1
|
Shi Y, Gao M, Xing L, Zhu G, Wang H, Meng X. RyhB Regulates Capsular Synthesis for Serum Resistance and Virulence of Avian Pathogenic Escherichia coli. Int J Mol Sci 2025; 26:3062. [PMID: 40243847 PMCID: PMC11988350 DOI: 10.3390/ijms26073062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes bloodstream infections mainly by resisting the bactericidal action of host serum. Although various protein and polysaccharide factors involved in serum resistance have been identified, the role of small non-coding RNA (sRNA) in serum resistance has rarely been studied. The sRNA RyhB contributes to serum resistance in APEC, but the regulation mechanism of RyhB to serum resistance-related targets remains unknown. Here, we studied the regulatory mechanism of RyhB on capsule synthesis and how RyhB regulates serum resistance, macrophage phagocytosis resistance, and pathogenicity to natural hosts by regulating capsule synthesis. The results showed that RyhB upregulates capsular synthesis by interacting with the promoter regions of the capsule gene cluster and activating the translation of the capsule. The deletion of ryhB and/or neu reduced the ability of resistance to serum, macrophage phagocytosis, and pathogenicity of APEC in ducks. It can be concluded that RyhB directly upregulates the expression of capsular gene cluster and capsular synthesis and then indirectly promotes resistance to serum and macrophage phagocytosis and pathogenicity to ducks.
Collapse
Affiliation(s)
- Yuxing Shi
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Mingjuan Gao
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Lin Xing
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Heng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| | - Xia Meng
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.S.); (M.G.); (L.X.); (G.Z.); (H.W.)
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
| |
Collapse
|
2
|
Tan MF, Tan J, Fang SP, Kang ZF, Li HQ, Zhang FF, Wu CC, Li N, Zeng YB, Lin C, Huang JN. Pathogenicity and identification of host adaptation genes of the avian pathogenic Escherichia coli O145 in duck. Front Cell Infect Microbiol 2024; 14:1453907. [PMID: 39606744 PMCID: PMC11599210 DOI: 10.3389/fcimb.2024.1453907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Avian pathogenic Escherichia coli (APEC) is a critical bacterial pathogen that causes severe infections in poultry. Diverse serotypes increase the complexity of treatment and controlling APEC infections. Recent epidemiological investigations indicate O145 is emerging as a predominant serogroup of APEC in China. However, limited information is known about this newly emerged serogroup. Methods A virulent strain, NC22, was selected to elucidate the mechanisms underlying APEC O145-related pathogenicity and host adaptation. Whole-genome sequencing and pathogenicity assays was conducted on this strain. We further performed a transcriptional analysis of the bacteria during the early colonization stage in the duck liver and compared them with those in liquid cultures in vitro. Results Subcutaneous inoculation of NC22 induced typical symptoms in ducks. The bacterial loads in the blood and various tissues peaked at 2 and 3 days post infection, respectively. The affected tissues included the heart, liver, spleen, lung, kidney, bursa of Fabricius, duodenum, jejunum, and cecum. We then analyzed the transcriptome profiles of NC22 during growth in duck liver versus lysogeny broth and identified 87 genes with differential expression levels.These included key metabolic enzymes and recognized host adaptation factors. Analysis of the metabolic pathways revealed an inhibition of the metabolic shift from glycolysis towards pentose phosphate pathway and an interference of the citrate cycle. Moreover, significantly differentially expressed small regulatory RNAs were examined, such as SroC, CsrC, and GadY. Discussion These findings enhance our understanding of the pathogenicity of APEC O145 and the molecular mechanisms underlying APEC-related pathogen-host interactions.
Collapse
Affiliation(s)
- Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Shao-Pei Fang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Zhao-Feng Kang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Hai-Qin Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Fan-Fan Zhang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Cheng-Cheng Wu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Na Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Yan-Bin Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Cui Lin
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Jiang-Nan Huang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
3
|
Ranabhat G, Subedi D, Karki J, Paudel R, Luitel H, Bhattarai RK. Molecular detection of avian pathogenic Escherichia coli (APEC) in broiler meat from retail meat shop. Heliyon 2024; 10:e35661. [PMID: 39170517 PMCID: PMC11336815 DOI: 10.1016/j.heliyon.2024.e35661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen responsible for the most widespread form of colibacillosis, resulting in substantial economic losses within the poultry sector and posing a potential public health risk. From July to September 2021, our study investigated the antibiotic resistance pattern of Escherichia coli (E. coli) and the presence of virulence-associated genes (iucD, iutA, iss, and ompT) linked to APEC using 105 broiler meat samples comprising liver, thigh, and breast muscle, in Chitwan, Nepal. E. coli was isolated and identified by culturing samples on MacConkey's agar, Eosin-methylene blue (EMB) agar and performing different biochemical tests. Antibiotic resistance patterns of E. coli were determined by the Kirby-Bauer disc diffusion method. Following the isolation of E. coli, the molecular detection of APEC was performed using conventional polymerase chain reaction (PCR). Out of the 105 samples analyzed, 61 (58.1 %) tested positive for E. coli. In antibiotic susceptibility test (AST), gentamicin and tetracycline exhibited the highest resistance rates, with 90.2 % and 67.2 %, respectively and 29.5 % of the E. coli isolates displayed multidrug-drug resistance. Out of 61 confirmed E. coli isolates, iutA was detected in 47 (77.0 %) samples, iucD in 46 (75.4 %), iss in 53 (86.8 %), and ompT in 39 (63.9 %) samples. This study reports the occurrence of MDR E. coli in meat samples, together with virulence genes associated with APEC which poses a public health threat. Continuous surveillance is vital for monitoring APEC transmission within poultry farms, coupled with efforts to raise awareness of food safety among consumers of broiler meat.
Collapse
Affiliation(s)
- Ganesh Ranabhat
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Deepak Subedi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jasmina Karki
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Rupandehi, Nepal
| | - Roshan Paudel
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Himal Luitel
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Rebanta Kumar Bhattarai
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| |
Collapse
|
4
|
Aleksandrowicz A, Kjærup RB, Grzymajło K, Martinez FG, Muñoz J, Borowska D, Sives S, Vervelde L, Dalgaard TS, Kingsley RA, Kolenda R. FdeC expression regulates motility and adhesion of the avian pathogenic Escherichia coli strain IMT5155. Vet Res 2024; 55:70. [PMID: 38822378 PMCID: PMC11143625 DOI: 10.1186/s13567-024-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/04/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.
Collapse
Affiliation(s)
- Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Present Address: Cell Signaling and Clinical Proteomics Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Present Address: Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Dominika Borowska
- Division of Immunology, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Samantha Sives
- Present Address: Cell Signaling and Clinical Proteomics Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Robert A Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Fu D, Wu J, Wu X, Shao Y, Song X, Tu J, Qi K. The two-component system histidine kinase EnvZ contributes to Avian pathogenic Escherichia coli pathogenicity by regulating biofilm formation and stress responses. Poult Sci 2022; 102:102388. [PMID: 36586294 PMCID: PMC9811210 DOI: 10.1016/j.psj.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
EnvZ, the histidine kinase (HK) of OmpR/EnvZ, transduces osmotic signals in Escherichia coli K12 and affects the pathogenicity of Shigella flexneri and Vibrio cholera. Avian pathogenic E. coli (APEC) is an extra-intestinal pathogenic E. coli (ExPEC), causing acute and sudden death in poultry and leading to severe economic losses to the global poultry industry. How the functions of EnvZ correlate with APEC pathogenicity was still unknown. In this study, we successfully constructed the envZ mutant strain AE17ΔenvZ and the inactivation of envZ significantly reduced biofilms and altered red, dry, and rough (rdar) morphology. In addition, AE17ΔenvZ was significantly less resistant to acid, alkali, osmotic, and oxidative stress conditions. Deletion of envZ significantly enhanced sensitivity to specific pathogen-free (SPF) chicken serum and increased adhesion to chicken embryonic fibroblast DF-1 cells and elevated inflammatory cytokine IL-1β, IL6, and IL8 expression levels. Also, when compared with the WT strain, AE17ΔenvZ attenuated APEC pathogenicity in chickens. To explore the molecular mechanisms underpinning envZ in APEC17, we compared the WT and envZ-deletion strains using transcriptome analyses. RNA-Seq results identified 711 differentially expressed genes (DEGs) in the envZ mutant strain and DEGs were mainly enriched in outer membrane proteins, stress response systems, and TCSs. Quantitative real-time reverse transcription PCR (RT-qPCR) showed that EnvZ influenced the expression of biofilms and stress responses genes, including ompC, ompT, mlrA, basR, hdeA, hdeB, adiY, and uspB. We provided compelling evidence showing EnvZ contributed to APEC pathogenicity by regulating biofilms and stress response expression.
