1
|
Zhou W, Han Y, Li W, Deng A, Li Y, Xu J, Zhu G, Yang Z. Prophage transduction promotes the transmission of phage resistance interfering with adsorption among Chinese foodborne Staphylococcus aureus. Int J Food Microbiol 2025; 440:111271. [PMID: 40403651 DOI: 10.1016/j.ijfoodmicro.2025.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Although bacteriophages have proven to be efficient biocontrol agents for foodborne Staphylococcus aureus, the transmission of phage resistance resulting in the reduced efficacy of phage therapy remains to be explored. In this study, phage resistance and adsorption of 91 Chinese foodborne S. aureus isolates by 18 phages were estimated, and the distribution and transmission of phage resistance genes were investigated. The isolated 91 S. aureus comprised 50 multidrug-resistance isolates, all of which showed sensitivity to more than two phages. However, 9.9 % (9/91) of S. aureus isolates were resistant to all 18 phages, and the majority of phages (83.3 %, 15/18) did not adsorb to all foodborne S. aureus strains. Whole-genome analysis revealed that the 91 isolates comprised 101 phage resistance genes, including 24 genes were found in prophages (intact prophages, 19.8 %, 20/101; incomplete prophages, 16.8 %, 17/101). Notably, a temperate phage SapYZUs631 was successfully induced and exhibited better biological characteristics compared to other isolated S. aureus temperate phages, including higher titre (6.2 × 109 PFU/mL), stronger pH (4-11) and thermal (60 °C for 60 min) stability, and a wider host range (80.2 %, 73/91). The SapYZUs631 genome contained phage resistance gene tarP interfering with adsorption and virulence genes. The lysogeny of SapYZUs631 into S. aureus strains YZUstau27, YZUstau31, and YZUstau35 resulted in increased phage resistance and decreased adsorption. Therefore, our analysis suggests that the interruption of adsorption is the main reason for the phage resistance of foodborne S. aureus in China, which resulted from the transmission of phage resistance by prophage transduction.
Collapse
Affiliation(s)
- Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Catering Food Processing and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yeling Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenjuan Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aiping Deng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiaqian Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Catering Food Processing and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Marsman G, Zheng X, Čerina D, Lacey KA, Liu M, Humme D, Goosmann C, Brinkmann V, Harbort CJ, Torres VJ, Zychlinsky A. Histone H1 kills MRSA. Cell Rep 2024; 43:114969. [PMID: 39546397 DOI: 10.1016/j.celrep.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
The antimicrobial activity of histones was discovered in the 1940s, but their mechanism of action is not fully known. Here we show that methicillin-resistant Staphylococcus aureus (MRSA) is susceptible to histone H1 (H1), even in the presence of divalent cations and serum. Through selective evolution and a genome-wide screen of a transposon library, as well as physiological and pharmacological experiments, we elucidated how H1 kills MRSA. We show that H1 first binds to wall teichoic acids with high affinity. Once bound, H1 requires a potentiated membrane and a metabolically active bacterium to permeabilize the membrane and enter the cell. Upon entry, H1 accumulates intracellularly, in close association with the bacterial DNA. Of note, anti-H1 antibodies inhibit neutrophil extracellular trap killing of MRSA. Moreover, H1 colocalizes with bacterial DNA in abscess samples of MRSA-infected patients, suggesting a role for H1 in combating MRSA in vivo.
Collapse
Affiliation(s)
- Gerben Marsman
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Dora Čerina
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Menghan Liu
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Daniel Humme
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christian Goosmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Brinkmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - C J Harbort
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA; Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
3
|
Zhang W, Wei L, Chen P, Ning B, Wang J, He P, Shang C, Yu D. Discovery and Characterization of an Atypical Crustin Antimicrobial Peptide from Pollicipes pollicipes. Mar Drugs 2024; 22:526. [PMID: 39728101 DOI: 10.3390/md22120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Crustins are a family of antimicrobial peptides (AMPs) that play a pivotal role in the innate immune system of crustaceans. The discovery of novel AMPs from natural sources is crucial for expanding our current database of these peptides. Here, we identified and characterized a novel member of the crustin family, named PpCrus-SWD1, derived from Pollicipes pollicipes. PpCrus-SWD1 consists of 138 amino acids and contains eight cysteine residues that form a conserved 'four-disulfide core' structure. Our recombinant PpCrus-SWD1 (rPpCrus-SWD1) exhibited potent inhibitory activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus sp. T2, and Streptococcus agalactiae) and six Gram-negative bacteria (Aeromonas hydrophila, Escherichia coli, Vibrio anguillarum, Vibrio alginolyticus, Vibrio parahemolyticus, and Acinetobacter sp. L3), with minimum inhibitory concentrations ranging from 16 to 64 μM. Furthermore, rPpCrus-SWD1 demonstrated binding affinity towards both bacteria and pathogen-associated molecular patterns (PAMPs), and damaged bacterial barrier. Additionally, it effectively inhibited alkaline protease activity in S. aureus and V. alginolyticus strains. These findings highlight the potential utility of this newly discovered crustin as an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Wei Zhang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Liumi Wei
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Pengyu Chen
- Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Biao Ning
- College of Marine Science BGU, Beibu Gulf University, Qinzhou 535011, China
| | - Junjian Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Peng He
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Chenjing Shang
- Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
4
|
Elbediwi M, Rolff J. Metabolic pathways and antimicrobial peptide resistance in bacteria. J Antimicrob Chemother 2024; 79:1473-1483. [PMID: 38742645 DOI: 10.1093/jac/dkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Animal Health Research Institute, Agriculture Research Centre, 12618 Cairo, Egypt
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
5
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
6
|
Abstract
A major feature of the pathogenicity of Staphylococcus aureus is its ability to secrete cytolytic toxins. This process involves the translocation of the toxins from the cytoplasm through the bacterial membrane and the cell wall to the external environment. The process of their movement through the membrane is relatively well defined, involving both general and toxin-specific secretory systems. Movement of the toxins through the cell wall was considered to involve the passive diffusion of the proteins through the porous cell wall structures; however, recent work suggests that this is more complex, and here we demonstrate a role for the wall teichoic acids (WTA) in this process. Utilizing a genome-wide association approach, we identified a polymorphism in the locus encoding the WTA biosynthetic machinery as associated with the cytolytic activity of the bacteria. We verified this association using an isogenic mutant set and found that WTA are required for the release of several cytolytic toxins from the bacterial cells. We show that this effect is mediated by a change in the electrostatic charge across the cell envelope that results from the loss of WTA. As a major target for the development of novel therapeutics, it is important that we fully understand the entire process of cytolytic toxin production and release. These findings open up a new aspect to the process of toxin release by a major human pathogen while also demonstrating that clinical isolates can utilize WTA production to vary their cytotoxicity, thereby altering their pathogenic capabilities. IMPORTANCE The production and release of cytolytic toxins is a critical aspect for the pathogenicity of many bacterial pathogens. In this study, we demonstrate a role for wall teichoic acids, molecules that are anchored to the peptidoglycan of the bacterial cell wall, in the release of toxins from S. aureus cells into the extracellular environment. Our findings suggest that this effect is mediated by a gradient of electrostatic charge which the presence of the negatively charged WTA molecules create across the cell envelope. This work brings an entirely new aspect to our understanding of the cytotoxicity of S. aureus and demonstrates a further means by which this major human pathogen can adapt its pathogenic capabilities.
