1
|
Khalil I, Anderson JD, Bagamian KH, Baqar S, Giersing B, Hausdorff WP, Marshall C, Porter CK, Walker RI, Bourgeois AL. Vaccine value profile for enterotoxigenic Escherichia coli (ETEC). Vaccine 2023; 41 Suppl 2:S95-S113. [PMID: 37951695 DOI: 10.1016/j.vaccine.2023.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/28/2022] [Accepted: 02/05/2023] [Indexed: 11/14/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the leading bacterial causes of diarrhoea, especially among children in low-resource settings, and travellers and military personnel from high-income countries. WHO's primary strategic goal for ETEC vaccine development is to develop a safe, effective, and affordable ETEC vaccine that reduces mortality and morbidity due to moderate-to-severe diarrhoeal disease in infants and children under 5 years of age in LMICs, as well as the long-term negative health impact on infant physical and cognitive development resulting from infection with this enteric pathogen. An effective ETEC vaccine will also likely reduce the need for antibiotic treatment and help limit the further emergence of antimicrobial resistance bacterial pathogens. The lead ETEC vaccine candidate, ETVAX, has shown field efficacy in travellers and has moved into field efficacy testing in LMIC infants and children. A Phase 3 efficacy study in LMIC infants is projected to start in 2024 and plans for a Phase 3 trial in travellers are under discussion with the U.S. FDA. Licensing for both travel and LMIC indications is projected to be feasible in the next 5-8 years. Given increasing recognition of its negative impact on child health and development in LMICs and predominance as the leading etiology of travellers' diarrhoea (TD), a standalone vaccine for ETEC is more cost-effective than vaccines targeting other TD pathogens, and a viable commercial market also exists. In contrast, combination of an ETEC vaccine with other vaccines for childhood pathogens in LMICs would maximize protection in a more cost-effective manner than a series of stand-alone vaccines. This 'Vaccine Value Profile' (VVP) for ETEC is intended to provide a high-level, holistic assessment of available data to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the ETEC VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - John D Anderson
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Office of Health Affairs, West Virginia University, Morgantown, WV 26505, USA
| | - Karoun H Bagamian
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL 32603, USA
| | - Shahida Baqar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Birgitte Giersing
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| | - William P Hausdorff
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA; Faculty of Medicine, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Caroline Marshall
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| | - Chad K Porter
- Directorate for DoD Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD 20190, USA
| | - Richard I Walker
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA
| | - A Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA
| |
Collapse
|
2
|
Hollifield IE, Motyka NI, Fernando KA, Bitoun JP. Heat-Labile Enterotoxin Decreases Macrophage Phagocytosis of Enterotoxigenic Escherichia coli. Microorganisms 2023; 11:2121. [PMID: 37630681 PMCID: PMC10459231 DOI: 10.3390/microorganisms11082121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal immunity to establish intestinal residency remains unclear. Macrophages are innate immune cells that can be exploited by enteric pathogens to evade mucosal immunity, so we interrogated the ability of ETEC and other E. coli pathovars to survive within macrophages. Using gentamicin protection assays, we show that ETEC H10407 is phagocytosed more readily than other ETEC and non-ETEC isolates. Furthermore, we demonstrate that ETEC H10407, at high bacterial burdens, causes nitrite accumulation in macrophages, which is indicative of a proinflammatory macrophage nitric oxide killing response. However, at low bacterial burdens, ETEC H10407 remains viable within macrophages for an extended period without nitrite accumulation. We demonstrate that LT, but not ST, intoxication decreases the number of ETEC phagocytosed by macrophages. Furthermore, we now show that macrophages exposed simultaneously to LPS and LT produce IL-33, which is a cytokine implicated in promoting macrophage alternative activation, iron recycling, and intestinal repair. Lastly, iron restriction using deferoxamine induces IL-33 receptor (IL-33R) expression and allows ETEC to escape macrophages. Altogether, these data demonstrate that LT provides ETEC with the ability to decrease the perceived ETEC burden and suppresses the initiation of inflammation. Furthermore, these data suggest that host IL-33/IL-33R signaling may augment pathways that promote iron restriction to facilitate ETEC escape from macrophages. These data could help explain novel mechanisms of immune subversion that may contribute to asymptomatic ETEC carriage.
Collapse
Affiliation(s)
| | | | | | - Jacob P. Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, #8638, New Orleans, LA 70112, USA; (I.E.H.); (N.I.M.); (K.A.F.)
| |
Collapse
|
3
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
4
|
Sheikh A, Wangdi T, Vickers TJ, Aaron B, Palmer M, Miller MJ, Kim S, Herring C, Simoes R, Crainic JA, Gildersleeve JC, van der Post S, Hansson GC, Fleckenstein JM. Enterotoxigenic Escherichia coli Degrades the Host MUC2 Mucin Barrier To Facilitate Critical Pathogen-Enterocyte Interactions in Human Small Intestine. Infect Immun 2022; 90:e0057221. [PMID: 34807735 PMCID: PMC8853678 DOI: 10.1128/iai.00572-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tamding Wangdi
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Bailey Aaron
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Margot Palmer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Mark J. Miller
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Seonyoung Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cassandra Herring
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rita Simoes
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jennifer A. Crainic
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Jeffrey C. Gildersleeve
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Sjoerd van der Post
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| |
Collapse
|
5
|
Establishment and Validation of Pathogenic CS17 + and CS19 + Enterotoxigenic Escherichia coli Challenge Models in the New World Primate Aotus nancymaae. Infect Immun 2021; 89:IAI.00479-20. [PMID: 33288648 DOI: 10.1128/iai.00479-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrheal illness in the military, travelers, and children living in low- to middle-income countries. Increased antibiotic resistance, the absence of a licensed vaccine, and the lack of broadly practical therapeutics perpetuate the significant health and financial burden resulting from ETEC infection. A critical step in the evaluation of vaccines and therapeutics is preclinical screening in a relevant animal disease model that closely replicates human disease. We previously developed a diarrheal model of class 5a colonization factor (CF) CFA/I-expressing ETEC in the New World owl monkey species Aotus nancymaae using ETEC strain H10407. In order to broaden the use of the model, we report here on the development of A. nancymaae models of ETEC expressing the class 5b CFs CS17 and CS19 with strains LSN03-016011/A and WS0115A, respectively. For both models, we observed diarrheal attack rates of ≥80% after oral inoculation with 5 × 1011 CFU of bacteria. These models will aid in assessing the efficacy of future ETEC vaccine candidates and therapeutics.