Collapse
Affiliation(s)
- Dandan Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jianmei Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiaoyan Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China,Corresponding author:
| |
Collapse
|
6
|
Transcriptomic Analysis of the Spleen of Different Chicken Breeds Revealed the Differential Resistance of Salmonella Typhimurium. Genes (Basel) 2022; 13:genes13050811. [PMID: 35627196 PMCID: PMC9142047 DOI: 10.3390/genes13050811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salmonella Typhimurium (ST) is a foodborne pathogen that adversely affects the health of both animals and humans. Since poultry is a common source and carrier of the disease, controlling ST infection in chickens will have a protective impact on human health. In the current study, Beijing-You (BY) and Cobb chicks (5-day-old specific-pathogen-free) were orally challenged by 2.4 × 1012 CFU ST, spleen transcriptome was conducted 1 day post-infection (DPI) to identify gene markers and pathways related to the immune system. A total of 775 significant differentially expressed genes (DEGs) in comparisons between BY and Cobb were identified, including 498 upregulated and 277 downregulated genes (fold change ≥2.0, p < 0.05). Several immune response pathways against Salmonella were enriched, including natural killer-cell-mediated-cytotoxicity, cytokine−cytokine receptor interaction, antigen processing and presentation, phagosomes, and intestinal immune network for IgA production, for both BY and Cobb chickens. The BY chicks showed a robust response for clearance of bacterial load, immune response, and robust activation of phagosomes, resulting in ST resistance. These results confirmed that BY breed more resistance to ST challenge and will provide a better understanding of BY and Cobb chickens’ susceptibility and resistance to ST infection at the early stages of host immune response, which could expand the known intricacies of molecular mechanisms in chicken immunological responses against ST. Pathways induced by Salmonella infection may provide a novel approach to developing preventive and curative strategies for ST, and increase inherent resistance in animals through genetic selection.
Collapse
|
7
|
Fu D, Wu J, Gu Y, Li Q, Shao Y, Feng H, Song X, Tu J, Qi K. The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia coli. Poult Sci 2022; 101:101757. [PMID: 35240350 PMCID: PMC8892008 DOI: 10.1016/j.psj.2022.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022] Open
Abstract
Avian colibacillosis is a serious systemic infectious disease in poultry and caused by avian pathogenic Escherichia coli (APEC). Previous studies have shown that 2-component systems (TCSs) are involved in the pathogenicity of APEC. OmpR, a response regulator of OmpR/EnvZ TCS, plays an important role in E. coli K-12. However, whether OmpR correlates with APEC pathogenesis has not been established. In this study, we constructed an ompR gene mutant and complement strains by using the CRISPR-Cas9 system and found that the inactivation of the ompR gene attenuated bacterial motility, biofilm formation, and the production of curli. The resistance to environmental stress, serum sensitivity, adhesion, and invasion of DF-1 cells, and pathogenicity in chicks were all significantly reduced in the mutant strain AE17ΔompR. These phenotypes were restored in the complement strain AE17C-ompR. The qRT-PCR results showed that OmpR influences the expression of genes associated with the flagellum, biofilm formation, and virulence. These findings indicate that the regulator OmpR contributes to APEC pathogenicity by affecting the expression and function of virulence factors.
Collapse
|
8
|
Yin L, Shen X, Zhang D, Zhao R, Dai Y, Hu X, Wang J, Hou H, Pan X, Qi K. Transcriptome response of a new serotype of avian type Klebsiella varicella strain to chicken sera. Res Vet Sci 2022; 145:222-228. [PMID: 35278892 DOI: 10.1016/j.rvsc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Klebsiella variicola is a newly discovered pathogen of zoonotic importance, commonly causing serious systemic infection via the bloodstream route. However, the mechanism by which K. variicola survives and grows in the bloodstream is poorly understood. In a previous study, a strain of Klebsiella causing chicken bloodstream infection was obtained, and whole genome sequencing showed that it was a new ST174 type K. variicola. Therefore, the present study aimed to determine the molecular mechanism underlying the survival and development of K. variicola in host serum. First, we compared the transcriptomes of K. variicola grown in Luria-Bertani broth and chicken serum. We sequenced six RNA libraries from the two groups, each library had three repeats. A total of 1046 differentially expressed genes were identified. Functional annotation analysis showed that the differentially expressed genes are mainly involved in adaptive metabolism, biosynthesis pathways (including biosynthesis of siderophore group nonribosomal peptides and lipopolysaccharide (LPS) biosynthesis), stress resistance, and several known virulence regulatory systems (including the ABC transporter system, the two-component signal transduction system and the quorum sensing system). These genes are expected to contribute to the adaptation and growth of K. variicola in host birds. This analysis provides a new insight into the pathogenesis of K. variicola.
Collapse
Affiliation(s)
- Lei Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Xuehuai Shen
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Danjun Zhang
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Ruihong Zhao
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Yin Dai
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Xiaomiao Hu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Jieru Wang
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Hongyan Hou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Xiaocheng Pan
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China.
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
9
|
Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt. Appl Microbiol Biotechnol 2022; 106:1279-1298. [PMID: 35050388 PMCID: PMC8816750 DOI: 10.1007/s00253-021-11740-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022]
Abstract
Abstract Escherichia coli is a multifaceted microbe since some are commensals, normally inhabiting the gut of both humans and animals while others are pathogenic responsible for a wide range of intestinal and extra-intestinal infections. It is one of the leading causes of septicemia, neonatal meningitis, urinary tract infections (UTIs), cystitis, pyelonephritis, and traveler’s diarrhea. The present study aims to survey the distribution and unravel the association of phylotypes, virulence determinants, and antimicrobial resistance of E. coli isolated from different clinical sources in Mansoura hospitals, Egypt. One hundred and fifty E. coli isolates were collected from different clinical sources. Antimicrobial resistance profile, virulence determinants, and virulence encoding genes were detected. Moreover, phylogenetic and molecular typing using ERIC-PCR analysis was performed. Our results have revealed that phylogroup B2 (26.67%) with the greatest content in virulence traits was the most prevalent phylogenetic group. Different virulence profiles and varying incidence of virulence determinants were detected among tested isolates. High rates of resistance to different categories of antimicrobial agents, dramatic increase of MDR (92.67%), and emergence of XDR (4%) were detected. ERIC-PCR analysis revealed great diversity among tested isolates. There was no clustering of isolates according to resistance, virulence patterns, or phylotypes. Our research has demonstrated significant phylogenetic diversity of E. coli isolated from different clinical sources in Mansoura hospitals, Dakahlia governorate, Egypt. E. coli isolates are equipped with various virulence factors which contribute to their pathogenesis in human. The elevated rates of antimicrobial resistance and emergence of MDR and XDR mirror the trend detected globally in recent years. Key points • Clinical E. coli isolates exhibited substantial molecular and phylogenetic diversity. • Elevated rates of antimicrobial resistance and emergence of XDR in pathogenic E. coli. • B2 Phylogroup with the highest VS was the most prevalent among pathogenic E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11740-x.
