1
|
Li J, Zhang Y, Li H, Jiang J, Guo C, Zhou Z, Luo Y, Zhou C, Ming Y. Single-cell RNA sequencing reveals a peripheral landscape of immune cells in Schistosomiasis japonica. Parasit Vectors 2023; 16:356. [PMID: 37817226 PMCID: PMC10563327 DOI: 10.1186/s13071-023-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Schistosomiasis, also known as bilharzia, is a devastating parasitic disease. This progressive and debilitating helminth disease is often associated with poverty and can lead to chronic poor health. Despite ongoing research, there is currently no effective vaccine for schistosomiasis, and praziquantel remains the only available treatment option. According to the progression of schistosomiasis, infections caused by schistosomes are classified into three distinct clinical phases: acute, chronic and advanced schistosomiasis. However, the underlying immune mechanism involved in the progression of schistosomiasis remains poorly understood. METHODS We employed single-cell RNA sequencing (scRNA-seq) to profile the immune landscape of Schistosomiasis japonica infection based on peripheral blood mononuclear cells (PBMCs) from a healthy control group (n = 4), chronic schistosomiasis group (n = 4) and advanced schistosomiasis group (n = 2). RESULTS Of 89,896 cells, 24 major cell clusters were ultimately included in our analysis. Neutrophils and NK/T cells accounted for the major proportion in the chronic group and the healthy group, and monocytes dominated in the advanced group. A preliminary study showed that NKT cells were increased in patients with schistosomiasis and that CXCR2 + NKT cells were proinflammatory cells. Plasma cells also accounted for a large proportion of B cells in the advanced group. MHC molecules in monocytes were notably lower in the advanced group than in the chronic group or the healthy control group. However, monocytes in the advanced group exhibited high expression of FOLR3 and CCR2. CONCLUSIONS Overall, this study enhances our understanding of the immune mechanisms involved in schistosomiasis. It provides a transcriptional atlas of peripheral immune cells that may contribute to elimination of the disease. This preliminary study suggests that the increased presence of CCR2 + monocyte and CXCR2 + NKT cells might participate in the progression of schistosomiasis.
Collapse
Affiliation(s)
- Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Yulin Luo
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China.
| |
Collapse
|
2
|
Siripoon T, Apiwattanakul N, Mongkolrattanakul P, Tongsook C, Unwanatham N, Hongeng S, Kantachuvesiri S, Bruminhent J. Clinical and immunological characteristics for BK polyomavirus-associated nephropathy after kidney transplantation. Immun Inflamm Dis 2023; 11:e956. [PMID: 37647426 PMCID: PMC10461421 DOI: 10.1002/iid3.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION BK polyomavirus (BKPyV)-associated nephropathy (BKPyVAN) can cause a significant risk of allograft impairment after kidney transplantation (KT). Intact BKPyV-specific immunity is associated with viral containment. This study investigated BKPyV-specific immunological factors among KT recipients. METHODS This prospective study in a single transplant center from January 2019 to August 2019 assessed associations between clinical and immunological characteristics, with a focus on BKPyV-cell-specific immunity and BKPyVAN, among KT recipients aged ≥15 years. The numbers of interferon-gamma (IFN-γ)-producing CD4+ T, CD8+ T, natural killer (NK), and natural killer T (NKT) cells were measured after stimulation with large T antigen and viral capsid protein 1 (VP1). RESULTS In total, 100 KT recipients were included (mean age ± SD, 42 ± 11 years); 35% of the recipients were female patients, and 70% had received induction immunosuppressive therapy. The 1-year cumulative incidence of high-level BKPyV DNAuria (possible BKPyVAN) and (presumptive BKPyVAN) was 18%. Among 40 patients with immunological factor data, pre-KT %NK cells (hazard ratio [HR], 1.258; 95% confidence interval [CI], 1.077-1.469; p = .004) and %VP1-specific NK cells (HR, 1.209; 95% CI, 1.055-1.386; p = .006) were factors independently associated with possible and presumptive BKPyVAN. KT recipients with possible and presumptive BKPyVAN were more likely to exhibit significant mean coefficients of %NK, %VP1-specific NK, and %NKT cells at 1 month after KT than before KT (all p < .05). CONCLUSION Individuals with nonspecific and VP1-specific NK cells before KT and increasing numbers of these cells after KT may be at risk for high-level BKPyV DNAuria and presumptive BKPyVAN. Further studies are needed to determine the utility of BKPyV-specific innate immune surveillance in predicting the occurrence of BKPyVAN.
Collapse
Affiliation(s)
- Tanaya Siripoon
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Department of Clinical Tropical Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Nopporn Apiwattanakul
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Pannawat Mongkolrattanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Chutatip Tongsook
- Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Nattawut Unwanatham
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Surasak Kantachuvesiri
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Ramathibodi Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Ramathibodi Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
3
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey.
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
4
|
Zhang Y, Li J, Li H, Jiang J, Guo C, Zhou C, Zhou Z, Ming Y. Single-cell RNA sequencing to dissect the immunological network of liver fibrosis in Schistosoma japonicum-infected mice. Front Immunol 2022; 13:980872. [PMID: 36618421 PMCID: PMC9814160 DOI: 10.3389/fimmu.2022.980872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Liver fibrosis is a poor outcome of patients with schistosomiasis, impacting the quality of life and even survival. Eggs deposited in the liver were the main pathogenic factors of hepatic fibrosis in Schistosomiasis japonica. However, the mechanism of hepatic fibrosis in schistosomiasis remains not well defined and there is no effective measure to prevent and treat schistosome-induced hepatic fibrosis. Methods In this study, we applied single-cell sequencing to primarily explore the mechanism of hepatic fibrosis in murine schistosomiasis japonica (n=1) and normal mouse was served as control (n=1). Results A total of 10,403 cells were included in our analysis and grouped into 18 major cell clusters. Th2 cells and NKT cells were obviously increased and there was a close communication between NKT cells and FASLG signaling pathway. Flow cytometry analysis indicated that the expression of Fasl in NKT cells, CD8+ T cell and NK cell were higher in SJ groups. Arg1, Retnla and Chil3, marker genes of alternatively activated macrophages (M2), were mainly expressed in mononuclear phagocyte(1) (MP(1)), suggesting that Kupffer cells might undergo M2-like polarization in fibrotic liver of schistosomiasis. CXCL and CCL signaling pathway analysis with CellChat showed that Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 were the most dominant L-R and there were close interactions between T cells and MPs. Conclusion Our research profiled a preliminary immunological network of hepatic fibrosis in murine schistosomiasis japonica, which might contribute to a better understanding of the mechanisms of liver fibrosis in schistosomiasis. NKT cells and CXCL and CCL signaling pathway such as Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 might be potential targets to alleviate hepatic fibrosis of schistosomiasis.
