1
|
Arnold E. Non-classical roles of bacterial siderophores in pathogenesis. Front Cell Infect Microbiol 2024; 14:1465719. [PMID: 39372500 PMCID: PMC11449898 DOI: 10.3389/fcimb.2024.1465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.
Collapse
|
2
|
Fulte S, Atto B, McCarty A, Horn KJ, Redzic JS, Eisenmesser E, Yang M, Marsh RL, Tristram S, Clark SE. Heme sequestration by hemophilin from Haemophilus haemolyticus reduces respiratory tract colonization and infection with non-typeable Haemophilus influenzae. mSphere 2024; 9:e0000624. [PMID: 38380941 PMCID: PMC10964412 DOI: 10.1128/msphere.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.
Collapse
Affiliation(s)
- Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Arianna McCarty
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kadi J. Horn
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Sarah E. Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
4
|
Zaki BM, Fahmy NA, Aziz RK, Samir R, El-Shibiny A. Characterization and comprehensive genome analysis of novel bacteriophage, vB_Kpn_ZCKp20p, with lytic and anti-biofilm potential against clinical multidrug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1077995. [PMID: 36756618 PMCID: PMC9901506 DOI: 10.3389/fcimb.2023.1077995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction The rise of infections by antibiotic-resistant bacterial pathogens is alarming. Among these, Klebsiella pneumoniae is a leading cause of death by hospital-acquired infections, and its multidrug-resistant strains are flagged as a global threat to human health, which necessitates finding novel antibiotics or alternative therapies. One promising therapeutic alternative is the use of virulent bacteriophages, which specifically target bacteria and coevolve with them to overcome potential resistance. Here, we aimed to discover specific bacteriophages with therapeutic potential against multiresistant K. pneumoniae clinical isolates. Methods and Results Out of six bacteriophages that we isolated from urban and medical sewage, phage vB_Kpn_ZCKp20p had the broadest host range and was thus characterized in detail. Transmission electron microscopy suggests vB_Kpn_ZCKp20p to be a tailed phage of the siphoviral morphotype. In vitro evaluation indicated a high lytic efficiency (30 min latent period and burst size of ∼100 PFU/cell), and extended stability at temperatures up to 70°C and a wide range of (2-12) pH. Additionally, phage vB_Kpn_ZCKp20p possesses antibiofilm activity that was evaluated by the crystal violet assay and was not cytotoxic to human skin fibroblasts. The whole genome was sequenced and annotated, uncovering one tRNA gene and 33 genes encoding proteins with assigned functions out of 85 predicted genes. Furthermore, comparative genomics and phylogenetic analysis suggest that vB_Kpn_ZCKp20p most likely represents a new species, but belongs to the same genus as Klebsiella phages ZCKP8 and 6691. Comprehensive genomic and bioinformatics analyses substantiate the safety of the phage and its strictly lytic lifestyle. Conclusion Phage vB_Kpn_ZCKp20p is a novel phage with potential to be used against biofilm-forming K. pneumoniae and could be a promising source for antibacterial and antibiofilm products, which will be individually studied experimentally in future studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ramy Karam Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
5
|
Gerner RR, Hossain S, Sargun A, Siada K, Norton GJ, Zheng T, Neumann W, Nuccio SP, Nolan EM, Raffatellu M. Siderophore Immunization Restricted Colonization of Adherent-Invasive Escherichia coli and Ameliorated Experimental Colitis. mBio 2022; 13:e0218422. [PMID: 36094114 PMCID: PMC9600343 DOI: 10.1128/mbio.02184-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the gastrointestinal tract and profound alterations to the gut microbiome. Adherent-invasive Escherichia coli (AIEC) is a mucosa-associated pathobiont that colonizes the gut of patients with Crohn's disease, a form of IBD. Because AIEC exacerbates gut inflammation, strategies to reduce the AIEC bloom during colitis are highly desirable. To thrive in the inflamed gut, Enterobacteriaceae acquire the essential metal nutrient iron by producing and releasing siderophores. Here, we implemented an immunization-based strategy to target the siderophores enterobactin and its glucosylated derivative salmochelin to reduce the AIEC bloom in the inflamed gut. Using chemical (dextran sulfate sodium) and genetic (Il10-/- mice) IBD mouse models, we showed that immunization with enterobactin conjugated to the mucosal adjuvant cholera toxin subunit B potently elicited mucosal and serum antibodies against these siderophores. Siderophore-immunized mice exhibited lower AIEC gut colonization, diminished AIEC association with the gut mucosa, and reduced colitis severity. Moreover, Peyer's patches and the colonic lamina propria harbored enterobactin-specific B cells that could be identified by flow cytometry. The beneficial effect of siderophore immunization was primarily B cell-dependent because immunized muMT-/- mice, which lack mature B lymphocytes, were not protected during AIEC infection. Collectively, our study identified siderophores as a potential therapeutic target to reduce AIEC colonization and its association with the gut mucosa, which ultimately may reduce colitis exacerbation. Moreover, this work provides the foundation for developing monoclonal antibodies against siderophores, which could provide a narrow-spectrum strategy to target the AIEC bloom in Crohn's disease patients. IMPORTANCE Adherent-invasive Escherichia coli (AIEC) is abnormally prevalent in patients with ileal Crohn's disease and exacerbates intestinal inflammation, but treatment strategies that selectively target AIEC are unavailable. Iron is an essential micronutrient for most living organisms, and bacterial pathogens have evolved sophisticated strategies to capture iron from the host environment. AIEC produces siderophores, small, secreted molecules with a high affinity for iron. Here, we showed that immunization to elicit antibodies against siderophores promoted a reduction of the AIEC bloom, interfered with AIEC association with the mucosa, and mitigated colitis in experimental mouse models. We also established a flow cytometry-based approach to visualize and isolate siderophore-specific B cells, a prerequisite for engineering monoclonal antibodies against these molecules. Together, this work could lead to a more selective and antibiotic-sparing strategy to target AIEC in Crohn's disease patients.