Collapse
|
6
|
Enteropathogenic Infections: Organoids Go Bacterial. Stem Cells Int 2021; 2021:8847804. [PMID: 33505475 PMCID: PMC7810537 DOI: 10.1155/2021/8847804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Enteric infections represent a major health care challenge which is particularly prevalent in countries with restricted access to clean water and sanitation and lacking personal hygiene precautions, altogether facilitating fecal-oral transmission of a heterogeneous spectrum of enteropathogenic microorganisms. Among these, bacterial species are responsible for a considerable proportion of illnesses, hospitalizations, and fatal cases, all of which have been continuously contributing to ignite researchers' interest in further exploring their individual pathogenicity. Beyond the universally accepted animal models, intestinal organoids are increasingly valued for their ability to mimic key architectural and physiologic features of the native intestinal mucosa. As a consequence, they are regarded as the most versatile and naturalistic in vitro model of the gut, allowing monitoring of adherence, invasion, intracellular trafficking, and propagation as well as repurposing components of the host cell equipment. At the same time, infected intestinal organoids allow close characterization of the host epithelium's immune response to enteropathogens. In this review, (i) we provide a profound update on intestinal organoid-based tissue engineering, (ii) we report the latest pathophysiological findings defining the infected intestinal organoids, and (iii) we discuss the advantages and limitations of this in vitro model.
Collapse
|
7
|
Ramakrishnan A, Joseph SS, Reynolds ND, Poncet D, Maciel M, Nunez G, Espinoza N, Nieto M, Castillo R, Royal JM, Poole S, McVeigh A, Rollenhagen JE, Heinrichs J, Prouty MG, Simons MP, Renauld-Mongénie G, Savarino SJ. Evaluation of the immunogenicity and protective efficacy of a recombinant CS6-based ETEC vaccine in an Aotus nancymaae CS6 + ETEC challenge model. Vaccine 2020; 39:487-494. [PMID: 33357957 DOI: 10.1016/j.vaccine.2020.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Colonization factors or Coli surface antigens (CFs or CS) are important virulence factors of Enterotoxigenic E. coli (ETEC) that mediate intestinal colonization and accordingly are targets of vaccine development efforts. CS6 is a highly prevalent CF associated with symptomatic ETEC infection both in endemic populations and amongst travelers. In this study, we used an Aotus nancymaae non-human primate ETEC challenge model with a CS6 + ETEC strain, B7A, to test the immunogenicity and protective efficacy (PE) of a recombinant CS6-based subunit vaccine. Specifically, we determined the ability of dscCssBA, the donor strand complemented recombinant stabilized fusion of the two subunits of the CS6 fimbriae, CssA and CssB, to elicit protection against CS6 + ETEC mediated diarrhea when given intradermally (ID) with the genetically attenuated double mutant heat-labile enterotoxin LT(R192G/L211A) (dmLT). ID vaccination with dscCssBA + dmLT induced strong serum antibody responses against CS6 and LT. Importantly, vaccination with dscCssBA + dmLT resulted in no observed diarrheal disease (PE = 100%, p = 0.03) following B7A challenge as compared to PBS immunized animals, with an attack rate of 62.5%. These data demonstrate the potential role that CS6 may play in ETEC infection and that recombinant dscCssBA antigen can provide protection against challenge with the homologous CS6 + ETEC strain, B7A, in the Aotus nancymaae diarrheal challenge model. Combined, these data indicate that CS6, and more specifically, a recombinant engineered derivative should be considered for further clinical development.
Collapse
Affiliation(s)
- A Ramakrishnan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - S S Joseph
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - N D Reynolds
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - D Poncet
- Sanofi Pasteur, Research and External Innovation, 1541 Av. Marcel Mérieux, 69280 Marcy L'Etoile
| | - M Maciel
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - G Nunez
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - N Espinoza
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - M Nieto
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - R Castillo
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - J M Royal
- Department of Veterinary Services, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - S Poole
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - A McVeigh
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - J E Rollenhagen
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | | | - M G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.
| | - M P Simons
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - G Renauld-Mongénie
- Sanofi Pasteur, Research and External Innovation, 1541 Av. Marcel Mérieux, 69280 Marcy L'Etoile
| | - S J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| |
Collapse
|
8
|
Talaat KR, Porter CK, Jaep KM, Duplessis CA, Gutierrez RL, Maciel M, Adjoodani B, Feijoo B, Chakraborty S, Brubaker J, Trop SA, Riddle MS, Joseph SS, Bourgeois AL, Prouty MG. Refinement of the CS6-expressing enterotoxigenic Escherichia coli strain B7A human challenge model: A randomized trial. PLoS One 2020; 15:e0239888. [PMID: 33264302 PMCID: PMC7710093 DOI: 10.1371/journal.pone.0239888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Human challenge models for enterotoxigenic Escherichia coli (ETEC) facilitate vaccine down-selection. The B7A (O148:H28 CS6+LT+ST+) strain is important for vaccine development. We sought to refine the B7A model by identifying a dose and fasting regimen consistently inducing moderate-severe diarrhea. Methods An initial cohort of 28 subjects was randomized (1:1:1:1) to receive B7A following an overnight fast at doses of 108 or 109 colony forming units (cfu) or a 90-minute fast at doses of 109 or 1010 cfu. A second cohort included naïve and rechallenged subjects who had moderate-severe diarrhea and were given the target regimen. Immune responses to important ETEC antigens were assessed. Results Among subjects receiving 108 cfu of B7A, overnight fast, or 109 cfu, 90-minute fast, 42.9% (3/7) had moderate-severe diarrhea. Higher attack rates (71.4%; 5/7) occurred in subjects receiving 109 cfu, overnight fast, or 1010 cfu, 90-minute fast. Upon rechallenge with 109 cfu of B7A, overnight fast, 5/11 (45.5%) had moderate-severe diarrhea; the attack rate among concurrently challenge naïve subjects was 57.9% (11/19). Anti-CS6, O148 LPS and LT responses were modest across all groups. Conclusions An overnight fast enabled a reduction in the B7A inoculum dose; however, the attack rate was inconsistent and protection upon rechallenge was minimal.
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- * E-mail:
| | - Chad K. Porter
- Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kayla M. Jaep
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | | | | | - Milton Maciel
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Brittany Adjoodani
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Brittany Feijoo
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Stefanie A. Trop
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Mark S. Riddle
- Naval Medical Research Center, Silver Spring, MD, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | | | - A. Louis Bourgeois
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- PATH, Washington, DC, United States of America
| | - Michael G. Prouty
- Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|
9
|
Talaat KR, Porter CK, Bourgeois AL, Lee TK, Duplessis CA, Maciel M, Gutierrez RL, DeNearing B, Adjoodani B, Adkinson R, Testa KJ, Feijoo B, Alcala AN, Brubaker J, Beselman A, Chakraborty S, Sack D, Halpern J, Trop S, Wu H, Jiao J, Sullivan E, Riddle MS, Joseph SS, Poole ST, Prouty MG. Oral delivery of Hyperimmune bovine serum antibodies against CS6-expressing enterotoxigenic Escherichia coli as a prophylactic against diarrhea. Gut Microbes 2020; 12:1732852. [PMID: 32167011 PMCID: PMC7524165 DOI: 10.1080/19490976.2020.1732852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND . Oral administration of bovine antibodies active against enterotoxigenic Escherichia coli (ETEC) have demonstrated safety and efficacy against diarrhea in human challenge trials. The efficacy of bovine serum immunoglobulins (BSIgG) against recombinant colonization factor CS6 or whole cell ETEC strain B7A was assessed against challenge with the CS6-expressing B7A. METHODS . This was a randomized, double-blind, placebo-controlled trial in which healthy adults received oral hyperimmune BSIgG anti-CS6, anti-B7A whole cell killed or non-hyperimmune BSIgG (placebo) in a 1:1:1 ratio then challenged with ETEC B7A. Two days pre-challenge, volunteers began a thrice daily, seven day course of immunoprophylaxis. On day 3, subjects received 1 × 1010 CFUs of B7A. Subjects were observed for safety and the primary endpoint of moderate-severe diarrhea (MSD). RESULTS . A total of 59 volunteers received product and underwent ETEC challenge. The BSIgG products were well-tolerated across all subjects. Upon challenge, 14/20 (70%) placebo recipients developed MSD, compared to 12/19 (63%; p = .74) receiving anti-CS6 BSIgG and 7/20 (35%; p = .06) receiving anti-B7A BSIgG. Immune responses to the ETEC infection were modest across all groups. CONCLUSIONS . Bovine-derived serum antibodies appear safe and well tolerated. Antibodies derived from cattle immunized with whole cell B7A provided 50% protection against MSD following B7A challenge; however, no protection was observed in subjects receiving serum antibodies targeting CS6. The lack of observed efficacy in this group may be due to low CS6 surface expression on B7A, the high dose challenge inoculum and/or the use of serum derived antibodies versus colostrum-derived antibodies.