Collapse
|
10
|
Yang D, Jiang F, Huang X, Li G, Cai W. Transcriptomic and Metabolomic Profiling Reveals That KguR Broadly Impacts the Physiology of Uropathogenic Escherichia coli Under in vivo Relevant Conditions. Front Microbiol 2022; 12:793391. [PMID: 34975816 PMCID: PMC8716947 DOI: 10.3389/fmicb.2021.793391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections are primarily caused by uropathogenic Escherichia coli (UPEC). In contrast to the intestinal E. coli strains that reside in nutrient-rich gut environment, UPEC encounter distinct niches, for instance human urine, which is an oxygen- and nutrient-limited environment. Alpha-ketoglutarate (KG) is an abundant metabolite in renal proximal tubule cells; and previously we showed that two-component signaling system (TCS) KguS/KguR contributes to UPEC colonization of murine urinary tract by promoting the utilization of KG as a carbon source under anaerobic conditions. However, knowledge about the KguR regulon and its impact on UPEC fitness is lacking. In this work, we analyzed transcriptomic and metabolomic changes caused by kguR deletion under anaerobiosis when KG is present. Our results indicated that 620 genes were differentially expressed in the ΔkguR mutant, as compared to the wild type; of these genes, 513 genes were downregulated and 107 genes were upregulated. Genes with substantial changes in expression involve KG utilization, acid resistance, iron uptake, amino acid metabolism, capsule biosynthesis, sulfur metabolism, among others. In line with the transcriptomics data, several amino acids (glutamate, lysine, etc.) and uridine 5′-diphosphogalactose (involved in capsule biosynthesis) were significantly less abundant in the ΔkguR mutant. We then confirmed that the ΔkguR mutant, indeed, was more sensitive to acid stress than the wild type, presumably due to downregulation of genes belonging to the glutamate-dependent acid resistance system. Furthermore, using gene expression and electrophoretic mobility shift assays (EMSAs), we demonstrate that KguR autoregulates its own expression by binding to the kguSR promoter region. Lastly, we performed a genome-wide search of KguR binding sites, and this search yielded an output of at least 22 potential binding sites. Taken together, our data establish that in the presence of KG, KguR broadly impacts the physiology of UPEC under anaerobiosis. These findings greatly further our understanding of KguS/KguR system as well as UPEC pathobiology.
Collapse
Affiliation(s)
- Dawei Yang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fengwei Jiang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Huang
- Technical Centre for Animal, Plant, and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
Fu D, Li J, Wu J, Shao Y, Song X, Tu J, Qi K. The ETT2 transcriptional regulator EivF affects the serum resistance and pathogenicity of avian pathogenic Escherichia coli. Microb Pathog 2021; 161:105261. [PMID: 34710562 DOI: 10.1016/j.micpath.2021.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Avian pathogenic Escherichia coli (APEC), a pathotype of extraintestinal pathogenic Escherichia coli (ExPEC), can cause serious systemic infectious diseases in poultry. Escherichia coli type III secretion system 2 (ETT2) is widely distributed in E. coli strains, including ExPEC and Enterohemorrhagic Escherichia coli (EHEC). The transcriptional regulator EivF, which is located at the ETT2 cluster, affects the secretion of LEE-encoded proteins and increases bacterial adhesion to human intestinal epithelial cells in EHEC O157:H7. In a previous study, we demonstrated the transcriptional regulator can affect APEC's motility and biofilm formation. Here, we evaluated whether EivF is involved in the pathogenicity of APEC, and we found that inactivation of eivF significantly enhanced resistance to the serum, adherence to chicken embryo fibroblast (DF-1) cells, and the colonization ability of APEC in chicks. To further clarify the regulation mechanism of transcriptional regulator EivF, we performed transcriptome sequencing to analyze the differentially expressed genes and pathways, showing that EivF regulates membrane, adhesion, environmental stress, and secretion protein genes, and EivF is involved in the localization, biological adhesion, biological regulation, membrane, and toxin activity. These findings indicated that the ETT2 transcriptional regulator EivF plays a crucial role in the pathogenicity of APEC as a negative repressor.
Collapse
Affiliation(s)
- Dandan Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Jiaxuan Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jianmei Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
12
|
Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens 2021; 10:pathogens10111355. [PMID: 34832511 PMCID: PMC8618662 DOI: 10.3390/pathogens10111355] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach.
Collapse
|
13
|
Zhang X, Huang D, Zhao Z, Cai X, Cai W, Li G. Bis-molybdopterin guanine dinucleotide modulates hemolysin expression under anaerobiosis and contributes to fitness in vivo in uropathogenic Escherichia coli. Mol Microbiol 2021; 116:1216-1231. [PMID: 34494331 DOI: 10.1111/mmi.14809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 01/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongyan Huang
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zihui Zhao
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuwang Cai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
14
|
Surviving serum - the E. coli iss gene (increased serum survival) of extraintestinal pathogenic E. coli (ExPEC) is required for the synthesis of group 4 capsule. Infect Immun 2021; 89:e0031621. [PMID: 34181459 DOI: 10.1128/iai.00316-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extra-intestinal pathogenic E. coli strains - ExPEC - constitute a serious and emerging clinical problem, as they cause a variety of infections and are usually highly antibiotic resistant. Many ExPEC - are capable of evading the bactericidal effects of serum and causing sepsis. One critical factor for the development of septicemia is the gene iss, increased serum survival, which is highly correlated with complement resistance and lethality. Although it is very important, the function of the iss gene has not been elucidated so far. We have been studying the serum survival of a septicemic strain of E. coli serotype O78, which has a group 4 capsule. Here we show that the iss gene is required for the synthesis of capsules, which protect the bacteria from the bactericidal effect of complement. Moreover, we show that the deletion of the iss gene results in significantly increased binding of the complement proteins that constitute the membrane attack complex to the bacterial surface.
