1
|
Phurahong T, Soonson P, Thawonsuwan J, Tanasomwang V, Areechon N, E-kobon T, Unajak S. Comparative Genome Analysis of Piscine Vibrio vulnificus: Virulence-Associated Metabolic Pathways. Microorganisms 2024; 12:2518. [PMID: 39770721 PMCID: PMC11676643 DOI: 10.3390/microorganisms12122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Vibriosis caused by Vibrio vulnificus is a major problem in aquatic animals, particularly brown marble groupers (Epinephelus fuscoguttatus). V. vulnificus biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I V. vulnificus strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence. To gain insight into the different genetic features revealed by the potential virulence mechanisms of V. vulnificus in relation to a spectrum of pathogenesis, comparative genomic analyses of three biotype I V. vulnificus strains belonging to different subgroups (SUKU_G1, SUKU_G2, and SUKU_G3) were performed. The V. vulnificus genome is composed of two circular chromosomes with average sizes of 3 Mbp and 1.7 Mbp that are evolutionarily related based on the analysis of orthologous genes. A comparative genome analysis of V. vulnificus revealed 5200 coding sequences, of which 3887 represented the core genome and the remaining 1313 constituted the dispensable genome. The most virulent isolate (SUKU_G1) carries unique enzymes that are important for lipopolysaccharide (LPS) and capsular polysaccharide (CPS) synthesis, as well as flagellar glycosylation, and harbors another type of repeat in toxin (RTX) and bacterial defense mechanisms. The less virulent isolate (SUKU_G2) shares enzymes related to CPS biosynthesis or flagellar glycosylation, while the avirulent isolate (SUKU_G3) and a less virulent isolate (SUKU_G2) share enzymes related to the production of rare sugars. Interestingly, the isolates from the three subgroups containing specific CMP-N-acetylneuraminate-producing enzymes that are correlated with their growth abilities. Collectively, these observations provide an understanding of the molecular mechanisms underlying disease pathogenesis and support the development of strategies for bacterial disease prevention and control.
Collapse
Affiliation(s)
- Thararat Phurahong
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Patcharee Soonson
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Jumroensri Thawonsuwan
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Varin Tanasomwang
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand;
| | - Teerasak E-kobon
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Bowser S, Melton-Celsa A, Chapartegui-González I, Torres AG. Further Evaluation of Enterohemorrhagic Escherichia coli Gold Nanoparticle Vaccines Utilizing Citrobacter rodentium as the Model Organism. Vaccines (Basel) 2024; 12:508. [PMID: 38793759 PMCID: PMC11125983 DOI: 10.3390/vaccines12050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a group of pathogenic bacteria that is associated with worldwide human foodborne diarrheal illnesses and the development of hemolytic uremic syndrome, a potentially deadly condition associated with Shiga toxins (Stxs). Currently, approved vaccines for human prophylaxis against infection do not exist, and one barrier preventing the successful creation of EHEC vaccines is the absence of dependable animal models, including mice, which are naturally resistant to EHEC infection and do not manifest the characteristic signs of the illness. Our lab previously developed gold nanoparticle (AuNP)-based EHEC vaccines, and assessed their efficacy using Citrobacter rodentium, which is the mouse pathogen counterpart of EHEC, along with an Stx2d-producing strain that leads to more consistent disease kinetics in mice, including lethality. The purpose of this study was to continue evaluating these vaccines to increase protection. Here, we demonstrated that subcutaneous immunization of mice with AuNPs linked to the EHEC antigens EscC and intimin (Eae), either alone or simultaneously, elicits functional robust systemic humoral responses. Additionally, vaccination with both antigens together showed some efficacy against Stx2d-producing C. rodentium while AuNP-EscC successfully limited infection with non-Stx2d-producing C. rodentium. Overall, the collected results indicate that our AuNP vaccines have promising potential for preventing disease with EHEC, and that evaluation of novel vaccines using an appropriate animal model, like C. rodentium described here, could be the key to finally developing an effective EHEC vaccine that can progress into human clinical trials.
