1
|
Felice AG, Rodrigues TCV, Marques PH, Zen FL, Lemes MR, Trevisan RO, Andrade BS, de Oliveira CJF, Azevedo VADC, Tiwari S, Soares SDC. In silico construction of a multi-epitope vaccine (RGME-VAC/ATS-1) against the Rickettsia genus using immunoinformatics. Mem Inst Oswaldo Cruz 2025; 120:e240201. [PMID: 40136144 PMCID: PMC11932644 DOI: 10.1590/0074-02760240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Rickettsia is a genus of Gram-negative bacteria that causes various diseases, including epidemic typhus, Rocky Mountain spotted fever, and Mediterranean spotted fever. Ticks transmit these diseases and commonly found in developing regions with poor sanitation. As a result, it is difficult to estimate the number of these diseases cases, making it challenging to create prevention and diagnostic mechanisms. OBJECTIVES Thus, this study aimed to develop an in silico multi-epitope vaccine against Rickettsia. METHODS Eight proteins were previously identified as potential vaccine candidates through reverse vaccinology and were screened for epitopes that bind to MHC class I and II molecules. The epitopes were then analysed for antigenicity, allergenicity, and toxicity. The selected epitopes were linked with AAY and GPGPG sequences peptide and a known adjuvant, the B-chain of Escherichia coli heat-labile enterotoxin, to form a chimeric multi-epitope protein. The protein's three-dimensional structure was predicted, and molecular docking analysis was performed against the toll-like receptor 4 (TLR4). Finally, the immune response to the protein was simulated using C-ImmSim tool. FINDINGS A total of 26 immunogenic epitopes, formed the multi-epitope vaccine RGME-VAC/ATS-1. The vaccine showed excellent immunogenic parameters and was predicted to do not be toxic or allergenic to the host. It also showed good potential stimulation of immune cells, with a propensity to generate memory cells and elicit IFN-γ secretion. MAIN CONCLUSIONS The in silico validations suggest that our study successfully designed an innovative multi-epitope vaccine against Rickettsia, addressing the challenges posed by the elusive nature of diseases caused by this genus. We provide a promising potential for further experimental exploration and the development of targeted prevention and diagnostic strategies for these diseases.
Collapse
Affiliation(s)
- Andrei Giacchetto Felice
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | | | - Pedro Henrique Marques
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Bioinformática, Belo Horizonte, MG, Brasil
| | - Felipe Lucas Zen
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | - Marcela Rezende Lemes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Bioinformática, Belo Horizonte, MG, Brasil
| | - Rafael Obata Trevisan
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | - Bruno Silva Andrade
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Vitória da Conquista, BA, Brasil
| | - Carlo José Freire de Oliveira
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | | | - Sandeep Tiwari
- Universidade Federal da Bahia, Instituto de Biologia, Programa de Pós-Graduação em Microbiologia, Salvador, BA, Brasil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa de Pós-Graduação em Imunologia, Salvador, BA, Brasil
| | - Siomar de Castro Soares
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| |
Collapse
|
2
|
Torres-Bustamante M, Cantillo-Barraza O, Ko AI, Wunder EA, Quintero-Vélez JC. Eco-epidemiological study of seropositivity against Rickettsia and Leptospira agents in rural areas of Urabá, Colombia. RESEARCH SQUARE 2024:rs.3.rs-3760267. [PMID: 38260656 PMCID: PMC10802693 DOI: 10.21203/rs.3.rs-3760267/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Rickettsioses and leptospirosis are infectious diseases that are often underdiagnosed due to a lack of knowledge about their epidemiology, pathophysiology, diagnosis, management, among others. Objetive to characterize the seroprevalence and seroincidence of both Rickettsia and Leptospira agents and determine the risk factors for these outcomes in rural areas of Urabá, Antioquia. Methods a secondary data analysis using information on Rickettsia and Leptospira exposure from a prior prospective study that explored sociocultural and ecological aspects of Rickettsia infection in rural Urabá, Colombia. A multinomial mixed logistic regression model was employed to analyze factors linked to seroprevalent cases of Rickettsia, Leptospira and both, along with descriptive analyses of seroincident cases. Results the concomitant seroprevalence against Rickettsiaand Leptospira was 9.38% [95%CI 6.08%-13.37%] (56/597). The factors associated with this seroprevalence were age (ORa= 1.02 [95%CI 1.007-1.03]), male gender (ORa= 3.06 [95%CI 1.75-5.37]), fever history (ORa= 1.71 [95%CI 1.06-2.77]) the presence of breeding pigs (ORa= 2.29 [95%CI 1.36-3.88]), peridomicile yucca crops(ORa= 2.5 [95%CI 1.1-5.62]), and deforestation practices(ORa= 1.74 [95%CI 1.06-2.87]). The concomitant seroincidence against Rickettsia and Leptospira was 1.09% (3/274) [95%CI 0.29%-4.05%], three cases were female, with a median age of 31.83 years-old (IQR 8.69-56.99). At the household level, all the seroincident cases had households built partially or totally with soil floors, wooden walls, and zinc roofs. Two seroincident cases described the presence of equines, canines, and domestic chickens in intra or peri-domicile. Finally, two cases were exposed to synanthropic rodents, and one case to tick infestation. Conclusion there is evidence of seroprevalent and seroincident cases of seropositivity against both Rickettsia and Leptospira in rural areas of Urabá, Colombia. These findings can help improve public health surveillance systems in preventing, detecting, and attending to the different clinical cases caused by these pathogens.
