaccines targeting other TD pathogens, and a viable commercial market also exists. In contrast, combination of an ETEC vaccine with other vaccines for childhood pathogens in LMICs would maximize protection in a more cost-effective manner than a series of stand-alone vaccines. This 'Vaccine Value Profile' (VVP) for ETEC is intended to provide a high-level, holistic assessment of available data to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the ETEC VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - John D Anderson
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Office of Health Affairs, West Virginia University, Morgantown, WV 26505, USA
| | - Karoun H Bagamian
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL 32603, USA
| | - Shahida Baqar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Birgitte Giersing
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| | - William P Hausdorff
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA; Faculty of Medicine, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Caroline Marshall
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| | - Chad K Porter
- Directorate for DoD Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD 20190, USA
| | - Richard I Walker
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA
| | - A Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA
| |
Collapse
|
9
|
Gutiérrez RL, Riddle MS, Porter CK, Maciel M, Poole ST, Laird RM, Lane M, Turiansky GW, Jarell A, Savarino SJ. A First in Human Clinical Trial Assessing the Safety and Immunogenicity of Two Intradermally Delivered Enterotoxigenic Escherichia coli CFA/I Fimbrial Tip Adhesin Antigens with and without Heat-Labile Enterotoxin with Mutation LT(R192G). Microorganisms 2023; 11:2689. [PMID: 38004700 PMCID: PMC10672875 DOI: 10.3390/microorganisms11112689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Enterotoxigenic E. coli (ETEC) is a leading cause of diarrhea in travelers as well as for children living in low- to middle-income countries. ETEC adhere to intestinal epithelium via colonization factors (CFs). CFA/I, a common CF, is composed of a polymeric stalk and a tip-localized minor adhesive subunit, CfaE. Vaccine delivery by the transcutaneous immunization of dscCfaE was safe but was poorly immunogenic in a phase 1 trial when administered to volunteers with LTR(192G) and mLT. To potentially enhance the immunogenicity of CfaE while still delivering via a cutaneous route, we evaluated the safety and immunogenicity of two CfaE constructs administered intradermally (ID) with or without mLT. METHODS CfaE was evaluated as a donor strand-complemented construct (dscCfaE) and as a chimeric construct (Chimera) in which dscCfaE replaces the A1 domain of the cholera toxin A subunit and assembles non-covalently with the pentamer of heat-labile toxin B (LTB). Subjects received three ID vaccinations three weeks apart with either dscCfaE (1, 5, and 25 µg) or Chimera (2.6 and 12.9 µg) with and without 0.1 µg of mLT. Subjects were monitored for local and systemic adverse events. Immunogenicity was evaluated by serum and antibody-secreting cell (ASC) responses. RESULTS The vaccine was well-tolerated with predominantly mild and moderate local vaccine site reactions characterized by erythema, induration and post-inflammatory hyperpigmentation. High rates of serologic and ASC responses were seen across study groups with the most robust responses observed in subjects receiving 25 µg of dscCfaE with 0.1 mcg of LT(R192G). CONCLUSION Both ETEC adhesin vaccine prototypes were safe and immunogenic when co-administered with mLT by the ID route. The observed immune responses induced with the high dose of dscCfaE and mLT warrant further assessment in a controlled human infection model.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Steven T. Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Michelle Lane
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - George W. Turiansky
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Abel Jarell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
11
|