Collapse
Affiliation(s)
- Sarah Bowser
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Alfredo G. Torres
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Bowser S, Melton-Celsa A, Chapartegui-González I, Torres AG. Efficacy of EHEC gold nanoparticle vaccines evaluated with the Shiga toxin-producing Citrobacter rodentium mouse model. Microbiol Spectr 2024; 12:e0226123. [PMID: 38047703 PMCID: PMC10783022 DOI: 10.1128/spectrum.02261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) remains an important cause of diarrheal disease and complications worldwide, especially in children, yet there are no available vaccines for human use. Inadequate pre-clinical evaluation due to inconsistent animal models remains a major barrier to novel vaccine development. We demonstrate the usefulness of Stx2d-producing Citrobacter rodentium in assessing vaccine effectiveness because it more closely recapitulates human disease caused by EHEC.
Collapse
Affiliation(s)
- Sarah Bowser
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Itziar Chapartegui-González
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
5
|
Huerta-Saquero A, Chapartegui-González I, Bowser S, Khakhum N, Stockton JL, Torres AG. P22-Based Nanovaccines against Enterohemorrhagic Escherichia coli. Microbiol Spectr 2023:e0473422. [PMID: 36943089 PMCID: PMC10100862 DOI: 10.1128/spectrum.04734-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important causative agent of diarrhea in humans that causes outbreaks worldwide. Efforts have been made to mitigate the morbidity and mortality caused by these microorganisms; however, the global incidence is still high, causing hundreds of deaths per year. Several vaccine candidates have been evaluated that demonstrate some stability and therapeutic potential but have limited overarching effect. Virus-like particles have been used successfully as nanocontainers for the targeted delivery of drugs, proteins, or nucleic acids. In this study, phage P22 nanocontainers were used as a carrier for the highly antigenic T3SS structural protein EscC that is conserved between EHEC and other enteropathogenic bacteria. We were able to stably incorporate the EscC protein into P22 nanocontainers. The EscC-P22 particles were used to intranasally inoculate mice, which generated specific antibodies against EscC. These antibodies increased the phagocytic activity of murine macrophages infected with EHEC in vitro and reduced bacterial adherence to Caco-2 epithelial cells in vitro, illustrating their functionality. The EscC-P22-based particles are a potential nanovaccine candidate for immunization against EHEC O157:H7 infections. IMPORTANCE This study describes the initial attempt to use P22 viral-like particles as nanocontainers expressing enterohemorrhagic Escherichia coli (EHEC) proteins that are immunogenic and could be used as effective vaccines against EHEC infections.
Collapse
Affiliation(s)
- Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob L Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
7
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
8
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Oral Administration with Live Attenuated Citrobacter rodentium Protects Immunocompromised Mice from Lethal Infection. Infect Immun 2022; 90:e0019822. [PMID: 35861565 PMCID: PMC9302154 DOI: 10.1128/iai.00198-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important causative agents for foodborne diseases worldwide. Besides antibiotic treatment, vaccination has been deemed as the most effective strategy for preventing EPEC- and EHEC-caused foodborne illnesses. Despite substantial progress made in identifying promising antigens and efficacious vaccines, no vaccines against EPEC or EHEC have yet been licensed. Mice are inherently resistant to EPEC and EHEC infections; infection with Citrobacter rodentium (CR), the murine equivalent of EPEC and EHEC, in mice has been widely used as a model to study bacterial pathogenesis and develop novel vaccine strategies. Mirroring the severe outcomes of EPEC and EHEC infections in immunocompromised populations, immunocompromised mouse strains such as interleukin-22 knockout (Il22-/-) are susceptible to CR infection with severe clinical symptoms and mortality. Live attenuated bacterial vaccine strategies have been scarcely investigated for EPEC and EHEC infections, in particular in immunocompromised populations associated with severe outcomes. Here we examined whether live attenuated CR strain with rational genetic manipulation generates protective immunity against lethal CR infection in the susceptible Il22-/- mice. Our results demonstrate that oral administration of live ΔespFΔushA strain promotes efficient systemic and humoral immunity against a wide range of CR virulence determinants, thus protecting otherwise lethal CR infection, even in immunocompromised Il22-/- mice. This provides a proof of concept of live attenuated vaccination strategy for preventing CR infection in immunocompromised hosts associated with more severe symptoms and lethality.
