1
|
Cheng P, Hothpet V, Bhat G, Bailey K, Li L, Samuelson DR. Alcohol induces α2-6sialo mucin O-glycans that kill U937 macrophages mediated by sialic acid-binding immunoglobulin-like lectin 7 (Siglec 7). FEBS Open Bio 2025; 15:165-179. [PMID: 39592427 PMCID: PMC11705458 DOI: 10.1002/2211-5463.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Alcohol misuse increases infections and cancer fatalities, but mechanisms underlying its toxicity are ill-defined. We show that alcohol treatment of human tracheobronchial epithelial cells leads to inactivation of giantin-mediated Golgi targeting of glycosylation enzymes. Loss of core 2 N-acetylglucosaminyltransferase 1, which uses only giantin for Golgi targeting, coupled with shifted targeting of other glycosylation enzymes to Golgi matrix protein 130-Golgi reassembly stacking protein 65, the site normally used by core 1 enzyme, results in loss of sialyl Lewis x and increase of sialyl Lewis a and α2-6sialo mucin O-glycans. The α2-6sialo mucin O-glycans induced by alcohol cause death of U937 macrophages mediated by sialic acid-binding immunoglobulin-like lectin 7. These results provide a mechanistic insight into the cause of the toxic effects of alcohol and might contribute to the development of therapies to alleviate its toxicity.
Collapse
Affiliation(s)
- Pi‐Wan Cheng
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Vishwanath‐Reddy Hothpet
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Present address:
State Forensic LaboratoryBengaluruIndia
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Present address:
Dayananda Sagar UniversityBengaluruIndia
| | - Kristina Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Lei Li
- Department of Chemistry and Center for Diagnostic & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Derrick R. Samuelson
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
2
|
Herdendorf TJ, Mishra N, Fatehi S, Gido CD, Prakash O, Geisbrecht BV. New advances in understanding inhibition of myeloperoxidase and neutrophil serine proteases by two families of staphylococcal innate immune evasion proteins. Arch Biochem Biophys 2024; 761:110177. [PMID: 39393662 PMCID: PMC11560548 DOI: 10.1016/j.abb.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Neutrophils are the most abundant leukocytes in humans and play an important early role in the innate immune response against microorganisms. Neutrophil phagosomes contain high concentrations of antibacterial enzymes, including myeloperoxidase (MPO) and the neutrophil serine proteases (NSPs). These antibacterial enzymes can also be released extracellularly upon degranulation or as a component of neutrophil extracellular traps (NETs). Due to host/pathogen coevolution, S. aureus expresses a diverse arsenal of innate immune evasion proteins that target many aspects of the neutrophil antibacterial response. In the last decade, two new classes of staphylococcal innate immune evasion proteins that act as potent, selective inhibitors of MPO and NSPs, respectively, have been discovered. The Staphylococcal Peroxidase INhibitor (SPIN) is a small ∼8.3 kDa α-helical bundle protein that blocks MPO activity by interfering with substrate and product exchange with the MPO active site. The Extracellular Adherence Protein (EAP) family consists of three unique proteins comprised of one or more copies of an ∼11 kDa β-grasp domain capable of high-affinity, selective, non-covalent inhibition of NSPs. This brief review article summarizes recent advances in understanding the structural and functional properties of SPIN and EAP family members and outlines some potential avenues for future investigation of these enzyme inhibitors.