Gozalo AS, Lambert LE, Zerfas PM, Elkins WR. Detection of early myocardial cell death in owl monkeys (Aotus nancymai) using complement component C9 immunohistochemistry in formalin-fixed paraffin-embedded heart tissues: A retrospective study. J Med Primatol 2021; 51:93-100. [PMID: 34971004 DOI: 10.1111/jmp.12567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/20/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Owl monkeys are commonly used in biomedical research which is affected by the high incidence of cardiomyopathy in this species. Occasionally, owl monkeys with no clinical signs of heart disease are found dead and at necropsy show no, or very mild, cardiomyopathy. A possible explanation for sudden death is acute myocardial infarction; however, early myocardial changes may be difficult to assess by conventional stains and light microscopy. METHODS Complement component C9 immunohistochemistry was performed in paraffin-embedded heart tissue samples from owl monkeys who died suddenly, or were euthanized due to sickness, to determine whether these animals suffered from acute myocardial infarcts. RESULTS AND CONCLUSION C9 deposits were found in the myocardium of 19 out of 20 (95%) animals. The findings in this study suggest owl monkeys suffer from acute myocardial infarcts, and complement component C9 immunohistochemistry may be a useful diagnostic tool.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia M Zerfas
- Pathology Service, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Lee T, Gutiérrez RL, Maciel M, Poole S, Testa KJ, Trop S, Duplessis C, Lane A, Riddle MS, Hamer M, Alcala A, Prouty M, Maier N, Erdem R, Louis Bourgeois A, Porter CK. Safety and immunogenicity of intramuscularly administered CS6 subunit vaccine with a modified heat-labile enterotoxin from enterotoxigenic Escherichia coli. Vaccine 2021; 39:5548-5556. [PMID: 34419306 PMCID: PMC8461560 DOI: 10.1016/j.vaccine.2021.08.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Enterotoxigenic Escherichia coli (ETEC) is a common cause of infectious diarrhoea and a leading cause of morbidity and mortality in children living in resource-limited settings. It is also the leading cause of travellers' diarrhoea among civilian and military travellers. Its dual importance in global public health and travel medicine highlights the need for an effective vaccine. ETEC express colonization factors (CFs) that mediate adherence to the small intestine. An epidemiologically prevalent CF is coli surface antigen 6 (CS6). We assessed the safety and immunogenicity of a CS6-targeted candidate vaccine, CssBA, co-administered intramuscularly with the double-mutant heat-labile enterotoxin, dmLT [LT(R192G/L211A)]. METHODS This was an open-label trial. Fifty subjects received three intramuscular injections (Days 1, 22 and 43) of CssBA alone (5 µg), dmLT alone (0.1 µg) or CssBA (5, 15, 45 µg) + dmLT (0.1 and 0.5 µg). Subjects were actively monitored for adverse events for 28 days following the third vaccination. Antibody responses (IgG and IgA) were characterized in the serum and from lymphocyte supernatants (ALS) to CS6 and the native ETEC heat labile enterotoxin, LT. RESULTS Across all dose cohorts, the vaccine was safe and well-tolerated with no vaccine-related severe or serious adverse events. Among vaccine-related adverse events, a majority (98%) were mild with 79% being short-lived vaccine site reactions. Robust antibody responses were induced in a dose-dependent manner with a clear dmLT adjuvant effect. Response rates in subjects receiving 45 µg CssBA and 0.5 µg dmLT ranged from 50 to 100% across assays. CONCLUSION This is the first study to demonstrate the safety and immunogenicity of CssBA and/or dmLT administered intramuscularly. Co-administration of the two components induced robust immune responses to CS6 and LT, paving the way for future studies to evaluate the efficacy of this vaccine target and development of a multivalent, subunit ETEC vaccine.
Collapse
Affiliation(s)
- Tida Lee
- Enteric Diseases Department, Naval Medical Research Center, United States
| | - Ramiro L Gutiérrez
- Enteric Diseases Department, Naval Medical Research Center, United States
| | - Milton Maciel
- Enteric Diseases Department, Naval Medical Research Center, United States; Henry M. Jackson Foundation, United States
| | - Steven Poole
- Enteric Diseases Department, Naval Medical Research Center, United States; Henry M. Jackson Foundation, United States
| | - Kayla J Testa
- Enteric Diseases Department, Naval Medical Research Center, United States; Henry M. Jackson Foundation, United States
| | - Stefanie Trop
- Enteric Diseases Department, Naval Medical Research Center, United States; Henry M. Jackson Foundation, United States
| | | | - Alison Lane
- Uniformed Services University, United States
| | | | - Melinda Hamer
- Walter Reed Army Institute of Research, United States; Uniformed Services University, United States
| | - Ashley Alcala
- Enteric Diseases Department, Naval Medical Research Center, United States; Henry M. Jackson Foundation, United States
| | - Michael Prouty
- Enteric Diseases Department, Naval Medical Research Center, United States
| | | | | | | | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, United States.
