1
|
Mandler MD, Maligireddy SS, Guiblet WM, Fitzsimmons CM, McDonald KS, Warrell DL, Batista PJ. The modification landscape of Pseudomonas aeruginosa tRNAs. RNA (NEW YORK, N.Y.) 2024; 30:1025-1040. [PMID: 38684317 PMCID: PMC11251520 DOI: 10.1261/rna.080004.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here, we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in Escherichia coli, which enabled us to identify similar modifications in P. aeruginosa Our analysis supports a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA-modifying enzymes, some of which play roles in determining virulence and pathogenicity.
Collapse
Affiliation(s)
- Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Siddhardha S Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wilfried M Guiblet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kayla S McDonald
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Delayna L Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
2
|
Mandler MD, Maligireddy SS, Guiblet WM, Fitzsimmons CM, McDonald KS, Warrell DL, Batista PJ. The modification landscape of P. aeruginosa tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581370. [PMID: 38529508 PMCID: PMC10962704 DOI: 10.1101/2024.02.21.581370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in E. coli, which enabled us to identify similar modifications in P. aeruginosa. Our analysis revealed a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli. The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA modifying enzymes, some of which play roles in determining virulence and pathogenicity.
Collapse
Affiliation(s)
- Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Siddhardha S Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Wilfried M Guiblet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kayla S McDonald
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Delayna L Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institues of Health
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
3
|
Srimahaeak T, Thongdee N, Chittrakanwong J, Atichartpongkul S, Jaroensuk J, Phatinuwat K, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Mongkolsuk S, Fuangthong M. Pseudomonas aeruginosa GidA modulates the expression of catalases at the posttranscriptional level and plays a role in virulence. Front Microbiol 2023; 13:1079710. [PMID: 36726575 PMCID: PMC9884967 DOI: 10.3389/fmicb.2022.1079710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa gidA, which encodes a putative tRNA-modifying enzyme, is associated with a variety of virulence phenotypes. Here, we demonstrated that P. aeruginosa gidA is responsible for the modifications of uridine in tRNAs in vivo. Loss of gidA was found to have no impact on the mRNA levels of katA and katB, but it decreased KatA and KatB protein levels, resulting in decreased total catalase activity and a hydrogen peroxide-sensitive phenotype. Furthermore, gidA was found to affect flagella-mediated motility and biofilm formation; and it was required for the full virulence of P. aeruginosa in both Caenorhabditis elegans and macrophage models. Together, these observations reveal the posttranscriptional impact of gidA on the oxidative stress response, highlight the complexity of catalase gene expression regulation, and further support the involvement of gidA in the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Thanyaporn Srimahaeak
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, Thailand
| | - Narumon Thongdee
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | | | - Juthamas Jaroensuk
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Skorn Mongkolsuk
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand,*Correspondence: Mayuree Fuangthong, ✉
| |
Collapse
|
4
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Kouvela A, Zaravinos A, Stamatopoulou V. Adaptor Molecules Epitranscriptome Reprograms Bacterial Pathogenicity. Int J Mol Sci 2021; 22:8409. [PMID: 34445114 PMCID: PMC8395126 DOI: 10.3390/ijms22168409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The strong decoration of tRNAs with post-transcriptional modifications provides an unprecedented adaptability of this class of non-coding RNAs leading to the regulation of bacterial growth and pathogenicity. Accumulating data indicate that tRNA post-transcriptional modifications possess a central role in both the formation of bacterial cell wall and the modulation of transcription and translation fidelity, but also in the expression of virulence factors. Evolutionary conserved modifications in tRNA nucleosides ensure the proper folding and stability redounding to a totally functional molecule. However, environmental factors including stress conditions can cause various alterations in tRNA modifications, disturbing the pathogen homeostasis. Post-transcriptional modifications adjacent to the anticodon stem-loop, for instance, have been tightly linked to bacterial infectivity. Currently, advances in high throughput methodologies have facilitated the identification and functional investigation of such tRNA modifications offering a broader pool of putative alternative molecular targets and therapeutic avenues against bacterial infections. Herein, we focus on tRNA epitranscriptome shaping regarding modifications with a key role in bacterial infectivity including opportunistic pathogens of the human microbiome.