Collapse
Affiliation(s)
- Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Nitin Mishra
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Soheila Fatehi
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Carson D Gido
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Om Prakash
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Kawano S, Noda C, Itoh S, Urabe A, Fujii C, Ogawa I, Suzuki R, Hida S. Staphylococcal superantigen-like protein 3 triggers murine mast cell adhesion by binding to CD43 and augments mast cell activation. Genes Cells 2024; 29:397-416. [PMID: 38454012 DOI: 10.1111/gtc.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Sae Kawano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chisaki Noda
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ayaka Urabe
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chifumi Fujii
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano Prefecture, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
| | - Isamu Ogawa
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa Prefecture, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
4
|
Alanko I, Sandberg R, Brockmann E, de Haas CJC, van Strijp JAG, Lamminmäki U, Salo‐Ahen OMH. Isolation and functional analysis of phage-displayed antibody fragments targeting the staphylococcal superantigen-like proteins. Microbiologyopen 2023; 12:e1371. [PMID: 37642487 PMCID: PMC10350561 DOI: 10.1002/mbo3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
Staphylococcus aureus produces numerous virulence factors that manipulate the immune system, helping the bacteria avoid phagocytosis. In this study, we are investigating three immune evasion molecules called the staphylococcal superantigen-like proteins 1, 5, and 10 (SSL1, SSL5, and SSL10). All three SSLs inhibit vital host immune processes and contribute to S. aureus immune evasion. This study aimed to identify single-chain variable fragment (scFvs) antibodies from synthetic antibody phage libraries, which can recognize either of the three SSLs and could block the interaction between the SSLs and their respective human targets. The antibodies were isolated after three rounds of panning against SSL1, SSL5, and SSL10, and their ability to bind to the SSLs was studied using a time-resolved fluorescence-based immunoassay. We successfully obtained altogether 44 unique clones displaying binding activity to either SSL1, SSL5, or SSL10. The capability of the SSL-recognizing scFvs to inhibit the SSLs' function was tested in an MMP9 enzymatic activity assay, a P-selectin glycoprotein ligand 1 competitive binding assay, and an IgG1-mediated phagocytosis assay. We could show that one scFv was able to inhibit SSL1 and maintain MMP9 activity in a concentration-dependent manner. Finally, the structure of this inhibiting scFv was modeled and used to create putative scFv-SSL1-complex models by protein-protein docking. The complex models were subjected to a 100-ns molecular dynamics simulation to assess the possible binding mode of the antibody.
Collapse
Affiliation(s)
- Ida Alanko
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | - Rebecca Sandberg
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | | | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Urpo Lamminmäki
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Outi M. H. Salo‐Ahen
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
5
|
Yang C, Barbieri JT, Dahms NM, Chen C. Multiple Domains of Staphylococcal Superantigen-like Protein 11 (SSL11) Contribute to Neutrophil Inhibition. Biochemistry 2022; 61:616-624. [PMID: 35285627 DOI: 10.1021/acs.biochem.2c00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen producing many immune evasion molecules targeting various components of the host immune defense, including the Staphylococcal superantigen-like protein (SSL 1-14) family. Despite sharing similar structures with the powerful superantigens (SAgs), which cause massive T cell activation, SSLs interfere with a wide range of innate immune defenses. SSLs are divided into two subgroups, SSLs that contain a conserved carbohydrate Sialyl Lewis X [Neu5Acα2-3Galβ1-4(Fucα1-3) GlcNAcβ, SLeX] binding site and SSLs that lack the SLeX binding site. SSL2-6 and SSL11 possess the SLeX binding site. Our previous studies showed that SSL11 arrests cell motility by inducing cell adhesion in differentiated HL60 (dHL60) cells, while SSL7 did not bind dHL60 cells. SSL7-based chimeras were engineered by exchanging the SSL7 sequence with the corresponding SSL11 sequence and assaying for a gain of SSL11 function, namely, the induction of cell spreading and motility arrest. In addition to the SLeX-binding site, we observed that three beta-strands β6, β7, and β9 and the N-terminal residues, Y16 and Y17, transitioned SSL7 to gain SSL11 activities. These studies define the structure-function properties of SSL11 that may allow SSL11 to inhibit S. aureus clearance by the host innate immune system, allowing S. aureus to maintain a carrier state in humans, an understudied aspect of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph T Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Chen Chen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Tsuji T. [Modulation of Host Immune System by Staphylococcal Superantigen-like (SSL) Proteins]. YAKUGAKU ZASSHI 2021; 141:579-589. [PMID: 33790123 DOI: 10.1248/yakushi.20-00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a common pathogen causing a wide range of infectious diseases in humans and animals. This bacterium secretes a variety of exoproteins, including toxins known as superantigens, such as toxic shock syndrome toxin-1 (TSST-1) and enterotoxins. Staphylococcal superantigen-like (SSL) proteins are a family of exoproteins showing structural similarities with superantigens but no superantigenic activity. This family is composed of 14 members (SSL1-SSL14), and recent studies have revealed that these members exhibit various immunomodulatory activities: e.g., inhibition of antibody and complement functions, impairment of leukocyte trafficking, modulation of receptor functions, inappropriate activation of immunocytes, and inhibition of blood coagulation. These activities have been proposed to contribute to immune evasion of the bacteria. The interactions between SSL proteins and their target molecules in the host immune system and the pathophysiological roles of SSL proteins in the bacterial infections are reviewed in this article.