| |
Collapse
|
13
|
Liu Y, Maciel M, O’Dowd A, Poole ST, Rollenhagen JE, Etobayeva IV, Savarino SJ. Development and Comparison of a Panel of Modified CS17 Fimbrial Tip Adhesin Proteins as Components for an Adhesin-Based Vaccine against Enterotoxigenic Escherichia coli. Microorganisms 2021; 9:microorganisms9081646. [PMID: 34442726 PMCID: PMC8401227 DOI: 10.3390/microorganisms9081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea in travelers and children in resource-limited countries. ETEC colonization factors, fimbrial tip adhesins and enterotoxins are key virulence factors, and thus have been studied as vaccine candidates. Some prevalent colonization factors, including CFA/I and CS17, belong to the class 5 family. We previously found that passive oral administration of hyperimmune bovine colostral IgG (bIgG) raised against dscCfaE (donor strand complemented CFA/I tip adhesin) protected volunteers against CFA/I+ ETEC challenge, while anti-dscCsbD bIgG (CS17 tip adhesin) did not confer protection. These findings led us to develop and optimize a panel of alternative CsbD-based vaccine candidates based on allele matching and in silico protein engineering. Physicochemical characterizations revealed that an optimized vaccine candidate dscCsbDLSN139(P218A/G3) had the greatest thermal stability among the six tested dscCsbD adhesins, whereas the overall secondary structures and solubility of these adhesins had no obvious differences. Importantly, dscCsbDLSN139(P218A/G3) elicited significantly higher CS17+ ETEC hemagglutination inhibition titers in sera from mice intranasally immunized with the panel of dscCsbD adhesins, while no significant difference was observed among heterologous neutralizing titers. Our results strongly advocate for the incorporation of these modifications into a new generation of CsbD-based ETEC vaccine candidates.
Collapse
Affiliation(s)
- Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
- Correspondence:
| | - Milton Maciel
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Aisling O’Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Steven T. Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Julianne E. Rollenhagen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (M.M.J.); (A.O.); (S.T.P.); (J.E.R.)
| | - Irina V. Etobayeva
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (I.V.E.); (S.J.S.)
| | - Stephen J. Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (I.V.E.); (S.J.S.)
| |
Collapse
|
14
|
Khalil I, Walker R, Porter CK, Muhib F, Chilengi R, Cravioto A, Guerrant R, Svennerholm AM, Qadri F, Baqar S, Kosek M, Kang G, Lanata C, Armah G, Wierzba T, Hasso-Agopsowicz M, Giersing B, Louis Bourgeois A. Enterotoxigenic Escherichia coli (ETEC) vaccines: Priority activities to enable product development, licensure, and global access. Vaccine 2021; 39:4266-4277. [PMID: 33965254 PMCID: PMC8273896 DOI: 10.1016/j.vaccine.2021.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023]
Abstract
Diarrhoeal disease attributable to enterotoxigenic Escherichia coli (ETEC) causes substantial morbidity and mortality predominantly in paediatric populations in low- and middle-income countries. In addition to acute illness, there is an increasing appreciation of the long-term consequences of enteric infections, including ETEC, on childhood growth and development. Provision of potable water and sanitation and appropriate clinical care for acute illness are critical to reduce the ETEC burden. However, these interventions are not always practical and may not achieve equitable and sustainable coverage. Vaccination may be the most cost-effective and equitable means of primary prevention; however, additional data are needed to accelerate the investment and guide the decision-making process for ETEC vaccines. First, to understand and quantify the ETEC disease burden, additional data are needed on the association between ETEC infection and physical and cognitive stunting as well as delayed educational attainment. Furthermore, the role of inappropriate or inadequate antibiotic treatment of ETEC-attributable diarrhoea may contribute to the development of antimicrobial resistance (AMR) and needs further elucidation. An ETEC vaccine that mitigates acute diarrhoeal illness and minimizes the longer-term disease manifestations could have significant public health impact and be a cost-effective countermeasure. Herein we review the ETEC vaccine pipeline, led by candidates compatible with the general parameters of the Preferred Product Characteristics (PPC) recently developed by the World Health Organization. Additionally, we have developed an ETEC Vaccine Development Strategy to provide a framework to underpin priority activities for researchers, funders and vaccine manufacturers, with the goal of addressing globally unmet data needs in the areas of research, product development, and policy, as well as commercialization and delivery. The strategy also aims to guide prioritization and co-ordination of the priority activities needed to minimize the timeline to licensure and use of ETEC vaccines, especially in in low- and middle-income countries, where they are most urgently needed.