Collapse
Affiliation(s)
- Romana R. Gerner
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Suzana Hossain
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kareem Siada
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Grant J. Norton
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Tengfei Zheng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wilma Neumann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sean-Paul Nuccio
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Chiba University-University of California-San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California, USA
| |
Collapse
|
6
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
7
|
McQueen CF, Groves JT. Toxicity of the iron siderophore mycobactin J in mouse macrophages: Evidence for a hypoxia response. J Inorg Biochem 2021; 227:111669. [PMID: 34864292 DOI: 10.1016/j.jinorgbio.2021.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an obligate intracellular pathogen that lives within the phagosome of macrophages. Here we demonstrate that the siderophore mycobactin J, produced by the closely related intracellular pathogen Mycobacterium paratuberculosis, is toxic to murine macrophage cells. Its median lethal dose, 10 μM, is lower than that of the iron chelators desferrioxamine B and TrenCAM, an enterobactin analog. To determine the source of this toxicity, we conducted microarray, ELISA, and metabolite profiling experiments. The primary response is hypoxia-like, which implies iron starvation as the underlying cause of the toxicity. This observation is consistent with our recent finding that mycobactin J is a stronger iron chelator than had been inferred from previous studies. Mycobactin J is known to partition into cell membranes and hydrophobic organelles indicating that enhanced membrane penetration is also a likely factor. Thus, mycobactin J is shown to be toxic, eliciting a hypoxia-like response under physiological conditions.
Collapse
Affiliation(s)
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Abokor AA, Wenceslau CF, Shah YM, Joe B, Vijay-Kumar M. Enterobactin induces the chemokine, interleukin-8, from intestinal epithelia by chelating intracellular iron. Gut Microbes 2020; 12:1-18. [PMID: 33171063 PMCID: PMC7671005 DOI: 10.1080/19490976.2020.1841548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Iron is an indispensable nutrient for both mammals and microbes. Bacteria synthesize siderophores to sequester host iron, whereas lipocalin 2 (Lcn2) is the host defense protein that prevent this iron thievery. Enterobactin (Ent) is a catecholate-type siderophore that has one of the strongest known affinities for iron. Intestinal epithelial cells (IECs) are adjacent to large microbial population and are in contact with microbial products, including Ent. We undertook this study to investigate whether a single stimulus of Ent could affect IEC functions. Using three human IEC cell-lines with differential basal levels of Lcn2 (i.e. HT29 < DLD-1 < Caco-2/BBe), we demonstrated that iron-free Ent could induce a dose-dependent secretion of the pro-inflammatory chemokine, interleukin 8 (IL-8), in HT29 and DLD-1 IECs, but not in Caco-2/BBe. Ent-induced IL-8 secretion was dependent on chelation of the labile iron pool and on the levels of intracellular Lcn2. Accordingly, IL-8 secretion by Ent-treated HT29 cells could be substantially inhibited by either saturating Ent with iron or by adding exogenous Lcn2 to the cells. IL-8 production by Ent could be further potentiated when co-stimulated with other microbial products (i.e. flagellin, lipopolysaccharide). Water-soluble microbial siderophores did not induce IL-8 production, which signifies that IECs are specifically responding to the lipid-soluble Ent. Intriguingly, formyl peptide receptor (FPR) antagonists (i.e. Boc2, cyclosporine H) abrogated Ent-induced IL-8, implicating that such IEC response could be, in part, dependent on FPR. Taken together, these results demonstrate that IECs sense Ent as a danger signal, where its recognition results in IL-8 secretion.