Collapse
Affiliation(s)
- KR Talaat
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - CK Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA,CONTACT CK Porter Naval Medical Research Center, Silver Spring, MD, USA
| | - AL Bourgeois
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - TK Lee
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - CA Duplessis
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - M Maciel
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - RL Gutierrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - B DeNearing
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - B Adjoodani
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - R Adkinson
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - KJ Testa
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - B Feijoo
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - AN Alcala
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - J Brubaker
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A Beselman
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - S Chakraborty
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - D Sack
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Halpern
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - S Trop
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - H Wu
- SAB Biotherapeutics Inc, Sioux Falls, SD, USA
| | - J Jiao
- SAB Biotherapeutics Inc, Sioux Falls, SD, USA
| | - E Sullivan
- SAB Biotherapeutics Inc, Sioux Falls, SD, USA
| | - MS Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - SS Joseph
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - ST Poole
- The Henry M. Jackson Foundation, Bethesda, MD, USA
| | - MG Prouty
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
10
|
Abstract
Shigella is a major cause of moderate to severe diarrhea largely affecting children (<5 years old) living in low- and middle-income countries. Several vaccine candidates are in development, and controlled human infection models (CHIMs) can be useful tools to provide an early assessment of vaccine efficacy and potentially support licensure. A lyophilized strain of S. sonnei 53G was manufactured and evaluated to establish a dose that safely and reproducibly induced a ≥60% attack rate. Samples were collected pre- and postchallenge to assess intestinal inflammatory responses, antigen-specific serum and mucosal antibody responses, functional antibody responses, and memory B cell responses. Infection with S. sonnei 53G induced a robust intestinal inflammatory response as well as antigen-specific antibodies in serum and mucosal secretions and antigen-specific IgA- and IgG-secreting B cells positive for the α4β7 gut-homing marker. There was no association between clinical disease outcomes and systemic or functional antibody responses postchallenge; however, higher lipopolysaccharide (LPS)-specific serum IgA- and IgA-secreting memory B cell responses were associated with a reduced risk of disease postchallenge. This study provides unique insights into the immune responses pre- and postinfection with S. sonnei 53G in a CHIM, which could help guide the rational design of future vaccines to induce protective immune responses more analogous to those triggered by infection.IMPORTANCE Correlate(s) of immunity have yet to be defined for shigellosis. As previous disease protects against subsequent infection in a serotype-specific manner, investigating immune response profiles pre- and postinfection provides an opportunity to identify immune markers potentially associated with the development of protective immunity and/or with a reduced risk of developing shigellosis postchallenge. This study is the first to report such an extensive characterization of the immune response after challenge with S. sonnei 53G. Results demonstrate an association of progression to shigellosis with robust intestinal inflammatory and mucosal gut-homing responses. An important finding in this study was the association of elevated Shigella LPS-specific serum IgA and memory B cell IgA responses at baseline with reduced risk of disease. The increased baseline IgA responses may contribute to the lack of dose response observed in the study and suggests that IgA responses should be further investigated as potential correlates of immunity.
Collapse
|
11
|
A new human challenge model for testing heat-stable toxin-based vaccine candidates for enterotoxigenic Escherichia coli diarrhea - dose optimization, clinical outcomes, and CD4+ T cell responses. PLoS Negl Trop Dis 2019; 13:e0007823. [PMID: 31665141 PMCID: PMC6844497 DOI: 10.1371/journal.pntd.0007823] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/11/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a common cause of diarrheal illness in young children and travelers. There is yet no licensed broadly protective vaccine against ETEC. One promising vaccine development strategy is to target strains expressing the heat-stable toxin (ST), particularly the human ST (STh), since infections with these strains are among the leading causes of diarrhea in children in low-and-middle income countries. A human challenge model based on an STh-only ETEC strain will be useful to evaluate the protective efficacy of new ST-based vaccine candidates. To develop this model, we experimentally infected 21 healthy adult volunteers with the epidemiologically relevant STh-only ETEC strain TW10722, identified a suitable dose, assessed safety, and characterized clinical outcomes and immune responses caused by the infection. Doses of 1×1010 colony-forming units (CFU) of TW10722 gave a suitable attack risk of 67% for moderate or severe diarrhea and an overall diarrhea attack risk of 78%. Non-diarrheal symptoms were mostly mild or moderate, and there were no serious adverse events. During the first month after ingesting the challenge strain, we measured significant increases in both activated CD4+ T cells and levels of serum IgG and IgA antibodies targeting coli surface antigen 5 (CS5) and 6 (CS6), as well as the E. coli mucinase YghJ. The CS5-specific CD4+ T cell and antibody responses were still significantly elevated one year after experimental infection. In conclusion, we have developed a safe STh-only ETEC-based human challenge model which can be efficiently used in Phase 2B trials to evaluate the protective efficacy of new ST-based vaccine candidates. Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrheal illness in young children living in low- and middle-income countries and in travelers to these countries. Several ETEC vaccine candidates are currently being developed, but so far, no broadly protective vaccines have been licensed. Since most moderate and severe ETEC diarrheal episodes are caused by strains that express the heat-stable enterotoxin (ST), ST represents a promising vaccine target. Here we present a human challenge model that can be used to estimate the protective efficacy of ST-based vaccine candidates in clinical vaccine trials. The model is based on the epidemiologically relevant ST-only ETEC strain TW10722, which we show is safe to ingest by volunteers and readily induce diarrhea.