Collapse
|
15
|
Lee Y, Kim N, Roh H, Kim A, Han HJ, Cho M, Kim DH. Transcriptome analysis unveils survival strategies of Streptococcus parauberis against fish serum. PLoS One 2021; 16:e0252200. [PMID: 34038483 PMCID: PMC8153452 DOI: 10.1371/journal.pone.0252200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Streptococcus parauberis is an important bacterial fish pathogen that causes streptococcosis in a variety of fish species including the olive flounder. Despite its importance in the aquaculture industry, little is known about the survival strategy of S. parauberis in the host. Therefore, the objective of this study was to produce genome-wide transcriptome data and identify key factors for the survival of S. parauberis SPOF3K in its host. To this end, S. parauberis SPOF3K was incubated in olive flounder serum and nutrient-enriched media as a control. Although S. parauberis SPOF3K proliferated in both culture conditions, the transcriptomic patterns of the two groups were very different. Interestingly, the expression levels of genes responsible for the replication of an S. parauberis plasmid in the presence of olive flounder serum were higher than those in the absence of olive flounder serum, indicating that this plasmid may play an important role in the survival and proliferation of S. parauberis in the host. Several ATP-binding cassette transporters known to transport organic substrates (e.g., biotin and osmoprotectants) that are vital for bacterial survival in the host were significantly up-regulated in S. parauberis cultured in serum. In addition, groEL, dnaK operon, and members of the clp protease family, which are known to play important roles in response to various stressors, were up-regulated in S. parauberis incubated in serum, thus limiting damage and facilitating cellular recovery. Moreover, important virulence factors including the hyaluronic acid capsule (has operon), sortase A (srtA), C5a peptidase (scp), and peptidoglycan O-acetyltransferase (oatA) were significantly upregulated in S. paraubers in serum. These results indicate that S. paraubers can resist and evade the humoral immune responses of fish. The transcriptomic data obtained in this study provide a better understanding of the mode of action of S. parauberis in fish.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - HyeongJin Roh
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
16
|
Li D, Qian X, Liu X, Sun Y, Ren J, Xue F, Liu Q, Tang F, Dai J. orf6 and orf10 in Prophage phiv142-3 Enhance the Iron-Acquisition Ability and Resistance of Avian Pathogenic Escherichia coli Strain DE142 to Serum. Front Vet Sci 2020; 7:588708. [PMID: 33324701 PMCID: PMC7724020 DOI: 10.3389/fvets.2020.588708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli (ExPEC), is the causative agent of avian colibacillosis, a disease that causes huge economic losses in the poultry industry and is characterized by infection through respiratory tract colonization followed by bacteraemia. A previous study in our lab demonstrated that phiv142-3 enhanced the survival ability of APEC strain DE142 in chickens serum. However, the mechanism of this affect has not been completely revealed. Here, we analyzed the transcriptional level of the prophage phiv142-3 region in DE142 when grown in chicken serum. Several upregulated genes attracted our attention, and a series of mutants were constructed. Deletion of orf6 or orf10 from phiv142-3 led to lower yields compared with WT after cultivation in serum for 10 h (P < 0.05). Furthermore, avian infection assays showed that compared with WT, the bacterial loads in blood and heart tissue of chickens challenged with DE142Δorf6 were decreased to 3.9 and 13%, while the bacterial burden in blood and heart from chickens infected with DE142Δorf10 was decreased to 7.2 and 8%, respectively (P < 0.05). DE142Δorf6 showed an obviously attenuated growth rate in the logarithmic phase when cultured in iron-deficient medium, and the transcription level of the iutA gene decreased to 43% (P < 0.05). The bactericidal assays showed that the survival of the mutant DE142Δorf10 was ~60% compared with WT in 50% chicken serum. The K1 capsule-related genes (kpsF, kpsE, kpsC, and kpsM) were down-regulated nearly 2-fold in DE142Δorf10 (P < 0.01). Together, these results suggested that orf6 affects growth by contributing to the uptake ability of iron, while orf10 increases resistance to serum by upregulating K1 capsule-related genes.
Collapse
Affiliation(s)
- Dezhi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinjie Qian
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyuan Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fang Tang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Ma J, Cheng Z, Bai Q, Zhao K, Pan Z, Yao H. Screening virulence factors of porcine extraintestinal pathogenic Escherichia coli (an emerging pathotype) required for optimal growth in swine blood. Transbound Emerg Dis 2020; 68:2005-2016. [PMID: 32969570 DOI: 10.1111/tbed.13848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is occurring with increasing frequency in China, which causes acute septicemia and sudden death in pigs leading to significant economic losses. Bacterial survival and even proliferation within host bloodstream are a common manifestation of a number of bacterial septicemias, including porcine ExPEC diseases. However, the underlying pathogenesis for this novel pathotype of ExPEC has not been explored deeply. Here, we used a conjunction with transposon mutagenesis to identify the mechanisms of bacterial fitness involved in optimal growth of porcine ExPEC in swine serum ex vivo under static culture. Our work identified 28 genes involved in nucleotide biosynthesis, extracellular polysaccharide biosynthesis, regulators Fur and FNR, acid/zinc resistance, and Deley-Douderoff carbon metabolism that are required for the serum fitness. Subsequent functional analyses revealed that either interruption of de novo nucleotide biosynthesis or blocking of several extracellular polysaccharide biosynthesis including O2-antigen, Lipid A-core, and ECA significantly affect porcine ExPEC's growth in swine serum and proliferation in host bloodstream. Furthermore, the reasonable regulations of iron and anaerobic metabolisms in response to host stimuli by global regulators Fur and FNR also play key roles during systemic infection of porcine ExPEC. These findings provide compelling evidences that de novo nucleotide biosynthesis may enable porcine ExPEC to adapt to swine blood-specific nutrient availability, and the effective assembly of O-antigen, lipid A-core, and ECA is required to resist the bactericidal activity of swine serum. These studies contribute to better understand the underlying mechanisms employed by porcine ExPEC to survive, grow in the swine bloodstream, and cause disease. These related factors may serve as therapeutic targets for countering or preventing ExPEC serum resistance in the clinic.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zhixin Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Kejie Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
18
|
Validation of Predicted Virulence Factors in Listeria monocytogenes Identified Using Comparative Genomics. Toxins (Basel) 2019; 11:toxins11090508. [PMID: 31480280 PMCID: PMC6783856 DOI: 10.3390/toxins11090508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/14/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an intracellular facultative pathogen that causes listeriosis, a foodborne zoonotic infection. There are differences in the pathogenic potential of L. monocytogenes subtypes and strains. Comparison of the genome sequences among L. monocytogenes pathogenic strains EGD-e and F2365 with nonpathogenic L. innocua CLIP1182 and L. monocytogenes strain HCC23 revealed a set of proteins that were present in pathogenic strains and had no orthologs among the nonpathogenic strains. Among the candidate virulence factors are five proteins: putrescine carbamoyltransferase; InlH/InlC2 family class 1 internalin; phosphotransferase system (PTS) fructose transporter subunit EIIC; putative transketolase; and transcription antiterminator BglG family. To determine if these proteins have a role in adherence and invasion of intestinal epithelial Caco-2 cells and/or contribute to virulence, five mutant strains were constructed. F2365ΔinlC2, F2365Δeiic, and F2365Δtkt exhibited a significant (p < 0.05) reduction in adhesion to Caco-2 cells compared to parent F2365 strain. The invasion of F2365ΔaguB, F2365ΔinlC2, and F2365ΔbglG decreased significantly (p < 0.05) compared with the parent strain. Bacterial loads in mouse liver and spleen infected by F2365 was significantly (p < 0.05) higher than it was for F2365ΔaguB, F2365ΔinlC2, F2365Δeiic, F2365Δtkt, and F2365ΔbglG strains. This study demonstrates that aguB, inlC2, eiic, tkt, and bglG play a role in L. monocytogenes pathogenicity.
Collapse
|
19
|
Chiok KLR, Shah DH. Identification of common highly expressed genes of Salmonella Enteritidis by in silico prediction of gene expression and in vitro transcriptomic analysis. Poult Sci 2019; 98:2948-2963. [PMID: 30953073 DOI: 10.3382/ps/pez119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Chickens are the reservoir host of Salmonella Enteritidis. Salmonella Enteritidis colonizes the gastro-intestinal tract of chickens and replicates within macrophages without causing clinically discernable illness. Persistence of S. Enteritidis in the hostile environments of intestinal tract and macrophages allows it to disseminate extra-intestinally to liver, spleen, and reproductive tract. Extra-intestinal dissemination into reproductive tract leads to contamination of internal contents of eggs, which is a major risk factor for human infection. Understanding the genes that contribute to S. Enteritidis persistence in the chicken host is central to elucidate the genetic basis of the unique pathobiology of this public health pathogen. The aim of this study was to identify a succinct set of genes associated with infection-relevant in vitro environments to provide a rational foundation for subsequent biologically-relevant research. We used in silico prediction of gene expression and RNA-seq technology to identify a core set of 73 S. Enteritidis genes that are consistently highly expressed in multiple S. Enteritidis strains cultured at avian physiologic temperature under conditions that represent intestinal and intracellular environments. These common highly expressed (CHX) genes encode proteins involved in bacterial metabolism, protein synthesis, cell-envelope biogenesis, stress response, and a few proteins with uncharacterized functions. Further studies are needed to dissect the contribution of these CHX genes to the pathobiology of S. Enteritidis in the avian host. Several of the CHX genes could serve as promising targets for studies towards the development of immunoprophylactic and novel therapeutic strategies to prevent colonization of chickens and their environment with S. Enteritidis.