Collapse
Affiliation(s)
| | | | | | | | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Zambia
| | | | | | | | | | - Shahida Baqar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | | | | | | | - George Armah
- Noguchi Memorial Institute for Medical Research, Ghana
| | | | | | | | | |
Collapse
|
15
|
Knapp MPA, Johnson TA, Ritter MK, Rainer RO, Fiester SE, Grier JT, Connell TD, Arce S. Immunomodulatory regulation by heat-labile enterotoxins and potential therapeutic applications. Expert Rev Vaccines 2021; 20:975-987. [PMID: 34148503 DOI: 10.1080/14760584.2021.1945449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Heat-labile enterotoxins (HLTs) and their cognate ganglioside receptors have been extensively studied because of their therapeutic potential. Gangliosides play arole in modulating effector cells of the immune system, and HLTs provide a novel means for stimulating ganglioside-mediated responses in immunocompetent cells.Areas covered: To evaluate the mechanisms of HLT adjuvanticity, a systemic literature review was performed using relevant keyword searches of the PubMed database, accessing literature published as recently as late 2020. Since HLTs bind to specific ganglioside receptors on immunocytes, they can act as regulators via stimulation or tapering of immune responses from associated signal transduction events. Binding of HLTs to gangliosides can increase proliferation of T-cells, increase cytokine release, augment mucosal/systemic antibody responses, and increase the effectiveness of antigen presenting cells. Subunit components also independently stimulate certain immune responses. Mutant forms of HLTs have potent immunomodulatory effects without the toxicity associated with holotoxins.Expert opinion: HLTs have been the subject of abundant research exploring their use as vaccine adjuvants, in the treatment of autoimmune conditions, in cancer therapy, and for weight loss, proving that these molecules are promising tools in the field of immunotherapy.
Collapse
Affiliation(s)
- Mary-Peyton A Knapp
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Taylor A Johnson
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Madison K Ritter
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Robert O Rainer
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Steven E Fiester
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Jennifer T Grier
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Terry D Connell
- University of Buffalo, Jacobs School of Medicine and Biomedical Sciences and the Witebsky Center of Microbial Pathogenesis and Immunology, Buffalo, NY, USA
| | - Sergio Arce
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Cancer Institute, Greenville, SC, USA
| |
Collapse
|
16
|
Walker R, Kaminski RW, Porter C, Choy RKM, White JA, Fleckenstein JM, Cassels F, Bourgeois L. Vaccines for Protecting Infants from Bacterial Causes of Diarrheal Disease. Microorganisms 2021; 9:1382. [PMID: 34202102 PMCID: PMC8303436 DOI: 10.3390/microorganisms9071382] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
The global diarrheal disease burden for Shigella, enterotoxigenic Escherichia coli (ETEC), and Campylobacter is estimated to be 88M, 75M, and 75M cases annually, respectively. A vaccine against this target trio of enteric pathogens could address about one-third of diarrhea cases in children. All three of these pathogens contribute to growth stunting and have demonstrated increasing resistance to antimicrobial agents. Several combinations of antigens are now recognized that could be effective for inducing protective immunity against each of the three target pathogens in a single vaccine for oral administration or parenteral injection. The vaccine combinations proposed here would result in a final product consistent with the World Health Organization's (WHO) preferred product characteristics for ETEC and Shigella vaccines, and improve the vaccine prospects for support from Gavi, the Vaccine Alliance, and widespread uptake by low- and middle-income countries' (LMIC) public health stakeholders. Broadly protective antigens will enable multi-pathogen vaccines to be efficiently developed and cost-effective. This review describes how emerging discoveries for each pathogen component of the target trio could be used to make vaccines, which could help reduce a major cause of poor health, reduced cognitive development, lost economic productivity, and poverty in many parts of the world.