Collapse
|
12
|
Kumar P, Kuhlmann FM, Chakraborty S, Bourgeois AL, Foulke-Abel J, Tumala B, Vickers TJ, Sack DA, DeNearing B, Harro CD, Wright WS, Gildersleeve JC, Ciorba MA, Santhanam S, Porter CK, Gutierrez RL, Prouty MG, Riddle MS, Polino A, Sheikh A, Donowitz M, Fleckenstein JM. Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity. J Clin Invest 2018; 128:3298-3311. [PMID: 29771685 DOI: 10.1172/jci97659] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/03/2018] [Indexed: 12/27/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries, where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, which may involve strain-specific virulence features as well as host factors, has not been elucidated. We demonstrate that, when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete the EtpA adhesin molecule. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and noncanonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A-specific lectin/hemagglutinin. Importantly, we have also shown that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and effective delivery of both the heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - F Matthew Kuhlmann
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - A Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brunda Tumala
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tim J Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clayton D Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - W Shea Wright
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Jeffrey C Gildersleeve
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Matthew A Ciorba
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Srikanth Santhanam
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chad K Porter
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Ramiro L Gutierrez
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Michael G Prouty
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Mark S Riddle
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Alexander Polino
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.,Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Savarino SJ, McKenzie R, Tribble DR, Porter CK, O'Dowd A, Cantrell JA, Sincock SA, Poole ST, DeNearing B, Woods CM, Kim H, Grahek SL, Brinkley C, Crabb JH, Bourgeois AL. Prophylactic Efficacy of Hyperimmune Bovine Colostral Antiadhesin Antibodies Against Enterotoxigenic Escherichia coli Diarrhea: A Randomized, Double-Blind, Placebo-Controlled, Phase 1 Trial. J Infect Dis 2017; 216:7-13. [PMID: 28541500 DOI: 10.1093/infdis/jix144] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
Background Tip-localized adhesive proteins of bacterial fimbriae from diverse pathogens confer protection in animal models, but efficacy in humans has not been reported. Enterotoxigenic Escherichia coli (ETEC) commonly elaborate colonization factors comprising a minor tip adhesin and major stalk-forming subunit. We assessed the efficacy of antiadhesin bovine colostral IgG (bIgG) antibodies against ETEC challenge in volunteers. Methods Adults were randomly assigned (1:1:1) to take oral hyperimmune bIgG raised against CFA/I minor pilin subunit (CfaE) tip adhesin or colonization factor I (CFA/I) fimbraie (positive control) or placebo. Two days before challenge, volunteers began a thrice-daily, 7-day course of investigational product administered in sodium bicarbonate 15 minutes after each meal. On day 3, subjects drank 1 × 109 colony-forming units of colonization factor I (CFA/I)-ETEC strain H10407 with buffer. The primary efficacy endpoint was diarrhea within 120 hours of challenge. Results After enrollment and randomization, 31 volunteers received product, underwent ETEC challenge, and were included in the per protocol efficacy analysis. Nine of 11 placebos developed diarrhea, 7 experiencing moderate to severe disease. Protective efficacy of 63% (P = .03) and 88% (P = .002) was observed in the antiadhesin bIgG and positive control groups, respectively. Conclusions Oral administration of anti-CFA/I minor pilin subunit (CfaE) antibodies conferred significant protection against ETEC, providing the first clinical evidence that fimbrial tip adhesins function as protective antigens.
Collapse
Affiliation(s)
| | - Robin McKenzie
- Johns Hopkins Bloomberg School of Public Health.,Johns Hopkins School of Medicine, Baltimore
| | | | - Chad K Porter
- Naval Medical Research Center, Silver Spring, Maryland
| | | | | | | | | | | | | | - Hye Kim
- Johns Hopkins School of Medicine, Baltimore
| | | | - Carl Brinkley
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | |
Collapse
|
14
|
Porter CK, Riddle MS, Alcala AN, Sack DA, Harro C, Chakraborty S, Gutierrez RL, Savarino SJ, Darsley M, McKenzie R, DeNearing B, Steinsland H, Tribble DR, Bourgeois AL. An Evidenced-Based Scale of Disease Severity following Human Challenge with Enteroxigenic Escherichia coli. PLoS One 2016; 11:e0149358. [PMID: 26938983 PMCID: PMC4777366 DOI: 10.1371/journal.pone.0149358] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 11/30/2022] Open
Abstract
Background Experimental human challenge models have played a major role in enhancing our understanding of infectious diseases. Primary outcomes have typically utilized overly simplistic outcomes that fail to entirely account for complex illness syndromes. We sought to characterize clinical outcomes associated with experimental infection with enterotoxigenic Escherichia coli (ETEC) and to develop a disease score. Methods Data were obtained from prior controlled human ETEC infection studies. Correlation and univariate regression across sign and symptom severity was performed. A multiple correspondence analysis was conducted. A 3-parameter disease score with construct validity was developed in an iterative fashion, compared to standard outcome definitions and applied to prior vaccine challenge trials. Results Data on 264 subjects receiving seven ETEC strains at doses from 1x105 to 1x1010 cfu were used to construct a standardized dataset. The strongest observed correlation was between vomiting and nausea (r = 0.65); however, stool output was poorly correlated with subjective activity-impacting outcomes. Multiple correspondence analyses showed covariability in multiple signs and symptoms, with severity being the strongest factor corresponding across outcomes. The developed disease score performed well compared to standard outcome definitions and differentiated disease in vaccinated and unvaccinated subjects. Conclusion Frequency and volumetric definitions of diarrhea severity poorly characterize ETEC disease. These data support a disease severity score accounting for stool output and other clinical signs and symptoms. Such a score could serve as the basis for better field trial outcomes and gives an additional outcome measure to help select future vaccines that warrant expanded testing in pivotal pre-licensure trials.