Collapse
Affiliation(s)
- Tsutomu Tsuji
- Hoshi University School of Pharmacy and Pharmaceutical Sciences.,Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
7
|
Zondervan NA, Martins Dos Santos VAP, Suarez-Diez M, Saccenti E. Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021; 22:102. [PMID: 33541265 PMCID: PMC7860044 DOI: 10.1186/s12864-021-07388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Staphylococcus and Streptococcus species can cause many different diseases, ranging from mild skin infections to life-threatening necrotizing fasciitis. Both genera consist of commensal species that colonize the skin and nose of humans and animals, and of which some can display a pathogenic phenotype. RESULTS We compared 235 Staphylococcus and 315 Streptococcus genomes based on their protein domain content. We show the relationships between protein persistence and essentiality by integrating essentiality predictions from two metabolic models and essentiality measurements from six large-scale transposon mutagenesis experiments. We identified clusters of strains within species based on proteins associated to similar biological processes. We built Random Forest classifiers that predicted the zoonotic potential. Furthermore, we identified shared attributes between of Staphylococcus aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis. CONCLUSIONS Differences observed in clustering of strains based on functional groups of proteins correlate with phenotypes such as host tropism, capability to infect multiple hosts and drug resistance. Our method provides a solid basis towards large-scale prediction of phenotypes based on genomic information.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
- LifeGlimmer GmBH, Markelstraße 38, 12163, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands.
| |
Collapse
|
8
|
Szafraniec GM, Szeleszczuk P, Dolka B. A Review of Current Knowledge on Staphylococcus agnetis in Poultry. Animals (Basel) 2020; 10:ani10081421. [PMID: 32823920 PMCID: PMC7460464 DOI: 10.3390/ani10081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This literature review provides a synthesis and evaluation of the current knowledge on Staphylococcus agnetis (S. agnetis) and its implications in poultry pathology. Recent studies revealed that S. agnetis can cause bacterial chondronecrosis with osteomyelitis (BCO), endocarditis, and septicemia in broiler chickens. Lameness constitutes one of the major health and welfare problems causing huge economic losses in the poultry industry. To date, a range of infectious and non-infectious factors have been associated with lameness in poultry. Among bacteria of the genus Staphylococcus, Staphylococcus aureus is the main species associated with locomotor problems. This contrasts with S. agnetis, which until recently had not been considered as a poultry pathogen. Previously only reported in cattle, S. agnetis has expanded its host range to chickens, and due to its unique characteristics has become recognized as a new emerging pathogen. The genotypic and phenotypic similarities between S. agnetis and other two staphylococci (S. hyicus and S. chromogenes) make this pathogen capable of escaping recognition due to misidentification. Although a significant amount of research on S. agnetis has been conducted, many facts about this novel species are still unknown and further studies are required to understand its full significance in poultry pathology. Abstract This review aims to summarize recent discoveries and advancements regarding the characteristics of Staphylococcus agnetis (S. agnetis) and its role in poultry pathology. S. agnetis is an emerging pathogen that was primarily associated with mastitis in dairy cattle. After a presumed host jump from cattle to poultry, it was identified as a pathological agent in broiler chickens (Gallus gallus domesticus), causing lameness induced by bacterial chondronecrosis with osteomyelitis (BCO), septicemia, and valvular endocarditis. Economic and welfare losses caused by lameness are global problems in the poultry industry, and S. agnetis has been shown to have a potential to induce high incidences of lameness in broiler chickens. S. agnetis exhibits a distinct repertoire of virulence factors found in many different staphylococci. It is closely related to S. hyicus and S. chromogenes, hence infections caused by S. agnetis may be misdiagnosed or even undiagnosed. As there are very few reports on S. agnetis in poultry, many facts about its pathogenesis, epidemiology, routes of transmission, and the potential impacts on the poultry industry remain unknown.