Collapse
Affiliation(s)
- Kim Lam R Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040
| |
Collapse
|
20
|
Ma J, An C, Jiang F, Yao H, Logue C, Nolan LK, Li G. Extraintestinal pathogenic Escherichia coli increase extracytoplasmic polysaccharide biosynthesis for serum resistance in response to bloodstream signals. Mol Microbiol 2018; 110:689-706. [PMID: 29802751 DOI: 10.1111/mmi.13987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the leading causes of bloodstream infections. Characteristically, these organisms exhibit strong resistance to the bactericidal action of host serum. Although numerous serum resistance factors in ExPEC have been identified, their regulatory mechanisms during in vivo infection remain largely unknown. Here, RNA sequencing analyses together with quantitative reverse-transcription PCR revealed that ExPEC genes involved in the biosynthesis of extracytoplasmic polysaccharides (ECPs) including K-capsule, lipopolysaccharide (LPS), colanic acid, peptidoglycan and Yjb exopolysaccharides were significantly upregulated in response to serum under low oxygen conditions and during bloodstream infection. The oxygen sensor FNR directly activated the expression of K-capsule and colanic acid and also indirectly modulated the expression of colanic acid, Yjb exopolysaccharides and peptidoglycan via the known Rcs regulatory system. The global regulator Fur directly or indirectly repressed the expression ofECP biosynthesis genes in iron replete media, whereas the low iron conditions in the bloodstream could relieve Fur repression. Using in vitro and animal models, FNR, Fur and the Rcs system were confirmed as contributing to ExPEC ECP production, serum resistance and virulence. Altogether, these findings indicated that the global regulators FNR andFur and the signaling transduction system Rcs coordinately regulated the expression of ECP biosynthesis genes leading to increased ExPEC serum resistance in response to low oxygen and low iron levels in the bloodstream.
Collapse
Affiliation(s)
- Jiale Ma
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Chunxia An
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengwei Jiang
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Huochun Yao
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Catherine Logue
- Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, China
| |
Collapse
|
21
|
Gao J, Duan X, Li X, Cao H, Wang Y, Zheng SJ. Emerging of a highly pathogenic and multi-drug resistant strain of Escherichia coli causing an outbreak of colibacillosis in chickens. INFECTION GENETICS AND EVOLUTION 2018; 65:392-398. [PMID: 30157463 DOI: 10.1016/j.meegid.2018.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are important human pathogens responsible for urinary tract infection and meningitis. Therefore, infection of chickens by highly pathogenic E. coli with multi-drug resistance has become a major concern to food safety. In this study, we isolated a strain of E. coli (HB2016) from the oviduct of a diseased chicken with colibacillosis. Inoculation of chickens with 2 × 106 CFU of the isolate E. coli HB2016 by intraperitoneal injection successfully reproduced colibacillosis in chickens. We also found that E. coli HB2016 harbored four more virulence genes (tsh, trat, cvaC and cvaA/B) than E. coli reference strain CVCC1428. Importantly, E. coli HB2016 was resistant to cefuroxime, tobramycin, medemycin, cefazolin, cefoperazone, streptomycin and ampicillin, and carried multiple antibiotic resistance genes such as strA, strB, blaCMY-2, blaCTX-M-19, blaTEM-1B, fosA, mph(A), floR, sul2, tet(A) and tet(B). These findings suggest that the causative E. coli act as a potential zoonotic agent affecting human health.
Collapse
Affiliation(s)
- Junfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Li Z, Xu Y, Lin Y. Transcriptome analyses reveal genes of alternative splicing associated with muscle development in chickens. Gene 2018; 676:146-155. [PMID: 30010040 DOI: 10.1016/j.gene.2018.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Alternative splicing (AS) of pre-mRNA is a central mode of genetic regulation in higher eukaryotes. High-throughput experimental verification of alternative splice forms, functional characterization, and regulation of alternative splicing are key directions for research. However, little information is available on the transcriptome-wide changes during different ages in different chicken breeds. In this study, the sequencing reads of chicken muscle tissues collected from White feather broiler (day 42) and Luning Chicken (day 70, 120, 150) were mapped to the chicken genome. Results showed that a total of 16,958 genes were annotated, with 2230 differentially expressed genes (DEGs) when comparing White feather broiler and Luning Chicken, and an average of 700 DEGs when comparing different ages in Luning Chicken. Functional classification by Gene Ontology (GO) and pathways analysis for selecting the genes showed most DEGs were related to muscle development and immune response. Of the 16,958 genes, a total of 6249 genes (36.85%) underwent AS events, and over 40% were specifically expressed in each library. Additionally, 6 DEGs (SRPK3, ENSGALG00000022884, CCL4, GATM, SESN1, PTTG1IP) involved in muscle development and immunity response were found to be alternatively spliced among all the four muscle tissues. In conclusion, we present a complete dataset involving the spatial and temporal transcriptome of chicken muscle tissue using RNA -seq. These data will facilitate the understanding of the effects of breed and age on the development of muscle and uncover that AS events of candidate genes may have important functional roles in regulation of muscle development in chicken.
Collapse
Affiliation(s)
- Zhixiong Li
- College of Life Science and Technology, Southwest Minzu University, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China.
| | - Yaou Xu
- College of Life Science and Technology, Southwest Minzu University, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest Minzu University, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
23
|
Li P, Fan W, Everaert N, Liu R, Li Q, Zheng M, Cui H, Zhao G, Wen J. Messenger RNA Sequencing and Pathway Analysis Provide Novel Insights Into the Susceptibility to Salmonella enteritidis Infection in Chickens. Front Genet 2018; 9:256. [PMID: 30061915 PMCID: PMC6055056 DOI: 10.3389/fgene.2018.00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Controlling poultry SE infection will have great practical significance for human public health, as poultry are considered to be important sources and carriers of the disease. In this study, the splenic transcriptomes of challenged-susceptible (S), challenged-resistant (R) and non-challenged (C) chicks (3-days old, specific-pathogen-free White Leghorn) were characterized in order to identify the immune-related gene markers and pathways. A total of 934 significant differentially expressed genes (DEGs) were identified in comparisons among the C, R and S birds. First reported here, the DEGs involved in the Forkhead box O (FoxO) signaling pathway, especially FoxO3, were identified as potential markers for host resistance to SE infection. The challenged-susceptible birds exhibited strong activation of the FoxO signaling pathway, which may be a major defect causing immune cell apoptosis as part of SE-induced pathology; these S birds also showed weak activation of mitogen-activated protein kinase (MAPK)-related genes, contrasting with strong splenic activation in the R birds. Interestingly, suppression of several pathways in the immune response against Salmonella, including cytokine-cytokine receptor interaction and Jak-STAT, was only found in S birds and there was evidence of cross-talk among these pathways, perhaps contributing to susceptibility to Salmonella infection. These findings will help facilitate understanding resistance and susceptibility to SE infection in the earliest phases of the host immune response through Salmonella-induced pathways, provide new approaches to develop strategies for SE prevention and treatment, and may enhance innate resistance by genetic selection in animals.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Wenlei Fan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| |
Collapse
|
24
|
Wang S, Xu X, Liu X, Wang D, Liang H, Wu X, Tian M, Ding C, Wang G, Yu S. Escherichia coli type III secretion system 2 regulator EtrA promotes virulence of avian pathogenic Escherichia coli. MICROBIOLOGY-SGM 2017; 163:1515-1524. [PMID: 28895515 DOI: 10.1099/mic.0.000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Escherichia coli type III secretion system 2 (ETT2) is found in most E. coli strains, including pathogenic and commensal strains. Although many ETT2 gene clusters carry multiple genetic mutations or deletions, ETT2 is known to be involved in bacterial virulence. In enterohaemorrhagic E. coli (EHEC), ETT2 affects adhesion through the regulator EtrA, which regulates transcription and secretion of the type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE). To date, no studies have been conducted on the role of EtrA in the virulence of avian pathogenic E. coli (APEC), which harbours only ETT2. Thus, we constructed etrA mutant and complemented strains of APEC and evaluated their phenotypes and pathogenicities. We found that the etrA gene deletion significantly reduced bacterial survival in macrophages, and proliferation and virulence in ducks. In addition, the etrA gene deletion reduced expression of the APEC fimbriae genes. Upregulation of genes encoding the pro-inflammatory cytokines interleukin (IL)-1β and IL-8 was also observed in HD-11 macrophages infected with the etrA gene mutant strain compared to the wild-type strain. Furthermore, the altered capacities of the mutant strain were restored by genetic complementation. Our observations demonstrate that the ETT2 regulator EtrA contributes to the virulence of APEC.
