1
|
Sehgal N, Li L, Goin DE, Chen J, Jigmeddagva U, Morello-Frosch R, Woodruff TJ, Gaw SL, Robinson JF, Eick SM. Psychosocial stress and associations with inflammation in mid-gestation maternal, fetal, and placental tissue. Reprod Toxicol 2025; 135:108922. [PMID: 40254104 DOI: 10.1016/j.reprotox.2025.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Inflammation has been implicated as an intermediary between psychosocial stress and adverse birth outcomes. However, prior work has mostly relied on maternal inflammation as a proxy for fetal inflammation mid-gestation or measured fetal inflammation in cord blood and placenta obtained at delivery. No studies have examined psychosocial stress in relation to fetal inflammation mid-gestation. METHODS Twenty cytokines were measured in matched maternal blood, cord blood, and placenta obtained mid-gestation from a socio-demographically diverse group of pregnant participants undergoing elective second-trimester pregnancy terminations (N = 106). Corticotropin-releasing hormone, a proposed biomarker of gestational length, was measured in maternal blood. Perceived stress, and exposure to stressful life events, job strain, and social support were measured via questionnaires. We used linear regression to estimate associations between individual stressors and inflammatory biomarkers in each biomatrix and principal component analysis to assess groups of inflammatory biomarkers. RESULTS We observed many matrix-specific associations between psychosocial stressors and inflammatory biomarkers. For example, low versus high social support was associated with significantly decreased levels of maternal blood CCL3 (β=-0.53; 95 % confidence interval [CI]=-0.98,-0.07), CCL4 (β=-0.26; 95 % CI=-0.47,-0.04), IL8 (β=-0.79; 95 % CI=-1.47,-0.11), CXCL9 (β=-0.47; 95 % CI=-0.89,-0.06), IFNγ (β=-2.28; 95 % CI=-3.60,-0.96), IL4 (β=-1.07; 95 % CI=-1.88,-0.26); and cord blood IFNγ (β=-0.83; 95 % CI=-1.52,-0.14). Social support was not associated with placental inflammation. CONCLUSIONS During mid-pregnancy, psychosocial stress─ particularly low social support─ was associated with maternal blood levels of select cytokines, suggesting a potential pathway linking social stress and inflammation. Our results indicate that the placenta may buffer these inflammatory effects on the fetus.
Collapse
Affiliation(s)
- Neha Sehgal
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lin Li
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Dana E Goin
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jessica Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Stephanie L Gaw
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Aberšek N, Tsiartas P, Soucek O, Andrys C, Musilova I, Jacobsson B, Kacerovsky M. Characterizing of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta marked by elevated amniotic fluid interferon gamma-induced protein 10 (IP-10) in pregnancies complicated by preterm prelabor rupture of membranes. Eur J Obstet Gynecol Reprod Biol 2024; 296:292-298. [PMID: 38503193 DOI: 10.1016/j.ejogrb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVES This study aimed to determine the occurrence of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta, marked by elevated levels of interferon gamma-induced protein 10 (IP-10) (≥2200 pg/mL) in the amniotic fluid of women with preterm prelabor rupture of membranes (PPROM). Specifically, the study investigated whether these intra-amniotic inflammatory changes were more common in women with microbial invasion of amniotic cavity (MIAC) and intra-amniotic inflammation (IAI), as indicated by increased amniotic fluid interleukin (IL)-6 concentration (≥3000 pg/mL). STUDY DESIGN A cohort of 114 women with singleton pregnancies complicated by PPROM between 24+0 and 36+6 weeks of gestation were included. Amniotic fluid samples were obtained via amniocentesis upon admission. MIAC diagnosis involved aerobic and anaerobic cultures, as well as polymerase chain reaction (PCR) analysis of the amniotic fluid. Immunoassay tests and enzyme-linked immunosorbent assay (ELISA) were used to determine IL-6 and IP-10 concentrations, respectively. RESULTS Among the participants, 19.3 % and 15.8 % had MIAC and IAI, respectively. The occurrence of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta was similar between women with and without MIAC (25 % vs. 40.9 %, p = 0.136, adjusted p = 0.213). The rate of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta was significantly higher in women with IAI compared to those without, after adjusting for gestational age at sampling (55.6 % vs. 22.9 %, p = 0.005, adjusted p = 0.011). CONCLUSION This study revealed comparable rates of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta in women with and without MIAC, but a higher prevalence of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta in women with IAI. These findings suggest involvement of chronic inflammation even in women with PPROM with acute intra-amniotic inflammation.
Collapse
Affiliation(s)
- Nina Aberšek
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Panagiotis Tsiartas
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Obstetrics and Gynecology, Karolinska Institute, Stockholm, Sweden; Nordic IVF, Eugin Group, Solna, Sweden
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Musilova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Obstetrics and Gynecology, Hospital Most, Krajska zdravotni, a.s., Most, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Area of Health Data and Digitalization, Institute of Public Health, Oslo, Norway.
| | - Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Obstetrics and Gynecology, Hospital Most, Krajska zdravotni, a.s., Most, Czech Republic
| |
Collapse
|
3
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
4
|
Winkler R, Lu H. Cell-Specific Regulation of Inflammatory Cytokines and Acute-Phase Proteins by the Glucocorticoid Receptor. Mediators Inflamm 2023; 2023:4399998. [PMID: 39619227 PMCID: PMC11606692 DOI: 10.1155/2023/4399998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Literature and data mining found abnormal induction of chemokine (C-X-C motif) ligand 1 (CXCL1) and CXCL8 and down-regulation of CXCL2 in inflammatory liver diseases. This study was performed to understand the glucocorticoid receptor's (GR's) effects on chemokine and acute-phase protein expression in human liver, in settings of bacterial infection (modeled using LPS) or inflammation (modeled using TNFα). METHODS Primary human hepatocytes (PHH) were treated with combinations of tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), and dexamethasone (DEX) for 24 h, following which chemokine mRNA and protein expression were analyzed using qPCR and enzyme-linked immunosorbent assay assays. Dual luciferase assays were performed on transfected cell lines. Mutant CXCL2 promoters were used in dual luciferase assays to identify specific regions of the CXCL2 promoter affected by GR, TNFα, or hepatocyte nuclear factor 4α (HNF4α, a liver-enriched transcription factor). RESULTS In PHH from donor 1, GR strongly inhibited LPS-induced CXCL1 and CXCL8 translation and transcription, whereas CXCL2 transcription tended to increase with DEX treatment. In PHH from donor 2, DEX treatment inhibited protein expression and secretion of CXCL1 and CXCL8 induced by TNFα and/or LPS, whereas CXCL2 upregulation was largely unaffected by DEX treatment. In nonliver HEK293T cells GR activity inhibited CXCL2 promoter activity. However, in liver-derived HEPG2 cells, GR induced CXCL2 promoter activity. A 407-base pair region upstream of CXCL2 promoter is necessary for full GR functionality in HEPG2 cells. TNFα synergized with HNF4α in inducing CXCL2 promoter activity in HEPG2 cells. CONCLUSIONS GR's effects on chemokine expression are cell-type specific and chemokine specific. GR down-regulated CXCL1 and CXCL8 in different cell types, whereas the specific activation of CXCL2 in hepatocytes and down-regulation of CXCL2 in nonhepatocytes by GR appears due to cell-specific utilization of CXCL2 promoter. By specifically increasing GR activity in the liver, we may normalize chemokine imbalances and prevent sepsis in inflammatory liver diseases.