Collapse
|
9
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
10
|
Efthimiou G, Tsiamis G, Typas MA, Pappas KM. Transcriptomic Adjustments of Staphylococcus aureus COL (MRSA) Forming Biofilms Under Acidic and Alkaline Conditions. Front Microbiol 2019; 10:2393. [PMID: 31681245 PMCID: PMC6813237 DOI: 10.3389/fmicb.2019.02393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are important human pathogens and a significant health hazard for hospitals and the food industry. They are resistant to β-lactam antibiotics including methicillin and extremely difficult to treat. In this study, we show that the Staphylococcus aureus COL (MRSA) strain, with a known complete genome, can easily survive and grow under acidic and alkaline conditions (pH5 and pH9, respectively), both planktonically and as a biofilm. A microarray-based analysis of both planktonic and biofilm cells was performed under acidic and alkaline conditions showing that several genes are up- or down-regulated under different environmental conditions and growth modes. These genes were coding for transcription regulators, ion transporters, cell wall biosynthetic enzymes, autolytic enzymes, adhesion proteins and antibiotic resistance factors, most of which are associated with biofilm formation. These results will facilitate a better understanding of the physiological adjustments occurring in biofilm-associated S. aureus COL cells growing in acidic or alkaline environments, which will enable the development of new efficient treatment or disinfection strategies.
Collapse
Affiliation(s)
- Georgios Efthimiou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
13
|
Abouelkhair MA, Bemis DA, Giannone RJ, Frank LA, Kania SA. Identification, cloning and characterization of SpEX exotoxin produced by Staphylococcus pseudintermedius. PLoS One 2019; 14:e0220301. [PMID: 31356636 PMCID: PMC6663030 DOI: 10.1371/journal.pone.0220301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Staphylococci have evolved numerous strategies to evade their hosts’ immune systems. Some staphylococcal toxins target essential components of host innate immunity, one of the two main branches of the immune system. Analysis of the Staphylococcus pseudintermedius secretome using liquid chromatography mass spectrometry guided by genomic data, was used to identify an S. pseudintermedius exotoxin provisionally named SpEX. This exoprotein has low overall amino acid identity with the Staphylococcus aureus group of proteins named staphylococcal superantigen like proteins (SSLs) and staphylococcal enterotoxin- like toxin X (SEIX), but predictive modeling showed that it shares similar folds and domain architecture to these important virulence factors. In this study, we found SpEX binds to complement component C5, prevents complement mediated lysis of sensitized bovine red blood cells, kills polymorphonuclear leukocytes and monocytes and inhibits neutrophil migration at sub-lethal concentrations. A mutant version of SpEX, produced through amino acid substitution at selected positions, had diminished cytotoxicity. Anti-SpEX produced in dogs reduced the inhibitory effect of native SpEX on canine neutrophil migration and protected immune cells from the toxic effects of the native recombinant protein. These results suggest that SpEX likely plays an important role in S. pseudintermedius virulence and that attenuated SpEX may be an important candidate for inclusion in a vaccine against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Mohamed A. Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Biological Mass Spectrometry, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Linda A. Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
14
|
Regulation of the Staphylococcal Superantigen-Like Protein 1 Gene of Community-Associated Methicillin-Resistant Staphylococcus aureus in Murine Abscesses. Toxins (Basel) 2019; 11:toxins11070391. [PMID: 31277443 PMCID: PMC6669464 DOI: 10.3390/toxins11070391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes substantial skin and soft tissue infections annually in the United States and expresses numerous virulence factors, including a family of toxins known as the staphylococcal superantigen-like (SSL) proteins. Many of the SSL protein structures have been determined and implicated in immune system avoidance, but the full scope that these proteins play in different infection contexts remains unknown and continues to warrant investigation. Analysis of ssl gene regulation may provide valuable information related to the function of these proteins. To determine the transcriptional regulation of the ssl1 gene of CA-MRSA strain MW2, an ssl1 promoter::lux fusion was constructed and transformed into S.aureus strains RN6390 and Newman. Resulting strains were grown in a defined minimal medium (DSM) broth and nutrient-rich brain-heart infusion (BHI) broth and expression was determined by luminescence. Transcription of ssl1 was up-regulated and occurred earlier during growth in DSM broth compared to BHI broth suggesting expression is regulated by nutrient availability. RN6390 and Newman strains containing the ssl1::lux fusion were also used to analyze regulation in vivo using a mouse abscess model of infection. A marked increase in ssl1 transcription occurred early during infection, suggesting SSL1 is important during early stages of infection, perhaps to avoid the immune system.