Collapse
Affiliation(s)
- Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Yingzi Ming,
| |
Collapse
|
5
|
Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. [PMID: 36389166 PMCID: PMC9650140 DOI: 10.3389/fcimb.2022.1035765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis has been widely disseminated around the world, and poses a significant threat to human health. Schistosoma eggs and soluble egg antigen (SEA) mediated inflammatory responses promote the formation of egg granulomas and liver fibrosis. With continuous liver injuries and inflammatory stimulation, liver fibrosis can develop into liver cirrhosis and liver cancer. Therefore, anti-fibrotic therapy is crucial to increase the survival rate of patients. However, current research on antifibrotic treatments for schistosomiasis requires further exploration. In the complicated microenvironment of schistosome infections, it is important to understand the mechanism and pathology of schistosomiasis-associated liver fibrosis(SSLF). In this review, we discuss the role of SEA in inhibiting liver fibrosis, describe its mechanism, and comprehensively explore the role of host-derived and schistosome-derived microRNAs (miRNAs) in SSLF. Inflammasomes and cytokines are significant factors in promoting SSLF, and we discuss the mechanisms of some critical inflammatory signals and pro-fibrotic cytokines. Natural killer(NK) cells and Natural killer T(NKT) cells can inhibit SSLF but are rarely described, therefore, we highlight their significance. This summarizes and provides insights into the mechanisms of key molecules involved in SSLF development.
Collapse
Affiliation(s)
- Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
6
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
7
|
Deslyper G, Murphy DM, Sowemimo OA, Holland CV, Doherty DG. Distinct hepatic myeloid and lymphoid cell repertoires are associated with susceptibility and resistance to Ascaris infection. Parasitology 2021; 148:539-549. [PMID: 33431071 PMCID: PMC10090783 DOI: 10.1017/s0031182021000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023]
Abstract
The soil-transmitted helminth Ascaris lumbricoides infects ~800 million people worldwide. Some people are heavily infected, harbouring many worms, whereas others are only lightly infected. The mechanisms behind this difference are unknown. We used a mouse model of hepatic resistance to Ascaris, with C57BL/6J mice as a model for heavy infection and CBA/Ca mice as a model for light infection. The mice were infected with the porcine ascarid, Ascaris suum or the human ascarid, A. lumbricoides and immune cells in their livers and spleens were enumerated using flow cytometry. Compared to uninfected C57BL/6J mice, uninfected CBA/Ca mice had higher splenic CD4+ and γδ T cell counts and lower hepatic eosinophil, Kupffer cell and B cell counts. Infection with A. suum led to expansions of eosinophils, Kupffer cells, monocytes and dendritic cells in the livers of both mouse strains and depletions of hepatic natural killer (NK) cells in CBA/Ca mice only. Infection with A. lumbricoides led to expansions of hepatic eosinophils, monocytes and dendritic cells and depletions of CD8+, αβ, NK and NK T cells in CBA/Ca mice, but not in C57BL/6J mice where only monocytes expanded. Thus, susceptibility and resistance to Ascaris infection are governed, in part, by the hepatic immune system.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dearbhla M. Murphy
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Lei Z, Tang R, Qi Q, Gu P, Wang J, Xu L, Wei C, Pu Y, Qi X, Chen Y, Yu B, Yu Y, Chen X, Zhu J, Li Y, Zhou S, Su C. Hepatocyte CD1d protects against liver immunopathology in mice with schistosomiasis japonica. Immunology 2020; 162:328-338. [PMID: 33283278 DOI: 10.1111/imm.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease with over 250 million people infected worldwide. The main clinically important species Schistosoma mansoni (S. mansoni) and Schistosoma japonicum (S. japonicum) cause inflammatory responses against tissue-trapped eggs, resulting in formation of granulomas mainly in host liver. Persistent granulomatous response results in severe fibrosis in the liver, leading to irreversible impairment of the liver and even death of the host. CD1d, a highly conserved MHC class I-like molecule, is expressed by both haematopoietic and non-haematopoietic cells. CD1d on antigen-presenting cells (APCs) of haematopoietic origin presents pathogen-derived lipid antigens to natural killer T (NKT) cells, which enables them to rapidly produce large amounts of various cytokines and facilitate CD4+ T helper (Th) cell differentiation upon invading pathogens. Noteworthy, hepatocytes of non-haematopoietic origin have recently been shown to be involved in maintaining liver NKT cell homeostasis through a CD1d-dependent manner. However, whether hepatocyte CD1d-dependent regulation of NKT cell homeostasis also modulates CD4+ Th cell responses and liver immunopathology in murine schistosomiasis remains to be addressed. Here, we show in mice that CD1d expression on hepatocytes was decreased dramatically upon S. japonicum infection, accompanied by increased NKT cells, as well as upregulated Th1 and Th2 responses. Overexpression of CD1d in hepatocytes significantly decreased local NKT numbers and cytokines (IFN-γ, IL-4, IL-13), concomitantly with downregulation of both Th1 and Th2 responses and alleviation in pathological damage in livers of S. japonicum-infected mice. These findings highlight the potential of hepatocyte CD1d-targeted therapies for liver immunopathology control in schistosomiasis.
Collapse
Affiliation(s)
- Zhigang Lei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Gu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junling Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Pu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanxiong Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Huang H, Zuzarte-Luis V, Fragoso G, Calvé A, Hoang TA, Oliero M, Chabot-Roy G, Mullins-Dansereau V, Lesage S, Santos MM. Acute invariant NKT cell activation triggers an immune response that drives prominent changes in iron homeostasis. Sci Rep 2020; 10:21026. [PMID: 33273556 PMCID: PMC7713400 DOI: 10.1038/s41598-020-78037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Iron homeostasis is an essential biological process that ensures the tissue distribution of iron for various cellular processes. As the major producer of hepcidin, the liver is central to the regulation of iron metabolism. The liver is also home to many immune cells, which upon activation may greatly impact iron metabolism. Here, we focus on the role of invariant natural killer T (iNKT) cells, a subset of T lymphocytes that, in mice, is most abundant in the liver. Activation of iNKT cells with the prototypical glycosphingolipid antigen, α-galactosylceramide, resulted in immune cell proliferation and biphasic changes in iron metabolism. This involved an early phase characterized by hypoferremia, hepcidin induction and ferroportin suppression, and a second phase associated with strong suppression of hepcidin despite elevated levels of circulating and tissue iron. We further show that these changes in iron metabolism are fully dependent on iNKT cell activation. Finally, we demonstrate that the biphasic regulation of hepcidin is independent of NK and Kupffer cells, and is initially driven by the STAT3 inflammatory pathway, whereas the second phase is regulated by repression of the BMP/SMAD signaling pathway. These findings indicate that iNKT activation and the resulting cell proliferation influence iron homeostasis.