Collapse
Affiliation(s)
- Piu Saha
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel M. Golonka
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ahmed A. Abokor
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Camilla F. Wenceslau
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA,CONTACT Matam Vijay-Kumar Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH43614, USA
| |
Collapse
|
9
|
Yersiniabactin-Producing Adherent/Invasive Escherichia coli Promotes Inflammation-Associated Fibrosis in Gnotobiotic Il10-/- Mice. Infect Immun 2019; 87:IAI.00587-19. [PMID: 31481410 PMCID: PMC6803345 DOI: 10.1128/iai.00587-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a significant complication of intestinal disorders associated with microbial dysbiosis and pathobiont expansion, notably Crohn’s disease (CD). Mechanisms that favor fibrosis are not well understood, and therapeutic strategies are limited. Here we demonstrate that colitis-susceptible Il10-deficient mice develop inflammation-associated fibrosis when monoassociated with adherent/invasive Escherichia coli (AIEC) that harbors the yersiniabactin (Ybt) pathogenicity island. Fibrosis is a significant complication of intestinal disorders associated with microbial dysbiosis and pathobiont expansion, notably Crohn’s disease (CD). Mechanisms that favor fibrosis are not well understood, and therapeutic strategies are limited. Here we demonstrate that colitis-susceptible Il10-deficient mice develop inflammation-associated fibrosis when monoassociated with adherent/invasive Escherichia coli (AIEC) that harbors the yersiniabactin (Ybt) pathogenicity island. Inactivation of Ybt siderophore production in AIEC nearly abrogated fibrosis development in inflamed mice. In contrast, inactivation of Ybt import through its cognate receptor FyuA enhanced fibrosis severity. This corresponded with increased colonic expression of profibrogenic genes prior to the development of histological disease, therefore suggesting causality. fyuA-deficient AIEC also exhibited greater localization within subepithelial tissues and fibrotic lesions that was dependent on Ybt biosynthesis and corresponded with increased fibroblast activation in vitro. Together, these findings suggest that Ybt establishes a profibrotic environment in the host in the absence of binding to its cognate receptor and indicate a direct link between intestinal AIEC and the induction of inflammation-associated fibrosis.
Collapse
|
10
|
Golonka R, Yeoh BS, Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J Innate Immun 2019; 11:249-262. [PMID: 30605903 DOI: 10.1159/000494627] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is necessary for the survival of almost all aerobic organisms. In the mammalian host, iron is a required cofactor for the assembly of functional iron-sulfur (Fe-S) cluster proteins, heme-binding proteins and ribonucleotide reductases that regulate various functions, including heme synthesis, oxygen transport and DNA synthesis. However, the bioavailability of iron is low due to its insolubility under aerobic conditions. Moreover, the host coordinates a nutritional immune response to restrict the accessibility of iron against potential pathogens. To counter nutritional immunity, most commensal and pathogenic bacteria synthesize and secrete small iron chelators termed siderophores. Siderophores have potent affinity for iron, which allows them to seize the essential metal from the host iron-binding proteins. To safeguard against iron thievery, the host relies upon the innate immune protein, lipocalin 2 (Lcn2), which could sequester catecholate-type siderophores and thus impede bacterial growth. However, certain bacteria are capable of outmaneuvering the host by either producing "stealth" siderophores or by expressing competitive antagonists that bind Lcn2 in lieu of siderophores. In this review, we summarize the mechanisms underlying the complex iron tug-of-war between host and bacteria with an emphasis on how host innate immunity responds to siderophores.
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Beng San Yeoh
- Graduate Program in Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA, .,Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA,
| |
Collapse
|
11
|
Future Directions and Molecular Basis of Ventilator Associated Pneumonia. Can Respir J 2017; 2017:2614602. [PMID: 29162982 PMCID: PMC5661065 DOI: 10.1155/2017/2614602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Mechanical ventilation is a lifesaving treatment and has complications such as ventilator associated pneumonia (VAP) that lead to high morbidity and mortality. Moreover VAP is the second most common hospital-acquired infection in pediatric intensive care units. Although it is still not well understood, understanding molecular pathogenesis is essential for preventing and treating pneumonia. A lot of microbes are detected as a causative agent of VAP. The most common isolated VAP pathogens in pediatric patients are Staphylococcus aureus, Pseudomonas aeruginosa, and other gram negative bacteria. All of the bacteria have different pathogenesis due to their different virulence factors and host reactions. This review article focused on mechanisms of VAP with molecular pathogenesis of the causative bacteria one by one from the literature. We hope that we know more about molecular pathogenesis of VAP and we can investigate and focus on the management of the disease in near future.