Collapse
|
10
|
Optimization of Multivalent Gold Nanoparticle Vaccines Eliciting Humoral and Cellular Immunity in an In Vivo Model of Enterohemorrhagic Escherichia coli O157:H7 Colonization. mSphere 2022; 7:e0093421. [PMID: 35044806 PMCID: PMC8769200 DOI: 10.1128/msphere.00934-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 remains a pathogen of significance and high consequence around the world. This outcome is due in part to the high economic impact associated with massive, contaminated product recalls, prevalence of the pathogen in carrier reservoirs, disease sequelae, and mortality associated with several outbreaks worldwide. Furthermore, the contraindication of antibiotic use for the treatment of EHEC-related infections makes this pathogen a primary candidate for the development of effective prophylactic vaccines. However, no vaccines are approved for human use, and many have failed to provide a high degree of efficacy or broad protection, thereby opening an avenue for the use of new technologies to produce a safe, effective, and protective vaccine. Building on our previous studies using reverse vaccinology-predicted antigens, we refine a formulation, evaluate new immunogenic antigens, and further expand our understanding about the mechanism of EHEC vaccine-mediated protection. In the current study, we exploit the use of the nanotechnology platform based on gold nanoparticles (AuNP), which can act as a scaffold for the delivery of various antigens. Our results demonstrate that a refined vaccine formulation incorporating EHEC antigen LomW, EscC, LpfA1, or LpfA2 and delivered using AuNPs can elicit robust antigen-specific cellular and humoral responses associated with reduced EHEC colonization in vivo. Furthermore, our in vitro mechanistic studies further support that antibody-mediated protection is primarily driven by inhibition of bacterial adherence onto intestinal epithelial cells and by promotion of macrophage uptake and killing. IMPORTANCE Enterohemorrhagic E. coli O157:H7 remains an important human pathogen that does not have an effective and safe vaccine available. We have made outstanding progress in the identification of novel protective antigens that have been incorporated into the gold nanoparticle platform and used as vaccines. In this study, we have refined our vaccine formulations to incorporate multiple antigens and further define the mechanism of antibody-mediated protection, including one vaccine that promotes macrophage uptake. We further define the cell-mediated responses elicited at the mucosal surface by our nanovaccine formulations, another key immune mechanism linked to protection.
Collapse
|
11
|
Soltan MA, Magdy D, Solyman SM, Hanora A. Design of Staphylococcus aureus New Vaccine Candidates with B and T Cell Epitope Mapping, Reverse Vaccinology, and Immunoinformatics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:195-204. [PMID: 32286190 DOI: 10.1089/omi.2019.0183] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An effective vaccine against Staphylococcus aureus infection is a major planetary heath priority, particularly with increasing antibiotic resistance worldwide. Previous efforts for a highly effective S. aureus vaccine were largely unsuccessful, in part, because the vaccine designs have tended to target mainly the B cell immunity and development of opsonic antibodies. In contrast, recent observations suggest that cell mediated immunity may be critical for protection against S. aureus. In addition, the S. aureus surface proteins are among the key immunodominant antigens because they are the first molecules to interact with the host organism cells and tissues. We report here an original vaccinomics study in which we used a reverse vaccinology and immunoinformatics in silico strategy integrated with genomics. After analyzing 2767 proteins, we defined 16 proteins of S. aureus as promising subunit vaccine candidates. Phosphatidylinositol phosphodiesterase (Plc) is secreted by extracellular pathogens such as S. aureus. We mapped the B and T cell epitopes for the Plc protein, tested the reactivity of the synthesized epitopes by Western blotting, and verified our findings in a pilot study of 10 patients with S. aureus infection. The peptides were then tested for their protective effect in groups of mice challenged with pathogenic S. aureus strain, which showed high protection level. These findings warrant further translational research for development of novel vaccines against S. aureus infection. Reverse vaccinology is an advanced approach that can be applied to identify new vaccine candidates against a host of microorganisms, including S. aureus.