Collapse
Affiliation(s)
- Chad K. Porter
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- * E-mail:
| | - Mark S. Riddle
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Ashley N. Alcala
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - David A. Sack
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Clayton Harro
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Subhra Chakraborty
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Ramiro L. Gutierrez
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Stephen J. Savarino
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | | | - Robin McKenzie
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Barbara DeNearing
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Hans Steinsland
- Centre for Intervention Science in Maternal and Child Health (CISMAC), Centre for International Health, and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Bethesda, MD, United States of America
| | - A. Louis Bourgeois
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- PATH, Washington, DC, United States of America
| |
Collapse
|
15
|
Luo Q, Qadri F, Kansal R, Rasko DA, Sheikh A, Fleckenstein JM. Conservation and immunogenicity of novel antigens in diverse isolates of enterotoxigenic Escherichia coli. PLoS Negl Trop Dis 2015; 9:e0003446. [PMID: 25629897 PMCID: PMC4309559 DOI: 10.1371/journal.pntd.0003446] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) are common causes of diarrheal morbidity and mortality in developing countries for which there is currently no vaccine. Heterogeneity in classical ETEC antigens known as colonization factors (CFs) and poor efficacy of toxoid-based approaches to date have impeded development of a broadly protective ETEC vaccine, prompting searches for novel molecular targets. Methodology Using a variety of molecular methods, we examined a large collection of ETEC isolates for production of two secreted plasmid-encoded pathotype-specific antigens, the EtpA extracellular adhesin, and EatA, a mucin-degrading serine protease; and two chromosomally-encoded molecules, the YghJ metalloprotease and the EaeH adhesin, that are not specific to the ETEC pathovar, but which have been implicated in ETEC pathogenesis. ELISA assays were also performed on control and convalescent sera to characterize the immune response to these antigens. Finally, mice were immunized with recombinant EtpA (rEtpA), and a protease deficient version of the secreted EatA passenger domain (rEatApH134R) to examine the feasibility of combining these molecules in a subunit vaccine approach. Principal Findings EtpA and EatA were secreted by more than half of all ETEC, distributed over diverse phylogenetic lineages belonging to multiple CF groups, and exhibited surprisingly little sequence variation. Both chromosomally-encoded molecules were also identified in a wide variety of ETEC strains and YghJ was secreted by 89% of isolates. Antibodies against both the ETEC pathovar-specific and conserved E. coli antigens were present in significantly higher titers in convalescent samples from subjects with ETEC infection than controls suggesting that each of these antigens is produced and recognized during infection. Finally, co-immunization of mice with rEtpA and rEatApH134R offered significant protection against ETEC infection. Conclusions Collectively, these data suggest that novel antigens could significantly complement current approaches and foster improved strategies for development of broadly protective ETEC vaccines. Infectious diarrhea is one of the leading causes of death among young children in developing countries, and a major cause of morbidity in all age groups. The enterotoxigenic Escherichia coli contribute substantially to this burden of diarrheal illness, and have been a focus of vaccine development efforts for more than forty years following their discovery as a cause of severe diarrheal illness. The heat-labile, and/or heat stable enterotoxins that define ETEC are produced by a diverse population of Escherichia coli. This inherent genetic plasticity of E. coli has made it difficult to identify antigens specific to ETEC that are highly conserved. Therefore, identification of protective antigens shared by many ETEC strains will likely play an essential role in development of the next iteration of vaccines.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Rita Kansal
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ahmed T, Bhuiyan TR, Zaman K, Sinclair D, Qadri F. Vaccines for preventing enterotoxigenic Escherichia coli (ETEC) diarrhoea. Cochrane Database Syst Rev 2013; 2013:CD009029. [PMID: 23828581 PMCID: PMC6532719 DOI: 10.1002/14651858.cd009029.pub2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Infection with enterotoxigenic Escherichia coli (ETEC) bacteria is a common cause of diarrhoea in adults and children in developing countries and is a major cause of 'travellers' diarrhoea' in people visiting or returning from endemic regions. A killed whole cell vaccine (Dukoral®), primarily designed and licensed to prevent cholera, has been recommended by some groups to prevent travellers' diarrhoea in people visiting endemic regions. This vaccine contains a recombinant B subunit of the cholera toxin that is antigenically similar to the heat labile toxin of ETEC. This review aims to evaluate the clinical efficacy of this vaccine and other vaccines designed specifically to protect people against diarrhoea caused by ETEC infection. OBJECTIVES To evaluate the efficacy, safety, and immunogenicity of vaccines for preventing ETEC diarrhoea. SEARCH METHODS We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, and http://clinicaltrials.gov up to December 2012. SELECTION CRITERIA Randomized controlled trials (RCTs) and quasi-RCTs comparing use of vaccines to prevent ETEC with use of no intervention, a control vaccine (either an inert vaccine or a vaccine normally given to prevent an unrelated infection), an alternative ETEC vaccine, or a different dose or schedule of the same ETEC vaccine in healthy adults and children living in endemic regions, intending to travel to endemic regions, or volunteering to receive an artificial challenge of ETEC bacteria. DATA COLLECTION AND ANALYSIS Two authors independently assessed each trial for eligibility and risk of bias. Two independent reviewers extracted data from the included studies and analyzed the data using Review Manager (RevMan) software. We reported outcomes as risk ratios (RR) with 95% confidence intervals (CI). We assessed the quality of the evidence using the GRADE approach. MAIN RESULTS Twenty-four RCTs, including 53,247 participants, met the inclusion criteria. Four studies assessed the protective efficacy of oral cholera vaccines when used to prevent diarrhoea due to ETEC and seven studies assessed the protective efficacy of ETEC-specific vaccines. Of these 11 studies, seven studies presented efficacy data from field trials and four studies presented efficacy data from artificial challenge studies. An additional 13 trials contributed safety and immunological data only. Cholera vaccinesThe currently available, oral cholera killed whole cell vaccine (Dukoral®) was evaluated for protection of people against 'travellers' diarrhoea' in a single RCT in people arriving in Mexico from the USA. We did not identify any statistically significant effects on ETEC diarrhoea or all-cause diarrhoea (one trial, 502 participants, low quality evidence).Two earlier trials, one undertaken in an endemic population in Bangladesh and one undertaken in people travelling from Finland to Morocco, evaluated a precursor of this vaccine containing purified cholera toxin B subunit rather than the recombinant subunit in Dukoral®. Short term protective efficacy against ETEC diarrhoea was demonstrated, lasting for around three months (RR 0.43, 95% CI 0.26 to 0.71; two trials, 50,227 participants). This vaccine is no longer available. ETEC vaccinesAn ETEC-specific, killed whole cell vaccine, which also contains the recombinant cholera toxin B-subunit, was evaluated in people travelling from the USA to Mexico or Guatemala, and from Austria to Latin America, Africa, or Asia. We did not identify any statistically significant differences in ETEC-specific diarrhoea or all-cause diarrhoea (two trials, 799 participants), and the vaccine was associated with increased vomiting (RR 2.0, 95% CI 1.16 to 3.45; nine trials, 1528 participants). The other ETEC-specific vaccines in development have not yet demonstrated clinically important benefits. AUTHORS' CONCLUSIONS There is currently insufficient evidence from RCTs to support the use of the oral cholera vaccine Dukoral® for protecting travellers against ETEC diarrhoea. Further research is needed to develop safe and effective vaccines to provide both short and long-term protection against ETEC diarrhoea.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Variation Biotechnologies Inc.1740 Woodroffe Ave, Building 400OttawaCanadaK2G 3R8
| | - Taufiqur R Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)Centre for Vaccine Sciences68 Shaheed Tajuddin Ahamed Sharani, MohakhaliDhakaBangladesh1212
| | - K Zaman
- International Centre for Diarrhoeal Disease Research, BangladeshChild Health Unit68 Shaheed Tajuddin AhmedSarani, MohakhaliDhakaBangladesh1212
| | - David Sinclair
- Liverpool School of Tropical MedicineDepartment of Clinical SciencesPembroke PlaceLiverpoolUKL3 5QA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)Centre for Vaccine Sciences68 Shaheed Tajuddin Ahamed Sharani, MohakhaliDhakaBangladesh1212
| |
Collapse
|
17
|
Darsley MJ, Chakraborty S, DeNearing B, Sack DA, Feller A, Buchwaldt C, Bourgeois AL, Walker R, Harro CD. The oral, live attenuated enterotoxigenic Escherichia coli vaccine ACE527 reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1921-31. [PMID: 23035175 PMCID: PMC3535858 DOI: 10.1128/cvi.00364-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/24/2012] [Indexed: 11/20/2022]
Abstract
An oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 10(11) CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects. Fifty-six of these subjects were challenged 28 days after the second dose of vaccine with the highly virulent ETEC strain H10407 to obtain preliminary indicators of efficacy against disease and to support further development of the vaccine for both travelers and infants in countries where ETEC is endemic. The vaccine had a significant impact on intestinal colonization by the challenge strain, as measured by quantitative fecal culture 2 days after challenge, demonstrating the induction of a functional immune response to the CFA/I antigen. The incidence and severity of diarrhea were also reduced in vaccinees as measured by a number of secondary and ad hoc endpoints, although the 27% reduction seen in the primary endpoint, moderate to severe diarrhea, was not statistically significant. Together, these observations support the hypothesis that the ACE527 vaccine has a dual mode of action, targeting both colonization factors and the heat-labile enterotoxin (LT), and suggest that it should be further developed for more advanced trials to evaluate its impact on the burden of ETEC disease in field settings.
