1
|
Ozanic M, Marecic V, Knezevic M, Kelava I, Stojková P, Lindgren L, Bröms JE, Sjöstedt A, Abu Kwaik Y, Santic M. The type IV pili component PilO is a virulence determinant of Francisella novicida. PLoS One 2022; 17:e0261938. [PMID: 35077486 PMCID: PMC8789160 DOI: 10.1371/journal.pone.0261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F. tularensis, the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F. novicida. Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F. novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F. novicida.
Collapse
Affiliation(s)
- Mateja Ozanic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Valentina Marecic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Masa Knezevic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Ina Kelava
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Pavla Stojková
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Lena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jeanette E. Bröms
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Marina Santic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
2
|
Tripathi JK, Sharma A, Gupta K, Abdelrahman H, Chauhan P, Mishra BB, Sharma J. Function of SLAM-Associated Protein (SAP) in Acute Pneumoseptic Bacterial Infection. J Mol Biol 2019; 431:4345-4353. [PMID: 31295456 PMCID: PMC11126331 DOI: 10.1016/j.jmb.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Sepsis resulting from acute pneumonic infections by Gram-negative bacteria is often characterized by dysfunction of innate immune components. Here we report a previously unrecognized innate protective function of SAP, an adaptor protein primarily reported in T cells, NK cells, and NKT cells, during acute pneumonic infection with Klebsiella pneumoniae (KPn). SAP-deficient mice were highly susceptible to this infection with elevated systemic bacterial spread and increased lung damage. While the overall influx of infiltrating cells in the lungs remained largely intact, increased mortality of SAP-deficient mice correlated with increased accumulation of large NK1.1+ cells harboring bacteria and an impairment of neutrophil extracellular trap formation in vivo during KPn pneumonia, which likely facilitated bacterial outgrowth. Neutrophils were found to express SAP; however, adoptive transfer experiment supported a neutrophil-extrinsic function of SAP in neutrophil extracellular trap formation. Collectively, these data present the first report depicting innate protective function of SAP in an acute pulmonary infection.
Collapse
Affiliation(s)
- Jitendra K Tripathi
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Atul Sharma
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Kuldeep Gupta
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Houda Abdelrahman
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Pooja Chauhan
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Bibhuti B Mishra
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Jyotika Sharma
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
3
|
Freudenberger Catanzaro KC, Champion AE, Mohapatra N, Cecere T, Inzana TJ. Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in Mice. Front Microbiol 2017; 8:935. [PMID: 28611741 PMCID: PMC5447757 DOI: 10.3389/fmicb.2017.00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. However, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locus in F. tularensis. Following daily subculture of F. novicida in Chamberlain's defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ1212-1218. The subcultured mutant F. novicida Δ1212-1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ1212-1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10-14 days post-challenge. Mice immunized intranasally with F. novicida Δ1212-1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Therefore, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.
Collapse
Affiliation(s)
- Kelly C Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Anna E Champion
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Nrusingh Mohapatra
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas Cecere
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States.,Department of Biomedical Sciences, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
4
|
Jondle CN, Sharma A, Simonson TJ, Larson B, Mishra BB, Sharma J. Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3088-96. [PMID: 26912318 PMCID: PMC4936400 DOI: 10.4049/jimmunol.1501790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
C-type lectin receptors (CLRs), the carbohydrate-recognizing molecules, orchestrate host immune response in homeostasis and in inflammation. In the present study we examined the function of macrophage galactose-type lectin-1 (MGL1), a mammalian CLR, in pneumonic sepsis, a deadly immune disorder frequently associated with a nonresolving hyperinflammation. In a murine model of pneumonic sepsis using pulmonary infection with Klebsiella pneumoniae, the expression of MGL1 was upregulated in the lungs of K. pneumoniae-infected mice, and the deficiency of this CLR in MGL1(-/-) mice resulted in significantly increased mortality to infection than in the MGL1-sufficient wild-type mice, despite a similar bacterial burden. The phagocytic cells from MGL1(-/-) mice did not exhibit any defects in bacterial uptake and intracellular killing and were fully competent in neutrophil extracellular trap formation, a recently identified extracellular killing modality of neutrophils. Instead, the increased susceptibility of MGL1(-/-) mice seemed to correlate with severe lung pathology, indicating that MGL1 is required for resolution of pulmonary inflammation. Indeed, the MGL1(-/-) mice exhibited a hyperinflammatory response, massive pulmonary neutrophilia, and an increase in neutrophil-associated immune mediators. Concomitantly, MGL1-deficient neutrophils exhibited an increased influx in pneumonic lungs of K. pneumoniae-infected mice. Taken together, these results show a previously undetermined role of MGL1 in controlling neutrophilia during pneumonic infection, thus playing an important role in resolution of inflammation. To our knowledge, this is the first study depicting a protective function of MGL1 in an acute pneumonic bacterial infection.