Collapse
Affiliation(s)
- Hua Huang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Gabriela Fragoso
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Annie Calvé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Tuan Anh Hoang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre INRS-Institut Armand-Frappier, Institut National de La Recherche Scientifique, 531 Boulevard des Prairies, Laval, Québec, Canada
| | - Manon Oliero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Victor Mullins-Dansereau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Maisonneuve-Rosemont Hospital Research Centre (CRHMR), Montréal, Québec, Canada
| | - Manuela M Santos
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada.
- Nutrition and Microbiome Laboratory, CRCHUM-R10.426, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.
| |
Collapse
|
10
|
Istrate-Ofiţeru AM, Ruican D, Niculescu M, Nagy RD, Roşu GC, Petrescu AM, Drăguşin RC, Iovan L, Zorilă GL, Iliescu DG. Ovarian ectopic pregnancy: the role of complex morphopathological assay. Review and case presentation. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:985-997. [PMID: 34171048 PMCID: PMC8343605 DOI: 10.47162/rjme.61.4.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Ovarian ectopic pregnancy (OEP) represents the rarest type of ectopic pregnancy, accounting for 1-3% of this pathology. The diagnosis of this pathology is challenging due to the non-specific clinical aspects and the ultrasound examination hampered by the lack of visible gestational sac in the presence of hematocele and hemoperitoneum. The purpose of the extended histopathological (HP) examination was to identify particular aspects of the OEP trophoblast and to highlight potential local ovarian modifications which can determine pregnancy fixation at this level. The patient presented local favorable conditions for intraovarian nidation, conditions confirmed by the HP classical examination and by the immunohistochemical evaluation. We identified, using classical Hematoxylin-Eosin, Masson's trichrome and Periodic Acid-Schiff (PAS)-Hematoxylin, necrotic hemorrhage, accentuated vascular thrombosis and high density lymphoplasmocytary infiltrate. These modifications increased local adhesivity and cell destruction through hypoperfusion. Anti-cluster of differentiation antibodies (CD34, CD38, tryptase) revealed the low number of intravillous vessels and the high number of macrophages and mastocytes involved in the local inflammatory process heighten. We identified the presence of trophoblast tissue in the ovarian structure using anti-cytokeratin AE1∕AE3 (CK AE1∕AE3)/anti-cytokeratin 7 (CK7) antibodies. The anti-alpha-smooth muscle actin (α-SMA) and anti-vimentin (VIM) antibodies displayed the density of myofibroblasts and intravillous stromal cells and with the aid of anti-progesterone receptor (PR) antibody, we identified the corpus luteum hormonal response in the OEP. The placental villosities present a blocked multiplication process at the anti-apoptotic B-cell lymphoma 2 (BCL2) protein, confirmed by the Ki67 cell proliferation and tumor protein 63 (p63) immunomarkers. Anti-neuron specific enolase (NSE), anti-calretinin and anti-inhibin A antibodies showed the particular aspects of the granulosa and internal theca cells, which may be involved in oocyte release blockage, intraluteal and extraluteal fecundation of the OEP.
Collapse
Affiliation(s)
- Anca-Maria Istrate-Ofiţeru
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Dan Ruican
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
- PhD Student, Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Mihaela Niculescu
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| | - Rodica Daniela Nagy
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
- PhD Student, Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Gabriela-Camelia Roşu
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ana-Maria Petrescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Roxana Cristina Drăguşin
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Larisa Iovan
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
- PhD Student, Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - George Lucian Zorilă
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Dominic Gabriel Iliescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
11
|
Melkus MW, Le L, Siddiqui AJ, Molehin AJ, Zhang W, Lazarus S, Siddiqui AA. Elucidation of Cellular Responses in Non-human Primates With Chronic Schistosomiasis Followed by Praziquantel Treatment. Front Cell Infect Microbiol 2020; 10:57. [PMID: 32154190 PMCID: PMC7050631 DOI: 10.3389/fcimb.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, mass drug treatment with praziquantel (PZQ) has been utilized to treat schistosomiasis, yet reinfection and the risk of drug resistance are among the various factors precluding successful elimination of schistosomiasis. Tractable models that replicate "real world" field conditions are crucial to effectively evaluate putative schistosomiasis vaccines. Herein, we describe the cellular immune responses and cytokine expression profiles under field conditions that include prior infection with schistosomes followed by treatment with PZQ. Baboons were exposed to Schistosoma mansoni cercariae through trickle infection over 5 weeks, allowed for chronic disease to develop, and then treated with PZQ. Peripheral blood mononuclear cells (PBMCs) were monitored for cellular immune response(s) at each disease stage and PZQ therapy. After initial infection and during chronic disease, there was an increase in non-classical monocytes, NK and NKT cells while the CD4:CD8 T cell ratio inverted from a 2:1 to 1:2.5. The cytokine expressions of PBMCs after trickle infections were polarized more toward a Th2 response with a gradual increase in Th1 cytokine expression at chronic disease stage. Following PZQ treatment, with the exception of an increase in B cells, immune cell populations reverted back toward naïve levels; however, expression of almost all Th1, Th2, and Th17 cytokines was significantly increased. This preliminary study is the first to follow the cellular immune response and cytokine expression profiles in a non-human primate model simulating field conditions of schistosomiasis and PZQ therapy, providing a promising reference in predicting the immune response to future vaccines for schistosomiasis.
Collapse
Affiliation(s)
- Michael W Melkus
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Loc Le
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
12
|
Unappreciated diversity within the pool of CD1d-restricted T cells. Semin Cell Dev Biol 2018; 84:42-47. [DOI: 10.1016/j.semcdb.2017.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
13
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
14
|
Aravindhan V, Anand G. Cell Type-Specific Immunomodulation Induced by Helminthes: Effect on Metainflammation, Insulin Resistance and Type-2 Diabetes. Am J Trop Med Hyg 2017; 97:1650-1661. [PMID: 29141759 DOI: 10.4269/ajtmh.17-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4+] cells, cytotoxic T [CD8+] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.