Collapse
Affiliation(s)
- Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
5
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
6
|
Chen S, Kuang M, Qu Y, Huang S, Gong B, Lin S, Wang H, Wang G, Tao H, Yu J, Yang Z, Jiang M, Xie Q. Expression of Serum Cytokines Profile in Neonatal Sepsis. Infect Drug Resist 2022; 15:3437-3445. [PMID: 35794925 PMCID: PMC9252297 DOI: 10.2147/idr.s368772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Sepsis remains a major cause of neonatal death. To better characterize the inflammatory response during neonatal sepsis, we compared the differences in serum cytokines and chemokines between full-term neonates with sepsis and without infection. Methods We enrolled 40 full-term neonates with sepsis and 26 full-term neonates without infection as controls between October 2016 and June 2018. Forty cytokines /chemokines in serum were analyzed using the Luminex Bead Immunoassay System. Results Our results showed that serum IL-6, IL-8, TNF-α, IL-1β, MIF, CXCL13, CXCL1, CXCL2, CXCL5, CXCL6, CXCL16, CCL27, CCL2, CCL8, CCL3, CCL20, CCL23, and CX3CL1 levels were significantly increased in neonates with sepsis compared to those in the control group (all p<0.05). The levels of serum CCL20, and IL-17 were higher in late-onset sepsis (LOS) than those in early-onset sepsis (EOS) (all p<0.05). Conversely, serum CXCL16 was lower in LOS than that in EOS (p<0.05). Conclusion Our findings revealed that excessive pro-inflammatory cytokines might be involved in neonatal sepsis. In addition, chemokines significantly increased the recruitment of immune cells after infection to participate in the anti-infection defense of neonates, but this could lead to damage.
Collapse
Affiliation(s)
- Suipeng Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Mengjiao Kuang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Ying Qu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.,Department of Clinical Laboratory, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Shirui Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Binbin Gong
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Suzhen Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Huiyan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Guiye Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Hongqun Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Jian Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Zuqin Yang
- Newborn Department of Pediatrics, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Minghua Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Qipeng Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| |
Collapse
|
7
|
Zhang Y, Xiao X, Hu Y, Liao Z, Zhu W, Jiang R, Yang C, Zhang Y, Su J. CXCL20a, a Teleost-Specific Chemokine That Orchestrates Direct Bactericidal, Chemotactic, and Phagocytosis-Killing-Promoting Functions, Contributes to Clearance of Bacterial Infections. THE JOURNAL OF IMMUNOLOGY 2021; 207:1911-1925. [PMID: 34462313 DOI: 10.4049/jimmunol.2100300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
The major role of chemokines is to act as a chemoattractant to guide the migration of immune cells to the infectious sites. In the current study, we found that CiCXCL20a, a teleost-specific chemokine from grass carp (Ctenopharyngodon idella), demonstrates broad-spectrum, potent, direct bactericidal activity and immunomodulatory functions to bacterial infections, apart from the chemotaxis. CiCXCL20a kills bacteria by binding, mainly targeting acid lipids, perforating bacterial membrane, resulting in bacterial cytoplasm leakage and death. CiCXCL20a aggregates and neutralizes LPS, agglutinates Gram-negative bacteria, and binds to peptidoglycan and Gram-positive bacteria, but not agglutinate them. All the complexes may be phagocytized and cleared away. CiCXCL20a chemoattracts leukocytes, facilitates phagocytosis of myeloid leukocytes, not lymphoid leukocytes, and enhances the bacteria-killing ability in leukocytes. We further identified its receptor CiCXCR3.1b1. Furthermore, we investigated the physiological roles of CiCXCL20a against Aeromonas hydrophila infection in vivo. The recombinant CiCXCL20a increases the survival rate and decreases the tissue bacterial loads, edema, and lesions. Then, we verified this function by purified CiCXCL20a Ab blockade, and the survival rate decreases, and the tissue bacterial burdens increase. In addition, zebrafish (Danio rerio) DrCXCL20, an ortholog of CiCXCL20a, was employed to verify the bactericidal function and mechanism. The results indicated that DrCXCL20 also possesses wide-spectrum, direct bactericidal activity through membrane rupture mechanism. The present study, to our knowledge, provides the first evidence that early vertebrate chemokine prevents from bacterial infections by direct bactericidal and phagocytosis-killing-promoting manners. The results also demonstrate the close functional relationship between chemokines and antimicrobial peptides.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; and.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Rui Jiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; and
| |
Collapse
|
8
|
Brook B, Harbeson DJ, Shannon CP, Cai B, He D, Ben-Othman R, Francis F, Huang J, Varankovich N, Liu A, Bao W, Bjerregaard-Andersen M, Schaltz-Buchholzer F, Sanca L, Golding CN, Larsen KL, Levy O, Kampmann B, Tan R, Charles A, Wynn JL, Shann F, Aaby P, Benn CS, Tebbutt SJ, Kollmann TR, Amenyogbe N. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci Transl Med 2021; 12:12/542/eaax4517. [PMID: 32376769 DOI: 10.1126/scitranslmed.aax4517] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Death from sepsis in the neonatal period remains a serious threat for millions. Within 3 days of administration, bacille Calmette-Guérin (BCG) vaccination can reduce mortality from neonatal sepsis in human newborns, but the underlying mechanism for this rapid protection is unknown. We found that BCG was also protective in a mouse model of neonatal polymicrobial sepsis, where it induced granulocyte colony-stimulating factor (G-CSF) within hours of administration. This was necessary and sufficient to drive emergency granulopoiesis (EG), resulting in a marked increase in neutrophils. This increase in neutrophils was directly and quantitatively responsible for protection from sepsis. Rapid induction of EG after BCG administration also occurred in three independent cohorts of human neonates.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Danny J Harbeson
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Daniel He
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada.,PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Joe Huang
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Natallia Varankovich
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Aaron Liu
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Winnie Bao
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Morten Bjerregaard-Andersen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Lilica Sanca
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christian N Golding
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Kristina Lindberg Larsen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, P.O. Box 273, Banjul, The Gambia.,Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - Adrian Charles
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - James L Wynn
- Department of Paediatrics and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, P.O. Box 100296, Gainesville, FL 32610-0296, USA
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christine S Benn
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Scott J Tebbutt
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.,Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| |
Collapse
|
9
|
Abstract
Studying the pathophysiology of sepsis still requires animal models, and the mouse remains the most commonly used species. Here we discuss the "cecal slurry" (CS) model of polymicrobial, peritoneal sepsis and compare and contrast it to other commonly used methods. Among the different murine models of sepsis, cecal ligation and puncture (CLP), and not the CS, is often considered the "gold standard" to induce polymicrobial sepsis in laboratory animals. CLP is a well-described model involving a simple surgical procedure that closely mimics the clinical course of intra-abdominal sepsis. However, CLP may not be an option for experiments involving newborn pups, where the cecum is indistinguishable from small bowel, where differences in microbiome content may affect the experiment, or where surgical procedures/anesthesia exposure needs to be limited. An important alternative method is the CS model, involving the intraperitoneal injection of cecal contents from a donor animal into the peritoneal cavity of a recipient animal to induce polymicrobial sepsis. Furthermore, CS is an effective alternative model of intraperitoneal polymicrobial sepsis in adult mice and can now be considered the "gold standard" for experiments in neonatal mice.