Collapse
|
18
|
Characterization of Heat-Labile toxin-subunit B from Escherichia coli by liquid chromatography–electrospray ionization-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Food Chem Toxicol 2012; 50:3886-91. [DOI: 10.1016/j.fct.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/30/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022]
|
19
|
Kalil JA, Halperin SA, Langley JM. Human challenge studies: a review of adequacy of reporting methods and results. Future Microbiol 2012; 7:481-95. [PMID: 22439725 DOI: 10.2217/fmb.12.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Since the 1940s, researchers have purposefully infected healthy adult humans with pathogenic organisms to study how these pathogens cause disease and can be treated and prevented. 'Challenge studies' can be safe, ethical, extremely informative and an efficient use of resources during the clinical development of vaccines, but knowledge of this form of clinical research trial is not widespread. A review of the human challenge literature was performed to determine whether common elements of challenge studies can be identified in the articles published to date. The review demonstrated incomplete reporting of study characteristics deemed necessary for the correct interpretation and application of human challenge study results and for the accurate replication of study methodology. An unofficial extension of the Consolidated Standards of Reporting Trials (CONSORT) statement is proposed.
Collapse
Affiliation(s)
- Jennifer A Kalil
- Canadian Center for Vaccinology, Sanofi Pasteur Vaccine Challenge Unit, Dalhousie University & IWK Health Centre, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
20
|
YghG (GspSβ) is a novel pilot protein required for localization of the GspSβ type II secretion system secretin of enterotoxigenic Escherichia coli. Infect Immun 2012; 80:2608-22. [PMID: 22585966 DOI: 10.1128/iai.06394-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) pathotype, characterized by the prototypical strain H10407, is a leading cause of morbidity and mortality in the developing world. A major virulence factor of ETEC is the type II secretion system (T2SS) responsible for secretion of the diarrheagenic heat-labile enterotoxin (LT). In this study, we have characterized the two type II secretion systems, designated alpha (T2SS(α)) and beta (T2SS(β)), encoded in the H10407 genome and describe the prevalence of both systems in other E. coli pathotypes. Under laboratory conditions, the T2SS(β) is assembled and functional in the secretion of LT into culture supernatant, whereas the T2SS(α) is not. Insertional inactivation of the three genes located upstream of gspC(β) (yghJ, pppA, and yghG) in the atypical T2SS(β) operon revealed that YghJ is not required for assembly of the GspD(β) secretin or secretion of LT, that PppA is likely the prepilin peptidase required for the function of T2SS(β), and that YghG is required for assembly of the GspD(β) secretin and thus function of the T2SS(β). Mutational and physiological analysis further demonstrated that YghG (redesignated GspS(β)) is a novel outer membrane pilotin protein that is integral for assembly of the T2SS(β) by localizing GspD(β) to the outer membrane, whereupon GspD(β) forms the macromolecular secretin multimer through which T2SS(β) substrates are translocated.
Collapse
|
21
|
A combination vaccine consisting of three live attenuated enterotoxigenic Escherichia coli strains expressing a range of colonization factors and heat-labile toxin subunit B is well tolerated and immunogenic in a placebo-controlled double-blind phase I trial in healthy adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2118-27. [PMID: 21994354 DOI: 10.1128/cvi.05342-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune responses against colonization factors (CFs) and the nontoxic B component of the enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LTB) are considered to be important for immunity against diarrhea caused by ETEC. Individual live attenuated ETEC derivatives that have had their toxin genes removed and whose aroC, ompC, and ompF genes are deleted have shown promise as vaccines against ETEC. The development of such strains has culminated in the testing of a three-strain-combination live attenuated vaccine known as ACE527, comprised of strains ACAM2025 expressing colonization factor antigen I (CFA/I) and LTB; ACAM2022, expressing CS5, CS6, and LTB; and ACAM2027, expressing CS1, CS2, CS3, and LTB. The recombinant CF and LTB genes expressed in the three strains were inserted into the bacterial chromosome to ensure their stable inheritance and expression without the requirement for any selection. ACE527 has been tested in a randomized placebo-controlled, double-blind, phase I safety and immunogenicity study in healthy adult volunteers and proved to be well tolerated and immunogenic at dose levels of 10(10) and 10(11) total CFU. There was no indication of strain interference on the basis of fecal shedding patterns, with all three being detected in the feces of 50% and 83% of low- and high-dose vaccine recipients, respectively. Similarly, strong immune responses to LTB and to CFs expressed on all three constituent strains were induced, with at least 50% of subjects in the high-dose group responding to LTB, CFA/I, CS3, and CS6.
Collapse
|
22
|
Roy K, Kansal R, Bartels SR, Hamilton DJ, Shaaban S, Fleckenstein JM. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli. J Biol Chem 2011; 286:29771-9. [PMID: 21757737 PMCID: PMC3191018 DOI: 10.1074/jbc.m111.251546] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Indexed: 12/12/2022] Open
Abstract
Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development.
Collapse
Affiliation(s)
| | - Rita Kansal
- Research Services, Veterans Affairs Medical Center, Memphis, Tennessee 38104, and
| | | | | | - Salwa Shaaban
- the Faculty of Pharmacy, Beni-Sueif University, 62514 Beni-Sueif, Egypt
| | - James M. Fleckenstein
- From the Departments of Medicine
- Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
- the Medicine and
| |
Collapse
|
23
|
Refinement of a human challenge model for evaluation of enterotoxigenic Escherichia coli vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1719-27. [PMID: 21852546 DOI: 10.1128/cvi.05194-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strain H10407 (serotype O78:H11 producing heat-labile toxin [LT], heat-stable toxin [ST], and colonization factor I [CFA/I]) induces reliably high diarrheal attack rates (ARs) in a human challenge model at doses of ≥10(9) CFU. A descending-dose challenge study was conducted with changes to the standard fasting time and buffer formulation, seeking conditions that permit lower inocula while maintaining reproducibly high ARs. In cohort 1, 20 subjects were fasted overnight and randomized 1:1:1:1 to receive H10407 at doses of 10(8) CFU with bicarbonate, 10(8) CFU with CeraVacx, 10(7) CFU with bicarbonate, or 10(7) CFU with CeraVacx. Subsequent cohorts received H10407 (10(7) CFU with bicarbonate) with similar fasting conditions. Cohort 2 included 15 ETEC-naïve volunteers. Cohort 3 included 10 ETEC-naïve volunteers and 10 rechallenged volunteers. In all, 25/35 (71%) ETEC-naïve recipients of 10(7) CFU of H10407 developed moderate or severe diarrhea (average maximum stool output/24 h = 1,042 g), and most (97%) shed H10407 (maximum geometric mean titer = 7.5 × 10(7) CFU/gram of stool). Only one of 10 rechallenged volunteers developed diarrhea. These rechallenged subjects had reduced intestinal colonization, reflected by quantitative microbiology of fecal samples. Among the 35 ETEC-naïve subjects, anti-lipopolysaccharide (LPS) O78 serum antibody responses were striking, with positive IgA and IgG antibody responses in 33/35 (94%) and 25/35 (71%), respectively. Anti-heat-labile enterotoxin (LTB) serum IgA and IgG responses developed in 19/35 (54%) and 14/35 (40%) subjects, respectively. Anti-CFA/I serum IgA and IgG responses were detected in 15/35 (43%) and 8/35 (23%) subjects. After the second challenge, participants exhibited blunted anti-LPS and -LTB responses but a booster response to CFA/I. This ETEC model should prove useful in the future evaluation of ETEC vaccine candidates.