Collapse
Affiliation(s)
- Richard Walker
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Walter Reed Institute of Research, Silver Spring, MD 20910, USA;
| | - Chad Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - Robert K. M. Choy
- Center for Vaccine Innovation and Access, PATH, San Francisco, CA 94108, USA;
| | - Jessica A. White
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - James M. Fleckenstein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Medicine Service, Saint Louis VA Health Care System, St. Louis, MO 63106, USA
| | - Fred Cassels
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| |
Collapse
|
17
|
Abd El Ghany M, Barquist L, Clare S, Brandt C, Mayho M, Joffre´ E, Sjöling Å, Turner AK, Klena JD, Kingsley RA, Hill-Cawthorne GA, Dougan G, Pickard D. Functional analysis of colonization factor antigen I positive enterotoxigenic Escherichia coli identifies genes implicated in survival in water and host colonization. Microb Genom 2021; 7:000554. [PMID: 34110281 PMCID: PMC8461466 DOI: 10.1099/mgen.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expressing the colonization pili CFA/I are common causes of diarrhoeal infections in humans. Here, we use a combination of transposon mutagenesis and transcriptomic analysis to identify genes and pathways that contribute to ETEC persistence in water environments and colonization of a mammalian host. ETEC persisting in water exhibit a distinct RNA expression profile from those growing in richer media. Multiple pathways were identified that contribute to water survival, including lipopolysaccharide biosynthesis and stress response regulons. The analysis also indicated that ETEC growing in vivo in mice encounter a bottleneck driving down the diversity of colonizing ETEC populations.
Collapse
Affiliation(s)
- Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Simon Clare
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Cordelia Brandt
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Enrique Joffre´
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A. Keith Turner
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - John D. Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert A. Kingsley
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Gordon Dougan
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Derek Pickard
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Establishment and Validation of Pathogenic CS17 + and CS19 + Enterotoxigenic Escherichia coli Challenge Models in the New World Primate Aotus nancymaae. Infect Immun 2021; 89:IAI.00479-20. [PMID: 33288648 DOI: 10.1128/iai.00479-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrheal illness in the military, travelers, and children living in low- to middle-income countries. Increased antibiotic resistance, the absence of a licensed vaccine, and the lack of broadly practical therapeutics perpetuate the significant health and financial burden resulting from ETEC infection. A critical step in the evaluation of vaccines and therapeutics is preclinical screening in a relevant animal disease model that closely replicates human disease. We previously developed a diarrheal model of class 5a colonization factor (CF) CFA/I-expressing ETEC in the New World owl monkey species Aotus nancymaae using ETEC strain H10407. In order to broaden the use of the model, we report here on the development of A. nancymaae models of ETEC expressing the class 5b CFs CS17 and CS19 with strains LSN03-016011/A and WS0115A, respectively. For both models, we observed diarrheal attack rates of ≥80% after oral inoculation with 5 × 1011 CFU of bacteria. These models will aid in assessing the efficacy of future ETEC vaccine candidates and therapeutics.