Collapse
|
10
|
Clinical relevance of single nucleotide polymorphisms in the CXCL1 and CXCL12 genes in patients with major trauma. J Trauma Acute Care Surg 2020; 86:440-447. [PMID: 30489503 DOI: 10.1097/ta.0000000000002141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Genetic backgrounds have been recognized as significant determinants of susceptibility to sepsis. CXC chemokines play a significant role in innate immunity against infectious diseases. Genetic polymorphisms of CXC chemokine genes have been widely studied in inflammatory and infectious diseases but not in sepsis. Thus, we aimed to investigate the clinical relevance of CXC chemokine gene polymorphisms and susceptibility to sepsis in a traumatically injured population. METHODS Thirteen tag single nucleotide polymorphisms were selected from CXC chemokine genes using a multimarker tagging algorithm in the Tagger software. Three independent cohorts of injured patients (n = 1700) were prospectively recruited. Selected single nucleotide polymorphisms were genotyped using an improved multiplex ligation detection reaction method. Cytokine production in lipopolysaccharide-stimulated whole blood was measured using an enzyme-linked immunosorbent assay. RESULTS Among the 13 tag single nucleotide polymorphisms, four single nucleotide polymorphisms (rs1429638, rs266087, rs2297630, and rs2839693) were significantly associated with the susceptibility to sepsis, and three (rs3117604, rs1429638, and rs4074) were significantly associated with an increased multiple organ dysfunction score in the derivation cohort. However, only the clinical relevance of rs1429638 and rs266087 was confirmed in the validation cohorts. In addition, rs2297630 was significantly associated with interleukin 6 production. CONCLUSION The rs1429638 polymorphism in the CXCL1 gene and the rs2297630 polymorphism in the CXCL12 gene were associated with altered susceptibility to sepsis and might be used as important genetic markers to assess the risks of sepsis in trauma patients. LEVEL OF EVIDENCE Prognostic and epidemiologic study, level II.
Collapse
|
11
|
Toothaker JM, Presicce P, Cappelletti M, Stras SF, McCourt CC, Chougnet CA, Kallapur SG, Konnikova L. Immune Cells in the Placental Villi Contribute to Intra-amniotic Inflammation. Front Immunol 2020; 11:866. [PMID: 32528468 PMCID: PMC7256198 DOI: 10.3389/fimmu.2020.00866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Intra-amniotic (IA) inflammation is associated with significant morbidities for both the mother and the fetus. Prior studies have illustrated many of the effects of IA inflammation on the uterine lining (decidua) and membranous layers of the placenta at the fetal–maternal interface. However, much less is known about the immunological response occurring within the villous placenta. Using a rhesus macaque model of lipopolysaccharide (LPS)-induced IA inflammation, we showed that pregnancy-matched choriodecidua and villi have distinct immunological profiles in rhesus pregnancies. In the choriodecidua, we show that the abundance of neutrophils, multiple populations of antigen-presenting cells, and two populations of natural killer (NK) cells changes with prenatal IA LPS exposure. In contrast, in immune cells within the villous placenta we observed alterations in the abundance of B cells, monocytes, and CD8 T cells. Prior work has illustrated that IA inflammation leads to an increase in tumor necrosis factor alpha (TNFα) at the fetal–maternal interface. In this study, pretreatment with a TNFα blockade partially reversed inflammation in the placental villi. Furthermore, we report that immune cells in the villous placenta sensed LPS during our experimental window, and subsequently activated T cells to produce proinflammatory cytokines. Moreover, this study is the first report of memory T cells in third-trimester non-human primate placental villi and provides evidence that manipulation of immune cells in the villi at the fetal–maternal interface should be considered as a potential therapeutic target for IA inflammation.
Collapse
Affiliation(s)
- Jessica M Toothaker
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephanie F Stras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Collin C McCourt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Liza Konnikova
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Abstract
BACKGROUND Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. CONCLUSIONS Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.
Collapse
|
13
|
Chen J, Ye X, Pitmon E, Lu M, Wan J, Jellison ER, Adler AJ, Vella AT, Wang K. IL-17 inhibits CXCL9/10-mediated recruitment of CD8 + cytotoxic T cells and regulatory T cells to colorectal tumors. J Immunother Cancer 2019; 7:324. [PMID: 31775909 PMCID: PMC6880503 DOI: 10.1186/s40425-019-0757-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The IL-17 family cytokines are potent drivers of colorectal cancer (CRC) development. We and others have shown that IL-17 mainly signals to tumor cells to promote CRC, but the underlying mechanism remains unclear. IL-17 also dampens Th1-armed anti-tumor immunity, in part by attracting myeloid cells to tumor. Whether IL-17 controls the activity of adaptive immune cells in a more direct manner, however, is unknown. METHODS Using mouse models of sporadic or inducible colorectal cancers, we ablated IL-17RA in the whole body or specifically in colorectal tumor cells. We also performed adoptive bone marrow reconstitution to knockout CXCR3 in hematopoietic cells. Histological and immunological experimental methods were used to reveal the link among IL-17, chemokine production, and CRC development. RESULTS Loss of IL-17 signaling in mouse CRC resulted in marked increase in the recruitment of CD8+ cytotoxic T lymphocytes (CTLs) and regulatory T cells (Tregs), starting from early stage CRC lesions. This is accompanied by the increased expression of anti-inflammatory cytokines IL-10 and TGF-β. IL-17 signaling also inhibits the production of T cell attracting chemokines CXCL9 and CXCL10 by tumor cells. Conversely, the inability of hematopoietic cells to respond to CXCL9/10 resulted in decreased tumor infiltration by CTLs and Tregs, decreased levels of IL-10 and TGF-β, and increased numbers of tumor lesions. Blockade of IL-17 signaling resulted in increased expression of immune checkpoint markers. On the other hand, treatment of mouse CRC with anti-CTLA-4 antibody led to increased expression of pro-tumor IL-17. CONCLUSION IL-17 signals to colorectal tumor cells and inhibits their production of CXCL9/10 chemokines. By doing so, IL-17 inhibits the infiltration of CD8+ CTLs and Tregs to CRC, thus promoting CRC development. Cancer immunotherapy may be benefited by the use of anti-IL-17 agents as adjuvant therapies, which serve to block both IL-17-mediated tumor promotion and T cell exclusion.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Line, Tumor
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemokine CXCL9/metabolism
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytokines/biosynthesis
- Gene Expression
- Humans
- Interleukin-17/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice
- Mice, Knockout
- Models, Biological
- Neoplasm Staging
- Signal Transduction/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Elise Pitmon
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Mengqian Lu
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- School of Acupuncture-moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Evan R Jellison
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Wood LF, Wood MP, Fisher BS, Jaspan HB, Sodora DL. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure. Front Immunol 2018; 8:1857. [PMID: 29312338 PMCID: PMC5743911 DOI: 10.3389/fimmu.2017.01857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023] Open
Abstract
The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA) in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells) and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.