Collapse
|
24
|
McKenzie R, Porter CK, Cantrell JA, Denearing B, O'Dowd A, Grahek SL, Sincock SA, Woods C, Sebeny P, Sack DA, Tribble DR, Bourgeois AL, Savarino SJ. Volunteer challenge with enterotoxigenic Escherichia coli that express intestinal colonization factor fimbriae CS17 and CS19. J Infect Dis 2011; 204:60-4. [PMID: 21628659 DOI: 10.1093/infdis/jir220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 10(9) organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 10(9) organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials.
Collapse
Affiliation(s)
- Robin McKenzie
- Department of Medicine, Johns Hopkins University, Johns Hopkins Bayview Medical Center, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Porter CK, Riddle MS, Tribble DR, Louis Bougeois A, McKenzie R, Isidean SD, Sebeny P, Savarino SJ. A systematic review of experimental infections with enterotoxigenic Escherichia coli (ETEC). Vaccine 2011; 29:5869-85. [PMID: 21616116 DOI: 10.1016/j.vaccine.2011.05.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Volunteer challenge with enterotoxigenic Escherichia coli (ETEC) has been used for four decades to elucidate the pathogenesis and immune responses and assess efficacy of various interventions. We performed a systematic review of these studies and a meta-analysis of individual patient-level data (IPD) from a subset of studies using standard methodology. We identified 27 studies of 11 ETEC strains administered to 443 naive subjects at doses from 1×10(6) to 1×10(10) colony forming units (cfu). Diarrhea attack rates varied by strain, dose and enterotoxin. Similar rates were seen at doses of 5×10(8) to 1×10(10)cfu with the three most commonly used strains B7A, E24377A, H10407. In IPD analysis, the highest diarrhea attack rates were seen with strains B7A, H10407 and E24377A. The H10407 induced significantly higher stool output than the other strains. Additionally, the rate of output was different across strains. The risk of diarrhea, abdominal cramps, nausea and headaches differed significantly by ETEC strain. An increased risk of nausea, abdominal cramps and headaches was seen for females. Baseline anti-LT IgG titers appeared to be associated with a decrease risk of diarrhea outcomes, a trend not seen with anti-LT IgA or seen consistently with anti-colonization factor antibodies. Neither early antibiotic treatment nor diarrhea duration significantly affected the frequency or magnitude of serologic responses. These studies have served as an invaluable tool in understanding disease course, pathogenicity, innate immune responses and an early assessment of product efficacy. When designing and planning experimental ETEC infection studies in this age of increased ethical scrutiny and growing appreciation of post-infectious sequelae, better understanding of available data is essential.
Collapse
Affiliation(s)
- Chad K Porter
- Naval Medical Research Center, Enteric Diseases Department, Silver Spring, MD, United States.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, Cunningham AF, Petty NK, Mahon V, Brinkley C, Hobman JL, Savarino SJ, Turner SM, Pallen MJ, Penn CW, Parkhill J, Turner AK, Johnson TJ, Thomson NR, Smith SGJ, Henderson IR. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 2010; 192:5822-31. [PMID: 20802035 PMCID: PMC2953697 DOI: 10.1128/jb.00710-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/17/2010] [Indexed: 02/07/2023] Open
Abstract
In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.
Collapse
Affiliation(s)
- Lisa C. Crossman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Roy R. Chaudhuri
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Scott A. Beatson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Timothy J. Wells
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Mickael Desvaux
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Adam F. Cunningham
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Nicola K. Petty
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Vivienne Mahon
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Carl Brinkley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Jon L. Hobman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Stephen J. Savarino
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Susan M. Turner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Mark J. Pallen
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Charles W. Penn
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - A. Keith Turner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Timothy J. Johnson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Stephen G. J. Smith
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Ian R. Henderson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
27
|
Steinsland H, Lacher DW, Sommerfelt H, Whittam TS. Ancestral lineages of human enterotoxigenic Escherichia coli. J Clin Microbiol 2010; 48:2916-24. [PMID: 20534806 PMCID: PMC2916599 DOI: 10.1128/jcm.02432-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 05/29/2010] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea among children living in and among travelers visiting developing countries. Human ETEC strains represent an epidemiologically and phenotypically diverse group of pathogens, and there is a need to identify natural groupings of these organisms that may help to explain this diversity. Here, we sought to identify most of the important human ETEC lineages that exist in the E. coli population, because strains that originate from the same lineage may also have inherited many of the same epidemiological and phenotypic traits. We performed multilocus sequence typing (MLST) on 1,019 ETEC isolates obtained from humans in different countries and analyzed the data against a backdrop of MLST data from 1,250 non-ETEC E. coli and eight ETEC isolates from pigs. A total of 42 different lineages were identified, 15 of which, representing 792 (78%) of the strains, were estimated to have emerged >900 years ago. Twenty of the lineages were represented in more than one country. There was evidence of extensive exchange of enterotoxin and colonization factor genes between different lineages. Human and porcine ETEC have probably emerged from the same ancestral ETEC lineage on at least three occasions. Our findings suggest that most ETEC strains circulating in the human population today originate from well-established, globally widespread ETEC lineages. Some of the more important lineages identified here may represent a smaller and more manageable target for the ongoing efforts to develop effective ETEC vaccines.
Collapse
Affiliation(s)
- Hans Steinsland
- University of Bergen, Centre for International Health, P.O. Box 7804, N-5020 Bergen, Norway.
| | | | | | | |
Collapse
|
28
|
Mudrak B, Kuehn MJ. Heat-labile enterotoxin: beyond G(m1) binding. Toxins (Basel) 2010; 2:1445-70. [PMID: 22069646 PMCID: PMC3153253 DOI: 10.3390/toxins2061445] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/22/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions.