Collapse
|
15
|
Dhodapkar MV, Kumar V. Type II NKT Cells and Their Emerging Role in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:1015-1021. [PMID: 28115591 DOI: 10.4049/jimmunol.1601399] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
NKT cells recognize lipid Ags presented by a class I MHC-like molecule CD1d, a member of the CD1 family. Although most initial studies on NKT cells focused on a subset with semi-invariant TCR termed invariant NKT cells, the majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self-lipid ligands, and share some properties with both invariant NKT and conventional T cells. An emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. An improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Section of Hematology, Department of Medicine, Yale School of Medicine, Yale University, New Haven CT 06510; .,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven CT 06510.,Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06510; and
| | - Vipin Kumar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
16
|
Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis. J Immunol Res 2016; 2016:2395645. [PMID: 27563682 PMCID: PMC4987483 DOI: 10.1155/2016/2395645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic “hygiene hypothesis,” has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis.
Collapse
|
17
|
Dasgupta S, Kumar V. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 2016; 68:665-76. [PMID: 27405300 PMCID: PMC6334657 DOI: 10.1007/s00251-016-0930-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
19
|
Haeryfar SMM, Mallevaey T. Editorial: CD1- and MR1-Restricted T Cells in Antimicrobial Immunity. Front Immunol 2015; 6:611. [PMID: 26697007 PMCID: PMC4666986 DOI: 10.3389/fimmu.2015.00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
20
|
Macho-Fernandez E, Brigl M. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Front Immunol 2015; 6:362. [PMID: 26284062 PMCID: PMC4517383 DOI: 10.3389/fimmu.2015.00362] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/04/2015] [Indexed: 01/21/2023] Open
Abstract
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manfred Brigl
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Odegaard JI, Hsieh MH. Immune responses to Schistosoma haematobium infection. Parasite Immunol 2014; 36:428-38. [PMID: 25201406 DOI: 10.1111/pim.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/20/2013] [Indexed: 02/02/2023]
Abstract
Urogenital schistosomiasis is one of the greatest single infectious sources of human morbidity and mortality known. Through a complex cycle of infection, migration and eventual maturation and mating, S. haematobium (the aetiological agent of urogenital schistosomiasis) deposits highly immunogenic eggs within the bladder and other pelvic organs, activating a wide range of immune programs that determine both infection outcome as well as downstream immunopathology. In this review, we discuss the experimental and observational bases for our current understanding of these immune programs, focusing specifically on how the balance of type 1 and type 2 responses governs subsequent immunopathology and clinical outcome.
Collapse
Affiliation(s)
- J I Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
22
|
Schwartz C, Oeser K, Prazeres da Costa C, Layland LE, Voehringer D. T Cell–Derived IL-4/IL-13 Protects Mice against FatalSchistosoma mansoniInfection Independently of Basophils. THE JOURNAL OF IMMUNOLOGY 2014; 193:3590-9. [DOI: 10.4049/jimmunol.1401155] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
The role of the immunological background of mice in the genetic variability of Schistosoma mansoni as detected by random amplification of polymorphic DNA. J Helminthol 2014; 89:714-9. [PMID: 24991919 DOI: 10.1017/s0022149x14000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma. Among the Schistosoma species known to infect humans, S. mansoni is the most frequent cause of intestinal schistosomiasis in sub-Saharan Africa and South America: the World Health Organization estimates that about 200,000 deaths per year result from schistosomiasis in sub-Saharan Africa alone. The Schistosoma life cycle requires two different hosts: a snail as intermediate host and a mammal as definitive host. People become infected when they come into contact with water contaminated with free-living larvae (e.g. when swimming, fishing, washing). Although S. mansoni has mechanisms for escaping the host immune system, only a minority of infecting larvae develop into adults, suggesting that strain selection occurs at the host level. To test this hypothesis, we compared the Belo Horizonte (BH) strain of S. mansoni recovered from definitive hosts with different immunological backgrounds using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR). Schistosoma mansoni DNA profiles of worms obtained from wild-type (CD1 and C57BL/6J) and mutant (Jα18- / - and TGFβRIIdn) mice were analysed. Four primers produced polymorphic profiles, which can therefore potentially be used as reference biomarkers. All male worms were genetically distinct from females isolated from the same host, with female worms showing more specific fragments than males. Of the four host-derived schistosome populations, female and male adults recovered from TGFβRIIdn mice showed RAPD-PCR profiles that were most similar to each other. Altogether, these data indicate that host immunological backgrounds can influence the genetic diversity of parasite populations.
Collapse
|
24
|
Maizels RM, McSorley HJ, Smyth DJ. Helminths in the hygiene hypothesis: sooner or later? Clin Exp Immunol 2014; 177:38-46. [PMID: 24749722 PMCID: PMC4089153 DOI: 10.1111/cei.12353] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
There is increasing recognition that exposures to infectious agents evoke fundamental effects on the development and behaviour of the immune system. Moreover, where infections (especially parasitic infections) have declined, immune responses appear to be increasingly prone to hyperactivity. For example, epidemiological studies of parasite-endemic areas indicate that prenatal or early-life experience of infections can imprint an individual's immunological reactivity. However, the ability of helminths to dampen pathology in established inflammatory diseases implies that they can have therapeutic effects even if the immune system has developed in a low-infection setting. With recent investigations of how parasites are able to modulate host immune pathology at the level of individual parasite molecules and host cell populations, we are now able to dissect the nature of the host-parasite interaction at both the initiation and recall phases of the immune response. Thus the question remains - is the influence of parasites on immunity one that acts primarily in early life, and at initiation of the immune response, or in adulthood and when recall responses occur? In short, parasite immunosuppression - sooner or later?
Collapse
Affiliation(s)
- R M Maizels
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
25
|
Adachi K, Nakamura R, Osada Y, Senba M, Tamada K, Hamano S. Involvement of IL-18 in the expansion of unique hepatic T cells with unconventional cytokine profiles during Schistosoma mansoni infection. PLoS One 2014; 9:e96042. [PMID: 24824897 PMCID: PMC4019514 DOI: 10.1371/journal.pone.0096042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
Infection with schistosomes invokes severe fibrotic granulomatous responses in the liver of the host. Schistosoma mansoni infection induces dramatic fluctuations in Th1 or Th2 cytokine responses systemically; Th1 reactions are provoked in the early phase, whilst Th2 responses become dominant after oviposition begins. In the liver, various unique immune cells distinct from those of conventional immune competent organs or tissues exist, resulting in a unique immunological environment. Recently, we demonstrated that S. mansoni infection induces unique CD4+ T cell populations exhibiting unconventional cytokine profiles in the liver of mice during the period between Th1- and Th2-phases, which we term the transition phase. They produce both IFN-γ and IL-4 or both IFN-γ and IL-13 simultaneously. Moreover, T cells secreting triple cytokines IFN-γ, IL-13 and IL-4 were also induced. We term these cells Multiple Cytokine Producing Hepatic T cells (MCPHT cells). During the transition phase, when MCPHT cells increase, IL-18 secretion was up-regulated in the liver and sera. In S. mansoni-infected IL-18-deficient mice, expansion of MCPHT cells was curtailed. Thus our data suggest that IL-18 produced during S. mansoni infection play a role in the expansion of MCPHT cells.