Collapse
Affiliation(s)
- Mohamed A Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dalia Magdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samar M Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Wang W, Liu J, Guo S, Liu L, Yuan Q, Guo L, Pan S. Identification of Vibrio parahaemolyticus and Vibrio spp. Specific Outer Membrane Proteins by Reverse Vaccinology and Surface Proteome. Front Microbiol 2021; 11:625315. [PMID: 33633699 PMCID: PMC7901925 DOI: 10.3389/fmicb.2020.625315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of outer membrane proteins (OMPs) with desirable specificity and surface availability is a fundamental challenge to develop accurate immunodiagnostic assay and multivalent vaccine of pathogenic Vibrio species in food and aquaculture. Herein 101 OMPs were systemically screened from 4,831 non-redundant proteins of Vibrio parahaemolyticus by bioinformatical predication of signaling peptides, transmembrane (TM) α-helix, and subcellular location. The sequence homology analysis with 32 species of Vibrio spp. and all the non-Vibrio strains revealed that 15 OMPs were conserved in at least 23 Vibrio species, including BamA (VP2310), GspD (VP0133), Tolc (VP0425), OmpK (VP2362), OmpW (VPA0096), LptD (VP0339), Pal (VP1061), flagellar L-ring protein (VP0782), flagellar protein MotY (VP2111), hypothetical protein (VP1713), fimbrial assembly protein (VP2746), VacJ lipoprotein (VP2214), agglutination protein (VP1634), and lipoprotein (VP1267), Chitobiase (VP0755); high adhesion probability of flgH, LptD, OmpK, and OmpW indicated they were potential multivalent Vibrio vaccine candidates. V. parahaemolyticus OMPs were found to share high homology with at least one or two Vibrio species, 19 OMPs including OmpA like protein (VPA073), CsuD (VPA1504), and MtrC (VP1220) were found relatively specific to V. parahaemolyticus. The surface proteomic study by enzymatical shaving the cells showed the capsular polysaccharides most likely limited the protease action, while the glycosidases improved the availability of OMPs to trypsin. The OmpA (VPA1186, VPA0248, VP0764), Omp (VPA0166), OmpU (VP2467), BamA (VP2310), TolC (VP0425), GspD (VP0133), OmpK (VP2362), lpp (VPA1469), Pal (VP1061), agglutination protein (VP1634), and putative iron (III) compound receptor (VPA1435) have better availability on the cell surface.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Jianxin Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shanshan Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Qianyun Yuan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
13
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
14
|
Galán-Relaño Á, Gómez-Gascón L, Rodríguez-Franco A, Luque I, Huerta B, Tarradas C, Rodríguez-Ortega MJ. Search of Potential Vaccine Candidates against Trueperella pyogenes Infections through Proteomic and Bioinformatic Analysis. Vaccines (Basel) 2020; 8:vaccines8020314. [PMID: 32560444 PMCID: PMC7350218 DOI: 10.3390/vaccines8020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Trueperella pyogenes is an opportunistic pathogen, responsible for important infections in pigs and significant economic losses in swine production. To date, there are no available commercial vaccines to control diseases caused by this bacterium. In this work, we performed a comparative proteomic analysis of 15 T. pyogenes clinical isolates, by “shaving” live cells, followed by LC-MS/MS, aiming at the identification of the whole set of surface proteins (i.e., the “pan-surfome”) as a source of antigens to be tested in further studies as putative vaccine candidates, or used in diagnostic tools. A total of 140 surface proteins were detected, comprising 25 cell wall proteins, 10 secreted proteins, 23 lipoproteins and 82 membrane proteins. After describing the “pan-surfome”, the identified proteins were ranked in three different groups based on the following criteria: to be (i) surface-exposed, (ii) highly conserved and (iii) widely distributed among different isolates. Two cell wall proteins, three lipoproteins, four secreted and seven membrane proteins were identified in more than 70% of the studied strains, were highly expressed and highly conserved. These proteins are potential candidates, alone or in combination, to obtain effective vaccines against T. pyogenes or to be used in the diagnosis of this pathogen.
Collapse
Affiliation(s)
- Ángela Galán-Relaño
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
- Correspondence:
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Belén Huerta
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (Á.G.-R.); (I.L.); (B.H.); (C.T.)