Collapse
|
19
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
20
|
Ramakrishnan A, Joseph SS, Reynolds ND, Poncet D, Maciel M, Nunez G, Espinoza N, Nieto M, Castillo R, Royal JM, Poole S, McVeigh A, Rollenhagen JE, Heinrichs J, Prouty MG, Simons MP, Renauld-Mongénie G, Savarino SJ. Evaluation of the immunogenicity and protective efficacy of a recombinant CS6-based ETEC vaccine in an Aotus nancymaae CS6 + ETEC challenge model. Vaccine 2020; 39:487-494. [PMID: 33357957 DOI: 10.1016/j.vaccine.2020.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Colonization factors or Coli surface antigens (CFs or CS) are important virulence factors of Enterotoxigenic E. coli (ETEC) that mediate intestinal colonization and accordingly are targets of vaccine development efforts. CS6 is a highly prevalent CF associated with symptomatic ETEC infection both in endemic populations and amongst travelers. In this study, we used an Aotus nancymaae non-human primate ETEC challenge model with a CS6 + ETEC strain, B7A, to test the immunogenicity and protective efficacy (PE) of a recombinant CS6-based subunit vaccine. Specifically, we determined the ability of dscCssBA, the donor strand complemented recombinant stabilized fusion of the two subunits of the CS6 fimbriae, CssA and CssB, to elicit protection against CS6 + ETEC mediated diarrhea when given intradermally (ID) with the genetically attenuated double mutant heat-labile enterotoxin LT(R192G/L211A) (dmLT). ID vaccination with dscCssBA + dmLT induced strong serum antibody responses against CS6 and LT. Importantly, vaccination with dscCssBA + dmLT resulted in no observed diarrheal disease (PE = 100%, p = 0.03) following B7A challenge as compared to PBS immunized animals, with an attack rate of 62.5%. These data demonstrate the potential role that CS6 may play in ETEC infection and that recombinant dscCssBA antigen can provide protection against challenge with the homologous CS6 + ETEC strain, B7A, in the Aotus nancymaae diarrheal challenge model. Combined, these data indicate that CS6, and more specifically, a recombinant engineered derivative should be considered for further clinical development.
Collapse
Affiliation(s)
- A Ramakrishnan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - S S Joseph
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - N D Reynolds
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - D Poncet
- Sanofi Pasteur, Research and External Innovation, 1541 Av. Marcel Mérieux, 69280 Marcy L'Etoile
| | - M Maciel
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - G Nunez
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - N Espinoza
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - M Nieto
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - R Castillo
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - J M Royal
- Department of Veterinary Services, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - S Poole
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - A McVeigh
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - J E Rollenhagen
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | | | - M G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.
| | - M P Simons
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - G Renauld-Mongénie
- Sanofi Pasteur, Research and External Innovation, 1541 Av. Marcel Mérieux, 69280 Marcy L'Etoile
| | - S J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| |
Collapse
|
21
|
Cross-Reactivity, Epitope Mapping, and Potency of Monoclonal Antibodies to Class 5 Fimbrial Tip Adhesins of Enterotoxigenic Escherichia coli. Infect Immun 2020; 88:IAI.00246-20. [PMID: 32839190 PMCID: PMC7573445 DOI: 10.1128/iai.00246-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. However, sequence variability among the class 5 adhesins may hinder the generation of cross-protective antibodies. To better understand functional epitopes of the class 5 adhesins and their ability to induce intraclass antibody responses, we produced 28 antiadhesin monoclonal antibodies (MAbs) to representative adhesins CfaE, CsbD, and CotD, respectively. We determined the MAb cross-reactivities, localized the epitopes, and measured functional activities as potency in inhibition of hemagglutination induced by class 5 fimbria-bearing ETEC. The MAbs’ reactivities to a panel of class 5 adhesins in enzyme-linked immunosorbent assays (ELISAs) revealed several reactivity patterns, including individual adhesin specificity, intrasubclass specificity, intersubclass specificity, and class-wide cross-reactivity, suggesting that some conserved epitopes, including two conserved arginines, are shared by the class 5 adhesins. However, the cross-reactive MAbs had functional activities limited to strains expressing colonization factor antigen I (CFA/I), coli surface antigen 17 (CS17), or CS1, suggesting that the breadth of functional activities of the MAbs was more restricted than the repertoire of cross-reactivities measured by ELISA. The results imply that multivalent adhesin-based ETEC vaccines or prophylactics need more than one active component to reach broad protection.
Collapse
|
22
|
Evaluation of the Immunogenicity and Protective Efficacy of an Enterotoxigenic Escherichia coli CFA/I Adhesin-Heat-Labile Toxin Chimera. Infect Immun 2020; 88:IAI.00252-20. [PMID: 32839188 DOI: 10.1128/iai.00252-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.