Collapse
Affiliation(s)
- Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xuan Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xin Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Dong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hua Liang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaojun Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
25
|
Gao Q, Xia L, Liu J, Wang X, Gao S, Liu X. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken. Microb Pathog 2016; 100:1-9. [PMID: 27569534 DOI: 10.1016/j.micpath.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/15/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis.
Collapse
Affiliation(s)
- Qingqing Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Le Xia
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Juanhua Liu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xiaobo Wang
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Song Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
26
|
Zhuge X, Tang F, Zhu H, Mao X, Wang S, Wu Z, Lu C, Dai J, Fan H. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection. Sci Rep 2016; 6:25085. [PMID: 27113849 PMCID: PMC4844996 DOI: 10.1038/srep25085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host–pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongfei Zhu
- Beijing Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiang Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongfu Wu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Paixão AC, Ferreira AC, Fontes M, Themudo P, Albuquerque T, Soares MC, Fevereiro M, Martins L, de Sá MIC. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poult Sci 2016; 95:1646-1652. [PMID: 26976911 DOI: 10.3382/ps/pew087] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.
Collapse
Affiliation(s)
- A C Paixão
- Department of Chemistry, School of Sciences and Technology, University of Évora. 7000-093 Évora, Portugal.
| | - A C Ferreira
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - M Fontes
- Sociedade Agrícola da Quinta da Freiria, Valouro Group. Quinta da Freiria, Roliça, 2540-671 Roliça, Portugal
| | - P Themudo
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - T Albuquerque
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - M C Soares
- Sociedade Agrícola da Quinta da Freiria, Valouro Group. Quinta da Freiria, Roliça, 2540-671 Roliça, Portugal
| | - M Fevereiro
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - L Martins
- Department of Veterinary Medicine, School of Sciences and Technology, and Veterinary Hospital - University of Évora. Núcleo da Mitra, 7000-093 Évora, Portugal; Institute of Mediterranean Agricultural and Environmental Science (ICAAM), University of Évora. Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - M I Corrêa de Sá
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| |
Collapse
|
28
|
ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Infect Immun 2015; 83:3545-54. [PMID: 26099584 DOI: 10.1128/iai.00312-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC.
Collapse
|
29
|
Xu H, Zhu X, Hu Y, Li Z, Zhang X, Nie Q, Nolan LK, Lamont SJ. DNA methylome in spleen of avian pathogenic Escherichia coli-challenged broilers and integration with mRNA expression. Sci Rep 2014; 4:4299. [PMID: 24599154 PMCID: PMC3944351 DOI: 10.1038/srep04299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) are responsible for heavy economic losses in poultry industry. Here we investigate DNA methylome of spleen and identify functional DNA methylation changes related to host response to APEC among groups of non-challenged chickens (NC), challenged with mild (MD) and severe pathology (SV). DNA methylation was enriched in the gene bodies and repeats. Promoter and CGIs are hypomethylated. Integration analysis revealed 22, 87, and 9 genes exhibiting inversely changed DNA methylation and gene expression in NC vs. MD, NC vs. SV, and MD vs. SV, respectively. IL8, IL2RB, and IL1RAPL1 were included. Gene network analysis suggested that besides inflammatory response, other networks and pathways such as organismal injury and abnormalities, cell signaling and molecular transport, are probably related to host response to APEC infection. Moreover, methylation changes in cell cycle processes might contribute to the lesion phenotype differences between MD and SV.
Collapse
Affiliation(s)
- Haiping Xu
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xuenong Zhu
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yongsheng Hu
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhenhui Li
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiquan Zhang
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | | | | |
Collapse
|
30
|
The ssbL gene harbored by the ColV plasmid of an Escherichia coli neonatal meningitis strain is an auxiliary virulence factor boosting the production of siderophores through the shikimate pathway. J Bacteriol 2014; 196:1343-9. [PMID: 24443535 DOI: 10.1128/jb.01153-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to capture iron is a challenge for most bacteria. The neonatal meningitis Escherichia coli strain S88 possesses several iron uptake systems, notably including siderophores. Transcriptional analysis of the ColV plasmid pS88 has shown strong induction of a previously undescribed gene with low identity to three E. coli chromosomal genes encoding phospho-2-dehydro-3-deoxyheptonate aldolases involved in aromatic amino acid and catecholate/phenolate siderophore biosynthesis through the shikimate pathway. Here, we investigated the role of this gene, ssbLp (ssbL carried on the plasmid), in siderophore biosynthesis and, consequently, in S88 virulence. We constructed an S88 mutant designated S88 ΔssbLp, which exhibited reduced growth under low-iron conditions compared to the wild-type strain. Liquid chromatography-mass spectroscopy analysis of culture supernatants showed that the mutant secreted significantly smaller amounts of enterobactin, salmochelin SX, and yersiniabactin than the wild-type strain. The mutant was also less virulent in a neonatal rat sepsis model, with significantly lower bacteremia and mortality. Supplementation with chorismate, the final product of the shikimate pathway, restored the wild-type phenotype in vitro. In a collection of human extraintestinal E. coli isolates, we found that ssbL was present only in strains harboring the iro locus, encoding salmochelins, and was located either on the chromosome or on plasmids. Acquisition of the iro locus has been accompanied by acquisition of the auxiliary gene ssbL, which boosts the metabolic pathway essential for catecholate/phenolate siderophore biosynthesis and could represent potential therapeutic targets.
Collapse
|
31
|
A conserved virulence plasmidic region contributes to the virulence of the multiresistant Escherichia coli meningitis strain S286 belonging to phylogenetic group C. PLoS One 2013; 8:e74423. [PMID: 24086343 PMCID: PMC3784414 DOI: 10.1371/journal.pone.0074423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/01/2013] [Indexed: 12/31/2022] Open
Abstract
Recent isolation of the non-K1 Escherichia coli neonatal meningitis strain S286, belonging to phylogroup C, which is closely related to major group B1, and producing an extended-spectrum beta-lactamase, encouraged us to seek the genetic determinants responsible for its virulence. We show that S286 belongs to the sequence O type ST23O78 and harbors 4 large plasmids. The largest one, pS286colV (~120 kb), not related to resistance, contains genes characteristic of a Conserved Virulence Plasmidic (CVP) region initially identified in B2 extra-intestinal avian pathogenic E. coli (APEC) strains and in the B2 neonatal meningitis E. coli strain S88. The sequence of this CVP region has a strong homology (98%) with that of the recently sequenced plasmid pChi7122-1 of the O78 APEC strain Chi7122. A CVP plasmid-cured variant of S286 was less virulent than the wild type strain in a neonatal rat sepsis model with a significant lower level of bacteremia at 24 h (4.1 ± 1.41 versus 2.60 ± 0.16 log CFU/ml, p = 0.001) and mortality. However, the mortality in the model of adult mice was comparable between wild type and variant indicating that pS286colV is not sufficient by itself to fully explain the virulence of S286. Gene expression analysis of pS286colV in iron depleted environment was very close to that of pS88, suggesting that genes of CVP region may be expressed similarly in two very different genetic backgrounds (group C versus group B2). Screening a collection of 178 human A/B1 extraintestinal pathogenic E. coli (ExPEC) strains revealed that the CVP region is highly prevalent (23%) and MLST analysis indicated that these CVP positive strains belong to several clusters and mostly to phylogroup C. The virulence of S286 is explained in part by the presence of CVP region and this region has spread in different clusters of human A/B1 ExPEC, especially in group C.