Collapse
|
7
|
Chee Wezen X, Chandran A, Eapen RS, Waters E, Bricio-Moreno L, Tosi T, Dolan S, Millership C, Kadioglu A, Gründling A, Itzhaki LS, Welch M, Rahman T. Structure-Based Discovery of Lipoteichoic Acid Synthase Inhibitors. J Chem Inf Model 2022; 62:2586-2599. [PMID: 35533315 PMCID: PMC9131456 DOI: 10.1021/acs.jcim.2c00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 01/20/2023]
Abstract
Lipoteichoic acid synthase (LtaS) is a key enzyme for the cell wall biosynthesis of Gram-positive bacteria. Gram-positive bacteria that lack lipoteichoic acid (LTA) exhibit impaired cell division and growth defects. Thus, LtaS appears to be an attractive antimicrobial target. The pharmacology around LtaS remains largely unexplored with only two small-molecule LtaS inhibitors reported, namely "compound 1771" and the Congo red dye. Structure-based drug discovery efforts against LtaS remain unattempted due to the lack of an inhibitor-bound structure of LtaS. To address this, we combined the use of a molecular docking technique with molecular dynamics (MD) simulations to model a plausible binding mode of compound 1771 to the extracellular catalytic domain of LtaS (eLtaS). The model was validated using alanine mutagenesis studies combined with isothermal titration calorimetry. Additionally, lead optimization driven by our computational model resulted in an improved version of compound 1771, namely, compound 4 which showed greater affinity for binding to eLtaS than compound 1771 in biophysical assays. Compound 4 reduced LTA production in S. aureus dose-dependently, induced aberrant morphology as seen for LTA-deficient bacteria, and significantly reduced bacteria titers in the lung of mice infected with S. aureus. Analysis of our MD simulation trajectories revealed the possible formation of a transient cryptic pocket in eLtaS. Virtual screening (VS) against the cryptic pocket led to the identification of a new class of inhibitors that could potentiate β-lactams against methicillin-resistant S. aureus. Our overall workflow and data should encourage further drug design campaign against LtaS. Finally, our work reinforces the importance of considering protein conformational flexibility to a successful VS endeavor.
Collapse
Affiliation(s)
- Xavier Chee Wezen
- Science
Program, School of Chemical Engineering and Science, Faculty of Engineering,
Computing and Science, Swinburne University
of Technology Sarawak, Kuching 93350, Malaysia
| | - Aneesh Chandran
- Department
of Biotechnology & Microbiology, Kannur
University, Kannur 670 661, Kerala, India
| | | | - Elaine Waters
- Department
of Clinical Infection Microbiology and Immunology, Institute of Infection
and Global Health, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Laura Bricio-Moreno
- Department
of Clinical Infection Microbiology and Immunology, Institute of Infection
and Global Health, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Tommaso Tosi
- Section
of Molecular Microbiology and MRC Centre for Molecular Bacteriology
and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Stephen Dolan
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K.
| | - Charlotte Millership
- Section
of Molecular Microbiology and MRC Centre for Molecular Bacteriology
and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Aras Kadioglu
- Department
of Clinical Infection Microbiology and Immunology, Institute of Infection
and Global Health, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Angelika Gründling
- Section
of Molecular Microbiology and MRC Centre for Molecular Bacteriology
and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Laura S. Itzhaki
- Department
of PharmacologyUniversity of CambridgeCambridgeCB2 1PDU.K.
| | - Martin Welch
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K.
| | - Taufiq Rahman
- Department
of PharmacologyUniversity of CambridgeCambridgeCB2 1PDU.K.
| |
Collapse
|
8
|
Zhang W, Xu X, Zhang J, Ye T, Zhou Q, Xu Y, Li W, Hu Z, Shang C. Discovery and Characterization of a New Crustin Antimicrobial Peptide from Amphibalanus amphitrite. Pharmaceutics 2022; 14:413. [PMID: 35214145 PMCID: PMC8877177 DOI: 10.3390/pharmaceutics14020413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Crustins are an antimicrobial peptide (AMP) family that plays an important role in innate immunity in crustaceans. It is important to discover new AMPs from natural sources to expand the current database. Here, we identified and characterized a new crustin family member, named AaCrus1, from Amphibalanus amphitrite. AaCrus1 shares high identity (48.10%) with PvCrus, a Type I crustin of Penaeus vannamei that possesses a whey acidic protein (WAP) domain. AaCrus1 contains 237 amino acids and eight cysteine residues forming conserved 'four-disulfide core' structure. Our recombinant AaCrus1 (rAaCrus 1) could inhibit the growth of two Gram-positive bacteria (Staphylococcus aureus, Bacillus sp. T2) and four Gram-negative bacteria (Vibrio parahaemolyticus, Vibrio harveyi, Vibrio anguillarum, Vibrio alginolyticus) with a minimum inhibitory concentration of 3.5-28 μM. It can further induce agglutination of both Gram-positive and Gram-negative bacteria. rAaCrus1 can bind to bacteria and damage bacterial cell membranes. Furthermore, rAaCrus1 disrupted biofilm development of S. aureus and V. parahaemolyticus. Our discovery and characterization of this new crustin can be further optimized as a good alternative to antibiotics.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohang Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Qiao Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| |
Collapse
|
9
|
Dacheux M, Chaouch S, Joy A, Labat A, Payré C, Petit-Paitel A, Bihl F, Lagrange I, Grellier P, Touqui L, Lambeau G, Deregnaucourt C. Role of human group IIA secreted phospholipase A2 in malaria pathophysiology: Insights from a transgenic mouse model. Biochimie 2021; 189:120-136. [PMID: 34175441 DOI: 10.1016/j.biochi.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/08/2023]
Abstract
We previously showed that injection of recombinant human group IIA secreted phospholipase A2 (hGIIA sPLA2) to Plasmodium chabaudi-infected mice lowers parasitaemia by 20%. Here, we show that transgenic (TG) mice overexpressing hGIIA sPLA2 have a peak of parasitaemia about 30% lower than WT littermates. During infection, levels of circulating sPLA2, enzymatic activity and plasma lipid peroxidation were maximal at day-14, the peak of parasitaemia. Levels of hGIIA mRNA increased in liver but not in spleen and blood cells, suggesting that liver may contribute as a source of circulating hGIIA sPLA2. Before infection, baseline levels of leukocytes and pro-inflammatory cytokines were higher in TG mice than WT littermates. Upon infection, the number of neutrophils, lymphocytes and monocytes increased and were maximal at the peak of parasitaemia in both WT and TG mice, but were higher in TG mice. Similarly, levels of the Th1 cytokines IFN-γ and IL-2 increased in WT and TG mice, but were 7.7- and 1.7-fold higher in TG mice. The characteristic shift towards Th2 cytokines was observed during infection in both WT and TG mice, with increased levels of IL-10 and IL-4 at day-14. The current data are in accordance with our previous in vitro findings showing that hGIIA kills parasites by releasing toxic lipids from oxidized lipoproteins. They further show that hGIIA sPLA2 is induced during mouse experimental malaria and has a protective in vivo role, lowering parasitaemia by likely releasing toxic lipids from oxidized lipoproteins but also indirectly by promoting a more sustained innate immune response.
Collapse
Affiliation(s)
- Mélanie Dacheux
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Soraya Chaouch
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Alonso Joy
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Amandine Labat
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Christine Payré
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Agnès Petit-Paitel
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Isabelle Lagrange
- Ecole Nationale Vétérinaire d'Alfort, BioPôle, Laboratoire d'hématologie, 94704 Maisons-Alfort, France
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Lhousseine Touqui
- Cystic fibrosis and Bronchial diseases team - INSERM U938, Institut Pasteur, 75015 Paris, France; Sorbonne Université, INSERM UMRS938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Christiane Deregnaucourt
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France.
| |
Collapse
|
10
|
Zhang K, Raju C, Zhong W, Pethe K, Gründling A, Chan-Park MB. Cationic Glycosylated Block Co-β-peptide Acts on the Cell Wall of Gram-Positive Bacteria as Anti-biofilm Agents. ACS APPLIED BIO MATERIALS 2021; 4:3749-3761. [PMID: 35006805 DOI: 10.1021/acsabm.0c01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance is a global threat. In addition to the emergence of resistance to last resort drugs, bacteria escape antibiotics killing by forming complex biofilms. Strategies to tackle antibiotic resistance as well as biofilms are urgently needed. Wall teichoic acid (WTA), a generic anionic glycopolymer present on the cell surface of many Gram-positive bacteria, has been proposed as a possible therapeutic target, but its druggability remains to be demonstrated. Here we report a cationic glycosylated block co-β-peptide that binds to WTA. By doing so, the co-β-peptide not only inhibits biofilm formation, it also disperses preformed biofilms in several Gram-positive bacteria and resensitizes methicillin-resistant Staphylococcus aureus to oxacillin. The cationic block of the co-β-peptide physically interacts with the anionic WTA within the cell envelope, whereas the glycosylated block forms a nonfouling corona around the bacteria. This reduces physical interaction between bacteria-substrate and bacteria-biofilm matrix, leading to biofilm inhibition and dispersal. The WTA-targeting co-β-peptide is a promising lead for the future development of broad-spectrum anti-biofilm strategies against Gram-positive bacteria.