Collapse
|
12
|
Abstract
Lipocalin 2 (Lcn2), an innate immune protein, has emerged as a critical iron regulatory protein during physiological and inflammatory conditions. As a bacteriostatic factor, Lcn2 obstructs the siderophore iron-acquiring strategy of bacteria and thus inhibits bacterial growth. As part of host nutritional immunity, Lcn2 facilitates systemic, cellular, and mucosal hypoferremia during inflammation, in addition to stabilizing the siderophore-bound labile iron pool. In this review, we summarize recent advances in understanding the interaction between Lcn2 and iron, and its effects in various inflammatory diseases. Lcn2 exerts mostly a protective role in infectious and inflammatory bowel diseases, whereas both beneficial and detrimental functions have been documented in neurodegenerative diseases, metabolic syndrome, renal disorders, skin disorders, and cancer. Further animal and clinical studies are necessary to unveil the multifaceted roles of Lcn2 in iron dysregulation during inflammation and to explore its therapeutic potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania 17033
| |
Collapse
|
13
|
Guo BX, Wang QQ, Li JH, Gan ZS, Zhang XF, Wang YZ, Du HH. Lipocalin 2 regulates intestine bacterial survival by interplaying with siderophore in a weaned piglet model of Escherichia coli infection. Oncotarget 2017; 8:65386-65396. [PMID: 29029438 PMCID: PMC5630338 DOI: 10.18632/oncotarget.18528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
Iron is an essential nutrient that facilitates cell proliferation and growth, which plays a pivotal role in modulating the battle for survival between mammalian hosts and their pathogens. Pathogenic bacteria secrete siderophores to acquire iron from the host. However, lipocalin 2 (Lcn2), a siderophore-binding antimicrobial protein, binds to siderophores to prevent bacterial uptake of iron, which is critical for the control of systemic infection with Escherichia coli (E. coli). But few studies focus on the anti-infective response of Lcn2 in the intestines by inhibiting bacterial proliferation based on microbial iron metabolism. In this study, we showed that iron was sequestrated within cells in a piglet model of E. coli K88 infection. Siderophores was produced following E. coli K88 infection and siderophore-related genes expression was upregulated in iron-deficiency environment in vitro. Meanwhile, we found that Lcn2 expression was rapidly and robustly induced in jejunum by E. coli K88 infection and could be stimulated by IL-17 and IL-22. Furthermore, both Lcn2 induced in epithelial cells IPEC-1 and added exogenously as a recombinant protein could inhibit the growth of E. coli. We can conclude that Lcn2 is a crucial component of mucosal immune defense against intestinal infection with E. coli K88.
Collapse
Affiliation(s)
- Bing-Xiu Guo
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Qian Wang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science, Eastern of China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Hui Li
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science, Eastern of China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Shun Gan
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Feng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yi-Zhen Wang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science, Eastern of China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Hua-Hua Du
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science, Eastern of China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, Milward EA, Hansbro PM, Horvat JC. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol 2017; 88:181-195. [PMID: 28495571 DOI: 10.1016/j.biocel.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Iron is essential for many biological processes, however, too much or too little iron can result in a wide variety of pathological consequences, depending on the organ system, tissue or cell type affected. In order to reduce pathogenesis, iron levels are tightly controlled in throughout the body by regulatory systems that control iron absorption, systemic transport and cellular uptake and storage. Altered iron levels and/or dysregulated homeostasis have been associated with several lung diseases, including chronic obstructive pulmonary disease, lung cancer, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. However, the mechanisms that underpin these associations and whether iron plays a key role in the pathogenesis of lung disease are yet to be fully elucidated. Furthermore, in order to survive and replicate, pathogenic micro-organisms have evolved strategies to source host iron, including freeing iron from cells and proteins that store and transport iron. To counter these microbial strategies, mammals have evolved immune-mediated defence mechanisms that reduce iron availability to pathogens. This interplay between iron, infection and immunity has important ramifications for the pathogenesis and management of human respiratory infections and diseases. An increased understanding of the role that iron plays in the pathogenesis of lung disease and respiratory infections may help inform novel therapeutic strategies. Here we review the clinical and experimental evidence that highlights the potential importance of iron in respiratory diseases and infections.
Collapse
Affiliation(s)
- Md Khadem Ali
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Rafia Karim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Ali Shahandeh
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Firouz Abbasian
- Global Centre for Environmental Remediation, Faculty of Science, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | | | - Daniel Johnstone
- Bosch Institute and Discipline of Physiology, The University of Sydney, Sydney NSW 2000, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
15
|
Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105:68-78. [PMID: 27780750 PMCID: PMC5401654 DOI: 10.1016/j.freeradbiomed.2016.10.489] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for most life forms including the majority of resident bacteria of the microbiota and their mammalian hosts. Bacteria have evolved numerous mechanisms to competitively acquire iron within host environments, such as the secretion of small molecules known as siderophores that can solubilize iron for bacterial use. However, siderophore biosynthesis and acquisition is not a capability equally harbored by all resident bacteria. Moreover, the structural diversity of siderophores creates variability in the susceptibility to host mechanisms that serve to counteract siderophore-mediated iron acquisition and limit bacterial growth. As a result, the differential capabilities to acquire iron among members of a complex microbial community carry important implications for the growth and function of resident bacteria. Siderophores can also directly influence host function by modulating cellular iron homeostasis, further providing a mechanism by which resident bacteria may influence their local environment at the host-microbial interface. This review will explore the putative mechanisms by which siderophore production by resident bacteria in the intestines may influence microbial community dynamics and host-bacterial interactions with important implications for pathogen- and microbiota-driven diseases including infection, inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia. mBio 2016; 7:mBio.01397-16. [PMID: 27624128 PMCID: PMC5021805 DOI: 10.1128/mbio.01397-16] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae. Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood.