Collapse
Affiliation(s)
- Keishi Adachi
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, The University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Koji Tamada
- Department of Immunology and Cell Signaling Analysis, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
26
|
Helminth-induced interleukin-4 abrogates invariant natural killer T cell activation-associated clearance of bacterial infection. Infect Immun 2014; 82:2087-97. [PMID: 24643536 DOI: 10.1128/iai.01578-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helminth infections affect 1 billion people worldwide and render these individuals susceptible to bacterial coinfection through incompletely understood mechanisms. This includes urinary tract coinfection by bacteria and Schistosoma haematobium worms, the etiologic agent of urogenital schistosomiasis. To study the mechanisms of S. haematobium-bacterial urinary tract coinfections, we combined the first tractable model of urogenital schistosomiasis with an established mouse model of bacterial urinary tract infection (UTI). A single bladder exposure to S. haematobium eggs triggers interleukin-4 (IL-4) production and makes BALB/c mice susceptible to bacterial UTI when they are otherwise resistant. Ablation of IL-4 receptor alpha (IL-4Rα) signaling restored the baseline resistance of BALB/c mice to bacterial UTI despite prior exposure to S. haematobium eggs. Interestingly, numbers of NKT cells were decreased in coexposed versus bacterially monoinfected bladders. Given that schistosome-induced, non-natural killer T (NKT) cell leukocyte infiltration may dilute NKT cell numbers in the bladders of coexposed mice without exerting a specific functional effect on these cells, we next examined NKT cell biology on a per-cell basis. Invariant NKT (iNKT) cells from coexposed mice expressed less gamma interferon (IFN-γ) per cell than did those from mice with UTI alone. Moreover, coexposure resulted in lower CD1d expression in bladder antigen-presenting cells (APC) than did bacterial UTI alone in an IL-4Rα-dependent fashion. Finally, coexposed mice were protected from prolonged bacterial infection by administration of α-galactosylceramide, an iNKT cell agonist. Our findings point to a previously unappreciated role for helminth-induced IL-4 in impairment of iNKT cell-mediated clearance of bacterial coexposure.
Collapse
|
27
|
Kadri N, Blomqvist M, Cardell SL. Type II natural killer T cells: a new target for immunomodulation? Expert Rev Clin Immunol 2014; 4:615-27. [DOI: 10.1586/1744666x.4.5.615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Ashour DS. Trichinella spiralisimmunomodulation: an interactive multifactorial process. Expert Rev Clin Immunol 2014; 9:669-75. [DOI: 10.1586/1744666x.2013.811187] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Terabe M, Berzofsky JA. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 2014; 63:199-213. [PMID: 24384834 DOI: 10.1007/s00262-013-1509-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/08/2013] [Indexed: 12/26/2022]
Abstract
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4(+)CD25(+)Foxp3(+) regulatory T cells.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 41-Room D702, 41 Medlars Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
30
|
McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol 2013; 43:301-10. [PMID: 23291463 DOI: 10.1016/j.ijpara.2012.11.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Epidemiological and interventional human studies, as well as experiments in animal models, strongly indicate that helminth parasitic infections can confer protection from immune dysregulatory diseases such as allergy, autoimmunity and colitis. Here, we review the immunological pathways that helminths exploit to downregulate immune responses, both against bystander specificities such as allergens and against antigens from the parasites themselves. In particular, we focus on a highly informative laboratory system, the mouse intestinal nematode, Heligmosomoides polygyrus, as a tractable model of host-parasite interaction at the cellular and molecular levels. Analysis of the molecules released in vitro (as excretory-secretory products) and their cellular targets is identifying individual parasite molecules and gene families implicated in immunomodulation, and which hold potential for future human therapy of immunopathological conditions.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
31
|
Zaccone P, Cooke A. Helminth mediated modulation of Type 1 diabetes (T1D). Int J Parasitol 2013; 43:311-8. [PMID: 23291464 DOI: 10.1016/j.ijpara.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes is increasing dramatically in incidence in the developed world. While there may be several reasons for this, improved sanitation and public health measures have altered our interactions with certain infectious agents such as helminths. There is increasing interest in the use of helminths or their products to alleviate inflammatory or allergic conditions. Using rodent models of diabetes, it has been possible to explore the therapeutic potential of both live infections as well as helminth-derived products on the development of autoimmunity. This review provides an overview of the findings from animal models and additionally explores the potential for translation to the clinic.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
32
|
Syn WK, Agboola KM, Swiderska M, Michelotti G, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca GF, Pereira TA, Chen Y, Mi Z, Kuo PC, Choi SS, Guy CD, Abdelmalek MF, Diehl AM. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012; 61:1323-9. [PMID: 22427237 PMCID: PMC3578424 DOI: 10.1136/gutjnl-2011-301857] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Immune responses are important in dictating non-alcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbour large numbers of NKT cells. DESIGN The hypothesis that activated NKT cells drive fibrogenesis during NASH was evaluated by assessing if NKT depletion protects against NASH fibrosis; identifying the NKT-associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. RESULTS When fed methionine-choline-deficient (MCD) diets for 8 weeks, wild type (WT) mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Ja18-/- and CD1d-/- mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNCs) from MCD diet fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated HSCs to become myofibroblasts; neutralising these factors abrogated the fibrogenic actions of WT LMNCs. LMNCs from NKT-cell-deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSCs. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression and correlated with fibrosis severity. CONCLUSION Hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH fibrosis.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK,Foundation for Liver Research, Institute of Hepatology, London
| | - Kola M Agboola
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Marzena Swiderska
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gregory Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Evaggelia Liaskou
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Herbert Pang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - George Philips
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Isaac S Chan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gamze F Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Thiago A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Nucleo de Deoncas Infecciosas, Centro de Ciencias da Caude, Universidade Federal do Espirito Santo, Espirito Santo, Brazil
| | - Yuping Chen
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiyong Mi
- Department of Surgery, Loyola University Chicago
| | - Paul C Kuo
- Department of Surgery, Loyola University Chicago
| | - Steve S Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
33
|
iNKT cells suppress the CD8+ T cell response to a murine Burkitt's-like B cell lymphoma. PLoS One 2012; 7:e42635. [PMID: 22880059 PMCID: PMC3413636 DOI: 10.1371/journal.pone.0042635] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023] Open
Abstract
The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8+ T cell response. Lymphoma cells transplanted into syngeneic wild type (WT) mice or Jalpha18−/− mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8+ T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18−/− mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8+ T cells. In contrast, lymphoma growth in CD1d1−/− mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8+ T cell response to B cell lymphoma by opposing the effects of type II NKT cells.