Collapse
Affiliation(s)
- Kaixi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Wenbin Zhong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Kevin Pethe
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Angelika Gründling
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, Flowers Building London, London SW7 2AZ, United Kingdom
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
11
|
Wang Y, Zhang J, Sun Y, Sun L. A Crustin from Hydrothermal Vent Shrimp: Antimicrobial Activity and Mechanism. Mar Drugs 2021; 19:176. [PMID: 33807037 PMCID: PMC8005205 DOI: 10.3390/md19030176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Crustin is a type of antimicrobial peptide and plays an important role in the innate immunity of arthropods. We report here the identification and characterization of a crustin (named Crus1) from the shrimp Rimicaris sp. inhabiting the deep-sea hydrothermal vent in Manus Basin (Papua New Guinea). Crus1 shares the highest identity (51.76%) with a Type I crustin of Penaeus vannamei and possesses a whey acidic protein (WAP) domain, which contains eight cysteine residues that form the conserved 'four-disulfide core' structure. Recombinant Crus1 (rCrus1) bound to peptidoglycan and lipoteichoic acid, and effectively killed Gram-positive bacteria in a manner that was dependent on pH, temperature, and disulfide linkage. rCrus1 induced membrane leakage and structure damage in the target bacteria, but had no effect on bacterial protoplasts. Serine substitution of each of the 8 Cys residues in the WAP domain did not affect the bacterial binding capacity but completely abolished the bactericidal activity of rCrus1. These results provide new insights into the characteristic and mechanism of the antimicrobial activity of deep sea crustins.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- School of Ocean, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (J.Z.); (Y.S.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Guo Y, Pfahler NM, Völpel SL, Stehle T. Cell wall glycosylation in Staphylococcus aureus: targeting the tar glycosyltransferases. Curr Opin Struct Biol 2021; 68:166-174. [PMID: 33540375 DOI: 10.1016/j.sbi.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Peptidoglycan (PG) is the major structural polymer of the bacterial cell wall. The PG layer of gram-positive bacterial pathogens such as Staphylococcus aureus (S. aureus) is permeated with anionic glycopolymers known as wall teichoic acids (WTAs) and lipoteichoic acids (LTAs). In S. aureus, the WTA backbone typically consists of repeating ribitol-5-phosphate units, which are modified by enzymes that introduce glycosylation as well as amino acids at different locations. These modifications are key determinants of phage adhesion, bacterial biofilm formation and virulence of S. aureus. In this review, we examine differences in WTA structures in gram-positive bacteria, focusing in particular on three enzymes, TarM, TarS, and TarP that glycosylate the WTA of S. aureus at different locations. Infections with S. aureus pose an increasing threat to human health, particularly through the emergence of multidrug-resistant strains. Recently obtained structural information on TarM, TarS and TarP has helped to better understand the strategies used by S. aureus to establish resistance and to evade host defense mechanisms. Moreover, structures of complexes with poly-RboP and its analogs can serve as a platform for the development of new inhibitors that could form a basis for the development of antibiotic agents.
Collapse
Affiliation(s)
- Yinglan Guo
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Nina M Pfahler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Simon L Völpel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, USA.
| |
Collapse
|
13
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Liu L, Beck C, Nøhr-Meldgaard K, Peschel A, Kretschmer D, Ingmer H, Vestergaard M. Inhibition of the ATP synthase sensitizes Staphylococcus aureus towards human antimicrobial peptides. Sci Rep 2020; 10:11391. [PMID: 32647350 PMCID: PMC7347559 DOI: 10.1038/s41598-020-68146-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an important part of the human innate immune system for protection against bacterial infections, however the AMPs display varying degrees of activity against Staphylococcus aureus. Previously, we showed that inactivation of the ATP synthase sensitizes S. aureus towards the AMP antibiotic class of polymyxins. Here we wondered if the ATP synthase similarly is needed for tolerance towards various human AMPs, including human β-defensins (hBD1-4), LL-37 and histatin 5. Importantly, we find that the ATP synthase mutant (atpA) is more susceptible to killing by hBD4, hBD2, LL-37 and histatin 5 than wild type cells, while no changes in susceptibility was detected for hBD3 and hBD1. Administration of the ATP synthase inhibitor, resveratrol, sensitizes S. aureus towards hBD4-mediated killing. Neutrophils rely on AMPs and reactive oxygen molecules to eliminate bacteria and the atpA mutant is more susceptible to killing by neutrophils than the WT, even when the oxidative burst is inhibited.These results show that the staphylococcal ATP synthase enhance tolerance of S. aureus towards some human AMPs and this indicates that inhibition of the ATP synthase may be explored as a new therapeutic strategy that sensitizes S. aureus to naturally occurring AMPs of the innate immune system.
Collapse
Affiliation(s)
- Liping Liu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Christian Beck
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Katrine Nøhr-Meldgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark.
| | - Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Geitani R, Moubareck CA, Xu Z, Karam Sarkis D, Touqui L. Expression and Roles of Antimicrobial Peptides in Innate Defense of Airway Mucosa: Potential Implication in Cystic Fibrosis. Front Immunol 2020; 11:1198. [PMID: 32695100 PMCID: PMC7338688 DOI: 10.3389/fimmu.2020.01198] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
The treatment of respiratory infections is associated with the dissemination of antibiotic resistance in the community and clinical settings. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides (AMPs), the central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. Most AMPs are epithelium-derived and play a key role in host defense at mucosal surfaces. They are classified on the basis of their structure and amino acid motifs. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils, in particular, contribute to AMP synthesis. The relevance of AMPs for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Of note, AMPs are active against bacterial strains that are resistant to conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of AMPs. In this review, we focus on studies related to direct bactericidal effects of AMPs and their potential clinical applications with a particular focus on cystic fibrosis.
Collapse
Affiliation(s)
- Regina Geitani
- Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon
| | - Carole Ayoub Moubareck
- Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine (CRSA), Paris, France
- “Mucoviscidose and Bronchopathies Chroniques”, Pasteur Institute, Paris, France
| | - Dolla Karam Sarkis
- Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon
| | - Lhousseine Touqui
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine (CRSA), Paris, France
- “Mucoviscidose and Bronchopathies Chroniques”, Pasteur Institute, Paris, France
| |
Collapse
|
16
|
van Hensbergen VP, Wu Y, van Sorge NM, Touqui L. Type IIA Secreted Phospholipase A2 in Host Defense against Bacterial Infections. Trends Immunol 2020; 41:313-326. [PMID: 32151494 DOI: 10.1016/j.it.2020.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
The enzyme type IIA secreted phospholipase A2 (sPLA2-IIA) is crucial for mammalian innate host defense against bacterial pathogens. Most studies have investigated the role of sPLA2-IIA in systemic bacterial infections, identifying molecular pathways of bacterial resistance against sPLA2-IIA-mediated killing, and providing insight into sPLA2-IIA mechanisms of action. Sensitization of (antibiotic-resistant) bacteria to sPLA2-IIA action by blocking bacterial resistance or by applying sPLA2-IIA to treat bacterial infections might represent a therapeutic option in the future. Because sPLA2-IIA is highly expressed at mucosal barriers, we also discuss how sPLA2-IIA is likely to be an important driver of microbiome composition; we anticipate that future research in this area may bring new insights into the role of sPLA2-IIA in health and disease.