Collapse
|
15
|
de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0061-2019. [PMID: 30927347 PMCID: PMC11590434 DOI: 10.1128/microbiolspec.gpp3-0061-2019] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Kobayashi M, Kitano T, Nishiyama S, Sanjo H, Onozaki K, Taki S, Itoh S, Hida S. Staphylococcal superantigen-like 12 activates murine bone marrow derived mast cells. Biochem Biophys Res Commun 2019; 511:350-355. [PMID: 30795864 DOI: 10.1016/j.bbrc.2019.02.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/01/2022]
Abstract
Staphylococcal superantigen-like (SSL) protein is a family of exotoxins that consists of 14 SSLs, and the roles of several SSLs in immune evasion of the cocci have been revealed. However little is known whether they act as immune activators and are involved in inflammatory disorders such as atopic dermatitis. In this study we examined whether SSLs activate mast cells, the key player of local inflammation. SSL12 evoked the release of a granule enzyme β-hexosaminidase from bone marrow derived mast cells (BMMCs) in the absence of IgE. The release of the granule enzyme caused by SSL12 was not accompanied with the leakage of a cytosolic enzyme lactate dehydrogenase (LDH), unlike staphylococcal δ-toxin that was reported to induce both the release of β-hexosaminidase and the leakage of LDH from the cells, suggesting that SSL12 evokes the degranulation of mast cells without cell membrane damage. Furthermore SSL12 induced IL-6 and IL-13 in both mRNA and protein levels indicating that SSL12 induces de novo synthesis of the cytokines. Evans blue extravasation was elevated by the intradermal injection of SSL12, suggesting that SSL12 is also able to evoke local inflammation in vivo. These findings indicate the novel mast cell activating activity of SSLs, and SSL12 is likely an important factor in both initiation phase and effector phase of allergic and immune responses.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takuma Kitano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saishi Nishiyama
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, School of Medicine Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, School of Medicine Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
17
|
Langley RJ, Ting YT, Clow F, Young PG, Radcliff FJ, Choi JM, Sequeira RP, Holtfreter S, Baker H, Fraser JD. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. PLoS Pathog 2017; 13:e1006549. [PMID: 28880913 PMCID: PMC5589262 DOI: 10.1371/journal.ppat.1006549] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that produces many virulence factors. Two major families of which are the staphylococcal superantigens (SAgs) and the Staphylococcal Superantigen-Like (SSL) exoproteins. The former are immunomodulatory toxins that induce a Vβ-specific activation of T cells, while the latter are immune evasion molecules that interfere with a wide range of innate immune defences. The superantigenic properties of Staphylococcal enterotoxin-like X (SElX) have recently been established. We now reveal that SElX also possesses functional characteristics of the SSLs. A region of SElX displays high homology to the sialyl-lactosamine (sLacNac)-specific binding site present in a sub-family of SSLs. By analysing the interaction of SElX with sLacNac-containing glycans we show that SElX has an equivalent specificity and host cell binding range to the SSLs. Mutation of key amino acids in this conserved region affects the ability of SElX to bind to cells of myeloid origin and significantly reduces its ability to protect S. aureus from destruction in a whole blood killing (WBK) assay. Like the SSLs, SElX is up-regulated early during infection and is under the control of the S. aureus exotoxin expression (Sae) two component gene regulatory system. Additionally, the structure of SElX in complex with the sLacNac-containing tetrasaccharide sialyl Lewis X (sLeX) reveals that SElX is a unique single-domain SAg. In summary, SElX is an ‘SSL-like’ SAg. The ability of Staphylococcus aureus to cause disease can be attributed to the wide range of toxins and immune evasion molecules it produces. The 25-member superantigen (SAg) family of toxins disrupts adaptive immunity by activating large proportions of T cells. In contrast, the structurally-related 14-member Staphylococcal Superantigen-Like (SSL) family inhibits a wide range of innate immune functions. We have discovered that the SAg staphylococcal enterotoxin-like X (SElX) has the sialylated-glycan-dependent active site found in a sub-family of SSLs. Through this site it possesses the ability to affect host innate immunity defences. By solving the X-ray crystal structure of SElX we have also discovered that SElX is a unique single-domain SAg. While it retains a typical β-grasp domain, it lacks the OB-fold domain that is present in all other staphylococcal SAgs.