Collapse
Affiliation(s)
- Christopher N Jondle
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Atul Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Tanner J Simonson
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Benjamin Larson
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Bibhuti B Mishra
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Jyotika Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202
| |
Collapse
|
5
|
Babadjanova Z, Wiedinger K, Gosselin EJ, Bitsaktsis C. Targeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection. PLoS One 2015; 10:e0129981. [PMID: 26114641 PMCID: PMC4482730 DOI: 10.1371/journal.pone.0129981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
Abstract
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt) to Fcγ receptors (FcɣRs) via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.
Collapse
Affiliation(s)
- Zulfia Babadjanova
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Edmund J. Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
6
|
Alarmin function of galectin-9 in murine respiratory tularemia. PLoS One 2015; 10:e0123573. [PMID: 25898318 PMCID: PMC4405590 DOI: 10.1371/journal.pone.0123573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a complex immune disorder that is characterized by systemic hyperinflammation. Alarmins, which are multifunctional endogenous factors, have been implicated in exacerbation of inflammation in many immune disorders including sepsis. Here we show that Galectin-9, a host endogenous β-galactoside binding lectin, functions as an alarmin capable of mediating inflammatory response during sepsis resulting from pulmonary infection with Francisella novicida, a Gram negative bacterial pathogen. Our results show that this galectin is upregulated and is likely released during tissue damage in the lungs of F. novicida infected septic mice. In vitro, purified recombinant galectin-9 exacerbated F. novicida-induced production of the inflammatory mediators by macrophages and neutrophils. Concomitantly, Galectin-9 deficient (Gal-9-/-) mice exhibited improved lung pathology, reduced cell death and reduced leukocyte infiltration, particularly neutrophils, in their lungs. This positively correlated with overall improved survival of F. novicida infected Gal-9-/- mice as compared to their wild-type counterparts. Collectively, these findings suggest that galectin-9 functions as a novel alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.
Collapse
|
7
|
Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J. Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis 2013; 209:1837-46. [PMID: 24353272 DOI: 10.1093/infdis/jit820] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nosocomial infections with Klebsiella pneumoniae are a frequent cause of Gram-negative bacterial sepsis. To understand the functioning of host innate immune components in this disorder, we examined a previously uninvestigated role of the C-type lectin receptor Mincle in pneumonic sepsis caused by K. pneumoniae. METHODS Disease progression in wild-type and Mincle(-/-) mice undergoing pulmonary infection with K. pneumoniae was compared. RESULTS Whereas the wild-type mice infected with a sublethal dose of bacteria could resolve the infection with bacterial clearance and regulated host response, the Mincle(-/-) mice were highly susceptible with a progressive increase in bacterial burden, despite their ability to mount an inflammatory response that turned to an exaggerated hyperinflammation with the onset of severe pneumonia. This correlated with severe lung pathology with a massive accumulation of neutrophils in their lungs. Importantly, Mincle(-/-) neutrophils displayed a defective ability to phagocytize nonopsonic bacteria and an impaired ability to form extracellular traps (NETs), an important neutrophil function against invading pathogens, including K. pneumoniae. CONCLUSION Our results demonstrate protective role of Mincle in host defense against K. pneumoniae pneumonia by coordinating bacterial clearance mechanisms of neutrophils. A novel role for Mincle in the regulation of neutrophil NET formation may have implications in chronic disease conditions characterized by deregulated NET formation.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | | | | | | | | |
Collapse
|
8
|
Chou AY, Kennett NJ, Nix EB, Schmerk CL, Nano FE, Elkins KL. Generation of protection against Francisella novicida in mice depends on the pathogenicity protein PdpA, but not PdpC or PdpD. Microbes Infect 2013; 15:816-27. [PMID: 23880085 DOI: 10.1016/j.micinf.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 01/24/2023]
Abstract
Previous results suggest that mutations in most genes in the Francisella pathogenicity island (FPI) attenuate the bacterium. Using a mouse model, here we determined the impact of mutations in pdpA, pdpC, and pdpD in Francisella novicida on in vitro replication in macrophages, and in vivo immunogenicity. In contrast to most FPI genes, deletion of pdpC (FnΔpdpC) and pdpD (FnΔpdpD) from F. novicida did not impact growth in mouse bone-marrow derived macrophages. Nonetheless, both FnΔpdpC and FnΔpdpD were highly attenuated when administered intradermally. Infected mice produced relatively normal anti-F. novicida serum antibodies. Further, splenocytes from infected mice controlled intramacrophage Francisella replication, indicating T cell priming, and mice immunized by infection with FnΔpdpC or FnΔpdpD survived secondary lethal parenteral challenge with either F. novicida or Francisella tularensis LVS. In contrast, deletion of pdpA (FnΔpdpA) ablated growth in macrophages in vitro. FnΔpdpA disseminated and replicated poorly in infected mice, accompanied by development of some anti-F. novicida serum antibodies. However, primed Th1 cells were not detected, and vaccinated mice did not survive even low dose challenge with either F. novicida or LVS. Taken together, these results suggest that successful priming of Th1 cells, and protection against lethal challenge, depends on expression of PdpA.
Collapse
Affiliation(s)
- Alicia Y Chou
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 1401 Rockville Pike, HFM-431, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
9
|
Mishra BB, Li Q, Steichen AL, Binstock BJ, Metzger DW, Teale JM, Sharma J. Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia. PLoS One 2013; 8:e59616. [PMID: 23527230 PMCID: PMC3603908 DOI: 10.1371/journal.pone.0059616] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/16/2013] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex immune disorder with a mortality rate of 20–50% and currently has no therapeutic interventions. It is thus critical to identify and characterize molecules/factors responsible for its development. We have recently shown that pulmonary infection with Francisella results in sepsis development. As extensive cell death is a prominent feature of sepsis, we hypothesized that host endogenous molecules called alarmins released from dead or dying host cells cause a hyperinflammatory response culminating in sepsis development. In the current study we investigated the role of galectin-3, a mammalian β-galactoside binding lectin, as an alarmin in sepsis development during F. novicida infection. We observed an upregulated expression and extracellular release of galectin-3 in the lungs of mice undergoing lethal pulmonary infection with virulent strain of F. novicida but not in those infected with a non-lethal, attenuated strain of the bacteria. In comparison with their wild-type C57Bl/6 counterparts, F. novicida infected galectin-3 deficient (galectin-3−/−) mice demonstrated significantly reduced leukocyte infiltration, particularly neutrophils in their lungs. They also exhibited a marked decrease in inflammatory cytokines, vascular injury markers, and neutrophil-associated inflammatory mediators. Concomitantly, in-vitro pre-treatment of primary neutrophils and macrophages with recombinant galectin-3 augmented F. novicida-induced activation of these cells. Correlating with the reduced inflammatory response, F. novicida infected galectin-3−/− mice exhibited improved lung architecture with reduced cell death and improved survival over wild-type mice, despite similar bacterial burden. Collectively, these findings suggest that galectin-3 functions as an alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.