Collapse
Affiliation(s)
- Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | | |
Collapse
|
6
|
Kunze M, Steiner T, Chen F, Huber C, Rydzewski K, Stämmler M, Heuner K, Eisenreich W. Metabolic adaption of Legionella pneumophila during intracellular growth in Acanthamoeba castellanii. Int J Med Microbiol 2021; 311:151504. [PMID: 33906075 DOI: 10.1016/j.ijmm.2021.151504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
The metabolism of Legionella pneumophila strain Paris was elucidated during different time intervals of growth within its natural host Acanthamoeba castellanii. For this purpose, the amoebae were supplied after bacterial infection (t =0 h) with 11 mM [U-13C6]glucose or 3 mM [U-13C3]serine, respectively, during 0-17 h, 17-25 h, or 25-27 h of incubation. At the end of these time intervals, bacterial and amoebal fractions were separated. Each of these fractions was hydrolyzed under acidic conditions. 13C-Enrichments and isotopologue distributions of resulting amino acids and 3-hydroxybutyrate were determined by gas chromatography - mass spectrometry. Comparative analysis of the labelling patterns revealed the substrate preferences, metabolic pathways, and relative carbon fluxes of the intracellular bacteria and their amoebal host during the time course of the infection cycle. Generally, the bacterial infection increased the usage of exogenous glucose via glycolysis by A. castellanii. In contrast, carbon fluxes via the amoebal citrate cycle were not affected. During the whole infection cycle, intracellular L. pneumophila incorporated amino acids from their host into the bacterial proteins. However, partial bacterial de novo biosynthesis from exogenous 13C-Ser and, at minor rates, from 13C-glucose could be shown for bacterial Ala, Asp, Glu, and Gly. More specifically, the catabolic usage of Ser increased during the post-exponential phase of intracellular growth, whereas glucose was utilized by the bacteria throughout the infection cycle and not only late during infection as assumed on the basis of earlier in vitro experiments. The early usage of 13C-glucose by the intracellular bacteria suggests that glucose availability could serve as a trigger for replication of L. pneumophila inside the vacuoles of host cells.
Collapse
Affiliation(s)
- Mareike Kunze
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Thomas Steiner
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fan Chen
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Claudia Huber
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Kerstin Rydzewski
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| | - Maren Stämmler
- Proteomics and Spectroscopy, ZBS 6, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group: Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany.
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
7
|
Edwards AM, Addo MA, Dos Santos PC. Extracurricular Functions of tRNA Modifications in Microorganisms. Genes (Basel) 2020; 11:genes11080907. [PMID: 32784710 PMCID: PMC7466049 DOI: 10.3390/genes11080907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands.
Collapse
|
8
|
Charbonneau ARL, Taylor E, Mitchell CJ, Robinson C, Cain AK, Leigh JA, Maskell DJ, Waller AS. Identification of genes required for the fitness of Streptococcus equi subsp. equi in whole equine blood and hydrogen peroxide. Microb Genom 2020; 6:e000362. [PMID: 32228801 PMCID: PMC7276704 DOI: 10.1099/mgen.0.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. Streptococcus equi subspecies equi is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of S. equi in whole equine blood or in the presence of H2O2 to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in S. equi, following incubation in whole blood and in the presence of H2O2, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of S. equi in whole blood or H2O2, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for S. equi to resist aspects of the immune response in vitro, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.