Collapse
Affiliation(s)
- Ries J. Langley
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Yi Tian Ting
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Fiona J. Radcliff
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Jeong Min Choi
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Richard P. Sequeira
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Silva Holtfreter
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Heather Baker
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - John D. Fraser
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 2017; 13:e1006461. [PMID: 28880920 PMCID: PMC5589267 DOI: 10.1371/journal.ppat.1006461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis. Staphylococcus aureus is a bacterial pathogen responsible for an array of disease types in healthcare and community settings. One of the keys to the success of this pathogen is its ability to subvert the immune system of the host. Here we demonstrate that the superantigen (SAg) staphylococcal enterotoxin-like toxin X (SElX) contributes to immune evasion by inducing unregulated T-cell proliferation, and by inhibition of phagocytosis by neutrophils. We observed that the capacity to bind neutrophils appears to be central to the SElX-dependent toxicity observed in a necrotising pneumonia infection model in rabbits. We report the first example of a staphylococcal SAg with two independent immunomodulatory functions acting on distinct immune cell types.
Collapse
Affiliation(s)
- Stephen W. Tuffs
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - Jovanka Bestebroer
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Amy C. Richards
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Mariya I. Goncheva
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Marie O’Shea
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Bryan A. Wee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Jos A. van Strijp
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Benkerroum N. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Crit Rev Food Sci Nutr 2017; 58:1943-1970. [DOI: 10.1080/10408398.2017.1289149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry, Macdonald-Stewart Building, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|
20
|
Hebert KS, Seidman D, Oki AT, Izac J, Emani S, Oliver LD, Miller DP, Tegels BK, Kannagi R, Marconi RT, Carlyon JA. Anaplasma marginale Outer Membrane Protein A Is an Adhesin That Recognizes Sialylated and Fucosylated Glycans and Functionally Depends on an Essential Binding Domain. Infect Immun 2017; 85:e00968-16. [PMID: 27993973 PMCID: PMC5328490 DOI: 10.1128/iai.00968-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Anaplasma marginale causes bovine anaplasmosis, a debilitating and potentially fatal tick-borne infection of cattle. Because A. marginale is an obligate intracellular organism, its adhesins that mediate entry into host cells are essential for survival. Here, we demonstrate that A. marginale outer membrane protein A (AmOmpA; AM854) contributes to the invasion of mammalian and tick host cells. AmOmpA exhibits predicted structural homology to OmpA of A. phagocytophilum (ApOmpA), an adhesin that uses key lysine and glycine residues to interact with α2,3-sialylated and α1,3-fucosylated glycan receptors, including 6-sulfo-sialyl Lewis x (6-sulfo-sLex). Antisera against AmOmpA or its predicted binding domain inhibits A. marginale infection of host cells. Residues G55 and K58 are contributory, and K59 is essential for recombinant AmOmpA to bind to host cells. Enzymatic removal of α2,3-sialic acid and α1,3-fucose residues from host cell surfaces makes them less supportive of AmOmpA binding. AmOmpA is both an adhesin and an invasin, as coating inert beads with it confers adhesiveness and invasiveness. Recombinant forms of AmOmpA and ApOmpA competitively antagonize A. marginale infection of host cells, but a monoclonal antibody against 6-sulfo-sLex fails to inhibit AmOmpA adhesion and A. marginale infection. Thus, the two OmpA proteins bind related but structurally distinct receptors. This study provides a detailed understanding of AmOmpA function, identifies its essential residues that can be targeted by blocking antibody to reduce infection, and determines that it binds to one or more α2,3-sialylated and α1,3-fucosylated glycan receptors that are unique from those targeted by ApOmpA.