Collapse
Affiliation(s)
- Bibhuti B. Mishra
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Qun Li
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Anthony L. Steichen
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brandilyn J. Binstock
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | | | - Judy M. Teale
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jyotika Sharma
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ashtekar AR, Katz J, Xu Q, Michalek SM. A mucosal subunit vaccine protects against lethal respiratory infection with Francisella tularensis LVS. PLoS One 2012; 7:e50460. [PMID: 23209745 PMCID: PMC3508931 DOI: 10.1371/journal.pone.0050460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis (FT) is a highly virulent pathogen for humans and other mammals. Severe morbidity and mortality is associated with respiratory FT infection and there are concerns about intentional dissemination of this organism. Therefore, FT has been designated a category A biothreat agent and there is a growing interest in the development of a protective vaccine. In the present study, we determine the protective potential of a subunit vaccine comprised of the FT heat shock protein DnaK and surface lipoprotein Tul4 against respiratory infection with the live vaccine strain (LVS) of FT in mice. First, we establish an optimal intranasal immunization regimen in C57BL/6 mice using recombinant DnaK or Tul4 together with the adjuvant GPI-0100. The individual immunization regimens induced robust salivary IgA, and vaginal and bronchoalveolar IgA and IgG antigen-specific antibodies. Serum IgG1 and IgG2c antibody responses were also induced, indicative of a mixed type 2 and type 1 response, respectively. Next, we show that immunization with DnaK and Tul4 induces mucosal and systemic antibody responses that are comparable to that seen following immunization with each antigen alone. This immunization regimen also induced IFN-γ, IL-10 and IL-17A production by splenic CD4(+) T cells in an antigen-specific manner. Importantly, over 80% of the mice immunized with DnaK and Tul4, but not with each antigen alone, were protected against a lethal respiratory challenge with FT LVS. Protection correlated with reduced bacterial burden in the lung, liver and spleen of mice. This study demonstrates the potential of DnaK and Tul4 as protective antigens and lends support to the notion of combining distinct, immunodominant antigens into an effective multivalent tularemia vaccine.
Collapse
Affiliation(s)
- Amit R. Ashtekar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
11
|
Members of the Francisella tularensis phagosomal transporter subfamily of major facilitator superfamily transporters are critical for pathogenesis. Infect Immun 2012; 80:2390-401. [PMID: 22508856 DOI: 10.1128/iai.00144-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia. Due to its aerosolizable nature and low infectious dose, F. tularensis is classified as a category A select agent and, therefore, is a priority for vaccine development. Survival and replication in macrophages and other cell types are critical to F. tularensis pathogenesis, and impaired intracellular survival has been linked to a reduction in virulence. The F. tularensis genome is predicted to encode 31 major facilitator superfamily (MFS) transporters, and the nine-member Francisella phagosomal transporter (Fpt) subfamily possesses homology with virulence factors in other intracellular pathogens. We hypothesized that these MFS transporters may play an important role in F. tularensis pathogenesis and serve as good targets for attenuation and vaccine development. Here we show altered intracellular replication kinetics and attenuation of virulence in mice infected with three of the nine Fpt mutant strains compared with wild-type (WT) F. tularensis LVS. The vaccination of mice with these mutant strains was protective against a lethal intraperitoneal challenge. Additionally, we observed pronounced differences in cytokine profiles in the livers of mutant-infected mice, suggesting that alterations in in vivo cytokine responses are a major contributor to the attenuation observed for these mutant strains. These results confirm that this subset of MFS transporters plays an important role in the pathogenesis of F. tularensis and suggest that a focus on the development of attenuated Fpt subfamily MFS transporter mutants is a viable strategy toward the development of an efficacious vaccine.
Collapse
|
12
|
Sharma J, Mares CA, Li Q, Morris EG, Teale JM. Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain. Microb Pathog 2011; 51:39-47. [PMID: 21440052 PMCID: PMC3090489 DOI: 10.1016/j.micpath.2011.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
Abstract
The virulence mechanisms of Francisella tularensis, the causative agent of severe pneumonia in humans and a CDC category A bioterrorism agent, are not fully defined. As sepsis is the leading cause of mortality associated with respiratory infections, we determined whether, in the absence of any known bacterial toxins, a deregulated host response resulting in sepsis syndrome is associated with lethality of respiratory infection with the virulent human Type A strain SchuS4 of F. tularensis. The C57BL/6 mice infected intranasally with a lethal dose of SchuS4 exhibited high bacterial burden in systemic organs and blood indicative of bacteremia. In correlation, infected mice displayed severe tissue pathology and associated cell death in lungs, liver and spleen. Consistent with our studies with murine model strain Francisella novicida, infection with SchuS4 caused an initial delay in upregulation of inflammatory mediators followed by development of severe sepsis characterized by exaggerated cytokine release, upregulation of cardiovascular injury markers and sepsis mediator alarmins S100A9 and HMGB1. This study shows that pulmonary tularemia caused by the Type A strain of F. tularensis results in a deregulated host response leading to severe sepsis and likely represents the major cause of mortality associated with this virulent pathogen.