Collapse
Affiliation(s)
- Vincent P van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yongzheng Wu
- Unité de Biologie Cellulaire de l'infection Microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, département Santé Globale; Pasteur Institute, Paris, France.
| |
Collapse
|
17
|
Antimalarial Activity of Human Group IIA Secreted Phospholipase A 2 in Relation to Enzymatic Hydrolysis of Oxidized Lipoproteins. Infect Immun 2019; 87:IAI.00556-19. [PMID: 31405958 DOI: 10.1128/iai.00556-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The level of human group IIA secreted phospholipase A2 (hGIIA sPLA2) is increased in the plasma of malaria patients, but its role is unknown. In parasite culture with normal plasma, hGIIA is inactive against Plasmodium falciparum, contrasting with hGIIF, hGV, and hGX sPLA2s, which readily hydrolyze plasma lipoproteins, release nonesterified fatty acids (NEFAs), and inhibit parasite growth. Here, we revisited the anti-Plasmodium activity of hGIIA under conditions closer to those of malaria physiopathology where lipoproteins are oxidized. In parasite culture containing oxidized lipoproteins, hGIIA sPLA2 was inhibitory, with a 50% inhibitory concentration value of 150.0 ± 40.8 nM, in accordance with its capacity to release NEFAs from oxidized particles. With oxidized lipoproteins, hGIIF, hGV, and hGX sPLA2s were also more potent, by 4.6-, 2.1-, and 1.9-fold, respectively. Using specific immunoassays, we found that hGIIA sPLA2 is increased in plasma from 41 patients with malaria over levels for healthy donors (median [interquartile range], 1.6 [0.7 to 3.4] nM versus 0.0 [0.0 to 0.1] nM, respectively; P < 0.0001). Other sPLA2s were not detected. Malaria plasma, but not normal plasma, contains oxidized lipoproteins and was inhibitory to P. falciparum when spiked with hGIIA sPLA2 Injection of recombinant hGIIA into mice infected with P. chabaudi reduced the peak of parasitemia, and this was effective only when the level of plasma peroxidation was increased during infection. In conclusion, we propose that malaria-induced oxidation of lipoproteins converts these into a preferential substrate for hGIIA sPLA2, promoting its parasite-killing effect. This mechanism may contribute to host defense against P. falciparum in malaria where high levels of hGIIA are observed.
Collapse
|
18
|
Beavers WN, Monteith AJ, Amarnath V, Mernaugh RL, Roberts LJ, Chazin WJ, Davies SS, Skaar EP. Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism. mBio 2019; 10:e01333-19. [PMID: 31575763 PMCID: PMC6775451 DOI: 10.1128/mbio.01333-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by S. aureus at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to S. aureus Here, we report that AA kills S. aureus through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify S. aureus macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a S. aureus strain genetically inactivated for lcpA (USA300 ΔlcpA mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 ΔlcpA mutant comes at a cost, making the mutant more susceptible to β-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant S. aureus (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to S. aureus and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat S. aureus infections.IMPORTANCE Despite the ability of the human immune system to generate a plethora of molecules to control Staphylococcus aureus infections, S. aureus is among the pathogens with the greatest impact on human health. One class of host molecules toxic to S. aureus consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against S. aureus proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills S. aureus, and by which S. aureus avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate S. aureus infections.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond L Mernaugh
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Mistretta N, Brossaud M, Telles F, Sanchez V, Talaga P, Rokbi B. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions. Sci Rep 2019; 9:3212. [PMID: 30824758 PMCID: PMC6397182 DOI: 10.1038/s41598-019-39929-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 01/26/2023] Open
Abstract
Wall teichoic acid (WTA) are major constituents of Staphylococcus aureus (S. aureus) cell envelopes with important roles in the bacteria's physiology, resistance to antimicrobial molecules, host interaction, virulence and biofilm formation. They consist of ribitol phosphate repeat units in which the ribitol residue is substituted with D-alanine (D-Ala) and N-acetyl-D-glucosamine (GlcNAc). The complete S. aureus WTA biosynthesis pathways was recently revealed with the identification of the two glycosyltransferases, TarM and TarS, respectively responsible for the α- and β-GlcNAc anomeric substitutions. We performed structural analyses to characterize WTAs from a panel of 24 S. aureus strains responsible for invasive infections. A majority of the S. aureus strains produced the β-GlcNAc WTA form in accordance with the presence of the tarS gene in all strains assessed. The β-GlcNAc anomer was preferentially expressed at the expense of the α-GlcNAc anomer when grown on stress-inducing culture medium containing high NaCl concentration. Furthermore, WTA glycosylation of the prototype S. aureus Newman strain was characterized in vivo in two different animal models, namely peritonitis and deep wound infection. While the inoculum used to infect animals produced almost exclusively α-GlcNAc WTA, a complete switch to β-glycosylation was observed in infected kidneys, livers and muscles. Overall, our data demonstrate that S. aureus WTA glycosylation is strongly influenced by environmental conditions and suggest that β-GlcNAc WTA may bring competitive advantage in vivo.
Collapse
Affiliation(s)
- Noëlle Mistretta
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France.
| | - Marina Brossaud
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Fabienne Telles
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Violette Sanchez
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Philippe Talaga
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| | - Bachra Rokbi
- Research and Development, Sanofi Pasteur, Marcy l'Etoile, France
| |
Collapse
|
20
|
van Hensbergen VP, Movert E, de Maat V, Lüchtenborg C, Le Breton Y, Lambeau G, Payré C, Henningham A, Nizet V, van Strijp JAG, Brügger B, Carlsson F, McIver KS, van Sorge NM. Streptococcal Lancefield polysaccharides are critical cell wall determinants for human Group IIA secreted phospholipase A2 to exert its bactericidal effects. PLoS Pathog 2018; 14:e1007348. [PMID: 30321240 PMCID: PMC6201954 DOI: 10.1371/journal.ppat.1007348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/25/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Human Group IIA secreted phospholipase A2 (hGIIA) is an acute phase protein with bactericidal activity against Gram-positive bacteria. Infection models in hGIIA transgenic mice have suggested the importance of hGIIA as an innate defense mechanism against the human pathogens Group A Streptococcus (GAS) and Group B Streptococcus (GBS). Compared to other Gram-positive bacteria, GAS is remarkably resistant to hGIIA activity. To identify GAS resistance mechanisms, we exposed a highly saturated GAS M1 transposon library to recombinant hGIIA and compared relative mutant abundance with library input through transposon-sequencing (Tn-seq). Based on transposon prevalence in the output library, we identified nine genes, including dltA and lytR, conferring increased hGIIA susceptibility. In addition, seven genes conferred increased hGIIA resistance, which included two genes, gacH and gacI that are located within the Group A Carbohydrate (GAC) gene cluster. Using GAS 5448 wild-type and the isogenic gacI mutant and gacI-complemented strains, we demonstrate that loss of the GAC N-acetylglucosamine (GlcNAc) side chain in the ΔgacI mutant increases hGIIA resistance approximately 10-fold, a phenotype that is conserved across different GAS serotypes. Increased resistance is associated with delayed penetration of hGIIA through the cell wall. Correspondingly, loss of the Lancefield Group B Carbohydrate (GBC) rendered GBS significantly more resistant to hGIIA-mediated killing. This suggests that the streptococcal Lancefield antigens, which are critical determinants for streptococcal physiology and virulence, are required for the bactericidal enzyme hGIIA to exert its bactericidal function.
Collapse
Affiliation(s)
- Vincent P. van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elin Movert
- Department of Experimental Medical Science, Section for Immunology, Lund University, Lund, Sweden
| | - Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States of America
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Department of Biochemistry, Valbonne, France
| | - Christine Payré
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Department of Biochemistry, Valbonne, France
| | - Anna Henningham
- Department of Pediatrics and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Britta Brügger
- Heidelberg University, Biochemistry Center (BZH), Heidelberg, Germany
| | - Fredric Carlsson
- Department of Experimental Medical Science, Section for Immunology, Lund University, Lund, Sweden
- Department of Biology, Section for Molecular Cell Biology, Lund University, Lund, Sweden
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States of America
| | - Nina M. van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Dore E, Boilard E. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:789-802. [PMID: 30905346 DOI: 10.1016/j.bbalip.2018.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as "non-pancreatic", "synovial", "platelet-type", "inflammatory", and "bactericidal" sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.
Collapse
Affiliation(s)
- Etienne Dore
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada; Canadian National Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Group IIA-Secreted Phospholipase A 2 in Human Serum Kills Commensal but Not Clinical Enterococcus faecium Isolates. Infect Immun 2018; 86:IAI.00180-18. [PMID: 29784864 DOI: 10.1128/iai.00180-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Human innate immunity employs cellular and humoral mechanisms to facilitate rapid killing of invading bacteria. The direct killing of bacteria by human serum is attributed mainly to the activity of the complement system, which forms pores in Gram-negative bacteria. Although Gram-positive bacteria are considered resistant to killing by serum, we uncover here that normal human serum effectively kills Enterococcus faecium Comparison of a well-characterized collection of commensal and clinical E. faecium isolates revealed that human serum specifically kills commensal E. faecium strains isolated from normal gut microbiota but not clinical isolates. Inhibitor studies show that the human group IIA secreted phospholipase A2 (hGIIA), but not complement, is responsible for killing of commensal E. faecium strains in human normal serum. This is remarkable since the hGIIA concentration in "noninflamed" serum was considered too low to be bactericidal against Gram-positive bacteria. Mechanistic studies showed that serum hGIIA specifically causes permeabilization of commensal E. faecium membranes. Altogether, we find that a normal concentration of hGIIA in serum effectively kills commensal E. faecium and that resistance of clinical E. faecium to hGIIA could have contributed to the ability of these strains to become opportunistic pathogens in hospitalized patients.