Collapse
|
17
|
Singh V, Yeoh BS, Chassaing B, Zhang B, Saha P, Xiao X, Awasthi D, Shashidharamurthy R, Dikshit M, Gewirtz A, Vijay-Kumar M. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2016; 2:482-498.e6. [PMID: 27458605 PMCID: PMC4957954 DOI: 10.1016/j.jcmgh.2016.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. METHODS Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. WT and Lcn2 knockout (Lcn2KO) mice were analyzed for gut bacterial load, composition by 16S rRNA gene pyrosequencing and, their colitogenic potential by co-housing with Il-10KO mice. Acute (dextran sodium sulfate) and chronic (IL-10R neutralization and T-cell adoptive transfer) colitis was induced in WT and Lcn2KO mice with or without antibiotics. RESULTS Lcn2 expression was dramatically induced upon inflammation and was dependent upon presence of a gut microbiota and MyD88 signaling. Use of bone-marrow chimeric mice revealed non-immune cells are the major contributors of circulating Lcn2. Lcn2KO mice exhibited elevated levels of entA-expressing gut bacteria burden and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2KO mice developed highly colitogenic T-cells and exhibited exacerbated colitis upon exposure to DSS or neutralization of IL-10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2KO mice, via cohousing, resulted in severe colitis in Il-10KO mice. CONCLUSION Lcn2 is a bacterially-induced, MyD88-dependent, protein that play an important role in gut homeostasis and a pivotal role upon challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Benyue Zhang
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Piu Saha
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Deepika Awasthi
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Andrew Gewirtz
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania,Correspondence Address correspondence to: Matam Vijay-Kumar, PhD, Department of Nutritional Sciences 222, Chandlee Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802. fax: (814) 863-6103.Department of Nutritional Sciences 222Chandlee LaboratoryThe Pennsylvania State UniversityUniversity ParkPennsylvania 16802
| |
Collapse
|
18
|
Nairz M, Schroll A, Haschka D, Dichtl S, Sonnweber T, Theurl I, Theurl M, Lindner E, Demetz E, Aßhoff M, Bellmann-Weiler R, Müller R, Gerner RR, Moschen AR, Baumgartner N, Moser PL, Talasz H, Tilg H, Fang FC, Weiss G. Lipocalin-2 ensures host defense against Salmonella Typhimurium by controlling macrophage iron homeostasis and immune response. Eur J Immunol 2015; 45:3073-86. [PMID: 26332507 DOI: 10.1002/eji.201545569] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/28/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023]
Abstract
Lipocalin-2 (Lcn2) is an innate immune peptide with pleiotropic effects. Lcn2 binds iron-laden bacterial siderophores, chemo-attracts neutrophils and has immunomodulatory and apoptosis-regulating effects. In this study, we show that upon infection with Salmonella enterica serovar Typhimurium, Lcn2 promotes iron export from Salmonella-infected macrophages, which reduces cellular iron content and enhances the generation of pro-inflammatory cytokines. Lcn2 represses IL-10 production while augmenting Nos2, TNF-α, and IL-6 expression. Lcn2(-/-) macrophages have elevated IL-10 levels as a consequence of increased iron content. The crucial role of Lcn-2/IL-10 interactions was further demonstrated by the greater ability of Lcn2(-/-) IL-10(-/-) macrophages and mice to control intracellular Salmonella proliferation in comparison to Lcn2(-/-) counterparts. Overexpression of the iron exporter ferroportin-1 in Lcn2(-/-) macrophages represses IL-10 and restores TNF-α and IL-6 production to the levels found in wild-type macrophages, so that killing and clearance of intracellular Salmonella is promoted. Our observations suggest that Lcn2 promotes host resistance to Salmonella Typhimurium infection by binding bacterial siderophores and suppressing IL-10 production, and that both functions are linked to its ability to shuttle iron from macrophages.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Milan Theurl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Ewald Lindner
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Malte Aßhoff
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Raphael Müller
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Nadja Baumgartner