Collapse
|
3
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
4
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Immune Monitoring of Paediatric Patients Infected with Rickettsia rickettsii, Ehrlichia canis and Coinfected. Pathogens 2022; 11:pathogens11111351. [PMID: 36422602 PMCID: PMC9696171 DOI: 10.3390/pathogens11111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
In 2021, 273 Rocky Mountain spotted fever cases were reported nationwide in Mexico. In Chihuahua City, fourteen samples were obtained from children suspected of rickettsial infection. The analysis of samples (January to December 2021) showed prevalence rates of 28.5%, 43%, and 28.5% for Rickettsia rickettsii, Ehrlichia canis, and both pathogens in coinfection, respectively. The analysis of clinical haematological and biochemistry analytes showed alterations; 100% of the children had elevated liver enzymes and coagulation times, 64% showed leukocytosis due to neutrophilia, 55% had thrombocytopenia, lymphopenia, and hypoalbuminemia, and 45% showed normocytic normochromic anaemia. Statistically significant differences were observed in the expression of the chemokines IL-8, RANTES, CXCL9/MIG, and CXCL10/IP-10 across the coinfected and control groups, and the difference in IP-10 expression was significant for patients infected by R. rickettsii compared to the control group. Additionally, significant differences were observed for expression levels of IL-1β, IL-6, IL-17, IFNγ, and TNFα among the R. rickettsii-positive group compared to the control group. On the other hand, the coinfected group exhibited modified levels of IL-6, IL-8, and IL-10 compared with the control group. Finally, significant differences were observed for CD8+ T lymphocyte subpopulations between individuals positive for R. rickettsii and those positive for E. canis.
Collapse
|
6
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
7
|
Lemenze A, Mittal N, Perryman AL, Daher SS, Ekins S, Occi J, Ahn YM, Wang X, Russo R, Patel JS, Daugherty RM, Wood DO, Connell N, Freundlich JS. Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022; 8:1280-1290. [PMID: 35748568 PMCID: PMC9912140 DOI: 10.1021/acsinfecdis.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Alexander Lemenze
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Nisha Mittal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alexander L Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Samer S Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - James Occi
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Riccardo Russo
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Jimmy S Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Robin M Daugherty
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - David O Wood
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - Nancy Connell
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S Freundlich
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
8
|
Matsuura H. Japanese spotted fever and rickettsial pneumonia. QJM 2021; 114:261-262. [PMID: 33346839 DOI: 10.1093/qjmed/hcaa331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/04/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- H Matsuura
- Department of General Internal Medicine, Okayama City Hospital, 3-20-1, Omote-cho, Kitanagase, Okayama-city, Okayama 700-0962, Japan
- Department of General Internal Medicine, Mitoyo General Hospital, 708, Himehama, Toyohama-cho, Kanonji-city, Kagawa 769-1695, Japan
| |
Collapse
|
9
|
Nalugo M, Schulte LJ, Masood MF, Zayed MA. Microvascular Angiopathic Consequences of COVID-19. Front Cardiovasc Med 2021; 8:636843. [PMID: 33604359 PMCID: PMC7884319 DOI: 10.3389/fcvm.2021.636843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has rapidly spread across the world. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China in December, 2019. Ever increasing data is continuing to emerge about the impact of COVID-19 on cardiovascular tissue and other organ system. Clinical features associated with COVID-19 suggest that endothelial cell dysfunction and microvascular thrombosis are to a large extent contributing to resultant multi-organ complications. This review is aimed at highlighting the critical aspects associated with COVID-19 and its presumed microvascular angiopathic consequences on the cardiovascular system leading to multi-organ dysfunction.
Collapse
Affiliation(s)
- Margaret Nalugo
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Linda J. Schulte
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Muhammad F. Masood
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Mohamed A. Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO, United States
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
10
|
Sahni A, Narra HP, Sahni SK. MicroRNA-424 regulates the expression of CX3CL1 (fractalkine) in human microvascular endothelial cells during Rickettsia rickettsii infection. Biochem Biophys Rep 2021; 25:100897. [PMID: 33490646 PMCID: PMC7806877 DOI: 10.1016/j.bbrep.2020.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines and chemokines trigger complex intracellular signaling through specific receptors to mediate immune cell recruitment and activation at the sites of infection. CX3CL1 (Fractalkine), a membrane-bound chemokine also capable of facilitating intercellular interactions as an adhesion molecule, contributes to host immune responses by virtue of its chemoattractant functions. Published studies have documented increased CX3CL1 expression in target tissues in a murine model of spotted fever rickettsiosis temporally corresponding to infiltration of macrophages and recovery from infection. Because pathogenic rickettsiae primarily target vascular endothelium in the mammalian hosts, we have now determined CX3CL1 mRNA and protein expression in cultured human microvascular endothelial cells (HMECs) infected in vitro with Rickettsia rickettsii. Our findings reveal 15.5 ± 4.0-fold and 12.3 ± 2.3-fold increase in Cx3cl1 mRNA expression at 3 h and 24 h post-infection, coinciding with higher steady-state levels of the corresponding protein in comparison to uninfected HMECs. Since CX3CL1 is a validated target of microRNA (miR)-424-5p (miR-424) and our earlier findings demonstrated robust down-regulation of miR-424 in R. rickettsii-infected HMECs, we further explored the possibility of regulation of CX3CL1 expression during rickettsial infection by miR-424. As expected, R. rickettsii infection resulted in 87 ± 5% reduction in miR-424 expression in host HMECs. Interestingly, a miR-424 mimic downregulated R. rickettsii-induced expression of CX3CL1, whereas an inhibitor of miR-424 yielded a converse up-regulatory effect, suggesting miR-424-mediated regulation of CX3CL1 during infection. Together, these findings provide the first evidence for the roles of a host microRNA in the regulation of an important bifunctional chemokine governing innate immune responses to pathogenic rickettsiae.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555-0609, USA
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555-0609, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555-0609, USA
| |
Collapse
|
11
|