Collapse
Affiliation(s)
- Lianna Frances Wood
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Matthew P Wood
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Bridget S Fisher
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Heather B Jaspan
- Divisions of Paediatrics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Disease, Seattle Children's Research Institute, Seattle, WA, United States
| | - Donald L Sodora
- Center for Infectious Disease Research, Seattle, WA, United States
| |
Collapse
|
15
|
Brook B, Harbeson D, Ben-Othman R, Viemann D, Kollmann TR. Newborn susceptibility to infection vs. disease depends on complex in vivo interactions of host and pathogen. Semin Immunopathol 2017; 39:615-625. [PMID: 29098373 DOI: 10.1007/s00281-017-0651-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
The burden of newborn infectious disease has long been recognized as the highest across the entire human life span. The precise underlying cause is unfortunately still far from clear. A substantial body of data derived mostly from in vitro experimentation indicates "lower" host immune responses in early vs. adult life and is briefly summarized within this review. However, emerging data derived mostly from in vivo experimentation reveal that the newborn host also exhibits an exuberant immune and inflammatory response following infection when compared to the adult. In this context, it is important to emphasize that "infection" does not equate "infectious disease," as for many infections it is the host response to the infection that causes disease. This simple insight readily arranges existing evidence into cause-effect relationships that explain much of the increase in clinical suffering from infection in early life. We here briefly summarize the evidence in support of this paradigm and highlight the important implications it has for efforts to ameliorate the suffering and dying from infection in early life.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada
| | - Danny Harbeson
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, UBC, BCCHRI A5-175, 950 W 28th Ave, Vancouver, BC, V5Z4H4, Canada. .,Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
16
|
Romero R, Chaemsaithong P, Chaiyasit N, Docheva N, Dong Z, Kim CJ, Kim YM, Kim JS, Qureshi F, Jacques SM, Yoon BH, Chaiworapongsa T, Yeo L, Hassan SS, Erez O, Korzeniewski SJ. CXCL10 and IL-6: Markers of two different forms of intra-amniotic inflammation in preterm labor. Am J Reprod Immunol 2017; 78. [PMID: 28544362 PMCID: PMC5488235 DOI: 10.1111/aji.12685] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
Problem To determine whether amniotic fluid (AF) CXCL10 concentration is associated with histologic chronic chorioamnionitis in patients with preterm labor (PTL) and preterm prelabor rupture of the membranes (PROM). Method of Study This study included 168 women who had an episode of PTL or preterm PROM. AF interleukin (IL)‐6 and CXCL10 concentrations were determined by immunoassay. Results (i) Increased AF CXCL10 concentration was associated with chronic (OR: 4.8; 95% CI: 1.7‐14), but not acute chorioamnionitis; (ii) increased AF IL‐6 concentration was associated with acute (OR: 4.2; 95% CI: 1.3‐13.7) but not chronic chorioamnionitis; and (iii) an increase in AF CXCL10 concentration was associated with placental lesions consistent with maternal anti‐fetal rejection (OR: 3.7; 95% CI: 1.3‐10.4). (iv) All patients with elevated AF CXCL10 and IL‐6 delivered preterm. Conclusion Increased AF CXCL10 concentration is associated with chronic chorioamnionitis or maternal anti‐fetal rejection, whereas increased AF IL‐6 concentration is associated with acute histologic chorioamnionitis.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suzanne M Jacques
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
17
|
S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol 2017; 18:622-632. [PMID: 28459433 DOI: 10.1038/ni.3745] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.
Collapse
|
18
|
Wellman TJ, de Prost N, Tucci M, Winkler T, Baron RM, Filipczak P, Raby B, Chu JH, Harris RS, Musch G, Dos Reis Falcao LF, Capelozzi V, Venegas JG, Vidal Melo MF. Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity. Anesthesiology 2016; 125:992-1004. [PMID: 27611185 PMCID: PMC5096592 DOI: 10.1097/aln.0000000000001334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. METHODS The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg ⋅ h) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. RESULTS Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. CONCLUSIONS Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.
Collapse
Affiliation(s)
- Tyler J Wellman
- From the Departments of Anesthesia, Critical Care and Pain Medicine (T.J.W., M.T., T.W., G.M., L.F.d.R.F., J.G.V., M.F.V.M.) and Medicine (Pulmonary and Critical Care; R.S.H.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France (N.d.P.); Department of Medicine (Pulmonary and Critical Care) (R.M.B., P.F.) and Channing Laboratory (B.R., J.-h.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Laboratory of Histomorphometry and Lung Genomics, University of Sao Paulo, Sao Paulo, Brazil (V.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18-null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G(+) myeloid cells, and blocking IL-17A reduced IL-18-potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18-mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis.
Collapse
|
20
|
Gentile LF, Cuenca AL, Cuenca AG, Nacionales DC, Ungaro R, Efron PA, Moldawer LL, Larson SD. Improved emergency myelopoiesis and survival in neonatal sepsis by caspase-1/11 ablation. Immunology 2015; 145:300-11. [PMID: 25684123 DOI: 10.1111/imm.12450] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023] Open
Abstract
Over one million newborns die annually from sepsis with the highest mortality in premature and low-birthweight infants. The inflammasome plays a central role in the regulation of innate immunity and inflammation, and is presumed to be involved in protective immunity, in large part through the caspase-1-dependent activation of interleukin-1β (IL-1β) and IL-18. Studies in endotoxic shock, however, suggest that endogenous caspase-1 activity and the inflammasome contribute to mortality primarily by promoting excessive systemic inflammatory responses. We examined whether caspase-1 and the inflammasome also regulate neonatal inflammation, host protective immunity and myelopoiesis during polymicrobial sepsis. Neonatal (5-7 days) C57BL/6 and caspase-1/11(-/-) mice underwent a low-lethality caecal slurry model of intra-abdominal sepsis (LD25-45 ). Ablation of caspase-1/11, but not apoptosis-associated speck-like protein containing a CARD domain or nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), improved neonatal survival following septic challenge compared with wild-type mice (P < 0·001), with decreased concentrations of inflammatory cytokines in the serum and peritoneum. Surprisingly, caspase-1/11(-/-) neonates also exhibited increased bone marrow and splenic haematopoietic stem cell expansion (P < 0·001), and increased concentrations of granulocyte and macrophage colony-stimulating factors in the peritoneum (P < 0·001) after sepsis. Ablation of caspase-1/11 signalling was also associated with increased recruitment of peritoneal macrophages and neutrophils (P < 0·001), increased phagocytosis by neutrophils (P = 0·003), and decreased bacterial colonization (P = 0·02) in the peritoneum. These findings suggest that endogenous caspase-1/11 activity, independent of the NLRP3 inflammasome, not only promotes the magnitude of the inflammatory response, but also suppresses protective immunity in the neonate, so contributing to innate immune dysfunction and poor survival in neonatal sepsis.