Collapse
Affiliation(s)
- Jyotika Sharma
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Chris A. Mares
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Qun Li
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Elizabeth G. Morris
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
| | - Judy M. Teale
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
13
|
White MD, Bosio CM, Duplantis BN, Nano FE. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines. Cell Mol Life Sci 2011; 68:3019-31. [PMID: 21626408 DOI: 10.1007/s00018-011-0734-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 02/07/2023]
Abstract
Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines.
Collapse
Affiliation(s)
- Matthew D White
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | | | | | | |
Collapse
|
14
|
Sharma J, Mishra BB, Li Q, Teale JM. TLR4-dependent activation of inflammatory cytokine response in macrophages by Francisella elongation factor Tu. Cell Immunol 2011; 269:69-73. [PMID: 21497800 PMCID: PMC3106127 DOI: 10.1016/j.cellimm.2011.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/06/2011] [Accepted: 03/24/2011] [Indexed: 01/21/2023]
Abstract
The bacterial determinants of pulmonary Francisella induced inflammatory responses and their interaction with host components are not clearly defined. In this study, proteomic and immunoblot analyses showed presence of a cytoplasmic protein elongation factor Tu (EF-Tu) in the membrane fractions of virulent Francisella novicida, LVS and SchuS4, but not in an attenuated F. novicida mutant. EF-Tu was immunodominant in mice vaccinated and protected from virulent F. novicida. Moreover, recombinant EF-Tu induced macrophages to produce inflammatory cytokines in a TLR4 dependent manner. This study shows immune stimulatory properties of a cytoplasmic protein EF-Tu expressed on the membrane of virulent Francisella strains.
Collapse
Affiliation(s)
- Jyotika Sharma
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249-1644, United States.
| | | | | | | |
Collapse
|
15
|
Mares CA, Sharma J, Ojeda SS, Li Q, Campos JA, Morris EG, Coalson JJ, Teale JM. Attenuated response of aged mice to respiratory Francisella novicida is characterized by reduced cell death and absence of subsequent hypercytokinemia. PLoS One 2010; 5:e14088. [PMID: 21124895 PMCID: PMC2990712 DOI: 10.1371/journal.pone.0014088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pneumonia and pulmonary infections are major causes of mortality among the growing elderly population. Age associated attenuations of various immune parameters, involved with both innate and adaptive responses are collectively known as immune senescence. These changes are likely to be involved with differences in host susceptibility to disease between young and aged individuals. Methodology/Principal Findings The objective of this study was to assess potential age related differences in the pulmonary host response in mice to the Gram-negative respiratory pathogen, Francisella novicida. We intranasally infected mice with F. novicida and compared various immune and pathological parameters of the pulmonary host response in both young and aged mice. Conclusions/Significance We observed that 20% of aged mice were able to survive an intranasal challenge with F. novicida while all of their younger cohorts died consistently within 4 to 6 days post infection. Further experiments revealed that all of the aged mice tested were initially able to control bacterial replication in the lungs as well as at distal sites of replication compared with young mice. In addition, the small cohort of aged survivors did not progress to a severe sepsis syndrome with hypercytokinemia, as did all of the young adult mice. Finally, a lack of widespread cell death in potential aged survivors coupled with a difference in cell types recruited to sites of infection within the lung confirmed an altered host response to Francisella in aged mice.
Collapse
Affiliation(s)
- Chris A. Mares
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jyotika Sharma
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sandra S. Ojeda
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Qun Li
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jocelyn A. Campos
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Elizabeth G. Morris
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jacqueline J. Coalson
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Judy M. Teale
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- South Texas Center for Emerging Infectious Diseases and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|