- Department of Internal Medicine II, Gastroenterology and Hepatology, Medical University of Innsbruck, Austria
| | - Patrizia L Moser
- Department of Pathology, Medical University of Innsbruck, Austria
| | - Heribert Talasz
- Biocenter, Division of Clinical Biochemistry, Medical University of Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Ferric C Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, USA
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
19
|
Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect Immun 2014; 82:3826-36. [PMID: 24980968 DOI: 10.1128/iai.01849-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is essential for many cellular processes and is required by bacteria for replication. To acquire iron from the host, pathogenic Gram-negative bacteria secrete siderophores, including enterobactin (Ent). However, Ent is bound by the host protein lipocalin 2 (Lcn2), preventing bacterial reuptake of aferric or ferric Ent. Furthermore, the combination of Ent and Lcn2 (Ent+Lcn2) leads to enhanced secretion of interleukin-8 (IL-8) compared to that induced by either stimulus alone. Modified or structurally distinct siderophores, including yersiniabactin (Ybt) and glycosylated Ent (GlyEnt, or salmochelin), deliver iron to bacteria despite the presence of Lcn2. We hypothesized that the robust immune response to Ent and Lcn2 requires iron chelation rather than the Ent+Lcn2 complex itself and also can be stimulated by Lcn2-evasive siderophores. To test this hypothesis, cultured respiratory epithelial cells were stimulated with combinations of purified siderophores and Lcn2 and analyzed by gene expression microarrays, quantitative PCR, and cytokine immunoassays. Ent caused HIF-1α protein stabilization, induced the expression of genes regulated by hypoxia-inducible factor 1α (HIF-1α), and repressed genes involved in cell cycle and DNA replication, whereas Lcn2 induced expression of proinflammatory cytokines. Iron chelation by excess Ent or Ybt significantly increased Lcn2-induced secretion of IL-8, IL-6, and CCL20. Stabilization of HIF-1α was sufficient to enhance Lcn2-induced IL-6 secretion. These data indicate that respiratory epithelial cells can respond to bacterial siderophores that evade or overwhelm Lcn2 binding by increasing proinflammatory cytokine production.
Collapse
|
20
|
Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C, Deng R, Zhang Q, Singer E, Klose AD, Shen TH, Francis KP, Ray S, Vijayakumar S, Seward S, Bovino ME, Xu K, Takabe Y, Amaral FE, Mohan S, Wax R, Corbin K, Sanna-Cherchi S, Mori K, Johnson L, Nickolas T, D'Agati V, Lin CS, Qiu A, Al-Awqati Q, Ratner AJ, Barasch J. α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014; 124:2963-76. [PMID: 24937428 DOI: 10.1172/jci71630] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.
Collapse
|
21
|
Warszawska JM, Gawish R, Sharif O, Sigel S, Doninger B, Lakovits K, Mesteri I, Nairz M, Boon L, Spiel A, Fuhrmann V, Strobl B, Müller M, Schenk P, Weiss G, Knapp S. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J Clin Invest 2013; 123:3363-72. [PMID: 23863624 DOI: 10.1172/jci67911] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/02/2013] [Indexed: 11/17/2022] Open
Abstract
Macrophages play a key role in responding to pathogens and initiate an inflammatory response to combat microbe multiplication. Deactivation of macrophages facilitates resolution of the inflammatory response. Deactivated macrophages are characterized by an immunosuppressive phenotype, but the lack of unique markers that can reliably identify these cells explains the poorly defined biological role of this macrophage subset. We identified lipocalin 2 (LCN2) as both a marker of deactivated macrophages and a macrophage deactivator. We show that LCN2 attenuated the early inflammatory response and impaired bacterial clearance, leading to impaired survival of mice suffering from pneumococcal pneumonia. LCN2 induced IL-10 formation by macrophages, skewing macrophage polarization in a STAT3-dependent manner. Pulmonary LCN2 levels were tremendously elevated during bacterial pneumonia in humans, and high LCN2 levels were indicative of a detrimental outcome from pneumonia with Gram-positive bacteria. Our data emphasize the importance of macrophage deactivation for the outcome of pneumococcal infections and highlight the role of LCN2 and IL-10 as determinants of macrophage performance in the respiratory tract.