Collapse
|
23
|
Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. Sci Rep 2018; 8:6912. [PMID: 29720673 PMCID: PMC5932035 DOI: 10.1038/s41598-018-25080-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/29/2018] [Indexed: 11/22/2022] Open
Abstract
The spectrum of activity and mode of action of a novel antibacterial agent, 135C, was investigated using a range of microbiological and genomic approaches. Compound 135C was active against Gram-positive bacteria with MICs for Staphylococcus aureus ranging from 0.12–0.5 μg/ml. It was largely inactive against Gram-negative bacteria. The compound showed bacteriostatic activity in time-kill studies and did not elicit bacterial cell leakage or cell lysis. Checkerboard assays showed no synergy or antagonism when 135C was combined with a range of other antibacterials. Multi-step serial passage of four S. aureus isolates with increasing concentrations of 135C showed that resistance developed rapidly and was stable after drug-free passages. Minor differences in the fitness of 135C-resistant strains and parent wildtypes were evident by growth curves, but 135C-resistant strains did not show cross-resistance to other antibacterial agents. Genomic comparison of resistant and wildtype parent strains showed changes in genes encoding cell wall teichoic acids. 135C shows promising activity against Gram-positive bacteria but is currently limited by the rapid resistance development. Further studies are required to investigate the effects on cell wall teichoic acids and to determine whether the issue of resistance development can be overcome.
Collapse
|
24
|
Membrane-damaging activities of mannosylated ovalbumin are involved in its antibacterial action. Arch Biochem Biophys 2018; 639:1-8. [DOI: 10.1016/j.abb.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022]
|
25
|
Plotkin BJ, Konakieva MI. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 2017; 128:120-127. [PMID: 28951169 DOI: 10.1016/j.steroids.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022]
Abstract
Upon entering the human host, Staphylococcus aureus is exposed to endogenous steroid hormones. The interaction between S. aureus and dehydroepiandosterone (DHEA) results in an increased resistance to the host cationic defense peptide, β-1 defensin, as well as vancomycin and other antibiotics that have a positive charge. The increased resistance to vancomycin is phenotypic and appears to correlate with a DHEA-mediated alteration in cell surface architecture. DHEA-mediated cell surface changes include alterations in: cell surface charge, surface hydrophobicity, capsule production, and carotenoid production. In addition, exposure to DHEA results in decreased resistance to lysis by Triton X-100 and lysozyme, indicating activation of murien hydrolase activity. We propose that DHEA is an interspecies quorum-like signal that triggers innate phenotypic host survival strategies in S. aureus that include increased carotenoid production and increased vancomycin resistance. Furthermore, this DHEA-mediated survival system may share the cholesterol-squalene pathway shown to be statin sensitive thus, providing a potential pathway for drug targeting.
Collapse
Affiliation(s)
- Balbina J Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, United States.
| | - Monika I Konakieva
- Department of Chemistry, American University, Washington, DC 20016, United States.
| |
Collapse
|
26
|
Wacker MA, Teghanemt A, Weiss JP, Barker JH. High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immun 2017; 23:336-344. [PMID: 28409545 DOI: 10.1177/1753425917695446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Caspases of the non-canonical inflammasome (caspases -4, -5, and -11) directly bind endotoxin (LOS/LPS) and can be activated in the absence of any co-factors. Models of LPS-induced caspase activation have postulated that 1:1 binding of endotoxin monomers to caspase trigger caspase oligomerization and activation, analogous to that established for endotoxin-induced activation of MD-2/TLR4. However, using metabolically radiolabeled LOS and LPS, we now show high affinity and selective binding of caspase-4 to high molecular mass aggregates of purified endotoxin and to endotoxin-rich outer membrane vesicles without formation of 1:1 endotoxin:caspase complexes. Thus, our findings demonstrate markedly different endotoxin recognition properties of caspase-4 from that of MD-2/TLR4 and strongly suggest that activation of caspase-4 (and presumably caspase-5 and caspase-11) are mediated by interactions with activating endotoxin-rich membrane interfaces rather than by endotoxin monomers.
Collapse
Affiliation(s)
- Mark A Wacker
- 1 Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA
| | - Athmane Teghanemt
- 2 Inflammation Program, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,3 Department of Internal Medicine, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA
| | - Jerrold P Weiss
- 2 Inflammation Program, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,3 Department of Internal Medicine, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,4 Department of Microbiology, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA
| | - Jason H Barker
- 2 Inflammation Program, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,3 Department of Internal Medicine, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,4 Department of Microbiology, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
27
|
Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T, Gill C, Mann P, Sher X, Ha S, Yang SW, Mandal M, Yang C, Liang L, Tan Z, Tawa P, Hou Y, Kuvelkar R, DeVito K, Wen X, Xiao J, Batchlett M, Balibar CJ, Liu J, Xiao J, Murgolo N, Garlisi CG, Sheth PR, Flattery A, Su J, Tan C, Roemer T. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med 2016; 8:329ra32. [PMID: 26962156 DOI: 10.1126/scitranslmed.aad7364] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Sang Ho Lee
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Hao Wang
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Marc Labroli
- Merck Research Laboratories, West Point, PA 19486, USA
| | | | - Paul Zuck
- Merck Research Laboratories, West Point, PA 19486, USA
| | - Todd Mayhood
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Charles Gill
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Paul Mann
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Xinwei Sher
- Merck Research Laboratories, Boston, MA 02115, USA
| | - Sookhee Ha
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Shu-Wei Yang
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Mihir Mandal
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | - Lianzhu Liang
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Zheng Tan
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Paul Tawa
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Yan Hou
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | - Xiujuan Wen
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jing Xiao
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | - Jenny Liu
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jianying Xiao
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | | | | | - Payal R Sheth
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Amy Flattery
- Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jing Su
- Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | | | - Terry Roemer
- Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| |
Collapse
|
28
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
29
|
Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:936-46. [DOI: 10.1016/j.bbamem.2015.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
|
30
|
Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Saslowsky D, Lee JC. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins. PLoS Pathog 2015. [PMID: 26201029 PMCID: PMC4511793 DOI: 10.1371/journal.ppat.1005061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin. Staphylococcus aureus persistently colonizes ~20% of the human population, and 40–60% of humans are intermittently colonized by this bacterium. The most common reservoir for S. aureus is the anterior nares, and the incidence of staphylococcal disease in higher in individuals who are colonized. Rectal colonization by S. aureus isolates, reflecting gastrointestinal (GI) carriage, has recently been recognized as an important reservoir from which person to person transmission occurs. We developed a murine model of S. aureus GI colonization to investigate bacterial factors that promote staphylococcal colonization of the gut. We identified several surface-associated S. aureus antigens that modulate colonization of the GI tract and identified a surface glycopolymer (cell wall teichoic acid) as critical for the early steps in colonization. The failure of the teichoic acid mutant to colonize the GI tract can be attributed to its defects in bacterial adherence and to its enhanced susceptibility to mammalian host defenses unique to the gastrointestinal tract. Efforts to develop antimicrobials that target WTA may lead to an overall reduction in asymptomatic colonization by antibiotic-resistant S. aureus and may impact the incidence of invasive disease.