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, and Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; (A.R.-F.); (M.J.R.-O.)
| |
Collapse
|
15
|
Montero DA, Del Canto F, Salazar JC, Céspedes S, Cádiz L, Arenas-Salinas M, Reyes J, Oñate Á, Vidal RM. Immunization of mice with chimeric antigens displaying selected epitopes confers protection against intestinal colonization and renal damage caused by Shiga toxin-producing Escherichia coli. NPJ Vaccines 2020; 5:20. [PMID: 32194997 PMCID: PMC7067774 DOI: 10.1038/s41541-020-0168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause diarrhea and dysentery, which may progress to hemolytic uremic syndrome (HUS). Vaccination has been proposed as a preventive approach against STEC infection; however, there is no vaccine for humans and those used in animals reduce but do not eliminate the intestinal colonization of STEC. The OmpT, Cah and Hes proteins are widely distributed among clinical STEC strains and are recognized by serum IgG and IgA in patients with HUS. Here, we develop a vaccine formulation based on two chimeric antigens containing epitopes of OmpT, Cah and Hes proteins against STEC strains. Intramuscular and intranasal immunization of mice with these chimeric antigens elicited systemic and local long-lasting humoral responses. However, the class of antibodies generated was dependent on the adjuvant and the route of administration. Moreover, while intramuscular immunization with the combination of the chimeric antigens conferred protection against colonization by STEC O157:H7, the intranasal conferred protection against renal damage caused by STEC O91:H21. This preclinical study supports the potential use of this formulation based on recombinant chimeric proteins as a preventive strategy against STEC infections.
Collapse
Affiliation(s)
- David A Montero
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,2Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Del Canto
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Céspedes
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leandro Cádiz
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Arenas-Salinas
- 3Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - José Reyes
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M Vidal
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,5Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Identification of lipid A deacylase as a novel, highly conserved and protective antigen against enterohemorrhagic Escherichia coli. Sci Rep 2019; 9:17014. [PMID: 31745113 PMCID: PMC6863877 DOI: 10.1038/s41598-019-53197-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a major cause of large outbreaks worldwide associated with hemorrhagic colitis and hemolytic uremic syndrome. While vaccine development is warranted, a licensed vaccine, specific for human use, against EHEC is not yet available. In this study, the reverse vaccinology approach combined with genomic, transcriptional and molecular epidemiology data was applied on the EHEC O157:H7 genome to select new potential vaccine candidates. Twenty-four potential protein antigens were identified and one of them (MC001) was successfully expressed onto Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing this vaccine candidate was immunogenic, raising a specific antibody response. Immunization with the MC001 candidate was able to reduce the bacterial load of EHEC O157:H7 strain in feces, colon and caecum tissues after murine infection. MC001 is homologue to lipid A deacylase enzyme (LpxR), and to our knowledge, this is the first study describing it as a potential vaccine candidate. Gene distribution and sequence variability analysis showed that MC001 is present and conserved in EHEC and in enteropathogenic E. coli (EPEC) strains. Given the high genetic variability among and within E. coli pathotypes, the identification of such conserved antigen suggests that its inclusion in a vaccine might represent a solution against major intestinal pathogenic strains.
Collapse
|
17
|
Abstract
Enterohemorrhagic E. coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis, which can progress to hemolytic uremic syndrome. These complications represent a serious global public health problem that requires laborious public health interventions and safety control measures to combat recurrent outbreaks worldwide. Today, there are no effective interventions for the control of EHEC infections, and, in fact, the use of antibiotics is counterindicated for EHEC disease. Therefore, a viable alternative for the prevention of human infections is the development of vaccines; however, no such vaccines are approved for human use. In this study, we developed a novel gold nanoparticle platform which acts as a scaffold for the delivery of various antigens, representing a nanovaccine technology which can be applied to several disease models. Here we exploit the natural properties of a synthetic nanoparticle (NP) scaffold as a subunit vaccine against enterohemorrhagic Escherichiacoli (EHEC). Two EHEC-specific immunogenic antigens, namely, LomW and EscC, either alone or in combination, were covalently linked on the surface of gold nanoparticles (AuNPs) and used to immunize mice prior to challenge with EHEC O157:H7 strain 86-24. LomW is a putative outer membrane protein encoded in bacteriophage BP-933W, while EscC is a structural type III secretion system protein which forms a ring in the outer membrane. The resulting AuNP preparations, AuNP-LomW and AuNP-EscC, showed that the nanoparticles were able to incorporate the antigens, forming stable formulations that retained robust immunogenicity in vivo after subcutaneous immunization. When administered subcutaneously, AuNP-LomW or AuNP-EscC or a combination containing equivalent amounts of both candidates resulted in higher IgG titers in serum and secretory IgA titers in feces. The serum IgG titers correlated with a significant reduction in EHEC intestinal colonization after 3 days postinoculation. In addition, we showed that serum from antigen-coated AuNP-immunized mice resulted in a reduction of adherence to human intestinal epithelial cells for EHEC, as well as for two other E. coli pathotypes (enteropathogenic E. coli [EPEC], encoding EscC, and enteroaggregative E. coli [EAEC], encoding LomW). Further, the serum had antigen-specific bactericidal properties, engaging the classical complement pathway. Overall, our results demonstrate the immunogenicity and stability of a novel nanovaccine against EHEC. These results also strengthen the prospect of development of a synthetic nanoparticle vaccine conjugated to E. coli antigens as a promising platform against other enteric pathogens.