Collapse
|
22
|
Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P, Barasch J. NGAL-Siderocalin in kidney disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1451-8. [PMID: 22728330 DOI: 10.1016/j.bbamcr.2012.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/06/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022]
Abstract
Kidney damage induces the expression of a myriad of proteins in the serum and in the urine. The function of these proteins in the sequence of damage and repair is now being studied in genetic models and by novel imaging techniques. One of the most intensely expressed proteins is lipocalin2, also called NGAL or Siderocalin. While this protein has been best studied by clinical scientists, only a few labs study its underlying metabolism and function in tissue damage. Structure-function studies, imaging studies and clinical studies have revealed that NGAL-Siderocalin is an endogenous antimicrobial with iron scavenging activity. This review discusses the "iron problem" of kidney damage, the tight linkage between kidney damage and NGAL-Siderocalin expression and the potential roles that NGAL-Siderocalin may serve in the defense of the urogenital system. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Neal Paragas
- College of Physicians & Surgeons of Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
23
|
Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 2011; 79:3309-16. [PMID: 21576334 DOI: 10.1128/iai.05114-11] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Klebsiella pneumoniae is a pathogen of increasing concern because of multidrug resistance, especially due to K. pneumoniae carbapenemases (KPCs). K. pneumoniae must acquire iron to replicate, and it utilizes iron-scavenging siderophores, such as enterobactin (Ent). The innate immune protein lipocalin 2 (Lcn2) is able to specifically bind Ent and disrupt iron acquisition. To determine whether K. pneumoniae must produce Lcn2-resistant siderophores to cause disease, we examined siderophore production by clinical isolates (n = 129) from respiratory, urine, blood, and stool samples and by defined siderophore mutants through genotyping and liquid chromatography-mass spectrometry. Three categories of K. pneumoniae isolates were identified: enterobactin positive (Ent(+)) (81%), enterobactin and yersiniabactin positive (Ent(+) Ybt(+)) (17%), and enterobactin and salmochelin (glycosylated Ent) positive (Ent(+) gly-Ent(+)) with or without Ybt (2%). Ent(+) Ybt(+) strains were significantly overrepresented among respiratory tract isolates (P = 0.0068) and β-lactam-resistant isolates (P = 0.0019), including the epidemic KPC-producing clone multilocus sequence type 258 (ST258). In ex vivo growth assays, gly-Ent but not Ybt allowed evasion of Lcn2 in human serum, whereas siderophores were dispensable for growth in human urine. In a murine pneumonia model, an Ent(+) strain was an opportunistic pathogen that was completely inhibited by Lcn2 but caused severe, disseminated disease in Lcn2(-/-) mice. In contrast, an Ent(+) Ybt(+) strain was a frank respiratory pathogen, causing pneumonia despite Lcn2. However, Lcn2 retained partial protection against disseminated disease. In summary, Ybt is a virulence factor that is prevalent among KPC-producing K. pneumoniae isolates and promotes respiratory tract infections through evasion of Lcn2.
Collapse
|
24
|
Koczura R, Mokracka J, Krzymińska S, Kaznowski A. Virulence properties and integron-associated antibiotic resistance of Klebsiella mobilis strains isolated from clinical specimens. J Med Microbiol 2011; 60:281-288. [DOI: 10.1099/jmm.0.024059-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study examined Klebsiella mobilis isolates cultured from clinical specimens for virulence-associated properties and antibiotic resistance. The strains produced a number of siderophores, including enterobactin, aerobactin and yersiniabactin. All isolates were able to adhere to and invade epithelial cells. They had cytotoxic activity, which caused destruction of human laryngeal epithelial HEp-2 cells and evoked lysis of murine macrophage J774 cells. Analyses of HEp-2 and J774 cellular morphology and DNA fragmentation in the cells showed features typical of cells undergoing apoptosis. Some K. mobilis strains harboured class 1 integrons carrying the aadA1 gene encoding an aminoglycoside adenyltransferase.
Collapse
Affiliation(s)
- Ryszard Koczura
- Department of Microbiology, Faculty of Biology, A. Mickiewicz University, Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, A. Mickiewicz University, Poznań, Poland
| | - Sylwia Krzymińska
- Department of Microbiology, Faculty of Biology, A. Mickiewicz University, Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Faculty of Biology, A. Mickiewicz University, Poznań, Poland
| |
Collapse
|
25
|
Caza M, Lépine F, Dozois CM. Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli. Mol Microbiol 2011; 80:266-82. [PMID: 21306443 DOI: 10.1111/j.1365-2958.2011.07570.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) use siderophores to sequester iron during infection. Enterobactin and salmochelins are catecholate siderophores produced by some ExPEC strains and other pathogenic enterobacteria. Siderophore export and synthesis mutants of avian ExPEC strain χ7122 were tested in a chicken infection model. In single-strain infections, siderophore-negative (ΔentDΔiuc), ΔentS and ΔentSΔiroC export mutants were attenuated in tissues and blood, whereas the ΔiroC export mutant was only attenuated in blood. Interestingly, the ΔentD mutant, producing only aerobactin, retained full virulence, and loss of entD in the ΔentSΔiroC mutant restored virulence. LC-MS/MS quantification of siderophores in export mutants demonstrated that loss of entS impaired enterobactin and mono-glucosylated enterobactin secretion, whereas loss of iroC impaired di- and tri-glucosylated enterobactin secretion. Loss of entS and/or iroC resulted in intracellular accumulation and increased secretion of siderophore monomers. Catecholate siderophore export mutants also demonstrated decreased fitness in a co-challenge infection model. By contrast, catecholate siderophore synthesis mutants (ΔentD and ΔiroB) competed as well as the wild-type strain. Results establish that EntS and IroC mediate specific export of catecholate siderophores and the role of these exporters for ExPEC virulence is contingent on enterobactin synthesis, which is not required when other siderophores like aerobactin are functional.