Collapse
Affiliation(s)
- Yoshiki Misawa
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathryn A. Kelley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linhui Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wan Beom Park
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Birtel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Saslowsky
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Weiss JP. Molecular determinants of bacterial sensitivity and resistance to mammalian Group IIA phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3072-7. [PMID: 26079797 DOI: 10.1016/j.bbamem.2015.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/25/2022]
Abstract
Group IIA secretory phospholipase A2 (sPLA(2)-IIA) of mammalian species is unique among the many structurally and functionally related mammalian sPLA(2) in their high net positive charge and potent (nM) antibacterial activity. Toward the Gram-positive bacteria tested thus far, the global cationic properties of sPLA(2)-IIA are necessary for optimal binding to intact bacteria and penetration of the multi-layered thick cell wall, but not for the degradation of membrane phospholipids that is essential for bacterial killing. Various Gram-positive bacterial species can differ as much as 1000-fold in sPLA(2)-IIA sensitivity despite similar intrinsic enzymatic activity of sPLA(2)-IIA toward the membrane phospholipids of various bacteria. d-alanylation of wall- and lipo-teichoic acids in Staphylococcus aureus and sortase function in Streptococcus pyogenes increase bacterial resistance to sPLA(2)-IIA by up to 100-fold apparently by affecting translocation of bound sPLA(2)-IIA to the cell membrane. Action of the sPLA(2)-IIA and other related sPLA(2) against Gram-negative bacteria is more dependent on cationic properties of the enzyme near the amino-terminus of the protein and collaboration with other host defense proteins that produce alterations of the unique Gram-negative bacterial outer membrane that normally represents a barrier to sPLA(2)-IIA action. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Jerrold P Weiss
- The Inflammation Program, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Veterans Administration Medical Center, Iowa City, IA 52246, USA.
| |
Collapse
|
32
|
Equilibrium binding behavior of magnesium to wall teichoic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1981-7. [PMID: 25969394 DOI: 10.1016/j.bbamem.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/20/2015] [Accepted: 05/06/2015] [Indexed: 11/21/2022]
Abstract
Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant.
Collapse
|
33
|
Elmore BO, Triplett KD, Hall PR. Apolipoprotein B48, the Structural Component of Chylomicrons, Is Sufficient to Antagonize Staphylococcus aureus Quorum-Sensing. PLoS One 2015; 10:e0125027. [PMID: 25942561 PMCID: PMC4420250 DOI: 10.1371/journal.pone.0125027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 01/09/2023] Open
Abstract
Serum lipoproteins (LP) are increasingly being recognized as dual purpose molecules that contribute to both cholesterol homeostasis and host innate defense. In fact, very low LP levels are associated with increased risk of bacterial infection in critically ill patients. In this respect, we reported that apolipoprotein B100 (apoB100), the 4536 amino acid structural protein of very low density lipoprotein (VLDL) produced by the liver, limits Staphylococcus aureus pathogenesis. S. aureus uses quorum-sensing (QS) via the accessory gene regulator (agr) operon and an autoinducing peptide (AIP) to coordinate expression of over 200 virulence genes. ApoB100 prevents agr activation by binding and sequestering secreted AIP. Importantly, human serum LP are produced not only by the liver, but are also produced by enterocytes, in the form of chylomicrons, during uptake of dietary lipids. In contrast to apoB100 in VLDL, human enterocytes use apoB48, the N-terminal 2152 amino acids (48%) of apoB100, as the structural component of chylomicrons. Interestingly, enteral feeding of critically ill patients has been associated with decreased risk of infectious complications, suggesting chylomicrons could contribute to host innate defense in critically ill patients when serum LP production by the liver is limited during the acute phase response. Therefore, we hypothesized that apoB48 would be sufficient to antagonize S. aureus QS. As expected, isolated apoB48-LP bound immobilized AIP and antagonized agr-signaling. ApoB48- and apoB100-LP inhibited agr activation with IC50s of 3.5 and 2.3 nM, respectively, demonstrating a conserved AIP binding site. Importantly, apoB48-LP antagonized QS, limited morbidity and promoted bacterial clearance in a mouse model of S. aureus infection. This work demonstrates that both naturally occurring forms of apolipoprotein B can antagonize S. aureus QS, and may suggest a previously unrecognized role for chylomicrons and enterocytes in host innate defense against S. aureus QS-mediated pathogenesis.
Collapse
Affiliation(s)
- Bradley O. Elmore
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Kathleen D. Triplett
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Pamela R. Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
34
|
Tsai CY, Chen YJ, Fu YS, Chang LS. Antibacterial and membrane-damaging activities of mannosylated bovine serum albumin. Arch Biochem Biophys 2015; 573:14-22. [DOI: 10.1016/j.abb.2015.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
|
35
|
Joo HS, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3055-61. [PMID: 25701233 DOI: 10.1016/j.bbamem.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Staphylococci are commensal bacteria living on the epithelial surfaces of humans and other mammals. Many staphylococci, including the dangerous pathogen Staphylococcus aureus, can cause severe disease when they breach the epithelial barrier. Both during their commensal life and during infection, staphylococci need to evade mechanisms of innate host defense, of which antimicrobial peptides (AMPs) play a key role in particular on the skin. Mechanisms that staphylococci have developed to evade the bactericidal activity of AMPs are manifold, comprising repulsion of AMPs via alteration of cell wall and membrane surface charges, proteolytic inactivation, sequestration, and secretion. Furthermore, many staphylococci form biofilms, which represents an additional way of protection from antimicrobial agents, including AMPs. Finally, staphylococci can sense the presence of AMPs by sensor/regulator systems that control many of those resistance mechanisms. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
36
|
Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One 2014; 9:e111579. [PMID: 25372402 PMCID: PMC4221044 DOI: 10.1371/journal.pone.0111579] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Infection is one of the most prevalent causes for dental implant failure. We have developed a novel antimicrobial peptide coating on titanium by immobilizing the antimicrobial peptide GL13K. GL13K was developed from the human salivary protein BPIFA2. The peptide exhibited MIC of 8 µg/ml against planktonic Pseudonomas aeruginosa and their biofilms were reduced by three orders of magnitude with 100 µg/ml GL13K. This peptide concentration also killed 100% of Streptococcus gordonii. At 1 mg/ml, GL13K caused less than 10% lysis of human red blood cells, suggesting low toxicity to mammalian cells. Our GL13K coating has also previously showed bactericidal effect and inhibition of biofilm growth against peri-implantitis related pathogens, such as Porphyromonas gingivalis. The GL13K coating was cytocompatible with human fibroblasts and osteoblasts. However, the bioactivity of antimicrobial coatings has been commonly tested under (quasi)static culture conditions that are far from simulating conditions for biofilm formation and growth in the oral cavity. Oral salivary flow over a coating is persistent, applies continuous shear forces, and supplies sustained nutrition to bacteria. This accelerates bacteria metabolism and biofilm growth. In this work, the antimicrobial effect of the coating was tested against Streptococcus gordonii, a primary colonizer that provides attachment for the biofilm accretion by P. gingivalis, using a drip-flow biofilm bioreactor with media flow rates simulating salivary flow. The GL13K peptide coatings killed bacteria and prevented formation and growth of S. gordonii biofilms in the drip-flow bioreactor and under regular mild-agitation conditions. Surprisingly the interaction of the bacteria with the GL13K peptide coatings ruptured the cell wall at their septum or polar areas leaving empty shell-like structures or exposed protoplasts. The cell wall rupture was not detected under regular culture conditions, suggesting that cell wall rupture induced by GL13K peptides also requires media flow and possible attendant biological sequelae of the conditions in the bioreactor.
Collapse
|
37
|
Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun 2014; 5:5105. [PMID: 25290234 DOI: 10.1038/ncomms6105] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
Young cystic fibrosis (CF) patients' airways are mainly colonized by Staphylococcus aureus, while Pseudomonas aeruginosa predominates in adults. However, the mechanisms behind this infection switch are unclear. Here, we show that levels of type-IIA-secreted phospholipase A2 (sPLA2-IIA, a host enzyme with bactericidal activity) increase in expectorations of CF patients in an age-dependent manner. These levels are sufficient to kill S. aureus, with marginal effects on P. aeruginosa strains. P. aeruginosa laboratory strains and isolates from CF patients induce sPLA2-IIA expression in bronchial epithelial cells from CF patients (these cells are a major source of the enzyme). In an animal model of lung infection, P. aeruginosa induces sPLA2-IIA production that favours S. aureus killing. We suggest that sPLA2-IIA induction by P. aeruginosa contributes to S. aureus eradication in CF airways. Our results indicate that a bacterium can eradicate another bacterium by manipulating the host immunity.
Collapse
|
38
|
Kingston AW, Liao X, Helmann JD. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 2013; 90:502-18. [PMID: 23980836 PMCID: PMC4067139 DOI: 10.1111/mmi.12380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
Abstract
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.