Collapse
Affiliation(s)
- Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Sarvani Emani
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Brittney K Tegels
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Reiji Kannagi
- Research Complex for Medical Frontiers, Aichi Medical University, Yazako, Nagakute, Japan
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
21
|
Miller CL, Van Laar TA, Chen T, Karna SLR, Chen P, You T, Leung KP. Global transcriptome responses including small RNAs during mixed-species interactions with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Microbiologyopen 2016; 6. [PMID: 27868360 PMCID: PMC5458535 DOI: 10.1002/mbo3.427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus mixed‐species biofilm infections are more resilient to biocide attacks compared to their single‐species counterparts. Therefore, this study used an in vitro model recapitulating bacterial burdens seen in in vivo infections to investigate the interactions of P. aeruginosa and S. aureus in biofilms. RNA sequencing (RNA‐seq) was utilized to identify the entire genomic response, both open reading frames (ORFs) and small RNAs (sRNAs), of each species. Using competitive indexes, transposon mutants validated uncharacterized PA1595 of P. aeruginosa and Panton–Valentine leukocidin ORFs of S. aureus are required for competitive success. Assessing spent media on biofilm development determined that the effects of these ORFs are not solely mediated by mechanisms of secretion. Unlike PA1595, leukocidin (lukS‐PV) mutants of S. aureus lack a competitive advantage through contact‐mediated mechanisms demonstrated by cross‐hatch assays. RNA‐seq results suggested that during planktonic mixed‐species growth there is a robust genomic response or active combat from both pathogens until a state of equilibrium is reached during the maturation of a biofilm. In mixed‐species biofilms, P. aeruginosa differentially expressed only 0.3% of its genome, with most ORFs necessary for growth and biofilm development, whereas S. aureus modulated approximately 5% of its genome, with ORFs suggestive of a phenotype of increased virulence and metabolic quiescence. Specific expression of characterized sRNAs aligned with the genomic response to presumably coordinate the adaptive changes necessary for this homeostatic mixed‐species biofilm and sRNAs may provide viable foci for the design of future therapeutics.
Collapse
Affiliation(s)
- Christine L Miller
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tricia A Van Laar
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, USA
| | - S L Rajasekhar Karna
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Ping Chen
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tao You
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Kai P Leung
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| |
Collapse
|
22
|
Geissner A, Seeberger PH. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:223-47. [PMID: 27306309 DOI: 10.1146/annurev-anchem-071015-041641] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
23
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
24
|
Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc Natl Acad Sci U S A 2015; 112:11018-23. [PMID: 26283364 DOI: 10.1073/pnas.1502026112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are crucial in innate recognition of invading micro-organisms and their subsequent clearance. Bacteria are not passive bystanders and have evolved complex evasion mechanisms. Staphylococcus aureus secretes a potent TLR2 antagonist, staphylococcal superantigen-like protein 3 (SSL3), which prevents receptor stimulation by pathogen-associated lipopeptides. Here, we present crystal structures of SSL3 and its complex with TLR2. The structure reveals that formation of the specific inhibitory complex is predominantly mediated by hydrophobic contacts between SSL3 and TLR2 and does not involve interaction of TLR2-glycans with the conserved Lewis(X) binding site of SSL3. In the complex, SSL3 partially covers the entrance to the lipopeptide binding pocket in TLR2, reducing its size by ∼50%. We show that this is sufficient to inhibit binding of agonist Pam2CSK4 effectively, yet allows SSL3 to bind to an already formed TLR2-Pam2CSK4 complex. The binding site of SSL3 overlaps those of TLR2 dimerization partners TLR1 and TLR6 extensively. Combined, our data reveal a robust dual mechanism in which SSL3 interferes with TLR2 activation at two stages: by binding to TLR2, it blocks ligand binding and thus inhibits activation. Second, by interacting with an already formed TLR2-lipopeptide complex, it prevents TLR heterodimerization and downstream signaling.
Collapse
|
25
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
26
|
Dingjan T, Spendlove I, Durrant LG, Scott AM, Yuriev E, Ramsland PA. Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Mol Immunol 2015; 67:75-88. [PMID: 25757815 DOI: 10.1016/j.molimm.2015.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/18/2022]
Abstract
Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy.
Collapse
Affiliation(s)
- Tamir Dingjan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian Spendlove
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, University of Nottingham, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Lindy G Durrant
- Academic Department of Clinical Oncology, Division of Cancer and Stem cells, University of Nottingham, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Elizabeth Yuriev
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia; Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC 3084, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, WA 6845, Australia.
| |
Collapse
|
27
|
Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 2015; 11:e1004669. [PMID: 25658707 PMCID: PMC4450072 DOI: 10.1371/journal.ppat.1004669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilum binding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection. Anaplasma phagocytophilum causes the potentially deadly bacterial disease granulocytic anaplasmosis. The pathogen replicates inside white blood cells and, like all other obligate intracellular organisms, must enter host cells to survive. Multiple A. phagocytophilum surface proteins called invasins cooperatively orchestrate the entry process. Identifying these proteins’ domains that are required for function, and determining the molecular basis of their interaction with host cell receptors would significantly advance understanding of A. phagocytophilum pathogenesis. In this study, the binding domains of two A. phagocytophilum surface proteins, OmpA and Asp14, were identified. The specific OmpA residues that interact with its host cell receptor were also defined. An antibody cocktail generated against the binding domains of OmpA, Asp14, and a third invasin, AipA, blocked the ability of A. phagocytophilum to infect host cells. The data presented within suggest that binding domains of OmpA, Asp14, and AipA could be exploited to develop a vaccine for granulocytic anaplasmosis.