Collapse
|
32
|
Barbieri NL, de Oliveira AL, Tejkowski TM, Pavanelo DB, Rocha DA, Matter LB, Callegari-Jacques SM, de Brito BG, Horn F. Genotypes and pathogenicity of cellulitis isolates reveal traits that modulate APEC virulence. PLoS One 2013; 8:e72322. [PMID: 23977279 PMCID: PMC3747128 DOI: 10.1371/journal.pone.0072322] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
We characterized 144 Escherichia coli isolates from severe cellulitis lesions in broiler chickens from South Brazil. Analysis of susceptibility to 15 antimicrobials revealed frequencies of resistance of less than 30% for most antimicrobials except tetracycline (70%) and sulphonamides (60%). The genotyping of 34 virulence-associated genes revealed that all the isolates harbored virulence factors related to adhesion, iron acquisition and serum resistance, which are characteristic of the avian pathogenic E. coli (APEC) pathotype. ColV plasmid-associated genes (cvi/cva, iroN, iss, iucD, sitD, traT, tsh) were especially frequent among the isolates (from 66.6% to 89.6%). According to the Clermont method of ECOR phylogenetic typing, isolates belonged to group D (47.2%), to group A (27.8%), to group B2 (17.4%) and to group B1 (7.6%); the group B2 isolates contained the highest number of virulence-associated genes. Clonal relationship analysis using the ARDRA method revealed a similarity level of 57% or higher among isolates, but no endemic clone. The virulence of the isolates was confirmed in vivo in one-day-old chicks. Most isolates (72.9%) killed all infected chicks within 7 days, and 65 isolates (38.1%) killed most of them within 24 hours. In order to analyze differences in virulence among the APEC isolates, we created a pathogenicity score by combining the times of death with the clinical symptoms noted. By looking for significant associations between the presence of virulence-associated genes and the pathogenicity score, we found that the presence of genes for invasins ibeA and gimB and for group II capsule KpsMTII increased virulence, while the presence of pic decreased virulence. The fact that ibeA, gimB and KpsMTII are characteristic of neonatal meningitis E. coli (NMEC) suggests that genes of NMEC in APEC increase virulence of strains.
Collapse
Affiliation(s)
- Nicolle Lima Barbieri
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aline Luísa de Oliveira
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Moreira Tejkowski
- Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Daniel Brisotto Pavanelo
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Débora Assumpção Rocha
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia Beatriz Matter
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Santo Ângelo, Rio Grande do Sul, Brazil
| | | | | | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
33
|
Cai W, Wannemuehler Y, Dell'Anna G, Nicholson B, Barbieri NL, Kariyawasam S, Feng Y, Logue CM, Nolan LK, Li G. A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites. PLoS Pathog 2013; 9:e1003428. [PMID: 23825943 PMCID: PMC3694859 DOI: 10.1371/journal.ppat.1003428] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/25/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signaling systems (TCSs) are major mechanisms by which bacteria adapt to environmental conditions. It follows then that TCSs would play important roles in the adaptation of pathogenic bacteria to host environments. However, no pathogen-associated TCS has been identified in uropathogenic Escherichia coli (UPEC). Here, we identified a novel TCS, which we termed KguS/KguR (KguS: α-ketoglutarate utilization sensor; KguR: α-ketoglutarate utilization regulator) in UPEC CFT073, a strain isolated from human pyelonephritis. kguS/kguR was strongly associated with UPEC but was found only rarely among other E. coli including commensal and intestinal pathogenic strains. An in vivo competition assay in a mouse UTI model showed that deletion of kguS/kguR in UPEC CFT073 resulted in a significant reduction in its colonization of the bladders and kidneys of mice, suggesting that KguS/KguR contributed to UPEC fitness in vivo. Comparative proteomics identified the target gene products of KguS/KguR, and sequence analysis showed that TCS KguS/KguR and its targeted-genes, c5032 to c5039, are encoded on a genomic island, which is not present in intestinal pathogenic E. coli. Expression of the target genes was induced by α-ketoglutarate (α-KG). These genes were further shown to be involved in utilization of α-KG as a sole carbon source under anaerobic conditions. KguS/KguR contributed to the regulation of the target genes with the direct regulation by KguR verified using an electrophoretic mobility shift assay. In addition, oxygen deficiency positively modulated expression of kguS/kguR and its target genes. Taken altogether, this study describes the first UPEC-associated TCS that functions in controlling the utilization of α-ketoglutarate in vivo thereby facilitating UPEC adaptation to life inside the urinary tract.
Collapse
Affiliation(s)
- Wentong Cai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yvonne Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giuseppe Dell'Anna
- Laboratory Animal Resources, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryon Nicholson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nicolle L. Barbieri
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yaping Feng
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Catherine M. Logue
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Lisa K. Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Dziva F, Hauser H, Connor TR, van Diemen PM, Prescott G, Langridge GC, Eckert S, Chaudhuri RR, Ewers C, Mellata M, Mukhopadhyay S, Curtiss R, Dougan G, Wieler LH, Thomson NR, Pickard DJ, Stevens MP. Sequencing and functional annotation of avian pathogenic Escherichia coli serogroup O78 strains reveal the evolution of E. coli lineages pathogenic for poultry via distinct mechanisms. Infect Immun 2013; 81:838-49. [PMID: 23275093 PMCID: PMC3584874 DOI: 10.1128/iai.00585-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resembles E. coli causing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenic E. coli (ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity of E. coli strains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution of E. coli strains adapted to cause avian or human disease via acquisition of distinct virulence genes.
Collapse
Affiliation(s)
- Francis Dziva
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Heidi Hauser
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Thomas R. Connor
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Pauline M. van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Graham Prescott
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Gemma C. Langridge
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sabine Eckert
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christa Ewers
- Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Melha Mellata
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Suman Mukhopadhyay
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Roy Curtiss
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Gordon Dougan
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Derek J. Pickard
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark P. Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
35
|
Sandford EE, Orr M, Li X, Zhou H, Johnson TJ, Kariyawasam S, Liu P, Nolan LK, Lamont SJ. Strong Concordance Between Transcriptomic Patterns of Spleen and Peripheral Blood Leukocytes in Response to Avian Pathogenic Escherichia coli Infection. Avian Dis 2012; 56:732-6. [DOI: 10.1637/10261-060512-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Horn F, Corrêa AMR, Barbieri NL, Glodde S, Weyrauch KD, Kaspers B, Driemeier D, Ewers C, Wieler LH. Infections with avian pathogenic and fecal Escherichia coli strains display similar lung histopathology and macrophage apoptosis. PLoS One 2012; 7:e41031. [PMID: 22848424 PMCID: PMC3405075 DOI: 10.1371/journal.pone.0041031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/16/2012] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas.