Collapse
Affiliation(s)
| | - Xiaojie Liao
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Uhlemann AC, Kennedy AD, Martens C, Porcella SF, Deleo FR, Lowy FD. Toward an understanding of the evolution of Staphylococcus aureus strain USA300 during colonization in community households. Genome Biol Evol 2013; 4:1275-85. [PMID: 23104992 PMCID: PMC3542572 DOI: 10.1093/gbe/evs094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a frequent cause of serious infections and also a human commensal. The emergence of community-associated methicillin-resistant S. aureus led to a dramatic increase in skin and soft tissue infections worldwide. This epidemic has been driven by a limited number of clones, such as USA300 in the United States. To better understand the extent of USA300 evolution and diversification within communities, we performed comparative whole-genome sequencing of three clinical and five colonizing USA300 isolates collected longitudinally from three unrelated households over a 15-month period. Phylogenetic analysis that incorporated additional geographically diverse USA300 isolates indicated that all but one likely arose from a common recent ancestor. Although limited genetic adaptation occurred over the study period, the greatest genetic heterogeneity occurred between isolates from different households and within one heavily colonized household. This diversity allowed for a more accurate tracking of interpersonal USA300 transmission. Sequencing of persisting USA300 isolates revealed mutations in genes involved in major aspects of S. aureus function: adhesion, cell wall biosynthesis, virulence, and carbohydrate metabolism. Genetic variations also included accumulation of multiple polymorphisms within select genes of two multigene operons, suggestive of small genome rearrangements rather than de novo single point mutations. Such rearrangements have been underappreciated in S. aureus and may represent novel means of strain variation. Subtle genetic changes may contribute to USA300 fitness and persistence. Elucidation of small genome rearrangements reveals a potentially new and intriguing mechanism of directed S. aureus genome diversification in environmental niches and during pathogen-host interactions.
Collapse
Affiliation(s)
- Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hall PR, Elmore BO, Spang CH, Alexander SM, Manifold-Wheeler BC, Castleman MJ, Daly SM, Peterson MM, Sully EK, Femling JK, Otto M, Horswill AR, Timmins GS, Gresham HD. Nox2 modification of LDL is essential for optimal apolipoprotein B-mediated control of agr type III Staphylococcus aureus quorum-sensing. PLoS Pathog 2013; 9:e1003166. [PMID: 23459693 PMCID: PMC3573103 DOI: 10.1371/journal.ppat.1003166] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus contains an autoinducing quorum-sensing system encoded within the agr operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within agr has generated four agr specific groups, agr I-IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives agr signaling. Because agr signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize agr signaling. We determined whether two host defense factors that inhibit AIP1-induced agrI signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced agrIII signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against agrIII signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against S. aureus agrIII infection by binding the secreted signaling peptide, AIP3, and preventing expression of the agr-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes agr signaling by all four agr alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against agr signaling. These data reveal a novel role for oxLDL in host defense against S. aureus quorum-sensing signaling.
Collapse
Affiliation(s)
- Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wen YL, Wu BJ, Kao PH, Fu YS, Chang LS. Antibacterial and membrane-damaging activities of β
-bungarotoxin B chain. J Pept Sci 2012; 19:1-8. [DOI: 10.1002/psc.2463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/29/2012] [Accepted: 10/07/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Yi-Lin Wen
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung 804 Taiwan
| | - Bao-Jueng Wu
- Department of Internal Medicine; Zuoying Armed Forces General Hospital; Kaohsiung 813 Taiwan
| | - Pei-Hsiu Kao
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung 804 Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology; Kaohsiung Medical University; Kaohsiung 807 Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung 804 Taiwan
| |
Collapse
|
42
|
Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bacteriol 2012; 194:5294-304. [PMID: 22843840 DOI: 10.1128/jb.00743-12] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1Δ9) were nontoxic, whereas palmitoleate (16:1Δ9) was a potent growth inhibitor. Cells treated with 16:1Δ9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthesis, and the release of solutes and low-molecular-weight proteins into the medium. Other cytotoxic lipids, such as glycerol ethers, sphingosine, and acyl-amines blocked growth by the same mechanisms. Nontoxic 18:1Δ9 was used for phospholipid synthesis, whereas toxic 16:1Δ9 was not and required elongation to 18:1Δ11 prior to incorporation. However, blocking fatty acid metabolism using inhibitors to prevent acyl-acyl carrier protein formation or glycerol-phosphate acyltransferase activity did not increase the toxicity of 18:1Δ9, indicating that inefficient metabolism did not play a determinant role in fatty acid toxicity. Nontoxic 18:1Δ9 was as toxic as 16:1Δ9 in a strain lacking wall teichoic acids and led to growth arrest and enhanced release of intracellular contents. Thus, wall teichoic acids contribute to the structure-specific antimicrobial effects of unsaturated fatty acids. The ability of poorly metabolized 16:1 isomers to penetrate the cell wall defenses is a weakness that has been exploited by the innate immune system to combat S. aureus.
Collapse
|
43
|
Immune-activating properties of Panton-Valentine leukocidin improve the outcome in a model of methicillin-resistant Staphylococcus aureus pneumonia. Infect Immun 2012; 80:2894-904. [PMID: 22665379 DOI: 10.1128/iai.06360-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Panton-Valentine leukocidin (PVL) is a cytotoxin expressed by many methicillin-resistant Staphylococcus aureus (MRSA) strains that cause community-acquired infections (CA-MRSA). Its role in virulence however, is controversial, with clinical data suggesting that PVL-producing strains may cause less severe disease in humans. PVL is capable of lysing human white blood cells, but at sublytic amounts, PVL can activate protective host immunity in the absence of cell damage. The concentration-dependent reactions it elicits from host cells could be the reason for seemingly contradictory results about PVL's role in virulence. We hypothesized that a key to understanding PVL's action on host cells and, possibly, outcomes from infection is the amount of toxin present, a hypothesis previously supported in studies using a low-inoculum skin infection model, where low levels of PVL augmented innate immune resistance to infection. Here, we present additional data supporting this hypothesis using a mouse model of MRSA pneumonia, wherein we found increased virulence of isogenic Δpvl strains and further confirmed PVL's capacity to activate proinflammatory responses from mouse and human neutrophils and pulmonary cells. Activation was measured as the production of phosphorylated p38 mitogen-activated protein kinase (MAPK) and proinflammatory cytokines interleukin-8 (IL-8) and KC (from human and mouse cells, respectively), as well as the release of antibacterial factors. Conversely, PVL lowered the levels of tumor necrosis factor alpha (TNF-α) produced in active pulmonary infection, while low doses induced apoptosis, suggesting that PVL also has the capacity to regulate inflammation. Our data indicate that, independent of its cytotoxic effects, PVL also plays an important and positive immunomodulatory role during MRSA infections.