Collapse
|
34
|
Abstract
The incidence of nonalcoholic fatty liver disease is increasing at an astonishing rate in the US population. Although only a small proportion of these patients develop steatohepatitis (NASH), those who do have a greater likelihood of developing end-stage liver disease and complications. Research on liver fibrosis and NASH progression shows that hedgehog (Hh) is reactivated after liver injury to assist in liver repair and regeneration. When the process of tissue repair and regeneration is prolonged or when Hh ligand and related genes are aberrantly regulated and excessive, tissue repair goes awry and NASH progresses to cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany N Bohinc
- Department of Endocrinology, Diabetes and Metabolism, Duke University Hospital, Durham, NC 27710, USA
| | | |
Collapse
|
35
|
A novel mouse model of Schistosoma haematobium egg-induced immunopathology. PLoS Pathog 2012; 8:e1002605. [PMID: 22479181 PMCID: PMC3315496 DOI: 10.1371/journal.ppat.1002605] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis. Urogenital schistosomiasis (infection with parasitic Schistosoma haematobium worms, the most common human-specific Schistosoma species globally) affects over 112 million people worldwide. S. haematobium worms primarily lay eggs in the bladder, upper urinary and genital tracts, and the host immune response to these eggs is considered to cause almost all associated disease in these organs. Resulting conditions include hematuria (bloody urine), urinary frequency, fibrosis (internal scarring) of the urinary tract, increased risk of bladder cancer, and enhanced susceptibility to contracting HIV. Approximately 150,000 people die annually from S. haematobium-induced obstructive kidney failure alone, making this species one of the deadliest worms worldwide. Despite the importance of S. haematobium, a lack of an experimentally manipulable model has contributed to the paucity of research focusing on this parasite. We have circumvented the barriers to natural S. haematobium oviposition in the mouse bladder by directly microinjecting parasite eggs into the bladder wall. This triggers inflammation, hematuria, urinary frequency, fibrosis, egg shedding, and epithelial changes that are similar to that seen in clinical S. haematobium infections. Our model may provide new opportunities to better understand the basic molecular and cellular immunology of urogenital schistosomiasis and thereby contribute to the development of new diagnostics and therapeutics.
Collapse
|
36
|
Razakandrainibe R, Pelleau S, Grau GE, Jambou R. Antigen presentation by endothelial cells: what role in the pathophysiology of malaria? Trends Parasitol 2012; 28:151-60. [PMID: 22365903 DOI: 10.1016/j.pt.2012.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/19/2022]
Abstract
Disruption of the endothelial cell (EC) barrier leads to pathology via edema and inflammation. During infections, pathogens are known to invade the EC barrier and modulate vascular permeability. However, ECs are semi-professional antigen-presenting cells, triggering T-cell costimulation and specific immune-cell activation. This in turn leads to the release of inflammatory mediators and the destruction of infected cells by effectors such as CD8(+) T-cells. During malaria, transfer of parasite antigens to the EC surface is now established. At the same time, CD8 activation seems to play a major role in cerebral malaria. We summarize here some of the pathways leading to antigen presentation by ECs and address the involvement of these mechanisms in the pathophysiology of cerebral malaria.
Collapse
|
37
|
Zietara N, Łyszkiewicz M, Krueger A, Weiss S. ICOS-dependent stimulation of NKT cells by marginal zone B cells. Eur J Immunol 2011; 41:3125-34. [PMID: 21809338 DOI: 10.1002/eji.201041092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 07/12/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells express high levels of CD1d molecules. In accordance, MZ B cells, like splenic conventional DCs (cDCs), efficiently trigger NKT-cell proliferation. Importantly, MZ B cells exclusively induced production of IL-4 and IL-13 by such cells whereas cDCs induced robust production of mainly IFN-γ. NKT-cell proliferation, IL-4 and IL-13 production induced by MZ B cells were dependent on ICOS/ICOS ligand interaction while IFN-γ and IL-17 induction by cDCs required glucocorticoid-induced TNF receptor/glucocorticoid-induced TNF receptor ligand interplay. Our data illustrate that both MZ B cells and cDCs act as efficient APCs for NKT cells and might differentially influence the quality of the subsequent immune response.
Collapse
Affiliation(s)
- Natalia Zietara
- Department of Molecular Biotechnology, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
38
|
Getz GS, Vanderlaan PA, Reardon CA. Natural killer T cells in lipoprotein metabolism and atherosclerosis. Thromb Haemost 2011; 106:814-9. [PMID: 21946866 DOI: 10.1160/th11-05-0336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/23/2011] [Indexed: 01/28/2023]
Abstract
Cells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the T cell receptors on NKT cells. There are two classes of NKT cells; invariant NKT cells that express a semi-invariant T cell receptor and variant NKT cells. This review summarises studies in murine models in which the effect of the activation, overexpression or deletion of NKT cells or only invariant NKT cells on atherosclerosis has been examined.
Collapse
Affiliation(s)
- G S Getz
- University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
39
|
Renneson J, Guabiraba R, Maillet I, Marques RE, Ivanov S, Fontaine J, Paget C, Quesniaux V, Faveeuw C, Ryffel B, Teixeira MM, Trottein F. A detrimental role for invariant natural killer T cells in the pathogenesis of experimental dengue virus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1872-83. [PMID: 21843496 DOI: 10.1016/j.ajpath.2011.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 01/12/2023]
Abstract
Dengue virus (DENV), a member of the mosquito-borne flaviviruses, is a serious public health problem in many tropical countries. We assessed the in vivo physiologic contribution of invariant natural killer T (iNKT) cells, a population of nonconventional lipid-reactive αβ T lymphocytes, to the host response during experimental DENV infection. We used a mouse-adapted DENV serotype 2 strain that causes a disease that resembles severe dengue in humans. On DENV challenge, splenic and hepatic iNKT cells became activated insofar as CD69 and Fas ligand up-regulation and interferon-γ production. C57BL/6 mice deficient in iNKT cells (Jα18(-/-)) were more resistant to lethal infection than were wild-type animals, and the phenotype was reversed by adoptive transfer of iNKT cells to Jα18(-/-) animals. The absence of iNKT cells in Jα18(-/-) mice was associated with decreased systemic and local inflammatory responses, less liver injury, diminished vascular leak syndrome, and reduced activation of natural killer cells and neutrophils. iNKT cell functions were not necessary for control of primary DENV infection, after either natural endogenous activation or exogenous activation with the canonical iNKT cell agonist α-galactosylceramide. Together, these data reveal a novel and critical role for iNKT cells in the pathogenesis of severe experimental dengue disease.