Collapse
Affiliation(s)
- Benjamin Mudrak
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meta J. Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-684-2545; Fax: +1-919-684-8885
| |
Collapse
|
29
|
Enterotoxigenic Escherichia coli elicits immune responses to multiple surface proteins. Infect Immun 2010; 78:3027-35. [PMID: 20457787 DOI: 10.1128/iai.00264-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes considerable morbidity and mortality due to diarrheal illness in developing countries, particularly in young children. Despite the global importance of these heterogeneous pathogens, a broadly protective vaccine is not yet available. While much is known regarding the immunology of well-characterized virulence proteins, in particular the heat-labile toxin (LT) and colonization factors (CFs), to date, evaluation of the immune response to other antigens has been limited. However, the availability of genomic DNA sequences for ETEC strains coupled with proteomics technology affords opportunities to examine novel uncharacterized antigens that might also serve as targets for vaccine development. Analysis of whole or fractionated bacterial proteomes with convalescent-phase sera can potentially accelerate identification of secreted or surface-expressed targets that are recognized during the course of infection. Here we report results of an immunoproteomics approach to antigen discovery with ETEC strain H10407. Immunoblotting of proteins separated by two-dimensional electrophoresis (2DE) with sera from mice infected with strain H10407 or with convalescent human sera obtained following natural ETEC infections demonstrated multiple immunoreactive molecules in culture supernatant, outer membrane, and outer membrane vesicle preparations, suggesting that many antigens are recognized during the course of infection. Proteins identified by this approach included established virulence determinants, more recently identified putative virulence factors, as well as novel secreted and outer membrane proteins. Together, these studies suggest that existing and emerging proteomics technologies can provide a useful complement to ongoing approaches to ETEC vaccine development.
Collapse
|
30
|
Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines. Infect Immun 2009; 77:5206-15. [PMID: 19737904 DOI: 10.1128/iai.00712-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies have confirmed older observations that the enterotoxins enhance enteric bacterial colonization and pathogenicity. How and why this happens remains unknown at this time. It appears that toxins such as the heat-labile enterotoxin (LT) from Escherichia coli can help overcome the innate mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing in regions of endemicity, barrier disruption should frequently render the gut vulnerable to ETEC and other enteric infections. Conversely, toxin immunity would be expected to block this process by protecting the innate mucosal barrier. Years ago, Peltola et al. (Lancet 338:1285-1289, 1991) observed unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected to have unexpectedly broad protective effects.
Collapse
|
31
|
Case series study of traveler's diarrhea in U.S. military personnel at Incirlik Air Base, Turkey. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1884-7. [PMID: 18845833 DOI: 10.1128/cvi.00163-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Military personnel with traveler's diarrhea (n=202) while deployed to Incirlik Air Base, Turkey, from June to September 2002 were evaluated for pathogen-specific immune responses. Serologic and fecal immunoglobulin A (IgA) titers to enterotoxigenic Escherichia coli antigens (CS6, CS3, and LT) were quite low. In contrast, subjects with Campylobacter infections had high serologic and fecal IgA responses.
Collapse
|
32
|
Randomized clinical trial assessing the safety and immunogenicity of oral microencapsulated enterotoxigenic Escherichia coli surface antigen 6 with or without heat-labile enterotoxin with mutation R192G. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1222-8. [PMID: 18579693 DOI: 10.1128/cvi.00491-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An oral, microencapsulated anti-colonization factor 6 antigen (meCS6) vaccine, with or without heat-labile enterotoxin with mutation R192G (LT(R192G)) (mucosal adjuvant), against enterotoxigenic Escherichia coli (ETEC) was evaluated for regimen and adjuvant effects on safety and immunogenicity. Sixty subjects were enrolled into a three-dose, 2-week interval or four-dose, 2-day interval regimen. Each regimen was randomized into two equal groups of meCS6 alone (1 mg) or meCS6 with adjuvant (2 microg of LT(R192G)). The vaccine was well tolerated and no serious adverse events were reported. Serologic response to CS6 was low in all regimens (0 to 27%). CS6-immunoglobulin A (IgA) antibody-secreting cell (ASC) responses ranged from 36 to 86%, with the highest level in the three-dose adjuvanted regimen; however, the magnitude was low. As expected, serologic and ASC LT responses were limited to adjuvanted regimens, with the exception of fecal IgA, which appeared to be nonspecific to LT administration. Further modifications to the delivery strategy and CS6 and adjuvant dose optimization will be needed before conducting further clinical trials with this epidemiologically important class of ETEC.
Collapse
|
33
|
Okoh AI, Osode AN. Enterotoxigenic Escherichia coli (ETEC): a recurring decimal in infants' and travelers' diarrhea. REVIEWS ON ENVIRONMENTAL HEALTH 2008; 23:135-148. [PMID: 18763541 DOI: 10.1515/reveh.2008.23.2.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in infants and in travelers from developed to underdeveloped countries, especially in regions of poor sanitation. The ETEC are acquired by the ingestion of contaminated food and water, and adults living in endemic areas develop immunity. The disease condition manifests as a minor discomfort to a severe cholera-like syndrome and requires colonization by the microorganism and the elaboration of one or more enterotoxins. The ETEC attach to the epithelial cells of the gastrointestinal tract and release substances that affect the normal functioning of the tract, thereby resulting in diarrhea, and subsequently millions of deaths everyday, particularly in children. The prevention of the spread of this strain of diarrheagenic E. coli depends on ensuring appropriate sanitary measures; hand-washing and proper preparation of food; chlorination of water supplies; and appropriate sewage treatment and disposal. Parenteral or oral fluid and electrolyte replacement is used to prevent dehydration, and broad-spectrum antibiotics are used in chronic or life-threatening cases, but in most cases, should be avoided because of severe side effects.
Collapse
Affiliation(s)
- Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, South Africa.
| | | |
Collapse
|
34
|
The EtpA exoprotein of enterotoxigenic Escherichia coli promotes intestinal colonization and is a protective antigen in an experimental model of murine infection. Infect Immun 2008; 76:2106-12. [PMID: 18285493 DOI: 10.1128/iai.01304-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) strains are major causes of morbidity and mortality due to diarrheal illness in developing countries. At present, there is no broadly protective vaccine for this diverse group of pathogens. The EtpA protein, identified in ETEC H10407 in a recent search for candidate immunogens, is a large glycosylated exoprotein secreted via two-partner secretion (TPS). Similar to structurally related molecules, EtpA functions in vitro as an adhesin. The studies reported here use a recently developed murine model of ETEC intestinal colonization to examine the immunogenicity and protective efficacy of EtpA. We report that mice repeatedly exposed to ETEC are protected from subsequent colonization and that they mount immune responses to both EtpA and its presumed two-partner secretion transporter (EtpB) during the course of experimental infection. Furthermore, isogenic etpA deletion mutants were impaired in the colonization of mice, and intranasal immunization of mice with recombinant EtpA conferred protection against ETEC H10407 in this model. Together, these data suggest that EtpA is required for optimal colonization of the intestine, findings paralleling those of previous in vitro studies demonstrating its role in adherence. EtpA and other TPS proteins may be viable targets for ETEC vaccine development.
Collapse
|
35
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Genetic diversity of heat-labile toxin expressed by enterotoxigenic Escherichia coli strains isolated from humans. J Bacteriol 2008; 190:2400-10. [PMID: 18223074 DOI: 10.1128/jb.00988-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The natural diversity of the elt operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT(+) (25 strains) only or LT(+)/ST(+) (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the elt operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.
Collapse
|