Fisher J, Card G, Soong L. Neuroinflammation associated with scrub typhus and spotted fever group rickettsioses. PLoS Negl Trop Dis 2020; 14:e0008675. [PMID: 33091013 PMCID: PMC7580963 DOI: 10.1371/journal.pntd.0008675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scrub typhus and spotted fever rickettsioses (SFR) are understudied, vector-borne diseases of global significance. Over 1 billion individuals are at risk for scrub typhus alone in an endemic region, spanning across eastern and southern Asia to Northern Australia. While highly treatable, diagnostic challenges make timely antibiotic intervention difficult for these diseases. Delayed therapy may lead to severe outcomes affecting multiple organs, including the central nervous system (CNS), where infection and associated neuroinflammation may be lethal or lead to lasting sequelae. Meningitis and encephalitis are prevalent in both scrub typhus and SFR. Additionally, case reports detailing focal neurological deficits have come to light, with attention to both acute and chronic sequelae of infection. Despite the increasing number of clinical reports outlining neurologic consequences of these diseases, relatively little research has examined underlying mechanisms of neuroinflammation. Animal models of scrub typhus have identified cerebral T-cell infiltration and vascular damage associated with endothelial infection and neuropathogenesis. Differential gene expression analysis of brain tissues during murine scrub typhus have revealed selective increases in CXCR3 ligands, proinflammatory and type-1 cytokines and chemokines, and cytotoxicity molecules, as well as alterations in the complement pathway. In SFR, microglial expansion and macrophage infiltration contribute to neurological disease progression. This narrative Review highlights clinical neurologic features of scrub typhus and SFR and evaluates our current understanding of basic research into neuroinflammation for both diseases in animal models. Further investigation into key mediators of neuropathogenesis may yield prognostic markers and treatment regimens for severe patients.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Galen Card
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
Satjanadumrong J, Robinson MT, Hughes T, Blacksell SD. Distribution and Ecological Drivers of Spotted Fever Group Rickettsia in Asia. ECOHEALTH 2019; 16:611-626. [PMID: 30993545 PMCID: PMC6910891 DOI: 10.1007/s10393-019-01409-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 05/30/2023]
Abstract
Spotted fever group and related rickettsia (SFGR) are a neglected group of pathogens that belong to the genus Rickettsia. SFGR are zoonotic and are transmitted by arthropod vectors, primarily ticks, fleas and mites to accidental hosts. These emerging and re-emerging infections are widely distributed throughout the world. Land-use change and increasing human-wildlife conflict compound the risk of SFGR infection to local people in endemic areas and travelers to these regions. In this article, we discuss the rickettsial organisms causing spotted fever and related diseases, their arthropod vectors in Asia and the impact of land-use change on their spread.
Collapse
Affiliation(s)
- Jaruwan Satjanadumrong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithee Road, Bangkok, 10400, Thailand
| | - Matthew T Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7FZ, UK
| | - Tom Hughes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithee Road, Bangkok, 10400, Thailand
- EcoHealth Alliance, 460 West 34th Street, 17th Floor, New York, NY, USA
| | - Stuart D Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithee Road, Bangkok, 10400, Thailand.
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People's Democratic Republic.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
13
|
Abstract
Spotted fever group rickettsiae (SFG) are a neglected group of bacteria, belonging to the genus Rickettsia, that represent a large number of new and emerging infectious diseases with a worldwide distribution. The diseases are zoonotic and are transmitted by arthropod vectors, mainly ticks, fleas and mites, to hosts such as wild animals. Domesticated animals and humans are accidental hosts. In Asia, local people in endemic areas as well as travellers to these regions are at high risk of infection. In this review we compare SFG molecular and serological diagnostic methods and discuss their limitations. While there is a large range of molecular diagnostics and serological assays, both approaches have limitations and a positive result is dependent on the timing of sample collection. There is an increasing need for less expensive and easy-to-use diagnostic tests. However, despite many tests being available, their lack of suitability for use in resource-limited regions is of concern, as many require technical expertise, expensive equipment and reagents. In addition, many existing diagnostic tests still require rigorous validation in the regions and populations where these tests may be used, in particular to establish coherent and worthwhile cut-offs. It is likely that the best strategy is to use a real-time quantitative polymerase chain reaction (qPCR) and immunofluorescence assay in tandem. If the specimen is collected early enough in the infection there will be no antibodies but there will be a greater chance of a PCR positive result. Conversely, when there are detectable antibodies it is less likely that there will be a positive PCR result. It is therefore extremely important that a complete medical history is provided especially the number of days of fever prior to sample collection. More effort is required to develop and validate SFG diagnostics and those of other rickettsial infections.
Collapse
|
14
|
Chen Y, Fu Y, Song YF, Li N. Increased Expression of lncRNA UCA1 and HULC Is Required for Pro-inflammatory Response During LPS Induced Sepsis in Endothelial Cells. Front Physiol 2019; 10:608. [PMID: 31231228 PMCID: PMC6558422 DOI: 10.3389/fphys.2019.00608] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023] Open
Abstract
Systemic uncontrolled inflammatory response, also termed as sepsis, is responsible for many mortalities. Bacterial endotoxin, lipopolysaccharide (LPS), is a major cause of sepsis in endothelial cells. Even though a lot of research has been done to define underlying mechanisms of LPS induced sepsis, the role of long non-coding RNAs (lncRNAs), a group of >200 kb RNAs in sepsis is not well-defined. Expression of pro-inflammatory mediators IL6, ICAM1, and VCAM1 (which encodes interleukin-6, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, respectively) were determined following LPS treatment of human dermal microvascular endothelial cells (HMECs) for 24 h to confirm sepsis induction. RNA immunoprecipitation (RIP) analysis was performed using the chromatin modifying proteins (CMPs), heterogeneous nuclear ribonucleoprotein (hnRNP) K and corepressors of the RE-1 silencing transcription factor (coREST) as individual baits. Quantitative real time polymerase chain reaction (qRT-PCR) was performed on RNA isolated from immunoprecipitated pellets for six different lncRNAs. The effect of the differentially expressed lncRNAs were determined by ectopic overexpression of the lncRNAs before induction of sepsis. Expression of IL6, ICAM1, and VCAM1 were significantly upregulated following treatment of the HMECs with LPS for 24 h confirming induction of sepsis. RIP and qRT-PCR analysis revealed that the lncRNAs HULC, UCA1, and MALAT-1 were significantly enriched with the CMPs after sepsis. RNA interference using siRNAs targeting HULC and UCA1, but not MALAT-1, decreased the expression of IL6, ICAM1, and VCAM1 to endogenous levels. Our results were further validated in an in vivo model of sub-lethal LPS-induced sepsis, whereby siRNA mediated knockdown of UCA1 and HULC lncRNAs prevented induction of VCAM1, ICAM1, and IL6, as assayed by immunohistochemistry. Cumulatively, these results suggest that LPS induced in vitro sepsis in endothelial cells and induction of pre-inflammatory mediators are at least in part due to increased expression of the UCA1 and HULC lncRNAs.