Collapse
Affiliation(s)
- Joelle Renneson
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Université Lille Nord de France, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wun KS, Cameron G, Patel O, Pang SS, Pellicci DG, Sullivan LC, Keshipeddy S, Young MH, Uldrich AP, Thakur MS, Richardson SK, Howell AR, Illarionov PA, Brooks AG, Besra GS, McCluskey J, Gapin L, Porcelli SA, Godfrey DI, Rossjohn J. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 2011; 34:327-39. [PMID: 21376639 DOI: 10.1016/j.immuni.2011.02.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/23/2010] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
Abstract
Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.
Collapse
Affiliation(s)
- Kwok S Wun
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tan JQ, Xiao W, Wang L, He YL. Type I natural killer T cells: naturally born for fighting. Acta Pharmacol Sin 2010; 31:1123-32. [PMID: 20694020 PMCID: PMC4002303 DOI: 10.1038/aps.2010.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/09/2010] [Indexed: 12/26/2022]
Abstract
Type capital I, Ukrainian natural killer T cells (NKT cells), a subset of CD1d-restricted T cells with invariant Valphabeta TCR, are characterized by prompt production of large amounts of Th1 and/or Th2 cytokines upon primary stimulation through the TCR complex. The rapid release of cytokines implies that type capital I, Ukrainian NKT cells may play a critical role in modulating the upcoming immune responses, such as anti-tumor response, protection against infection, and autoimmunity. As a bridge between innate and adaptive immunity, type capital I, Ukrainian NKT cells differentiate and mature upon stimulations to achieve and maintain a homeostasis. Orchestrating with other arms of adaptive immunity, type capital I, Ukrainian NKT cells show strong cytotoxic effects in response to various tumors in a direct and/or indirect manner(s). This review will focus primarily on type capital I, Ukrainian NKT cell development, homeostasis, and effector functions, especially in anti-tumor immunity, and followed by their potential applications in treatment of cancers.
Collapse
Affiliation(s)
- Jin-quan Tan
- Department of Immunology Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan 430071, China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan 430071, China
| | - Wei Xiao
- Department of Immunology Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan 430071, China
| | - Lan Wang
- Department of Immunology Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan 430071, China
| | - Yu-ling He
- Department of Immunology Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan 430071, China
- Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan 430071, China
| |
Collapse
|
42
|
Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci U S A 2010; 107:10984-9. [PMID: 20534460 DOI: 10.1073/pnas.1000576107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TCR-mediated recognition of beta-linked self-glycolipids bound to CD1d is poorly understood. Here, we have characterized the TCR repertoire of a CD1d-restricted type II NKT cell subset reactive to sulfatide involved in the regulation of autoimmunity and antitumor immunity. The sulfatide/CD1d-tetramer(+) cells isolated from naïve mice show an oligoclonal TCR repertoire with predominant usage of the Valpha3/Valpha1-Jalpha7/Jalpha9 and Vbeta8.1/Vbeta3.1-Jbeta2.7 gene segments. The CDR3 regions of both the alpha- and beta-chains are encoded by either germline or nongermline gene segments of limited lengths containing several conserved residues. Presence of dominant clonotypes with limited TCR gene usage for both TCR alpha- and beta-chains in type II NKT cells reflects specific antigen recognition not found in the type I NKT cells but similar to the MHC-restricted T cells. Although potential CD1d-binding tyrosine residues in the CDR2beta region are conserved between most type I and type II NKT TCRs, CDR 1alpha and 3alpha regions differ significantly between the two subsets. Collectively, the TCR repertoire of sulfatide-reactive type II NKT cells exhibits features of both antigen-specific conventional T cells and innate-like cells, and these findings provide important clues to the recognition of beta-linked glycolipids by CD1d-restricted T cells in general.
Collapse
|
43
|
Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y, Omenetti A, Witek RP, Choi SS, Guy CD, Fearing CM, Teaberry V, Pereira FEL, Adams DH, Diehl AM. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 2010; 51:1998-2007. [PMID: 20512988 PMCID: PMC2920131 DOI: 10.1002/hep.23599] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Liver inflammation is greater in nonalcoholic steatohepatitis (NASH) than steatosis, suggesting that immune responses contribute to nonalcoholic fatty liver disease (NAFLD) progression. Livers normally contain many natural killer T (NKT) cells that produce factors that modulate inflammatory and fibrogenic responses. Such cells are relatively depleted in steatosis, but their status in more advanced NAFLD is uncertain. We hypothesized that NKT cells accumulate and promote fibrosis progression in NASH. We aimed to determine if livers become enriched with NKT cells during NASH-related fibrosis; identify responsible mechanisms; and assess if NKT cells stimulate fibrogenesis. NKT cells were analyzed in wildtype mice and Patched-deficient (Ptc(+/-)) mice with an overly active Hedgehog (Hh) pathway, before and after feeding methionine choline-deficient (MCD) diets to induce NASH-related fibrosis. Effects of NKT cell-derived factors on hepatic stellate cells (HSC) were examined and fibrogenesis was evaluated in CD1d-deficient mice that lack NKT cells. NKT cells were quantified in human cirrhotic and nondiseased livers. During NASH-related fibrogenesis in wildtype mice, Hh pathway activation occurred, leading to induction of factors that promoted NKT cell recruitment, retention, and viability, plus liver enrichment with NKT cells. Ptc(+/-) mice accumulated more NKT cells and developed worse liver fibrosis; CD1d-deficient mice that lack NKT cells were protected from fibrosis. NKT cell-conditioned medium stimulated HSC to become myofibroblastic. Liver explants were 2-fold enriched with NKT cells in patients with non-NASH cirrhosis, and 4-fold enriched in patients with NASH cirrhosis. CONCLUSION Hh pathway activation leads to hepatic enrichment with NKT cells that contribute to fibrosis progression in NASH.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ye Htun Oo
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thiago A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gamze F Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Youngmi Jung
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Rafal P Witek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Steve S Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Caitlin M Fearing
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Vanessa Teaberry
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Fausto E L Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David H Adams
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG. Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 2010; 125:1114-1124.e8. [PMID: 20304473 DOI: 10.1016/j.jaci.2010.01.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/23/2009] [Accepted: 01/09/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parasitic helminth infections of humans have been shown to suppress the immune response to allergens. Experimentally, infection of mice with the helminth Schistosoma mansoni prevents allergic airway inflammation and anaphylaxis via IL-10 and B cells. OBJECTIVE To identify and characterize the specific helminth-induced regulatory B-cell subpopulation and determine the mechanism by which these regulatory B cells suppress allergic airway inflammation. METHODS IL-10-producing B cells from the spleens of helminth-infected mice were phenotyped, isolated, and transferred to ovalbumin-sensitized mice, and their ability to modulate allergic airway inflammation was analyzed. RESULTS S mansoni infection induced IL-10-producing CD1d(high) regulatory B cells that could prevent ovalbumin-induced allergic airway inflammation following passive transfer to ovalbumin-sensitized recipients. The capacity of regulatory B cells to suppress allergic airway inflammation was dependent on the expression of CD1d, and they functioned via an IL-10-mediated mechanism. Regulatory B cells induced pulmonary infiltration of CD4(+)CD25(+) forkhead box protein 3(+) regulatory T cells, independent of TGF-beta, thereby suppressing allergic airway inflammation. Regulatory B cells that were generated ex vivo also suppressed the development of allergic airway inflammation. Furthermore, the transfer of regulatory B cells reversed established airway inflammation in ovalbumin-sensitized mice. CONCLUSION We have generated in vivo and ex vivo a regulatory B cell that can prevent or reverse allergen-induced airway inflammation via regulatory T cells.