Collapse
Affiliation(s)
- Amelia R. L. Charbonneau
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Emma Taylor
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Carl Robinson
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
| | - Amy K. Cain
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - James A. Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- University of Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Bernard PE, Kachroo P, Eraso JM, Zhu L, Madry JE, Linson SE, Ojeda Saavedra M, Cantu C, Musser JM, Olsen RJ. Polymorphisms in Regulator of Cov Contribute to the Molecular Pathogenesis of Serotype M28 Group A Streptococcus. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2002-2018. [PMID: 31369755 PMCID: PMC6892226 DOI: 10.1016/j.ajpath.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica E Madry
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Sarah E Linson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Concepcion Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
10
|
The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in Streptococcus pyogenes. Infect Immun 2019; 87:IAI.00147-19. [PMID: 30936159 DOI: 10.1128/iai.00147-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. The cellular level of c-di-AMP in Streptococcus pyogenes is predicted to be controlled by the synthase DacA and two putative phosphodiesterases, GdpP and Pde2. To investigate the role of c-di-AMP in S. pyogenes, we generated null mutants in each of these proteins by gene deletion. Unlike those in other Gram-positive pathogens such as Staphylococcus aureus and Listeria monocytogenes, DacA in S. pyogenes was not essential for growth in rich media. The DacA null mutant presented a growth defect that manifested through an increased lag time, produced no detectable biofilm, and displayed increased susceptibility toward environmental stressors such as high salt, low pH, reactive oxygen radicals, and cell wall-targeting antibiotics, suggesting that c-di-AMP plays significant roles in crucial cellular processes involved in stress management. The Pde2 null mutant exhibited a lower growth rate and increased biofilm formation, and interestingly, these phenotypes were distinct from those of the null mutant of GdpP, suggesting that Pde2 and GdpP play distinctive roles in c-di-AMP signaling. DacA and Pde2 were critical to the production of the virulence factor SpeB and to the overall virulence of S. pyogenes, as both DacA and Pde2 null mutants were highly attenuated in a mouse model of subcutaneous infection. Collectively, these results show that c-di-AMP is an important global regulator and is required for a proper response to stress and for virulence in S. pyogenes, suggesting that its signaling pathway could be an attractive antivirulence drug target against S. pyogenes infections.
Collapse
|
11
|
Cho KH, Port GC, Caparon M. Genetics of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0056-2018. [PMID: 30825299 PMCID: PMC11590684 DOI: 10.1128/microbiolspec.gpp3-0056-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus) is remarkable in terms of the large number of diseases it can cause in humans and for the large number of streptococcal factors that have been identified as potential virulence determinants for these diseases. A challenge is to link the function of potential virulence factors to the pathogenesis of specific diseases. An exciting advance has been the development of sophisticated genetic systems for the construction of loss-of-function, conditional, hypomorphic, and gain-of-function mutations in targeted S. pyogenes genes that can be used to test specific hypotheses regarding these genes in pathogenesis. This will facilitate a mechanistic understanding of how a specific gene function contributes to the pathogenesis of each streptococcal disease. Since the first S. pyogenes genome was completed in 2001, hundreds of complete and draft genome sequences have been deposited. We now know that the average S. pyogenes genome is approximately 1.85 Mb and encodes ∼1,800 genes and that the function of most of those genes in pathogenesis remains to be elucidated. However, advances in the development of a variety of genetic tools for manipulation of the S. pyogenes genome now provide a platform for the interrogation of gene/phenotype relationships for individual S. pyogenes diseases, which may lead to the development of more sophisticated and targeted therapeutic interventions. This article presents an overview of these genetic tools, including the methods of genetic modification and their applications.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809
| | - Gary C Port
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Current address: Elanco Animal Health, Natural Products Fermentation, Eli Lilly and Company, Indianapolis, IN 46285
| |
Collapse
|
12
|
Paluscio E, Watson ME, Caparon MG. CcpA Coordinates Growth/Damage Balance for Streptococcus pyogenes Pathogenesis. Sci Rep 2018; 8:14254. [PMID: 30250043 PMCID: PMC6155242 DOI: 10.1038/s41598-018-32558-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
To achieve maximum fitness, pathogens must balance growth with tissue damage, coordinating metabolism and virulence factor expression. In the gram-positive bacterium Streptococcus pyogenes, the DNA-binding transcriptional regulator Carbon Catabolite Protein A (CcpA) is a master regulator of both carbon catabolite repression and virulence, suggesting it coordinates growth/damage balance. To examine this, two murine models were used to compare the virulence of a mutant lacking CcpA with a mutant expressing CcpA locked into its high-affinity DNA-binding conformation (CcpAT307Y). In models of acute soft tissue infection and of long-term asymptomatic mucosal colonization, both CcpA mutants displayed altered virulence, albeit with distinct growth/damage profiles. Loss of CcpA resulted in a diminished ability to grow in tissue, leading to less damage and early clearance. In contrast, constitutive DNA-binding activity uncoupled the growth/damage relationship, such that high tissue burdens and extended time of carriage were achieved, despite reduced tissue damage. These data demonstrate that growth/damage balance can be actively controlled by the pathogen and implicate CcpA as a master regulator of this relationship. This suggests a model where the topology of the S. pyogenes virulence network has evolved to couple carbon source selection with growth/damage balance, which may differentially influence pathogenesis at distinct tissues.