Collapse
Affiliation(s)
- Ying Chen
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yao Fu
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yan-Fei Song
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Fergie N, Todd N, McClements L, McAuley D, O’Kane C, Krasnodembskaya A. Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB J 2019; 33:5585-5598. [PMID: 30649987 PMCID: PMC6436662 DOI: 10.1096/fj.201802056r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/02/2019] [Indexed: 01/27/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by diffuse inflammation and edema formation. The main management strategy, low tidal volume ventilation, can be associated with the development of hypercapnic acidosis (HCA). Mesenchymal stem cells (MSCs) are a promising therapeutic candidate currently in early-phase clinical trials. The effects of HCA on the alveolar epithelium and capillary endothelium are not well established. The therapeutic efficacy of MSCs has never been reported in HCA. In the present study, we evaluated the effects of HCA on inflammatory response and reparative potential of the primary human small airway epithelial and lung microvasculature endothelial cells as well as on the capacity of bone marrow-derived MSCs to promote wound healing in vitro. We demonstrate that HCA attenuates the inflammatory response and reparative potential of primary human small airway epithelium and capillary endothelium and induces mitochondrial dysfunction. It was found that MSCs promote lung epithelial wound repair via the transfer of functional mitochondria; however, this proreparative effect of MSCs was lost in the setting of HCA. Therefore, HCA may adversely impact recovery from ARDS at the cellular level, whereas MSCs may not be therapeutically beneficial in patients with ARDS who develop HCA.-Fergie, N., Todd, N., McClements, L., McAuley, D., O'Kane, C., Krasnodembskaya, A. Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair.
Collapse
Affiliation(s)
- Nicola Fergie
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Naomi Todd
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Lana McClements
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Danny McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Cecilia O’Kane
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Anna Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
Narra HP, Sahni A, Khanipov K, Fofanov Y, Sahni SK. Global Transcriptomic Profiling of Pulmonary Gene Expression in an Experimental Murine Model of Rickettsia conorii Infection. Genes (Basel) 2019; 10:genes10030204. [PMID: 30857242 PMCID: PMC6470625 DOI: 10.3390/genes10030204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mediterranean spotted fever develops from an infection with Rickettsia conorii, an obligate intracellular, Gram-negative, endotheliotropic, and tick-transmitted bacterial pathogen, and is an acute, febrile illness that can progress to life-threatening complications if not diagnosed and treated early with effective antibiotics. Despite significant morbidity and mortality, little is known about changes in gene expression that determine the host responses during in vivo infection. We have investigated the transcriptional landscape of host lungs as a prominently affected organ system in an established murine model of infection by RNA-sequencing. Ingenuity pathway analysis resulted in the identification of 1332 differentially expressed genes and 292 upstream regulators. Notably, genes encoding for ubiquitin D, aconitate decarboxylase, antimicrobial peptides, calgranulins, cytokines and chemokines, and guanylate binding proteins were highly up-regulated, whereas those involved in hemoglobin biosynthesis and heme homeostasis were significantly down-regulated. Amongst response regulators, nucleotide-binding oligomerization domain-containing protein 2 and killer cell lectin-like receptors were differentially expressed, and gene clustering revealed eukaryotic initiation factor-2, oxidative phosphorylation, and ubiquitination as the predominantly activated biological pathways. Collectively, this first global transcriptomic profiling has identified R. conorii-induced regulation of novel genes and pathways in the host lungs, further in-depth investigation of which will strengthen our understanding of the pathogenesis of human rickettsioses.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
17
|
Rickettsia rickettsii Whole-Cell Antigens Offer Protection against Rocky Mountain Spotted Fever in the Canine Host. Infect Immun 2019; 87:IAI.00628-18. [PMID: 30396898 PMCID: PMC6346123 DOI: 10.1128/iai.00628-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. The causative agent of this disease, Rickettsia rickettsii, is transmitted by several species of ticks, including Dermacentor andersoni, Rhipicephalus sanguineus, and Amblyomma americanum. RMSF clinical signs generally include fever, headache, nausea, vomiting, muscle pain, lack of appetite, and rash. If untreated, it can quickly progress into a life-threatening illness in people and dogs, with high fatality rates ranging from 30 to 80%. While RMSF has been known for over a century, recent epidemiological data suggest that the numbers of documented cases and the fatality rates remain high in people, particularly during the last two decades in parts of North America. Currently, there are no vaccines available to prevent RMSF in either dogs or people. In this study, we investigated the efficacies of two experimental vaccines, a subunit vaccine containing two recombinant outer membrane proteins as recombinant antigens (RCA) and a whole-cell inactivated antigen vaccine (WCA), in conferring protection against virulent R. rickettsii infection challenge in a newly established canine model for RMSF. Dogs vaccinated with WCA were protected from RMSF, whereas those receiving RCA developed disease similar to that of nonvaccinated R. rickettsii-infected dogs. WCA also reduced the pathogen loads to nearly undetected levels in the blood, lungs, liver, spleen, and brain and induced bacterial antigen-specific immune responses. This study provides the first evidence of the protective ability of WCA against RMSF in dogs.