Collapse
|
23
|
A first in human clinical trial assessing the safety and immunogenicity of transcutaneously delivered enterotoxigenic Escherichia coli fimbrial tip adhesin with heat-labile enterotoxin with mutation R192G. Vaccine 2020; 38:7040-7048. [DOI: 10.1016/j.vaccine.2020.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023]
|
24
|
Preclinical optimization of an enterotoxigenic Escherichia coli adjuvanted subunit vaccine using response surface design of experiments. NPJ Vaccines 2020; 5:83. [PMID: 32983577 PMCID: PMC7486917 DOI: 10.1038/s41541-020-00228-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.
Collapse
|
25
|
Jobling MG, Poole ST, Rasulova-Lewis F, O’Dowd A, McVeigh AL, Balakrishnan A, Sincock SA, Prouty MG, Holmes RK, Savarino SJ. Biochemical and immunological characterization of an ETEC CFA/I adhesin cholera toxin B subunit chimera. PLoS One 2020; 15:e0230138. [PMID: 32176708 PMCID: PMC7075575 DOI: 10.1371/journal.pone.0230138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.
Collapse
Affiliation(s)
- Michael G. Jobling
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Steven T. Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Fatima Rasulova-Lewis
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Aisling O’Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Annette L. McVeigh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Amit Balakrishnan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Stephanie A. Sincock
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Randall K. Holmes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephen J. Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
26
|
Evaluation of the reactogenicity, adjuvanticity and antigenicity of LT(R192G) and LT(R192G/L211A) by intradermal immunization in mice. PLoS One 2019; 14:e0224073. [PMID: 31682624 PMCID: PMC6827915 DOI: 10.1371/journal.pone.0224073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of an effective subunit vaccine is frequently complicated by the difficulty of eliciting protective immune responses, often requiring the co-administration of an adjuvant. Heat-labile toxin (LT), an enterotoxin expressed by enterotoxigenic E. coli (ETEC) with an AB5 structure similar to cholera toxin, is a strong adjuvant. While the mucosa represents the natural route of exposure to LT and related toxins, the clinical utility of LT and similar adjuvants given by mucosal routes has been limited by toxicity, as well as the association between intranasal delivery of LT and Bell's palsy. Single and double amino acid mutants of LT, LT(R192G)/mLT and LT(R192G/L211A)/dmLT respectively, have been proposed as alternatives to reduce the toxicity associated with the holotoxin. In the present study, we compared mLT and dmLT given via a non-mucosal route (i.e. intradermally) to investigate their adjuvanticity when co-administrated with an enterotoxigenic E. coli vaccine candidate, CfaEB. Antigenicity (i.e. ability to elicit response against LT) and reactogenicity at the injection site were also evaluated. BALB/c mice were immunized by the intradermal route with CfaEB plus increasing doses of either mLT or dmLT (0.01 to 2.5 μg). Both adjuvants induced dose-dependent skin reactogenicity, with dmLT being less reactogenic than mLT. Both adjuvants significantly boosted the anti-CfaE IgG and functional hemagglutination inhibiting (HAI) antibody responses, compared to the antigen alone. In addition to inducing anti-LT responses, even at the lowest dose tested (0.01 μg), the adjuvants also prompted in vitro cytokine responses (IFN-γ, IL-4, IL-5, IL-10 and IL-17) that followed different patterns, depending on the protein used for stimulation (CfaE or LTB) and/or the dose used for immunization. The two LT mutants evaluated here, mLT and dmLT, are potent adjuvants for intradermal immunization and should be further investigated for the intradermal delivery of subunit ETEC vaccines.
Collapse
|
27
|
Rollenhagen JE, Woods CM, O'Dowd A, Poole ST, Tian JH, Guebre-Xabier M, Ellingsworth L, Prouty MG, Glenn G, Savarino SJ. Evaluation of transcutaneous immunization as a delivery route for an enterotoxigenic E. coli adhesin-based vaccine with CfaE, the colonization factor antigen 1 (CFA/I) tip adhesin. Vaccine 2019; 37:6134-6138. [PMID: 31492474 DOI: 10.1016/j.vaccine.2019.08.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Colleen M Woods
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Aisling O'Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Steven T Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Jing-Hui Tian
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Mimi Guebre-Xabier
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Larry Ellingsworth
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Michael G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Greg Glenn
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|