Collapse
Affiliation(s)
- Lori F Gentile
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wynn JL, Scumpia PO, Stocks BT, Romano-Keeler J, Alrifai MW, Liu JH, Kim AS, Alford CE, Matta P, Weitkamp JH, Moore DJ. Neonatal CD71+ Erythroid Cells Do Not Modify Murine Sepsis Mortality. THE JOURNAL OF IMMUNOLOGY 2015; 195:1064-70. [PMID: 26101326 DOI: 10.4049/jimmunol.1500771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested that murine neonatal host defense against infection could be compromised by immunosuppressive CD71(+) erythroid splenocytes. We examined the impact of CD71(+) erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71(+) erythroid (CD235a(+)) cells in human neonates. Adoptive transfer or an Ab-mediated reduction in neonatal CD71(+) erythroid splenocytes did not alter murine neonatal survival to endotoxin challenge or polymicrobial sepsis challenge. Ex vivo immunosuppression of stimulated adult CD11b(+) cells was not limited to neonatal splenocytes; it also occurred with adult and neonatal bone marrow. Animals treated with anti-CD71 Ab showed reduced splenic bacterial load following bacterial challenge compared with isotype-treated mice. However, adoptive transfer of enriched CD71(+) erythroid splenocytes to CD71(+)-reduced animals did not reduce bacterial clearance. Human CD71(+)CD235a(+) cells were common among cord blood mononuclear cells and were shown to be reticulocytes. In summary, a lack of effect on murine survival to polymicrobial sepsis following adoptive transfer or diminution of CD71(+) erythroid splenocytes under these experimental conditions suggests that the impact of these cells on neonatal infection risk and progression may be limited. An unanticipated immune priming effect of anti-CD71 Ab treatment, rather than a reduction in immunosuppressive CD71(+) erythroid splenocytes, was likely responsible for the reported enhanced bacterial clearance. In humans, the well-described rapid decrease in circulating reticulocytes after birth suggests that they may have a limited role in reducing inflammation secondary to microbial colonization.
Collapse
Affiliation(s)
- James L Wynn
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232;
| | - Philip O Scumpia
- Department of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Blair T Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232
| | - Joann Romano-Keeler
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Mhd Wael Alrifai
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Jin-Hua Liu
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Annette S Kim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232
| | - Catherine E Alford
- Department of Pathology, Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN 37232; and
| | - Pranathi Matta
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Jörn-Hendrik Weitkamp
- Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Daniel J Moore
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232; Division of Endocrinology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
22
|
Cuenca AG, Joiner DN, Gentile LF, Cuenca AL, Wynn JL, Kelly-Scumpia KM, Scumpia PO, Behrns KE, Efron PA, Nacionales D, Lui C, Wallet SM, Reeves WH, Mathews CE, Moldawer LL. TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1169-77. [PMID: 25548220 PMCID: PMC4297742 DOI: 10.4049/jimmunol.1302676] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current evidence suggests that neonatal immunity is functionally distinct from adults. Although TLR signaling through the adaptor protein, MyD88, has been shown to be critical for survival to sepsis in adults, little is known about the role of MyD88 or TRIF in neonatal sepsis. We demonstrate that TRIF(-/-) but not MyD88(-/-) neonates are highly susceptible to Escherichia coli peritonitis and bacteremia. This was associated with decreased innate immune recruitment and function. Importantly, we found that the reverse was true in adults that MyD88(-/-) but not TRIF(-/-) or wild-type adults are susceptible to E. coli peritonitis and bacteremia. In addition, we demonstrate that TRIF but not MyD88 signaling is critical for the TLR4 protective adjuvant effect we have previously demonstrated. These data suggest a differential requirement for the survival of neonates versus adults to Gram-negative infection, and that modulation of TRIF in neonates can be used to augment survival to neonatal sepsis.
Collapse
Affiliation(s)
- Alex G Cuenca
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Dallas N Joiner
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Lori F Gentile
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Angela L Cuenca
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - James L Wynn
- Division of Neonatology, Department of Pediatrics Vanderbilt University, Nashville, TN 37232
| | - Kindra M Kelly-Scumpia
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Philip O Scumpia
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Kevin E Behrns
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Dina Nacionales
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Chao Lui
- Department of Pathology, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Shannon M Wallet
- University of Florida College of Medicine and Dentistry, Gainesville, FL 32610; and
| | - Westley H Reeves
- Department of Medicine, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Clayton E Mathews
- Department of Pathology, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine and Dentistry, Gainesville, FL 32610;
| |
Collapse
|
23
|
Li YP, Yu SL, Huang ZJ, Huang J, Pan J, Feng X, Zhang XG, Wang JH, Wang J. An impaired inflammatory cytokine response to gram-negative LPS in human neonates is associated with the defective TLR-mediated signaling pathway. J Clin Immunol 2015; 35:218-26. [PMID: 25631527 DOI: 10.1007/s10875-015-0128-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/12/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Human neonates are highly susceptible to a wide range of infections, which has been attributed to deficiencies in their innate and adaptive immunity. In contrast to the well-documented immaturity in neonatal adaptive immunity, deficiencies in their innate immunity are less defined. This study examined the inflammatory response of neonatal monocytes to bacterial lipopolysaccharide (LPS) and peptidoglycan (PGN) stimulation and discriminated the underlying Toll-like receptor (TLR)-mediated signal transduction pathways. METHODS Cord blood from 30 healthy newborns of full-term elective cesarean sections and peripheral blood from 25 healthy adult volunteers were collected. Ex vivo production of inflammatory cytokines was assessed by cytometric bead array, and expression of CD14, TLR4, TLR2, phosphorylated NF-κB p65 and p38 on monocytes were detected by FACScan analysis. RESULTS Neonatal whole blood showed significantly decreased ex vivo TNF-α and IL-1β production in response to stimulation with the TLR4 agonist LPS, but not the TLR2 agonist PGN, when compared with adult whole blood. Consistent with the diminished inflammatory cytokine response to LPS stimulation, neonatal monocytes exhibited substantially impaired TLR-mediated signal transduction pathways characterized by down-regulated expression of CD14 and TLR4, and suppressed phosphorylation of NF-κB p65 at Ser536 and p38 following LPS stimulation. In addition, neonates had a significantly lower percentage of TLR4(+)/CD14(+) monocytes than adults. CONCLUSIONS These results indicate that in contrast to the adult, human neonates display deficiencies in innate immunity-associated inflammatory cytokine responses due to their defective TLR signaling pathways, which may render them more susceptible to microbial infection.