Collapse
|
18
|
Chowdhury IH, Narra HP, Sahni A, Khanipov K, Fofanov Y, Sahni SK. Enhancer Associated Long Non-coding RNA Transcription and Gene Regulation in Experimental Models of Rickettsial Infection. Front Immunol 2019; 9:3014. [PMID: 30687302 PMCID: PMC6333757 DOI: 10.3389/fimmu.2018.03014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Recent discovery that much of the mammalian genome does not encode protein-coding genes (PCGs) has brought widespread attention to long noncoding RNAs (lncRNAs) as a novel layer of biological regulation. Enhancer lnc (elnc) RNAs from the enhancer regions of the genome carry the capacity to regulate PCGs in cis or in trans. Spotted fever rickettsioses represent the consequence of host infection with Gram-negative, obligate intracellular bacteria in the Genus Rickettsia. Despite being implicated in the pathways of infection and inflammation, the roles of lncRNAs in host response to Rickettsia species have remained a mystery. We have profiled the expression of host lncRNAs during infection of susceptible mice with R. conorii as a model closely mimicking the pathogenesis of human spotted fever rickettsioses. RNA sequencing on the lungs of infected hosts yielded reads mapping to 74,964 non-coding RNAs, 206 and 277 of which were determined to be significantly up- and down-regulated, respectively, in comparison to uninfected controls. Following removal of short non-coding RNAs and ambiguous transcripts, remaining transcripts underwent in-depth analysis of mouse lung epigenetic signatures H3K4Me1 and H3K4Me3, active transcript markers (POLR2A, p300, CTCF), and DNaseI hypersensitivity sites to identify two potentially active and highly up-regulated elncRNAs NONMMUT013718 and NONMMUT024103. Using Hi-3C sequencing resource, we further determined that genomic loci of NONMMUT013718 and NONMMUT024103 might interact with and regulate the expression of nearby PCGs, namely Id2 (inhibitor of DNA binding 2) and Apol10b (apolipoprotein 10b), respectively. Heterologous reporter assays confirmed the activity of elncRNAs as the inducers of their predicted PCGs. In the lungs of infected mice, expression of both elncRNAs and their targets was significantly higher than mock-infected controls. Induced expression of NONMMUT013718/Id2 in murine macrophages and NONMMUT024103/Apol10b in endothelial cells was also clearly evident during R. conorii infection in vitro. Finally, shRNA mediated knock-down of NONMMUT013718 and NONMMUT024103 elncRNAs resulted in reduced expression of endogenous Id2 and Apl10b, demonstrating the regulatory roles of these elncRNAs on their target PCGs. Our results provide very first experimental evidence suggesting altered expression of pulmonary lncRNAs and elncRNA-mediated regulation of PCGs involved in immunity and during host interactions with pathogenic rickettsiae.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Yuriy Fofanov
- Department of Pharmacology, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| |
Collapse
|
19
|
Sahni A, Narra HP, Patel J, Sahni SK. MicroRNA-Regulated Rickettsial Invasion into Host Endothelium via Fibroblast Growth Factor 2 and Its Receptor FGFR1. Cells 2018; 7:cells7120240. [PMID: 30513762 PMCID: PMC6315532 DOI: 10.3390/cells7120240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Microvascular endothelial cells (ECs) represent the primary target cells during human rickettsioses and respond to infection via the activation of immediate–early signaling cascades and the resultant induction of gene expression. As small noncoding RNAs dispersed throughout the genome, microRNAs (miRNAs) regulate gene expression post-transcriptionally to govern a wide range of biological processes. Based on our recent findings demonstrating the involvement of fibroblast growth factor receptor 1 (FGFR1) in facilitating rickettsial invasion into host cells and published reports suggesting miR-424 and miR-503 as regulators of FGF2/FGFR1, we measured the expression of miR-424 and miR-503 during R. conorii infection of human dermal microvascular endothelial cells (HMECs). Our results revealed a significant decrease in miR-424 and miR-503 expression in apparent correlation with increased expression of FGF2 and FGFR1. Considering the established phenomenon of endothelial heterogeneity and pulmonary and cerebral edema as the prominent pathogenic features of rickettsial infections, and significant pathogen burden in the lungs and brain in established mouse models of disease, we next quantified miR-424 and miR-503 expression in pulmonary and cerebral microvascular ECs. Again, R. conorii infection dramatically downregulated both miRNAs in these tissue-specific ECs as early as 30 min post-infection in correlation with higher FGF2/FGFR1 expression. Changes in the expression of both miRNAs and FGF2/FGFR1 were next confirmed in a mouse model of R. conorii infection. Furthermore, miR-424 overexpression via transfection of a mimic into host ECs reduced the expression of FGF2/FGFR1 and gave a corresponding decrease in R. conorii invasion, while an inhibitor of miR-424 had the expected opposite effect. Together, these findings implicate the rickettsial manipulation of host gene expression via regulatory miRNAs to ensure efficient cellular entry as the critical requirement to establish intracellular infection.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| |
Collapse
|
20
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
21
|
Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro. Mediators Inflamm 2017; 2017:3427461. [PMID: 29147069 PMCID: PMC5632992 DOI: 10.1155/2017/3427461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/02/2022] Open
Abstract
Endothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and responses, but their expression status and roles during endothelial interactions with LPS are not well understood. We report on the expression profile of long noncoding (lnc) RNAs of human microvascular endothelial cells in response to LPS. We have identified a total of 10,781 and 8310 lncRNA transcripts displaying either positive or negative regulation of expression, respectively, at 3 and 24 h posttreatment. A majority of LPS-induced lncRNAs are multiexonic and distributed across the genome as evidenced by their presence on all chromosomes. Present among these are a total of 44 lncRNAs with known regulatory functions, of which 41 multiexonic lncRNAs have multiple splice variants. We have further validated splice variant-specific expression of EGO (NONHSAT087634) and HOTAIRM1 (NONHSAT119666) at 3 h and significant upregulation of lnc-IL7R at 24 h. This study illustrates the genome-wide regulation of endothelial lncRNA splice variants in response to LPS and provides a foundation for further investigations of differentially expressed lncRNA transcripts in endothelial responses to LPS and pathophysiology of sepsis/septic shock.