Collapse
|
18
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal co-administration of recombinant active fragment of Zonula occludens toxin and truncated recombinant EspB triggers potent systemic, mucosal immune responses and reduces span of E. coli O157:H7 fecal shedding in BALB/c mice. Med Microbiol Immunol 2019; 208:89-100. [PMID: 30209565 DOI: 10.1007/s00430-018-0559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Escherichia coli O157:H7 with its traits such as intestinal colonization and fecal-oral route of transmission demands mucosal vaccine development. E. coli secreted protein B (EspB) is one of the key type III secretory system (TTSS) targets for mucosal candidate vaccine due to its indispensable role in the pathogenesis of E. coli O157:H7. However, mucosally administered recombinant proteins have low immunogenicity which could be overcome by the use of mucosal adjuvants. The quest for safe, potent mucosal adjuvant has recognized ΔG fragment of Zonula occludens toxin of Vibrio cholerae with such properties. ΔG enhances mucosal permeability via the paracellular route by altering epithelial tight junction structure in a reversible, ephemeral and non-toxic manner. Therefore, we tested whether recombinant ΔG intranasally co-administered with truncated EspB (EspB + ΔG) could serve as an effective mucosal adjuvant. Results showed that EspB + ΔG group induced higher systemic IgG and mucosal IgA than EspB alone. Moreover, EspB alone developed Th2 type response with IgG1/IgG2a ratio (1.64) and IL-4, IL-10 cytokines whereas that of EspB + ΔG group generated mixed Th1/Th2 type immune response evident from IgG1/IgG2a ratio (1.17) as well as IL-4, IL-10 and IFN-γ cytokine levels compared to control. Sera of EspB + ΔG group inhibited TTSS mediated haemolysis of murine RBCs more effectively compared to EspB, control group and sera of both EspB + ΔG, EspB group resulted in similar levels of efficacious reduction in E. coli O157:H7 adherence to Caco-2 cells compared to control. Moreover, vaccination with EspB + ΔG resulted in significant reduction in E. coli O157:H7 fecal shedding compared to EspB and control group in experimentally challenged streptomycin-treated mice. These results demonstrate mucosal adjuvanticity of ΔG co-administered with EspB in enhancing overall immunogenicity to reduce E. coli O157:H7 shedding.
Collapse
Affiliation(s)
- Aravind Shekar
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Shylaja Ramlal
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Joseph Kingston Jeyabalaji
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India
| | - Murali Harishchandra Sripathy
- Department of Microbiology, Defence Food Research Laboratory, Siddartha Nagar, Mysuru, Karnataka State, 570011, India.
- , RCE Layout, Bogadi 2nd stage, Mysuru, Karnataka, 570026, India.