Collapse
Affiliation(s)
- Yi Ping Li
- Institute of Pediatric Research, Soochow University, Suzhou, 215006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Torraca V, Cui C, Boland R, Bebelman JP, van der Sar AM, Smit MJ, Siderius M, Spaink HP, Meijer AH. The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Dis Model Mech 2015; 8:253-69. [PMID: 25573892 PMCID: PMC4348563 DOI: 10.1242/dmm.017756] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recruitment of leukocytes to infectious foci depends strongly on the local release of chemoattractant mediators. The human CXC chemokine receptor 3 (CXCR3) is an important node in the chemokine signaling network and is expressed by multiple leukocyte lineages, including T cells and macrophages. The ligands of this receptor originate from an ancestral CXCL11 gene in early vertebrates. Here, we used the optically accessible zebrafish embryo model to explore the function of the CXCR3-CXCL11 axis in macrophage recruitment and show that disruption of this axis increases the resistance to mycobacterial infection. In a mutant of the zebrafish ortholog of CXCR3 (cxcr3.2), macrophage chemotaxis to bacterial infections was attenuated, although migration to infection-independent stimuli was unaffected. Additionally, attenuation of macrophage recruitment to infection could be mimicked by treatment with NBI74330, a high-affinity antagonist of CXCR3. We identified two infection-inducible CXCL11-like chemokines as the functional ligands of Cxcr3.2, showing that the recombinant proteins exerted a Cxcr3.2-dependent chemoattraction when locally administrated in vivo. During infection of zebrafish embryos with Mycobacterium marinum, a well-established model for tuberculosis, we found that Cxcr3.2 deficiency limited the macrophage-mediated dissemination of mycobacteria. Furthermore, the loss of Cxcr3.2 function attenuated the formation of granulomatous lesions, the typical histopathological features of tuberculosis, and led to a reduction in the total bacterial burden. Prevention of mycobacterial dissemination by targeting the CXCR3 pathway, therefore, might represent a host-directed therapeutic strategy for treatment of tuberculosis. The demonstration of a conserved CXCR3-CXCL11 signaling axis in zebrafish extends the translational applicability of this model for studying diseases involving the innate immune system.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Chao Cui
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Ralf Boland
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jan-Paul Bebelman
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
25
|
Oghumu S, Stock JC, Varikuti S, Dong R, Terrazas C, Edwards JA, Rappleye CA, Holovatyk A, Sharpe A, Satoskar AR. Transgenic expression of CXCR3 on T cells enhances susceptibility to cutaneous Leishmania major infection by inhibiting monocyte maturation and promoting a Th2 response. Infect Immun 2015; 83:67-76. [PMID: 25312956 PMCID: PMC4288897 DOI: 10.1128/iai.02540-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cutaneous leishmaniasis, caused mainly by Leishmania major, an obligate intracellular parasite, is a disfiguring disease characterized by large skin lesions and is transmitted by a sand fly vector. We previously showed that the chemokine receptor CXCR3 plays a critical role in mediating resistance to cutaneous leishmaniasis caused by Leishmania major. Furthermore, T cells from L. major-susceptible BALB/c but not L. major-resistant C57BL/6 mice fail to efficiently upregulate CXCR3 upon activation. We therefore examined whether transgenic expression of CXCR3 on T cells would enhance resistance to L. major infection in susceptible BALB/c mice. We generated BALB/c and C57BL/6 transgenic mice, which constitutively overexpressed CXCR3 under a CD2 promoter, and then examined the outcomes with L. major infection. Contrary to our hypothesis, transgenic expression of CXCR3 (CXCR3(Tg)) on T cells of BALB/c mice resulted in increased lesion sizes and parasite burdens compared to wild-type (WT) littermates after L. major infection. Restimulated lymph node cells from L. major-infected BALB/c-CXCR3(Tg) mice produced more interleukin-4 (IL-4) and IL-10 and less gamma interferon (IFN-γ). Cells in draining lymph nodes from BALB/c-CXCR3(Tg) mice showed enhanced Th2 and reduced Th1 cell accumulation associated with increased neutrophils and inflammatory monocytes. However, monocytes displayed an immature phenotype which correlated with increased parasite burdens. Interestingly, transgenic expression of CXCR3 on T cells did not impact the outcome of L. major infection in C57BL/6 mice, which mounted a predominantly Th1 response and spontaneously resolved their infection similar to WT littermates. Our findings demonstrate that transgenic expression of CXCR3 on T cells increases susceptibility of BALB/c mice to L. major.
Collapse
Affiliation(s)
- Steve Oghumu
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA Department of Oral Biology, Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - James C Stock
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Sanjay Varikuti
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ran Dong
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Cesar Terrazas
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Jessica A Edwards
- Department of Microbiology, Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| | - Chad A Rappleye
- Department of Microbiology, Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| | - Ariel Holovatyk
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Arlene Sharpe
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA Department of Microbiology, Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Oghumu S, Varikuti S, Terrazas C, Kotov D, Nasser MW, Powell CA, Ganju RK, Satoskar AR. CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology 2014; 143:109-19. [PMID: 24679047 DOI: 10.1111/imm.12293] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 03/12/2014] [Accepted: 03/24/2014] [Indexed: 02/06/2023] Open
Abstract
Tumor associated macrophages play a vital role in determining the outcome of breast cancer. We investigated the contribution of the chemokine receptor CXCR3 to antitumor immune responses using a cxcr3 deficient mouse orthotopically injected with a PyMT breast cancer cell line. We observed that cxcr3 deficient mice displayed increased IL-4 production and M2 polarization in the tumors and spleens compared to WT mice injected with PyMT cells. This was accompanied by larger tumor development in cxcr3(-/-) than in WT mice. Further, tumor-promoting myeloid derived immune cell populations accumulated in higher proportions in the spleens of cxcr3 deficient mice. Interestingly, cxcr3(-/-) macrophages displayed a deficiency in up-regulating inducible nitric oxide synthase after stimulation by either IFN-γ or PyMT supernatants. Stimulation of bone marrow derived macrophages by PyMT supernatants also resulted in greater induction of arginase-1 in cxcr3(-/-) than WT mice. Further, cxcr3(-/-) T cells activated with CD3/CD28 in vitro produced greater amounts of IL-4 and IL-10 than T cells from WT mice. Our data suggests that a greater predisposition of cxcr3 deficient macrophages towards M2 polarization contributes to an enhanced tumor promoting environment in cxcr3 deficient mice. Although CXCR3 is known to be expressed on some macrophages, this is the first report that demonstrates a role for CXCR3 in macrophage polarization and subsequent breast tumor outcomes. Targeting CXCR3 could be a potential therapeutic approach in the management of breast cancer tumors.
Collapse
Affiliation(s)
- Steve Oghumu
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH, USA; Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cuenca AG, Cuenca AL, Gentile LF, Efron PA, Islam S, Moldawer LL, Kays DW, Larson SD. Delayed emergency myelopoiesis following polymicrobial sepsis in neonates. Innate Immun 2014; 21:386-91. [PMID: 25106654 DOI: 10.1177/1753425914542445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Neonates have increased susceptibility to infection, which leads to increased mortality. Whether or not this as a result of implicit deficits in neonatal innate immune function or recapitulation of innate immune effector cell populations following infection is unknown. Here, we examine the process of emergency myelopoiesis whereby the host repopulates peripheral myeloid cells lost following the initial infectious insult. As early inflammatory responses are often dependent upon NF-κB and type I IFN signaling, we also examined whether the absence of MyD88, TRIF or MyD88 and TRIF signaling altered the myelopoietic response in neonates to polymicrobial sepsis. Following neonatal polymicrobial septic challenge, hematopoietic stem cell (HSC) expansion in bone marrow and the spleen were both attenuated and delayed in neonates compared with adults. Similar reductions in other precursors were observed in neonates. Similar to adult studies, the expansion of progenitor stem cell populations was also seen in the absence of MyD88 and/or TRIF signaling. Overall, neonates have impaired emergency myelopoiesis in response to sepsis compared with young adults. Despite reports that this expansion may be related to TLR signaling, our data suggest that other factors may be important, as TRIF(-/-) and MyD88(-/-) neonatal HSCs are still able to expand in response to polymicrobial neonatal sepsis.