Collapse
|
22
|
Sahni A, Patel J, Narra HP, Schroeder CLC, Walker DH, Sahni SK. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLoS One 2017; 12:e0183181. [PMID: 28806774 PMCID: PMC5555671 DOI: 10.1371/journal.pone.0183181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
Rickettsial infections continue to cause serious morbidity and mortality in severe human cases around the world. Host cell adhesion and invasion is an essential requisite for intracellular growth, replication, and subsequent dissemination of pathogenic rickettsiae. Heparan sulfate proteoglycans [HSPGs] facilitate the interactions between fibroblast growth factor(s) and their tyrosine kinase receptors resulting in receptor dimerization/activation and have been implicated in bacterial adhesion to target host cells. In the present study, we have investigated the contributions of fibroblast growth factor receptors [FGFRs] in rickettsial entry into the host cells. Inhibition of HSPGs by heparinase and FGFRs by AZD4547 (a selective small-molecule inhibitor) results in significant reduction in rickettsial internalization into cultured human microvascular endothelial cells (ECs), which represent the primary targets of pathogenic rickettsiae during human infections. Administration of AZD4547 during R. conorii infection in a murine model of endothelial-target spotted fever rickettsiosis also diminishes pulmonary rickettsial burden in comparison to mock-treated controls. Silencing of FGFR1 expression using a small interfering RNA also leads to similar inhibition of R. rickettsii invasion into ECs. Consistent with these findings, R. rickettsii infection of ECs also results in phosphorylation of tyrosine 653/654, suggesting activation of FGFR1. Using isobaric tag for relative and absolute quantitation [iTRAQ]-based proteomics approach, we further demonstrate association of β-peptide of rickettsial outer membrane protein OmpA with FGFR1. Mechanistically, FGFR1 binds to caveolin-1 and mediates bacterial entry via caveolin-1 dependent endocytosis. Together, these results identify host cell FGFR1 and rickettsial OmpA as another novel receptor-ligand pair contributing to the internalization of pathogenic rickettsiae into host endothelial cells and the potential application of FGFR-inhibitor drugs as adjunct therapeutics against spotted fever rickettsioses.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (AS); (SKS)
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey L. C. Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (AS); (SKS)
| |
Collapse
|
23
|
MicroRNA Signature of Human Microvascular Endothelium Infected with Rickettsia rickettsii. Int J Mol Sci 2017; 18:ijms18071471. [PMID: 28698491 PMCID: PMC5535962 DOI: 10.3390/ijms18071471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) mediate gene silencing by destabilization and/or translational repression of target mRNA. Infection of human microvascular endothelial cells as primary targets of Rickettsiarickettsii, the etiologic agent of Rocky Mountain spotted fever, triggers host responses appertaining to alterations in cellular gene expression. Microarray-based profiling of endothelial cells infected with R.rickettsii for 3 or 24 h revealed differential expression of 33 miRNAs, of which miRNAs129-5p, 200a-3p, 297, 200b-3p, and 595 were identified as the top five up-regulated miRNAs (5 to 20-fold, p ≤ 0.01) and miRNAs 301b-3p, 548a-3p, and 377-3p were down-regulated (2 to 3-fold, p ≤ 0.01). Changes in the expression of selected miRNAs were confirmed by q-RT-PCR in both in vitro and in vivo models of infection. As potential targets, expression of genes encoding NOTCH1, SMAD2, SMAD3, RIN2, SOD1, and SOD2 was either positively or negatively regulated. Using a miRNA-specific mimic or inhibitor, NOTCH1 was determined to be a target of miRNA 200a-3p in R. rickettsii-infected human dermal microvascular endothelial cells (HMECs). Predictive interactome mapping suggested the potential for miRNA-mediated modulation of regulatory gene networks underlying important host cell signaling pathways. This first demonstration of altered endothelial miRNA expression provides new insights into regulatory elements governing mechanisms of host responses and pathogenesis during human rickettsial infections.
Collapse
|
24
|
Abstract
Small regulatory RNAs comprise critically important modulators of gene expression in bacteria, yet very little is known about their prevalence and functions in Rickettsia species. R. conorii, the causative agent of Mediterranean spotted fever, is a tick-borne pathogen that primarily infects microvascular endothelium in humans. We have determined the transcriptional landscape of R. conorii during infection of Human Microvascular Endothelial Cells (HMECs) by strand-specific RNA sequencing to identify 4 riboswitches, 13 trans-acting (intergenic), and 22 cis-acting (antisense) small RNAs (termed ‘Rc_sR’s). Independent expression of four novel trans-acting sRNAs (Rc_sR31, Rc_sR33, Rc_sR35, and Rc_sR42) and known bacterial sRNAs (6S, RNaseP_bact_a, ffs, and α-tmRNA) was next confirmed by Northern hybridization. Comparative analysis during infection of HMECs vis-à-vis tick AAE2 cells revealed significantly higher expression of Rc_sR35 and Rc_sR42 in HMECs, whereas Rc_sR31 and Rc_sR33 were expressed at similar levels in both cell types. We further predicted a total of 502 genes involved in all important biological processes as potential targets of Rc_sRs and validated the interaction of Rc_sR42 with cydA (cytochrome d ubiquinol oxidase subunit I). Our findings constitute the first evidence of the existence of post-transcriptional riboregulatory mechanisms in R. conorii and interactions between a novel Rc_sR and its target mRNA.
Collapse
|
25
|
Schroeder CLC, Narra HP, Sahni A, Rojas M, Khanipov K, Patel J, Shah R, Fofanov Y, Sahni SK. Identification and Characterization of Novel Small RNAs in Rickettsia prowazekii. Front Microbiol 2016; 7:859. [PMID: 27375581 PMCID: PMC4896933 DOI: 10.3389/fmicb.2016.00859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence implicates a critically important role for bacterial small RNAs (sRNAs) as post-transcriptional regulators of physiology, metabolism, stress/adaptive responses, and virulence, but the roles of sRNAs in pathogenic Rickettsia species remain poorly understood. Here, we report on the identification of both novel and well-known bacterial sRNAs in Rickettsia prowazekii, known to cause epidemic typhus in humans. RNA sequencing of human microvascular endothelial cells (HMECs), the preferred targets during human rickettsioses, infected with R. prowazekii revealed the presence of 35 trans-acting and 23 cis-acting sRNAs, respectively. Of these, expression of two trans-acting (Rp_sR17 and Rp_sR60) and one cis-acting (Rp_sR47) novel sRNAs and four well-characterized bacterial sRNAs (RNaseP_bact_a, α-tmRNA, 4.5S RNA, 6S RNA) was further confirmed by Northern blot or RT-PCR analyses. The transcriptional start sites of five novel rickettsial sRNAs and 6S RNA were next determined using 5' RLM-RACE yielding evidence for their independent biogenesis in R. prowazekii. Finally, computational approaches were employed to determine the secondary structures and potential mRNA targets of novel sRNAs. Together, these results establish the presence and expression of sRNAs in R. prowazekii during host cell infection and suggest potential functional roles for these important post-transcriptional regulators in rickettsial biology and pathogenesis.