| |
Collapse
|
19
|
Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front Microbiol 2018; 9:440. [PMID: 29615989 PMCID: PMC5869917 DOI: 10.3389/fmicb.2018.00440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC) plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America). Intestinal pathotypes such as enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC) are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- GSK, Siena, Italy.,Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | - Ricardo Monterio
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | |
Collapse
|
20
|
Mehla K, Ramana J. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach. MOLECULAR BIOSYSTEMS 2016; 12:890-901. [PMID: 26766131 DOI: 10.1039/c5mb00745c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) associated diarrhea remains a global killer with an estimated annual incidence rate of 840 million infections and 3 800 000 deaths worldwide. There are no vaccines available for ETEC and the traditional vaccine development approach is arduous and time consuming. Thus, alternative in silico approaches for epitope prediction have engrossed the interest of researchers to reduce resources and time of vaccine development. Computational approaches are playing a crucial role in fighting against rapidly growing infectious organisms. In this study we employed an integrated comparative genomics and immunoinformatics approach for proteome scale identification of peptide vaccine candidates. The proteins shared between both ETEC E24377A and H10407 strains, but lacking in commensal E. coli SE11, were subjected to immunoinformatics analysis. For a protein pool shared between different pathogenic ETEC strains, we investigated varied physicochemical and immunogenic properties to prioritize potential vaccine candidates. Epitopes were further tested using docking studies to bind in the MHC-I binding cleft. Predicted epitopes provided more than a 95% population coverage in diarrhea endemic regions presented by major MHC-I supertypes, and bind efficiently to a MHC molecule. We conclude by accentuating that the epitopes predicted in this study are believed to accelerate the development of successful vaccines to control or prevent ETEC infections, albeit the results require experimental validation using model organisms. This study underscores that in silico approaches, together with omics data, hold great potential to be utilized for rapid and reliable genome-wide screening for identification of vaccine candidates against devastating infectious diseases.
Collapse
Affiliation(s)
- Kusum Mehla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, PIN-173234, Himachal Pradesh, India.
| | - Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, PIN-173234, Himachal Pradesh, India.
| |
Collapse
|
21
|
Dwivedi P, Alam SI, Tomar RS. Secretome, surfome and immunome: emerging approaches for the discovery of new vaccine candidates against bacterial infections. World J Microbiol Biotechnol 2016; 32:155. [PMID: 27465855 DOI: 10.1007/s11274-016-2107-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Functional genomics has made possible advanced structure-to-function investigation of pathogens and helped characterize virulence mechanisms. Proteomics has been become a tool for large-scale identification of proteins involved during invasion and infection by the pathogens. Bacterial surface and secreted proteins play key role in the interaction between the bacterial cell and the host environment. Thus exoproteome and surface proteome of a microorganism are hypothesized to contain components of effective vaccines. Surfome and exoproteome analysis strategy facilitates identification of novel vaccine antigen and overall helps in progress of discovery of vaccine. The study of the antibody response can advance how proteomics is used, because it investigates antibody-antigen interactions and also unravel the relationship of antibody responses to pathogen and host characteristics. System immunology integrating with proteome i.e. immunoproteomics is applicable to those infections that are having tendency of diverse antibody target recognition and thus accurately reflects progression of the infection.
Collapse
Affiliation(s)
- Pratistha Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India.
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence R & D Establishment, DRDO, Gwalior, India
| | - Rajesh Singh Tomar
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
22
|
Tapia D, Ross BN, Kalita A, Kalita M, Hatcher CL, Muruato LA, Torres AG. From In silico Protein Epitope Density Prediction to Testing Escherichia coli O157:H7 Vaccine Candidates in a Murine Model of Colonization. Front Cell Infect Microbiol 2016; 6:94. [PMID: 27625996 PMCID: PMC5003871 DOI: 10.3389/fcimb.2016.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a leading cause of foodborne illnesses worldwide and is a common serotype linked to hemorrhagic colitis and an important cause of hemolytic uremic syndrome (HUS). Treatment of EHEC O157:H7 infections is complicated, as antibiotics can exacerbate Shiga toxin (Stx) production and lead to more severe symptoms including HUS. To date, no vaccines have been approved for human use, exposing a void in both treatment and prevention of EHEC O157:H7 infections. Previously, our lab has shown success in identifying novel vaccine candidates via bio- and immunoinformatics approaches, which are capable of reducing bacterial colonization in an in vivo model of intestinal colonization. In this study, we further characterized 17 of the identified vaccine candidates at the bioinformatics level and evaluated the protective capacity of the top three candidates when administered as DNA vaccines in our murine model of EHEC O157:H7 colonization. Based on further immunoinformatic predictions, these vaccine candidates were expected to induce neutralizing antibodies in a Th2-skewed immunological response. Immunization of BALB/c mice with two of these candidates resulted in reduced bacterial colonization following EHEC O157:H7 challenge. Additionally, immune sera was shown to prevent bacterial adhesion in vitro to Caco-2 cells. Together, this study provides further validation of our immunoinformatic analyses and identifies promising vaccine candidates against EHEC O157:H7.