Collapse
Affiliation(s)
- Alex G Cuenca
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Angela L Cuenca
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lori F Gentile
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Saleem Islam
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - David W Kays
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
28
|
Herzig DS, Luan L, Bohannon JK, Toliver-Kinsky TE, Guo Y, Sherwood ER. The role of CXCL10 in the pathogenesis of experimental septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R113. [PMID: 24890566 PMCID: PMC4075230 DOI: 10.1186/cc13902] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022]
Abstract
Introduction The chemokine CXCL10 is produced during infection and inflammation to activate the chemokine receptor CXCR3, an important regulator of lymphocyte trafficking and activation. The goal of this study was to assess the contributions of CXCL10 to the pathogenesis of experimental septic shock in mice. Methods Septic shock was induced by cecal ligation and puncture (CLP) in mice resuscitated with lactated Ringer’s solution and, in some cases, the broad spectrum antibiotic Primaxin. Studies were performed in CXCL10 knockout mice and mice treated with anti-CXCL10 immunoglobulin G (IgG). Endpoints included leukocyte trafficking and activation, core body temperature, plasma cytokine concentrations, bacterial clearance and survival. Results CXCL10 was present at high concentrations in plasma and peritoneal cavity during CLP-induced septic shock. Survival was significantly improved in CXCL10 knockout (CXCL10KO) mice and mice treated with anti-CXCL10 IgG compared to controls. CXCL10KO mice and mice treated with anti-CXCL10 IgG showed attenuated hypothermia, lower concentrations of interleukin-6 (IL-6) and macrophage inhibitory protein-2 (MIP-2) in plasma and lessened natural killer (NK) cell activation compared to control mice. Compared to control mice, bacterial burden in blood and lungs was lower in CXCL10-deficient mice but not in mice treated with anti-CXCL10 IgG. Treatment of mice with anti-CXCL10 IgG plus fluids and Primaxin at 2 or 6 hours after CLP significantly improved survival compared to mice treated with non-specific IgG under the same conditions. Conclusions CXCL10 plays a role in the pathogenesis of CLP-induced septic shock and could serve as a therapeutic target during the acute phase of septic shock.
Collapse
|
29
|
Tunc T, Cekmez F, Cetinkaya M, Kalayci T, Fidanci K, Saldir M, Babacan O, Sari E, Erdem G, Cayci T, Kul M, Kavuncuoglu S. Diagnostic value of elevated CXCR4 and CXCL12 in neonatal sepsis. J Matern Fetal Neonatal Med 2014; 28:356-61. [DOI: 10.3109/14767058.2014.916683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Abstract
Blood transfusion is a well-established risk factor for adverse outcomes during sepsis. The specific mechanisms responsible for this effect remain elusive, and few studies have investigated this phenomenon in a model that reflects not only the clinical circumstances in which blood is transfused, but also how packed red blood cells (PRBCs) are created and stored. Using a cecal ligation and puncture model of polymicrobial sepsis as well as creating murine allogeneic and stored PRBCs in a manner that replicates the clinical process, we have demonstrated that transfusion of PRBCs induces numerous effects on leukocyte subpopulations. In polymicrobial sepsis, these responses are profoundly dissimilar to the proinflammatory effects of PRBC transfusion observed in the healthy mouse. Transfused septic mice, as opposed to mice receiving crystalloid resuscitation, had a significant loss of blood, spleen, and bone marrow lymphocytes, especially those with an activated phenotype. Myeloid cells behaved similarly, although they were able to produce more reactive oxygen species. Overall, transfusion in the septic mouse may contribute to the persistent immune dysfunction known to be associated with this process, rather than simply promote proinflammatory or anti-inflammatory effects on the host. Thus, it is possible that blood transfusion contributes to the multiple known effects of sepsis on leukocyte populations that have been shown to result in increased morbidity and mortality.
Collapse
|
31
|
Wynn JL, Hansen NI, Das A, Cotten CM, Goldberg RN, Sánchez PJ, Bell EF, Van Meurs KP, Carlo WA, Laptook AR, Higgins RD, Benjamin DK, Stoll BJ. Early sepsis does not increase the risk of late sepsis in very low birth weight neonates. J Pediatr 2013; 162:942-8.e1-3. [PMID: 23295144 PMCID: PMC3622770 DOI: 10.1016/j.jpeds.2012.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To examine whether preterm very low birth weight (VLBW) infants have an increased risk of late-onset sepsis (LOS) following early-onset sepsis (EOS). STUDY DESIGN Retrospective analysis of VLBW infants (401-1500 g) born September 1998 through December 2009 who survived >72 hours and were cared for within the National Institute of Child Health and Human Development Neonatal Research Network. Sepsis was defined by growth of bacteria or fungi in a blood culture obtained ≤ 72 hours of birth (EOS) or >72 hours (LOS) and antimicrobial therapy for ≥ 5 days or death <5 days while receiving therapy. Regression models were used to assess risk of death or LOS by 120 days and LOS by 120 days among survivors to discharge or 120 days, adjusting for gestational age and other covariates. RESULTS Of 34,396 infants studied, 504 (1.5%) had EOS. After adjustment, risk of death or LOS by 120 days did not differ overall for infants with EOS compared with those without EOS [risk ratio (RR): 0.99 (0.89-1.09)] but was reduced in infants born at <25 weeks gestation [RR: 0.87 (0.76-0.99), P = .048]. Among survivors, no difference in LOS risk was found overall for infants with versus without EOS [RR: 0.88 (0.75-1.02)], but LOS risk was reduced in infants with birth weight 401-750 g who had EOS [RR: 0.80 (0.64-0.99), P = .047]. CONCLUSIONS Risk of LOS after EOS was not increased in VLBW infants. Surprisingly, risk of LOS following EOS appeared to be reduced in the smallest, most premature infants, underscoring the need for age-specific analyses of immune function.
Collapse
Affiliation(s)
- James L Wynn
- Department of Pediatrics, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
For nearly a decade, our research group has had the privilege of developing and mining a multicenter, microarray-based, genome-wide expression database of critically ill children (≤10 y of age) with septic shock. Using bioinformatic and systems biology approaches, the expression data generated through this discovery-oriented, exploratory approach have been leveraged for a variety of objectives, which are reviewed here. Fundamental observations include widespread repression of gene programs corresponding to the adaptive immune system and biologically significant differential patterns of gene expression across developmental age groups. The data have also identified gene expression-based subclasses of pediatric septic shock having clinically relevant phenotypic differences. The data have also been leveraged for the discovery of novel therapeutic targets, as well as for the discovery and development of novel stratification and diagnostic biomarkers. Almost a decade of genome-wide expression profiling in pediatric septic shock is now demonstrating tangible results. The studies have progressed from an initial discovery-oriented and exploratory phase to a new phase in which the data are being translated and applied to address several areas of clinical need.