Collapse
Affiliation(s)
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Mark Rojas
- Department of Pharmacology, University of Texas Medical BranchGalveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical BranchGalveston, TX, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Riya Shah
- Department of Neuroscience, University of Texas at DallasDallas, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology, University of Texas Medical BranchGalveston, TX, USA
| | - Sanjeev K. Sahni
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
26
|
Schroeder CLC, Narra HP, Rojas M, Sahni A, Patel J, Khanipov K, Wood TG, Fofanov Y, Sahni SK. Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 2015; 16:1075. [PMID: 26679185 PMCID: PMC4683814 DOI: 10.1186/s12864-015-2293-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023] Open
Abstract
Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. Results We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. Conclusions Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Casey L C Schroeder
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Hema P Narra
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Mark Rojas
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Jignesh Patel
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
27
|
Zhao Y, Valbuena G, Walker DH, Gazi M, Hidalgo M, DeSousa R, Oteo JA, Goez Y, Brasier AR. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling. Mol Cell Proteomics 2015; 15:289-304. [PMID: 26560068 DOI: 10.1074/mcp.m115.054361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections.
Collapse
Affiliation(s)
- Yingxin Zhao
- From the Departments of ‡Internal Medicine and §Institute for Translational Sciences, and ¶Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060
| | | | | | | | - Marylin Hidalgo
- the **Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rita DeSousa
- the ‡‡Centre for the Study of Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Dr. Ricardo Jorge, Águas de Moura, Av. Padre Cruz, Lisbon, 1649-016, Portugal, and
| | - Jose Antonio Oteo
- the §§Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-Centro de Investigation Biomedical de la Rioja (CIBIR), Logroño, La Rioja, 26006, Spain
| | | | - Allan R Brasier
- From the Departments of ‡Internal Medicine and §Institute for Translational Sciences, and ¶Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1060,
| |
Collapse
|
28
|
Yang X, Jiao J, Han G, Gong W, Wang P, Xiong X, Wen B. Enhanced Expression of T-Cell Immunoglobulin and Mucin Domain Protein 3 in Endothelial Cells Facilitates Intracellular Killing of Rickettsia heilongjiangensis. J Infect Dis 2015; 213:71-9. [PMID: 26401029 DOI: 10.1093/infdis/jiv463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/11/2015] [Indexed: 11/13/2022] Open
Abstract
Rickettsia heilongjiangensis is the pathogen of Far eastern spotted fever, and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) is expressed in human vascular endothelial cells, the major target cells of rickettsiae. In the present study, we investigated the effects of altered Tim-3 expression in vivo in mice and in vitro in human endothelial cells, on day 3 after R. heilongjiangensis infection. Compared with corresponding controls, rickettsial burdens both in vivo and in vitro were significantly higher with blocked Tim-3 signaling or silenced Tim-3 and significantly lower with overexpressed Tim-3. Additionally, the expression of inducible nitric oxide synthase and interferon γ in endothelial cells with blocked Tim-3 signaling or silenced Tim-3 was significantly lower, while the expression of inducible nitric oxide synthase, interferon γ, and tumor necrosis factor α in transgenic mice with Tim-3 overexpression was significantly higher. These results reveal that enhanced Tim-3 expression facilitates intracellular rickettsial killing in a nitric oxide-dependent manner in endothelial cells during the early phase of rickettsial infection.
Collapse
Affiliation(s)
- Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Gencheng Han
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Department of Clinical Laboratory, 105th Hospital of the People's Liberation Army, Anhui, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| |
Collapse
|
29
|
Abstract
Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old.
Collapse
|
30
|
Liu M, Ferrandez Y, Bouhsira E, Monteil M, Franc M, Boulouis HJ, Biville F. Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and flea invasion. PLoS One 2012; 7:e48408. [PMID: 23144761 PMCID: PMC3483173 DOI: 10.1371/journal.pone.0048408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. These heme auxotroph alphaproteobacteria must import heme for their growth, since they cannot synthesize it. To import exogenous heme, Bartonella genomes encode for a complete heme uptake system enabling transportation of this compound into the cytoplasm and degrading it to release iron. In addition, these bacteria encode for four or five outer membrane heme binding proteins (Hbps). The structural genes of these highly homologous proteins are expressed differently depending on oxygen, temperature and heme concentrations. These proteins were hypothesized as being involved in various cellular processes according to their ability to bind heme and their regulation profile. In this report, we investigated the roles of the four Hbps of Bartonella henselae, responsible for cat scratch disease. We show that Hbps can bind heme in vitro. They are able to enhance the efficiency of heme uptake when co-expressed with a heme transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we show that these proteins are involved in defense against the oxidative stress, colonization of human endothelial cell and survival in the flea.