Collapse
|
44
|
Suzuki T, Campbell J, Kim Y, Swoboda JG, Mylonakis E, Walker S, Gilmore MS. Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes. J Antimicrob Chemother 2012; 67:2143-51. [PMID: 22615298 DOI: 10.1093/jac/dks184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Polyanionic polymers, including lipoteichoic acid and wall teichoic acid, are important determinants of the charged character of the staphylococcal cell wall. This study was designed to investigate the extent to which teichoic acid contributes to protection from anionic azo dyes and to identify barriers to drug penetration for development of new antibiotics for multidrug-resistant Staphylococcus aureus infection. METHODS We studied antimicrobial activity of azo dyes against S. aureus strains with or without inhibition of teichoic acid in vitro and in vivo. RESULTS We observed that inhibition of wall teichoic acid expression resulted in an ∼1000-fold increase in susceptibility to azo dyes such as Congo red, reducing its MIC from >1024 to <4 mg/L. Sensitization occurred when the first step in the wall teichoic acid pathway, catalysed by TarO, was inhibited either by mutation or by chemical inhibition. In contrast, genetic blockade of lipoteichoic acid biosynthesis did not confer Congo red susceptibility. Based on this finding, combination therapy was tested using the highly synergistic combination of Congo red plus tunicamycin at sub-MIC concentrations (to inhibit wall teichoic acid biosynthesis). The combination rescued Caenorhabditis elegans from a lethal challenge of S. aureus. CONCLUSIONS Our studies show that wall teichoic acid confers protection to S. aureus from anionic azo dyes and related compounds, and its inhibition raises the prospect of development of new combination therapies based on this inhibition.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Movert E, Wu Y, Lambeau G, Touqui L, Areschoug T. A novel bacterial resistance mechanism against human group IIA-secreted phospholipase A2: role of Streptococcus pyogenes sortase A. THE JOURNAL OF IMMUNOLOGY 2011; 187:6437-46. [PMID: 22075700 DOI: 10.4049/jimmunol.1100499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is a bactericidal molecule important for the innate immune defense against Gram-positive bacteria. In this study, we analyzed its role in the host defense against Streptococcus pyogenes, a major human pathogen, and demonstrated that this bacterium has evolved a previously unidentified mechanism to resist killing by sPLA(2)-IIA. Analysis of a set of clinical isolates demonstrated that an ~500-fold higher concentration of sPLA(2)-IIA was required to kill S. pyogenes compared with strains of the group B Streptococcus, which previously were shown to be sensitive to sPLA(2)-IIA, indicating that S. pyogenes exhibits a high degree of resistance to sPLA(2)-IIA. We found that an S. pyogenes mutant lacking sortase A, a transpeptidase responsible for anchoring LPXTG proteins to the cell wall in Gram-positive bacteria, was significantly more sensitive (~30-fold) to sPLA(2)-IIA compared with the parental strain, indicating that one or more LPXTG surface proteins protect S. pyogenes against sPLA(2)-IIA. Importantly, using transgenic mice expressing human sPLA(2)-IIA, we showed that the sortase A-mediated sPLA(2)-IIA resistance mechanism in S. pyogenes also occurs in vivo. Moreover, in this mouse model, we also showed that human sPLA(2)-IIA is important for the defense against lethal S. pyogenes infection. Thus, we demonstrated a novel mechanism by which a pathogenic bacterium can evade the bactericidal action of sPLA(2)-IIA and we showed that sPLA(2)-IIA contributes to the host defense against S. pyogenes infection.
Collapse
Affiliation(s)
- Elin Movert
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
46
|
Low LY, Yang C, Perego M, Osterman A, Liddington R. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem 2011; 286:34391-403. [PMID: 21816821 DOI: 10.1074/jbc.m111.244160] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recombinant lysins of lytic phages, when applied externally to Gram-positive bacteria, can be efficient bactericidal agents, typically retaining high specificity. Their development as novel antibacterial agents offers many potential advantages over conventional antibiotics. Protein engineering could exploit this potential further by generating novel lysins fit for distinct target populations and environments. However, access to the peptidoglycan layer is controlled by a variety of secondary cell wall polymers, chemical modifications, and (in some cases) S-layers and capsules. Classical lysins require a cell wall-binding domain (CBD) that targets the catalytic domain to the peptidoglycan layer via binding to a secondary cell wall polymer component. The cell walls of Gram-positive bacteria generally have a negative charge, and we noticed a correlation between (positive) charge on the catalytic domain and bacteriolytic activity in the absence of the CBD (nonclassical behavior). We investigated a physical basis for this correlation by comparing the structures and activities of pairs of lysins where the lytic activity of one of each pair was CBD-independent. We found that by engineering a reversal of sign of the net charge of the catalytic domain, we could either eliminate or create CBD dependence. We also provide evidence that the S-layer of Bacillus anthracis acts as a molecular sieve that is chiefly size-dependent, favoring catalytic domains over full-length lysins. Our work suggests a number of facile approaches for fine-tuning lysin activity, either to enhance or reduce specificity/host range and/or bactericidal potential, as required.
Collapse
Affiliation(s)
- Lieh Yoon Low
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Chen LW, Kao PH, Fu YS, Hu WP, Chang LS. Bactericidal effect of Naja nigricollis toxin γ is related to its membrane-damaging activity. Peptides 2011; 32:1755-63. [PMID: 21762738 DOI: 10.1016/j.peptides.2011.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 11/23/2022]
Abstract
The aim of the present study is to investigate the causal relationship between membrane-damaging activity and bactericidal activity of Naja nigricollis toxin γ. Toxin γ showed a similar inhibitory activity on the growth of Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria). Antibacterial activity of toxin γ correlated positively with increase in membrane permeability of bacterial cells. Morphological examination showed that toxin γ disrupted the integrity of bacterial membrane. Toxin γ showed similar binding capability with lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and destabilization of LPS layer and inhibition of LTA biosynthesis on cell wall increased bactericidal effect of toxin γ on E. coli and S. aureus, respectively. Although the potency of toxin γ on permeabilizing model membrane of E. coli and S. aureus was similar, the mode of interaction between toxin γ and model membrane of E. coli and S. aureus differed. Membrane-damaging activity of toxin γ was inhibited by either LPS or LTA. Nevertheless, LPS and LTA altered differently membrane-bound conformation of toxin γ. Taken together, our data suggest that bactericidal activity of toxin γ depends on its ability to induce membrane permeability, and that LPS and LTA structurally suppresses bactericidal effect of toxin γ.
Collapse
Affiliation(s)
- Li-Wen Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
48
|
Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243-54. [PMID: 21560069 PMCID: PMC11115334 DOI: 10.1007/s00018-011-0716-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen's surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Biotechnology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
49
|
Suzuki T, Campbell J, Swoboda JG, Walker S, Gilmore MS. Role of wall teichoic acids in Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci 2011; 52:3187-92. [PMID: 21345983 DOI: 10.1167/iovs.10-6558] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Wall teichoic acids (WTAs) are major polyanionic polymer components of the cell wall of Staphylococcus aureus. However, little is known about their role at the host-pathogen interface, especially in endophthalmitis. This study was designed to investigate the extent to which WTAs contribute to the pathogenicity of S. aureus in models of endophthalmitis and to determine whether there would be value in targeting their biosynthesis as a new therapeutic approach. METHODS S. aureus RN6390 and its isogenic WTA-null mutant (RN6390ΔtarO) were used to evaluate the role of WTAs in endophthalmitis. RN6390 and RN6390ΔtarO were cultured in bovine vitreous humor (VH) in vitro or inoculated into the vitreous chamber of C57B6 mice. Changes in the number of bacteria, organ function as determined by electroretinography (ERG), and histopathologic changes were assessed throughout the course of infection. In addition, the efficacy of WTA biosynthesis inhibitors in VH in vitro was examined. RESULTS It was observed that a component of VH synergized with WTA biosynthesis inhibitors in vitro and killed the S. aureus. This effect was also seen when mutants incapable of expressing WTA were exposed to VH. The killing activity of VH was lost on treatment with a protease inhibitor. RN6390ΔtarO could not survive in mouse eyes and did not affect organ function, nor was it able to establish endophthalmitis. CONCLUSIONS WTAs are essential cellular constituents for the manifestation of virulence by S. aureus in endophthalmitis, and appears to be a viable target for treating the endophthalmitis caused by S. aureus strains.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
50
|
Chen LW, Kao PH, Fu YS, Lin SR, Chang LS. Membrane-damaging activity of Taiwan cobra cardiotoxin 3 is responsible for its bactericidal activity. Toxicon 2011; 58:46-53. [PMID: 21575651 DOI: 10.1016/j.toxicon.2011.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
This study investigates the causal relationship between membrane-damaging activity and bactericidal activity of Naja naja atra (Taiwan cobra) cardiotoxin 3 (CTX3). CTX3 showed greater inhibitory activity for the growth of Staphylococcus aureus (Gram-positive bacteria) relative to that of Escherichia coli (Gram-negative bacteria). The CTX3 antibacterial activity is positively correlated with the increase in membrane permeability of bacterial cells. Morphological examination showed that CTX3 disrupted bacterial membrane integrity.CTX3 showed similar binding capability with lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and destabilization of LPS layer and inhibition of LTA biosynthesis on cell wall increased the CTX3 bactericidal effect on E. coli. and S. aureus, respectively. Compared with that of E. coli, CTX3 notably permeabilized model membrane of S. aureus. CTX3 membrane-damaging activity was inhibited by LPS and LTA, while increasing the CTX3 concentration counteracted the inhibitory action of LPS and LTA. Oxidation of Met residues on loop II of CTX3 simultaneously reduced the membrane-permeabilizing activity and bactericidal effect of CTX3. Taken together, our data indicate that CTX3 bactericidal activity depends highly on its ability to induce membrane permeability.
Collapse
Affiliation(s)
- Li-Wen Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|