Collapse
Affiliation(s)
- Mélissa Caza
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | | |
Collapse
|
26
|
Bachman MA, Miller VL, Weiser JN. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog 2009; 5:e1000622. [PMID: 19834550 PMCID: PMC2757716 DOI: 10.1371/journal.ppat.1000622] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 09/17/2009] [Indexed: 11/24/2022] Open
Abstract
Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriaceae family such as Klebsiella pneumoniae produce additional siderophores such as yersiniabactin (Ybt) and contain the iroA locus encoding an Ent glycosylase that prevents Lcn2 binding. Whereas the ability of Lcn2 to sequester iron is well described, the ability of Lcn2 to induce inflammation during infection is unknown. To study each potential effect of Lcn2 on colonization, we exploited K. pneumoniae mutants that are predicted to be susceptible to Lcn2-mediated iron sequestration (iroA ybtS mutant) or inflammation (iroA mutant), or to not interact with Lcn2 (entB mutant). During murine nasal colonization, the iroA ybtS double mutant was inhibited in an Lcn2-dependent manner, indicating that the iroA locus protects against Lcn2-mediated growth inhibition. Since the iroA single mutant was not inhibited, production of Ybt circumvents the iron sequestration effect of Lcn2 binding to Ent. However, colonization with the iroA mutant induced an increased influx of neutrophils compared to the entB mutant. This enhanced neutrophil response to Ent-producing K. pneumoniae was Lcn2-dependent. These findings suggest that Lcn2 has both pro-inflammatory and iron-sequestering effects along the respiratory mucosa in response to bacterial Ent. Therefore, Lcn2 may represent a novel mechanism of sensing microbial metabolism to modulate the host response appropriately. Bacterial pathogens such as Klebsiella pneumoniae require iron and use secreted molecules called siderophores to strip iron from mammalian proteins. When bacteria colonize the upper respiratory tract, the mucosa secretes the protein lipocalin 2 (Lcn2) that binds to the siderophore enterobactin (Ent) and disrupts bacterial iron acquisition. In addition, Lcn2 bound to Ent stimulates release of the neutrophil-recruitment signal IL-8 from cultured respiratory cells. Some pathogens avoid Lcn2 binding by attaching glucose to Ent (to make Gly-Ent) or by making alternative siderophores. To determine the effect of Lcn2 on bacterial colonization, we colonized mice that express or lack Lcn2 with K. pneumoniae mutants that express or lack Ent, Gly-Ent and the alternative siderophore Yersiniabactin (Ybt). Our results indicate that mucosal Lcn2 inhibits colonization through iron sequestration and increases the influx of neutrophils in response to K. pneumoniae producing Ent. Therefore, Lcn2 acts as a barrier to colonization that pathogens must overcome to persist in the upper respiratory tract.
Collapse
Affiliation(s)
- Michael A. Bachman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Virginia L. Miller
- Department of Genetics, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect Immun 2008; 76:3539-49. [PMID: 18541653 DOI: 10.1128/iai.00455-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains are a subset of extraintestinal pathogenic E. coli (ExPEC) strains associated with respiratory infections and septicemia in poultry. The iroBCDEN genes encode the salmochelin siderophore system present in Salmonella enterica and some ExPEC strains. Roles of the iro genes for virulence in chickens and production of salmochelins were assessed by introducing plasmids carrying different combinations of iro genes into an attenuated salmochelin- and aerobactin-negative mutant of O78 strain chi7122. Complementation with the iroBCDEN genes resulted in a regaining of virulence, whereas the absence of iroC, iroDE, or iroN abrogated restoration of virulence. The iroE gene was not required for virulence, since introduction of iroBCDN restored the capacity to cause lesions and colonize extraintestinal tissues. Prevalence studies indicated that iro sequences were associated with virulent APEC strains. Liquid chromatography-mass spectrometry analysis of supernatants of APEC chi7122 and the complemented mutants indicated that (i) for chi7122, salmochelins comprised 14 to 27% of the siderophores present in iron-limited medium or infected tissues; (ii) complementation of the mutant with the iro locus increased levels of glucosylated dimers (S1 and S5) and monomer (SX) compared to APEC strain chi7122; (iii) the iroDE genes were important for generation of S1, S5, and SX; (iv) iroC was required for export of salmochelin trimers and dimers; and (v) iroB was required for generation of salmochelins. Overall, efficient glucosylation (IroB), transport (IroC and IroN), and processing (IroD and IroE) of salmochelins are required for APEC virulence, although IroE appears to serve an ancillary role.
Collapse
|