Collapse
Affiliation(s)
- Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Brittany N Ross
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Anjana Kalita
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Mridul Kalita
- Department of Internal Medicine, University of Texas Medical Branch Galveston, TX, USA
| | - Christopher L Hatcher
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Laura A Muruato
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Translational Sciences, University of Texas Medical BranchGalveston, TX, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Translational Sciences, University of Texas Medical BranchGalveston, TX, USA; Department of Pathology and Sealy Center for Vaccine Development University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
23
|
Riquelme-Neira R, Rivera A, Sáez D, Fernández P, Osorio G, del Canto F, Salazar JC, Vidal RM, Oñate A. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1') Confers Protective Immunity to Mice Infected with E. coli O157:H7. Front Cell Infect Microbiol 2016; 5:104. [PMID: 26835434 PMCID: PMC4718977 DOI: 10.3389/fcimb.2015.00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1′) in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1′ gene (pVAXefa-1′) into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1′, EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1′ have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.
Collapse
Affiliation(s)
- Roberto Riquelme-Neira
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Alejandra Rivera
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Darwin Sáez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Pablo Fernández
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Gonzalo Osorio
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Felipe del Canto
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Juan C Salazar
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Roberto M Vidal
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| |
Collapse
|
24
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
25
|
Rahal EA, Fadlallah SM, Nassar FJ, Kazzi N, Matar GM. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104:H4 serotype. Front Cell Infect Microbiol 2015; 5:24. [PMID: 25853096 PMCID: PMC4364364 DOI: 10.3389/fcimb.2015.00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of diarrheagenic bacteria associated with foodborne outbreaks. Infection with these agents may result in grave sequelae that include fatality. A large number of STEC serotypes has been identified to date. E. coli serotype O104:H4 is an emerging pathogen responsible for a 2011 outbreak in Europe that resulted in over 4000 infections and 50 deaths. STEC pathogenicity is highly reliant on the production of one or more Shiga toxins that can inhibit protein synthesis in host cells resulting in a cytotoxicity that may affect various organ systems. Antimicrobials are usually avoided in the treatment of STEC infections since they are believed to induce bacterial cell lysis and the release of stored toxins. Some antimicrobials have also been reported to enhance toxin synthesis and production from these organisms. Various groups have attempted alternative treatment approaches including the administration of toxin-directed antibodies, toxin-adsorbing polymers, probiotic agents and natural remedies. The utility of antibiotics in treating STEC infections has also been reconsidered in recent years with certain modalities showing promise.
Collapse
Affiliation(s)
- Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Sukayna M Fadlallah
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Farah J Nassar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Natalie Kazzi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
26
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are well-documented human pathogens and causative agents of diarrheal episodes and hemorrhagic colitis. The serotype O157:H7 is highly virulent and responsible for both outbreaks and sporadic cases of diarrhea. Because antibiotic treatment is contraindicated against this pathogen, development of a human vaccine could be an effective intervention in public health. In our recent Infection and Immunity paper, we applied integrated approaches of in silico genome wide search combined with bioinformatics tools to identify and test O157 vaccine candidates for their protective effect on a murine model of gastrointestinal infection. Using genomic/immunoinformatic approaches that are further described here, we categorized vaccine candidates as high, medium, and low priorities, and demonstrate that some high priority candidates were able to significantly induce Th2 cytokines and reduce EHEC colonization. Using the STRING database, we have recently evaluated the vaccine candidates and predict functional protein interactions, determining whether correlations exist for the development of a multi-subunit vaccine, targeting different pathways against EHEC O157:H7. The overall approach is designed to screen potential vaccine candidates against EHEC; however, the methodology can be quickly applied to many other intestinal pathogens.
Collapse
Affiliation(s)
- Anjana Kalita
- Department of Microbiology and Immunology; University of Texas Medical Branch; Galveston, TX USA
| | - Mridul Kalita
- Department of Internal Medicine-Endo; University of Texas Medical Branch; Galveston, TX USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology; University of Texas Medical Branch; Galveston, TX USA,Department of Pathology; Sealy Center for Vaccine Development; University of Texas Medical Branch; Galveston, TX USA,Correspondence to: Alfredo G Torres;
| |
Collapse
|