Collapse
Affiliation(s)
- Elyse Paluscio
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, United States
| | - Michael E Watson
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109-5624, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States.
| |
Collapse
|
13
|
Romsang A, Duang-Nkern J, Khemsom K, Wongsaroj L, Saninjuk K, Fuangthong M, Vattanaviboon P, Mongkolsuk S. Pseudomonas aeruginosa ttcA encoding tRNA-thiolating protein requires an iron-sulfur cluster to participate in hydrogen peroxide-mediated stress protection and pathogenicity. Sci Rep 2018; 8:11882. [PMID: 30089777 PMCID: PMC6082896 DOI: 10.1038/s41598-018-30368-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023] Open
Abstract
During the translation process, transfer RNA (tRNA) carries amino acids to ribosomes for protein synthesis. Each codon of mRNA is recognized by a specific tRNA, and enzyme-catalysed modifications to tRNA regulate translation. TtcA is a unique tRNA-thiolating enzyme that requires an iron-sulfur ([Fe-S]) cluster to catalyse thiolation of tRNA. In this study, the physiological functions of a putative ttcA in Pseudomonas aeruginosa, an opportunistic human pathogen that causes serious problems in hospitals, were characterized. A P. aeruginosa ttcA-deleted mutant was constructed, and mutant cells were rendered hypersensitive to oxidative stress, such as hydrogen peroxide (H2O2) treatment. Catalase activity was lower in the ttcA mutant, suggesting that this gene plays a role in protecting against oxidative stress. Moreover, the ttcA mutant demonstrated attenuated virulence in a Drosophila melanogaster host model. Site-directed mutagenesis analysis revealed that the conserved cysteine motifs involved in [Fe-S] cluster ligation were required for TtcA function. Furthermore, ttcA expression increased upon H2O2 exposure, implying that enzyme levels are induced under stress conditions. Overall, the data suggest that P. aeruginosa ttcA plays a critical role in protecting against oxidative stress via catalase activity and is required for successful bacterial infection of the host.
Collapse
Affiliation(s)
- Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Khwannarin Khemsom
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Lampet Wongsaroj
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kritsakorn Saninjuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mayuree Fuangthong
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
14
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
15
|
Fislage M, Wauters L, Versées W. Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers 2017; 105:568-79. [PMID: 26832457 DOI: 10.1002/bip.22813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 01/30/2023]
Abstract
MnmE is a multi-domain GTPase that is conserved from bacteria to man. Together with its partner protein MnmG it is involved in the synthesis of a tRNA wobble uridine modification. The orthologues of these proteins in eukaryotes are targeted to mitochondria and mutations in the encoding genes are associated with severe mitochondrial diseases. While classical small GTP-binding proteins are regulated via auxiliary GEFs and GAPs, the GTPase activity of MnmE is activated via potassium-dependent homodimerization of its G domains. In this review we focus on the catalytic mechanism of GTP hydrolysis by MnmE and the large scale conformational changes that are triggered throughout the GTPase cycle. We also discuss how these conformational changes might be used to drive and tune the complex tRNA modification reaction. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 568-579, 2016.