Collapse
Affiliation(s)
- Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lemaître C, Bidet P, Bingen E, Bonacorsi S. Transcriptional analysis of the Escherichia coli ColV-Ia plasmid pS88 during growth in human serum and urine. BMC Microbiol 2012; 12:115. [PMID: 22720670 PMCID: PMC3438092 DOI: 10.1186/1471-2180-12-115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/07/2012] [Indexed: 11/30/2022] Open
Abstract
Background The sequenced O45:K1:H7 Escherichia coli meningitis strain S88 harbors a large virulence plasmid. To identify possible genetic determinants of pS88 virulence, we examined the transcriptomes of 88 plasmidic ORFs corresponding to known and putative virulence genes, and 35 ORFs of unknown function. Results Quantification of plasmidic transcripts was obtained by quantitative real-time reverse transcription of extracted RNA, normalized on three housekeeping genes. The transcriptome of E. coli strain S88 grown in human serum and urine ex vivo were compared to that obtained during growth in Luria Bertani broth, with and without iron depletion. We also analyzed the transcriptome of a pS88-like plasmid recovered from a neonate with urinary tract infection. The transcriptome obtained after ex vivo growth in serum and urine was very similar to those obtained in iron-depleted LB broth. Genes encoding iron acquisition systems were strongly upregulated. ShiF and ORF 123, two ORFs encoding protein with hypothetical function and physically linked to aerobactin and salmochelin loci, respectively, were also highly expressed in iron-depleted conditions and may correspond to ancillary iron acquisition genes. Four ORFs were induced ex vivo, independently of the iron concentration. Other putative virulence genes such as iss, etsC, ompTp and hlyF were not upregulated in any of the conditions studied. Transcriptome analysis of the pS88-like plasmid recovered in vivo showed a similar pattern of induction but at much higher levels. Conclusion We identify new pS88 genes potentially involved in the growth of E. coli meningitis strain S88 in human serum and urine.
Collapse
Affiliation(s)
- Chloé Lemaître
- Université Paris Diderot, Sorbonne Paris Cité, EA 3105, Paris, France
| | | | | | | |
Collapse
|
38
|
Proteome response of an extraintestinal pathogenic Escherichia coli strain with zoonotic potential to human and chicken sera. J Proteomics 2012; 75:4853-62. [PMID: 22677113 DOI: 10.1016/j.jprot.2012.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/20/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
A subset of extraintestinal pathogenic Escherichia coli is zoonotic and has developed strategies to adapt to different host-specific environments. However, the underlying mechanisms of these adaptive strategies have yet to be discerned. Here, the proteomic response of an avian pathogenic E. coli strain, which appears indistinguishable from neonatal meningitis E. coli, was compared following growth in human and avian sera to determine whether it uses the same mechanisms to overcome the antibacterial effects of sera from different host species. Proteins involved in biosynthesis of iron receptors were up-regulated under both sera, suggesting that serum, regardless of the host of origin, is an iron-limited environment. However, several proteins involved in synthesis of nucleic acids, sulfur-containing amino acids and fatty acids, were differentially expressed in response to the sera from different hosts. Mutational analysis showed that this APEC strain required nucleotide biosynthesis during incubation in human, but not avian serum, and deletion of genes involved in the biosynthesis of sulfur-containing amino acids increased its resistance to human serum. Continued investigation of the proteome of 'zoonotic' ExPEC strains, grown under other 'dual' host conditions, will contribute to our understanding of ExPEC pathogenesis and host specificity and development of effective therapies and control strategies.
Collapse
|
39
|
Li G, Kariyawasam S, Tivendale KA, Wannemuehler Y, Ewers C, Wieler LH, Logue CM, Nolan LK. tkt1, located on a novel pathogenicity island, is prevalent in avian and human extraintestinal pathogenic Escherichia coli. BMC Microbiol 2012; 12:51. [PMID: 22471764 PMCID: PMC3349570 DOI: 10.1186/1471-2180-12-51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/03/2012] [Indexed: 12/04/2022] Open
Abstract
Background Extraintestinal pathogenic Escherichia coli are important pathogens of human and animal hosts. Some human and avian extraintestinal pathogenic E. coli are indistinguishable on the basis of diseases caused, multilocus sequence and phylogenetic typing, carriage of large virulence plasmids and traits known to be associated with extraintestinal pathogenic E. coli virulence. Results The gene tkt1 identified by a previous signature-tagged transposon mutagenesis study, was found on a 16-kb genomic island of avian pathogenic Escherichia coli (APEC) O1, the first pathogenic Escherichia coli strain whose genome has been completely sequenced. tkt1 was present in 39.6% (38/96) of pathogenic Escherichia coli strains, while only 6.25% (3/48) of E. coli from the feces of apparently healthy chickens was positive. Further, tkt1 was predominantly present in extraintestinal pathogenic E. coli belonging to the B2 phylogenetic group, as compared to extraintestinal pathogenic E. coli of other phylogenetic groups. The tkt1-containing genomic island is inserted between the metE and ysgA genes of the E. coli K12 genome. Among different extraintestinal pathogenic E. coli of the B2 phylogenetic group, 61.7% of pathogenic Escherichia coli, 80.6% of human uropathogenic E.coli and 94.1% of human neonatal meningitis-causing E. coli, respectively, harbor a complete copy of this island; whereas, only a few avian fecal E. coli strains contained the complete island. Functional analysis showed that Tkt1 confers very little transketolase activity but is involved in peptide nitrogen metabolism. Conclusion These results suggest tkt1 and its corresponding genomic island are frequently associated with avian and human ExPEC and are involved in bipeptide metabolism.
Collapse
Affiliation(s)
- Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sandford EE, Orr M, Shelby M, Li X, Zhou H, Johnson TJ, Kariyawasam S, Liu P, Nolan LK, Lamont SJ. Leukocyte transcriptome from chickens infected with avian pathogenic Escherichia coli identifies pathways associated with resistance. RESULTS IN IMMUNOLOGY 2012; 2:44-53. [PMID: 24371566 DOI: 10.1016/j.rinim.2012.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which is responsible for morbidity and mortality in chickens. Gene expression patterns have previously been demonstrated to differ between chicken populations that are resistant vs. susceptible to bacterial infection, but little is currently known about gene expression response to APEC. Increased understanding of gene expression patterns associated with resistance will facilitate genetic selection to increase resistance to APEC. Male broiler chicks were vaccinated at 2 weeks of age and challenged with APEC at 4 weeks of age. Peripheral blood leukocytes were collected at 1 and 5 day post-infection. Lesions on the liver, pericardium, and air sacs were used to assign a mild or severe pathology status to non-vaccinated, challenged chicks. Ten treatment groups were therefore generated with a priori factors of vaccination, challenge, day post-infection, and the a posteriori factor of pathology status. Global transcriptomic response was evaluated using the Agilent 44K chicken microarray. APEC infection resulted in more up-regulation than down-regulation of differentially expressed genes. Immune response and metabolic processes were enriched with differentially expressed genes. Although vaccination significantly reduced lesions in challenged bird, there was no detectable effect of vaccination on gene expression. This study investigated the transcriptomic differences in host responses associated with mild vs. severe pathology, in addition to the effects of vaccination and challenge, thus revealing genes and networks associated with response to APEC and providing a foundation for future studies on, and genetic selection for, genetic resistance to APEC.
Collapse
Affiliation(s)
- Erin E Sandford
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan Orr
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Mandy Shelby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Xianyao Li
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Huaijun Zhou
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16082, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
41
|
Identification of Avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl Environ Microbiol 2012; 78:3343-51. [PMID: 22344666 DOI: 10.1128/aem.07677-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies. Recombination-based in vivo expression technology (RIVET) was used to identify APEC genes specifically expressed during infection in chickens. A total of 21 clones with in vivo-induced promoters were isolated from chicken livers and spleens, indicative of systemic infection. DNA sequencing of the cloned fragments revealed that 12 of the genes were conserved E. coli genes (metH, lysA, pntA, purL, serS, ybjE, ycdK [rutC], wcaJ, gspL, sdsR, ylbE, and yjiY), 6 of the genes were phage related/associated, and 3 genes were pathogen specific (tkt1, irp2, and eitD). These genes are involved in various cellular functions, such as metabolism, cell envelope and integrity, transport systems, and virulence. Others were phage related or have yet-unknown functions.
Collapse
|