Collapse
Affiliation(s)
- MaFeng Liu
- UMR BIPAR Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, INRA-Anses-UPEC-ENVA, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Seidl K, Solis NV, Bayer AS, Hady WA, Ellison S, Klashman MC, Xiong YQ, Filler SG. Divergent responses of different endothelial cell types to infection with Candida albicans and Staphylococcus aureus. PLoS One 2012; 7:e39633. [PMID: 22745797 PMCID: PMC3382135 DOI: 10.1371/journal.pone.0039633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/27/2012] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells are important in the pathogenesis of bloodstream infections caused by Candida albicans and Staphylococcus aureus. Numerous investigations have used human umbilical vein endothelial cells (HUVECs) to study microbial-endothelial cell interactions in vitro. However, the use of HUVECs requires a constant supply of umbilical cords, and there are significant donor-to-donor variations in these endothelial cells. The use of an immortalized endothelial cell line would obviate such difficulties. One candidate in this regard is HMEC-1, an immortalized human dermal microvascular endothelial cell line. To determine if HMEC-1 cells are suitable for studying the interactions of C. albicans and S. aureus with endothelial cells in vitro, we compared the interactions of these organisms with HMEC-1 cells and HUVECs. We found that wild-type C. albicans had significantly reduced adherence to and invasion of HMEC-1 cells as compared to HUVECs. Although wild-type S. aureus adhered to and invaded HMEC-1 cells similarly to HUVECs, an agr mutant strain had significantly reduced invasion of HMEC-1 cells, but not HUVECs. Furthermore, HMEC-1 cells were less susceptible to damage induced by C. albicans, but more susceptible to damage caused by S. aureus. In addition, HMEC-1 cells secreted very little IL-8 in response to infection with either organism, whereas infection of HUVECs induced substantial IL-8 secretion. This weak IL-8 response was likely due to the anatomic site from which HMEC-1 cells were obtained because infection of primary human dermal microvascular endothelial cells with C. albicans and S. aureus also induced little increase in IL-8 production above basal levels. Thus, C. albicans and S. aureus interact with HMEC-1 cells in a substantially different manner than with HUVECs, and data obtained with one type of endothelial cell cannot necessarily be extrapolated to other types.
Collapse
Affiliation(s)
- Kati Seidl
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Arnold S. Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Wessam Abdel Hady
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Steven Ellison
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Biology, California State University-Dominguez Hills, Carson, California, United States of America
| | - Meredith C. Klashman
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Yan Q. Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Rydkina E, Turpin LC, Sahni A, Sahni SK. Regulation of inducible heme oxygenase and cyclooxygenase isozymes in a mouse model of spotted fever group rickettsiosis. Microb Pathog 2012; 53:28-36. [PMID: 22522044 DOI: 10.1016/j.micpath.2012.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 03/16/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023]
Abstract
Vascular endothelial cells (ECs) lining the blood vessels are the preferred primary targets of pathogenic Rickettsia species in the host. In response to oxidative stress triggered by infection, ECs launch defense mechanisms such as expression of heme oxygenase-1 (HO-1). Previous evidence from an established animal model of Rocky Mountain spotted fever also suggests selective modulation of anti-oxidant enzyme activities in the target host tissues. In this study, we have examined the expression profiles of HO-1 and COX-2 in different tissues during Rickettsia conorii infection of susceptible C3H/HeN mice. RNA hybridization with murine HO-1 and COX-2-specific complementary DNA probes revealed increased HO-1 expression in the liver and brain of mice infected with three different doses of R. conorii ranging from 2.25×10(3) to 2.25×10(5) pfu, relatively non-remarkable changes in the lungs, and a trend for down-regulation in the spleen. The most prominent HO-1 response was evident in the liver with ∼4-fold increase on day 4 post-infection, followed by a decline on day 7. HO-1 expression in the brain, however, peaked with significantly higher levels on day 7. Following infection with both sub-lethal as well as lethal doses of infection, the transcript encoding COX-2 also displayed a pattern of increased expression in the liver and brain. Although immunohistochemical staining revealed increased abundance of HO-1 protein in the liver of infected mice, adjoining serial sections did not exhibit positive staining for COX-2 in infected tissues. The levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived cytokine (KC) were significantly higher in the sera of infected mice and corresponded with the onset and severity of the disease. Treatment of infected animals with anti-oxidants α-lipoic acid and N-acetylcysteine and HO inhibitor stannous protoporphyrin (SnPPIX) showed only selective beneficial effects on HO-1 and COX-2 expression in the liver and spleen and serum levels of KC and MCP-1. R. conorii infection of susceptible mice, therefore, results in selective regulation of the expression of HO-1 and COX-2 in a manner dependent on the target host tissue's cellular environment and the propensity of infection with rickettsiae.
Collapse
Affiliation(s)
- Elena Rydkina
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
33
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
34
|
Ferrero MC, Bregante J, Delpino MV, Barrionuevo P, Fossati CA, Giambartolomei GH, Baldi PC. Proinflammatory response of human endothelial cells to Brucella infection. Microbes Infect 2011; 13:852-861. [PMID: 21621633 DOI: 10.1016/j.micinf.2011.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 01/18/2023]
Abstract
Although vascular pathologies such as vasculitis, endocarditis and mycotic aneurysms have been described in brucellosis patients, the interaction of Brucella with the endothelium has not been characterized. In this study we show that Brucella abortus and Brucella suis can infect and replicate in primary human umbilical vein endothelial cells (HUVEC) and in the microvascular endothelial cell line HMEC-1. Infection led to an increased production of IL-8, MCP-1 and IL-6 in HUVEC and HMEC-1 cells, and an increased expression of adhesion molecules (CD54 in both cells, CD106 and CD62E in HUVEC). Experiments with purified antigens from the bacterial outer membrane revealed that lipoproteins (Omp19) but not lipopolysaccharide mediate these proinflammatory responses. Infection of polarized HMEC-1 cells resulted in an increased capacity of these cells to promote the transmigration of neutrophils from the apical to the basolateral side of the monolayer, and the same phenomenon was observed when the cells were stimulated with live bacteria from the basolateral side. Overall, these results suggest that Brucella spp. can infect and survive within endothelial cells, and can induce a proinflammatory response that might be involved in the vascular manifestations of brucellosis.
Collapse
Affiliation(s)
- Mariana C Ferrero
- Instituto de Estudios de la Inmunidad Humoral, Facultad de Farmacia y Bioquímica, UBA, Junín 956, (1113) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|