Collapse
Affiliation(s)
- Sylvie Amu
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
NKT cells are true T cells that serve as a bridge between the innate and adaptive immune system, acting as first responders. They recognize lipid antigens rather than peptides, and respond to these when presented by a non-classical class I MHC molecule, CD1d. NKT cells can play a pathogenic role in asthma or a protective role against several autoimmune diseases, in part based on their cytokine profile. In cancer, they can play opposite roles, contributing to anti-tumor immunity or suppressing it. The protective NKT cells were found to be primarily type I NKT cells defined by use of a semi-invariant T cell receptor involving Valpha14Jalpha18 in mice and Valpha24Jalpha18 in humans and responding to alpha-galactosylceramide, and the most protective were among the minority that are CD4-. The suppressive NKT cells were found to be CD4+ and to be primarily type II NKT cells, that have diverse T-cell receptors and respond to other lipids. Further, the type I and type II NKT cells were found to counter-regulate each other, forming a new immunoregulatory axis. This axis may have broad implications beyond cancer, as NKT cells play a role in steering other adaptive immune responses. The balance along this axis could affect immunity to tumors and infectious diseases and responses to vaccines.
Collapse
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA.
| | | |
Collapse
|
46
|
Bialecki E, Paget C, Fontaine J, Capron M, Trottein F, Faveeuw C. Role of marginal zone B lymphocytes in invariant NKT cell activation. THE JOURNAL OF IMMUNOLOGY 2009; 182:6105-13. [PMID: 19414762 DOI: 10.4049/jimmunol.0802273] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Splenic marginal zone B (MZB) lymphocytes represent, along with dendritic cells (DC) a first line of defense against blood-borne pathogens. MZB cells express high levels of MHC class II and CD1d molecules but so far their ability to activate and orientate conventional and innate-like T lymphocytes, such as invariant NKT (iNKT) cells, is still elusive. In the present study, we show that murine MZB cells proliferate, mature phenotypically, and secrete cytokines in response to TLR (except TLR3) agonists. When pulsed with OVA peptide (but not whole OVA), MZB cells promote the release of IFN-gamma and IL-4 by Ag-specific CD4(+) T lymphocytes and their stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN), a potent MZB cell activator, biases them toward more Th1 inducers. Unlike DC, CpG ODN-stimulated MZB cells fail to stimulate iNKT cells. Although able to activate iNKT hybridomas, MZB cells sensitized with free alpha-galactosylceramide (alpha-GalCer), a CD1d-restricted glycolipid Ag, do not directly activate ex vivo sorted iNKT cells unless DC are added to the culture system. Interestingly, MZB cells amplify the DC-mediated activation of iNKT cells and depletion of MZB cells from total splenocytes strongly reduces iNKT cell activation (cytokine production) in response to alpha-GalCer. Thus, DC and MZB cells provide help to each other to optimize iNKT cell stimulation. Finally, in vivo transfer of alpha-GalCer-loaded MZB cells potently activates iNKT and NK cells. This study confirms and extends the concept that MZB cells are important players in immune responses, a property that might be exploited.
Collapse
Affiliation(s)
- Emilie Bialecki
- Institut National de la Santé et de la Recherche Médicale, Unité 547, Université de Lille 2, Lille, France
| | | | | | | | | | | |
Collapse
|
47
|
Tessmer MS, Fatima A, Paget C, Trottein F, Brossay L. NKT cell immune responses to viral infection. Expert Opin Ther Targets 2009; 13:153-62. [PMID: 19236234 DOI: 10.1517/14712590802653601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for studies. OBJECTIVE/METHODS To give insights into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight mechanisms leading to iNKT cell activation in response to pathogens. CONCLUSIONS iNKT cell's versatility allows them to detect and respond to several viruses. Therapeutic approaches to specifically target iNKT cells will require additional research. Notably, the roles of non-invariant NKT cells in response to pathogens warrant further investigation.
Collapse
Affiliation(s)
- Marlowe S Tessmer
- Brown University, Department of Molecular Microbiology and Immunology, Providence, USA
| | | | | | | | | |
Collapse
|
48
|
Fereidouni M, Farid Hosseini R, Jabbari Azad F, Schenkel J, Varasteh A, Mahmoudi M. Frequency of circulating iNKT cells among Iranian healthy adults. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 78:65-9. [DOI: 10.1002/cyto.b.20489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
|
50
|
Arrenberg P, Halder R, Kumar V. Cross-regulation between distinct natural killer T cell subsets influences immune response to self and foreign antigens. J Cell Physiol 2008; 218:246-50. [PMID: 18814145 DOI: 10.1002/jcp.21597] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer T (NKT) cells generally recognize lipid-antigens presented in the context of the MHC class I-like molecule CD1d. CD1d-restricted NKT cells consist of two broad subsets: Type I, which express an invariant T cell receptor (TCR) and type II, which utilize diverse TCR gene segments. A major type II NKT subset has been shown to recognize a self-glycolipid, sulfatide. Both subsets play important roles in autoimmune diseases, tumor surveillance, and infectious diseases. While type I NKT cells protect from tumor growth by enhancing tumor surveillance, type II NKT cells may suppress anti-tumor immune responses. In a murine autoimmune hepatitis model, type I NKT cells contribute to pathogenesis, whereas activation of sulfatide-reactive type II NKT cells protects from disease. Sulfatide-mediated activation of type II NKT cells results in modification of dendritic cells and induction of anergy in type I NKT cells. Elucidation of this novel pathway of cross-regulation among NKT cell subsets will provide tools for intervention in autoimmune diseases and for designing strategies for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Philomena Arrenberg
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, California, USA
| | | | | |
Collapse
|