Collapse
Affiliation(s)
- Marcus Fislage
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032.,Howard Hughes Medical Institute, Columbia University, New York, NY, 10032
| | - Lina Wauters
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, Netherlands.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussel, 1050, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, Brussel, 1050, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussel, 1050, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, Brussel, 1050, Belgium
| |
Collapse
|
16
|
Zhou X, Yan Q, Wang N. Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri. MOLECULAR PLANT PATHOLOGY 2017; 18:249-262. [PMID: 26972728 PMCID: PMC6638223 DOI: 10.1111/mpp.12397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/08/2016] [Accepted: 03/07/2016] [Indexed: 05/14/2023]
Abstract
Xanthomonas contains a large group of plant-associated species, many of which cause severe diseases on important crops worldwide. Six gluconate-operon repressor (GntR) family transcriptional regulators are predicted in Xanthomonas, one of which, belonging to the YtrA subfamily, plays a prominent role in bacterial virulence. However, the direct targets and comprehensive regulatory profile of YtrA remain unknown. Here, we performed microarray and high-resolution chromatin immunoprecipitation-exonuclease (ChIP-exo) experiments to identify YtrA direct targets and its DNA binding motif in X. citri ssp. citri (Xac), the causal agent of citrus canker. Integrative microarray and ChIP-exo data analysis revealed that YtrA directly regulates three operons by binding to a palindromic motif GGTG-N16 -CACC at the promoter region. A similar palindromic motif and YtrA homologues were also identified in many other bacteria, including Stenotrophomonas, Pseudoxanthomonas and Frateuria, indicating a widespread phenomenon. Deletion of ytrA in Xac abolishes bacterial virulence and induction of the hypersensitive response (HR). We found that YtrA regulates the expression of hrp/hrc genes encoding the bacterial type III secretion system (T3SS) and controls multiple biological processes, including motility and adhesion, oxidative stress, extracellular enzyme production and iron uptake. YtrA represses the expression of its direct targets in artificial medium or in planta. Importantly, over-expression of yro3, one of the YtrA directly regulated operons which contains trmL and XAC0231, induced weaker canker symptoms and down-regulation of hrp/hrc gene expression, suggesting a negative regulation in Xac virulence and T3SS. Our study has significantly advanced the mechanistic understanding of YtrA regulation and its contribution to bacterial virulence.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Citrus Research and Education CenterDepartment of Microbiology and Cell Science, IFAS, University of Florida700 Experiment Station RoadLake AlfredFL33850USA
| | - Qing Yan
- Citrus Research and Education CenterDepartment of Microbiology and Cell Science, IFAS, University of Florida700 Experiment Station RoadLake AlfredFL33850USA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell Science, IFAS, University of Florida700 Experiment Station RoadLake AlfredFL33850USA
| |
Collapse
|
17
|
The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target. Sci Rep 2016; 6:29677. [PMID: 27404808 PMCID: PMC4939601 DOI: 10.1038/srep29677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactive in both streptococci, indicating a highly specific interaction with a conserved cellular target. S. mutans requires the eukaryotic-like serine/threonine protein kinase PknB and the cysteine metabolism regulator CysR for susceptibility to Carolacton, whereas their homologues are not needed in S. pneumoniae, suggesting a specific function for S. mutans biofilms only. A bactericidal effect of Carolacton was observed for S. pneumoniae TIGR4, with a reduction of cell numbers by 3 log units. The clinical pneumonia isolate Sp49 showed immediate growth arrest and cell lysis, suggesting a bacteriolytic effect of Carolacton. Carolacton treatment caused a reduction in membrane potential, but not membrane integrity, and transcriptome analysis revealed compensatory reactions of the cell. Our data show that Carolacton might have potential for treating pneumococcal infections.
Collapse
|
18
|
Marbaniang CN, Vogel J. Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 2016; 30:50-57. [PMID: 26803287 DOI: 10.1016/j.mib.2016.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 01/28/2023]
Abstract
RNA modifications are known to abound in stable tRNA and rRNA, where they cluster around functionally important regions. However, RNA-seq based techniques profiling entire transcriptomes are now uncovering an abundance of modified ribonucleotides in mRNAs and noncoding RNAs, too. While most of the recent progress in understanding the regulatory influence of these new RNA modifications stems from eukaryotes, there is growing evidence in bacteria for modified nucleotides beyond the stable RNA species, including modifications of small regulatory RNAs. Given their small genome size, good genetic tractability, and ample knowledge of modification enzymes, bacteria offer excellent model systems to decipher cellular functions of RNA modifications in many diverse physiological contexts. This review highlights how new global approaches combining classic analysis with new sequencing techniques may usher in an era of bacterial epitranscriptomics.