Collapse
|
28
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
29
|
Fevre C, Bestebroer J, Mebius MM, de Haas CJC, van Strijp JAG, Fitzgerald JR, Haas PJA. Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 2014; 16:1646-65. [PMID: 24840181 DOI: 10.1111/cmi.12313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
In order to cause colonization and invasive disease, pathogenic bacteria secrete proteins that modulate host immune defences. Identification and characterization of these proteins leads to a better understanding of the pathological processes underlying infectious and inflammatory diseases and is essential in the development of new strategies for their prevention and treatment. Current techniques to functionally characterize these proteins are laborious and inefficient. Here we describe a high-throughput functional selection strategy using phage display in order to identify immune evasion proteins. Using this technique we identified two previously uncharacterized proteins secreted by Staphylococcus aureus, SElX and SSL6 that bind to neutrophil surface receptors. SElX binds PSGL-1 on neutrophils and thereby inhibits the interaction between PSGL-1 and P-selectin, a crucial step in the recruitment of neutrophils to the site of infection. SSL6 is the first bacterial protein identified that binds CD47, a widely expressed cell surface protein recently described as an interesting target in anti-cancer therapy. Our findings provide new insights into the pathogenesis of S. aureus infections and support phage display as an efficient method to identify bacterial secretome proteins interacting with humoral or cellular immune components.
Collapse
Affiliation(s)
- Cindy Fevre
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Geissner A, Anish C, Seeberger PH. Glycan arrays as tools for infectious disease research. Curr Opin Chem Biol 2013; 18:38-45. [PMID: 24534751 DOI: 10.1016/j.cbpa.2013.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Infectious diseases cause millions of deaths worldwide each year and are a major burden for economies, especially in underdeveloped countries. Glycans and their interactions with other biomolecules are involved in all major steps of infection. Glycan arrays enable the rapid and sensitive detection of those interactions and are among the most powerful techniques to study the molecular biology of infectious diseases. This review will focus on recent developments and discuss the applications of glycan arrays to the elucidation of host-pathogen and pathogen-pathogen interactions, the development of tools for infection diagnosis and the use of glycan arrays in modern vaccine design.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
31
|
Lorenz N, Clow F, Radcliff FJ, Fraser JD. Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunol Cell Biol 2013; 91:469-76. [PMID: 23797068 DOI: 10.1038/icb.2013.28] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/26/2013] [Accepted: 05/26/2013] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a range of diseases, from local skin infections through to life-threatening illnesses such as toxic shock syndrome. S. aureus produces an assortment of molecules designed to evade or subvert the host immune system. One example is the 23 kDa staphylococcal superantigen-like protein 7 (SSL7) that simultaneously binds immunoglobulin A (IgA) and complement C5 to inhibit complement-mediated hemolytic and bactericidal activity. The avirulent bacterium Lactococcus lactis was engineered to express SSL7 so that its role in bacterial survival could be assessed without interference from other virulence factors. Expression of SSL7 by L. lactis led to significantly enhanced bacterial survival in whole human blood and prevented the membrane attack complex (C5b-9) forming on the cell wall. To further understand the mechanism of action of SSL7, the activity of wild-type SSL7 protein was compared with a panel of mutant proteins lacking the capacity to bind IgA, C5, or both IgA and C5. SSL7 potently inhibited in vitro chemotaxis of inflammatory myeloid cells in response to a pathogenic stimulus and when injected into mice, SSL7 blocked the migration of neutrophils into the peritoneum in response to an inoculum of heat-killed S. aureus. Mutagenesis of the C5-binding site on SSL7 abolished all inhibitory activity, while mutation of the IgA-binding site had only partial effects, indicating that while IgA binding enhances activity it is not essential. SSL7 is an important staphylococcal virulence factor with potent anti-inflammatory properties, which are mediated by targeting complement C5 and IgA.
Collapse
Affiliation(s)
- Natalie Lorenz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, School of Medical Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|