Collapse
Affiliation(s)
- Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
33
|
Zhang Q, Coveney AP, Yu S, Liu JH, Li Y, Blankson S, Redmond HP, Wang JH, Wang J. Inefficient antimicrobial functions of innate phagocytes render infant mice more susceptible to bacterial infection. Eur J Immunol 2013; 43:1322-32. [PMID: 23404483 DOI: 10.1002/eji.201243077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
Neonates and infants, due to the immaturity in their adaptive immunity, are thought to depend largely on the innate immune system for protection against bacterial infection. However, the innate immunity-mediated antimicrobial response in neonates and infants is incompletely characterized. Here, we report that infant mice were more susceptible to microbial sepsis than adult mice, with significantly reduced bacterial clearance from the circulation and visceral organs. Infant PMNs exhibited less constitutive expression of the chemokine receptor CXCR2, and bacterial infection caused further reduction of PMN CXCR2 in infant mice compared with adult mice. This correlates with diminished in vitro chemotaxis of infant PMNs toward the chemoattractant CXCL2 and impaired in vivo recruitment of infant PMNs into the infectious site. Furthermore, consistent with the reduced antimicrobial response in vivo, infant macrophages displayed an impaired bactericidal activity with a defect in phagosome maturation after ingestion of either gram-positive or gram-negative bacteria. Thus, infant mice exhibit an increased vulnerability to microbial infection with delayed bacterial clearance, which is associated with the inefficiency in their innate phagocyte-associated antimicrobial functions characterized by defects in PMN recruitment and macrophage phagosome maturation during microbial sepsis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pediatric Surgery, Affiliated Children's Hospital, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Blockade of the CXC chemokine receptor 3 (CXCR3) attenuates inflammation and improves survival in a murine model of near lethal polymicrobial sepsis. However, given the multitude of cellular responses and inflammatory mediators that orchestrate sepsis syndrome, more detailed investigations will be required before a complete understanding of the mechanism(s) of CXCR3 blockade and its therapeutic potential are revealed.
Collapse
|
35
|
Fitzpatrick LE, Lisovsky A, Sefton MV. The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic acid-co-methyl methacrylate) beads. Biomaterials 2012; 33:5297-307. [PMID: 22541537 DOI: 10.1016/j.biomaterials.2012.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 12/15/2022]
Abstract
The expression of native sonic hedgehog (Shh) was significantly increased in poly(methacrylic acid-co-methyl methacrylate) bead (MAA) treated wounds at day 4 compared to both poly(methyl methacrylate) bead (PMMA) treated and untreated wounds in diabetic db/db mice. MAA beads also increased the expression of the Shh transcription factor Gli3 at day 4. Previously, topical application of MAA beads (45 mol % methacrylic acid) improved wound closure and blood vessel density in excisional wounds in these mice, while PMMA beads did not. Gene expression within the granulation tissue of healing wounds was studied to provide insight into the mechanism of vessel formation and wound healing in the presence of MAA beads. In addition to the increased expression of Shh, MAA-treated wounds had increased expression of osteopontin (OPN), IL-1β and TNF-α, (at day 7) similar to the previously reported MAA response of macrophage-like and endothelial cells in vitro.
Collapse
Affiliation(s)
- Lindsay E Fitzpatrick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
36
|
Deiuliis JA, Kampfrath T, Zhong J, Oghumu S, Maiseyeu A, Chen LC, Sun Q, Satoskar AR, Rajagopalan S. Pulmonary T cell activation in response to chronic particulate air pollution. Am J Physiol Lung Cell Mol Physiol 2012; 302:L399-L409. [PMID: 22160305 PMCID: PMC3289266 DOI: 10.1152/ajplung.00261.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/05/2011] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM(2.5)) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) "knockin," and chemokine receptor 3 knockout (CXCR3(-/-)) mice following 24-28 wk of PM(2.5) or filtered air. Chronic PM(2.5) exposure resulted in increased CXCR3-expressing CD4(+) and CD8(+) T cells in the lungs, spleen, and blood with elevation in CD11c(+) macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP(+) regulatory T cells increased with PM(2.5) exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM(2.5) exposure. Mixed lymphocyte cultures using primary, PM(2.5)-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM(2.5) potentiates a proinflammatory Th1 response involving increased homing of CXCR3(+) T effector cells to the lung and modulation of systemic T cell populations.
Collapse
Affiliation(s)
- Jeffrey A Deiuliis
- Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Herzig DS, Driver BR, Fang G, Toliver-Kinsky TE, Shute EN, Sherwood ER. Regulation of lymphocyte trafficking by CXC chemokine receptor 3 during septic shock. Am J Respir Crit Care Med 2011; 185:291-300. [PMID: 22135342 DOI: 10.1164/rccm.201108-1560oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lymphocytes have been shown to facilitate systemic inflammation and physiologic dysfunction in experimental models of severe sepsis. Our previous studies show that natural killer (NK) cells migrate into the peritoneal cavity during intraabdominal sepsis, but the trafficking of NKT and T lymphocytes has not been determined. The factors that regulate lymphocyte trafficking during sepsis are currently unknown. OBJECTIVES To ascertain the importance of CXC chemokine receptor 3 (CXCR3) as a regulator of lymphocyte trafficking during sepsis and determine the contribution of CXCR3-mediated lymphocyte trafficking to the pathogenesis of septic shock. METHODS Lymphocyte trafficking was evaluated in control and CXCR3-deficient mice using flow cytometry during sepsis caused by cecal ligation and puncture (CLP). Survival, core temperature, cytokine production, and bacterial clearance were measured as pathobiological endpoints. MEASUREMENTS AND MAIN RESULTS This study shows that concentrations of the CXCR3 ligands CXCL9 (monokine induced by interferon γ, MIG) and CXCL10 (interferon γ-induced protein 10, IP-10) increase in plasma and the peritoneal cavity after CLP, peak at 8 hours after infection, and are higher in the peritoneal cavity than in plasma. The numbers of CXCR3(+) NK cells progressively decreased in spleen after CLP with a concomitant increase within the peritoneal cavity, a pattern that was ablated in CXCR3-deficient mice. CXCR3-dependent recruitment of T cells was also evident at 16 hours after CLP. Treatment of mice with anti-CXCR3 significantly attenuated CLP-induced hypothermia, decreased systemic cytokine production, and improved survival. CONCLUSIONS CXCR3 regulates NK- and T-cell trafficking during sepsis and blockade of CXCR3 attenuates the pathogenesis of septic shock.
Collapse
Affiliation(s)
- Daniela S Herzig
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, 77555-0591, USA
| | | | | | | | | | | |
Collapse
|