Collapse
Affiliation(s)
- Carmelita Nora Marbaniang
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.
| |
Collapse
|
19
|
Shippy DC, Fadl AA. RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microb Pathog 2015; 89:100-7. [PMID: 26427881 DOI: 10.1016/j.micpath.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
20
|
Busschaert P, Frans I, Crauwels S, Zhu B, Willems K, Bossier P, Michiels C, Verstrepen K, Lievens B, Rediers H. Comparative genome sequencing to assess the genetic diversity and virulence attributes of 15 Vibrio anguillarum isolates. JOURNAL OF FISH DISEASES 2015; 38:795-807. [PMID: 25073650 DOI: 10.1111/jfd.12290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Vibrio anguillarum is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. However, the diversity and virulence mechanisms of this pathogen are still insufficiently known. In this study, we aimed to increase our understanding of V. anguillarum diversity and virulence through comparative genome analysis of 15 V. anguillarum strains, obtained from different hosts or non-host niches and geographical regions, among which 10 and 5 strains were found to be virulent and avirulent, respectively, against sea bass larvae. First, the 15 draft genomes were annotated and screened for putative virulence factors, including genes encoding iron uptake systems, transport systems and non-ribosomal peptide synthetases. Second, comparative genome analysis was performed, focusing on single nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). Five V. anguillarum strains showed a remarkably high nucleotide identity. However, these strains comprise both virulent and avirulent strains towards sea bass larvae, suggesting that differences in virulence may be caused by subtle nucleotide variations. Clearly, the draft genome sequence of these 15 strains represents a starting point for further genetic research of this economically important fish pathogen.
Collapse
Affiliation(s)
- P Busschaert
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - I Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - S Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - B Zhu
- VIB Lab for Systems Biology & Centre of Microbial and Plant Genetics (CMPG), Lab for Genetics and Genomics, M2S, KU Leuven, Leuven, Belgium
| | - K Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - P Bossier
- Laboratory of Aquaculture & Artemia Reference Centre, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Michiels
- Centre for Food and Microbial Technology, M2S, KU Leuven, Leuven, Belgium
| | - K Verstrepen
- VIB Lab for Systems Biology & Centre of Microbial and Plant Genetics (CMPG), Lab for Genetics and Genomics, M2S, KU Leuven, Leuven, Belgium
| | - B Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - H Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| |
Collapse
|
21
|
Streptococcus pyogenes malate degradation pathway links pH regulation and virulence. Infect Immun 2015; 83:1162-71. [PMID: 25583521 DOI: 10.1128/iai.02814-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of Streptococcus pyogenes to infect different niches within its human host most likely relies on its ability to utilize alternative carbon sources. In examining this question, we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme (ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). Analysis of transcription indicated that expression of maeP and maeE is induced by both malate and low pH, and induction in response to both cues is dependent on the MaeK sensor kinase. Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme (PtsI), as a PtsI(-) mutant fails to express the ME genes and is unable to utilize malate. Virulence of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP(-), MaeK(-), and MaeR(-) mutants were attenuated for virulence, whereas a MaeE(-) mutant showed enhanced virulence compared to that of the wild type. Taken together, these data show that ME contributes to S. pyogenes' carbon source repertory, that malate utilization is a highly regulated process, and that a single regulator controls ME expression in response to diverse signals. Furthermore, malate uptake and utilization contribute to the adaptive pH response, and ME can influence the outcome of infection.
Collapse
|
22
|
Petersen LM, Tisa LS. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence. J Bacteriol 2014; 196:3923-36. [PMID: 25182493 PMCID: PMC4248818 DOI: 10.1128/jb.01908-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/26/2014] [Indexed: 01/19/2023] Open
Abstract
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex.
Collapse
Affiliation(s)
- Lauren M Petersen
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
23
|
tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Int J Mol Sci 2014; 15:18267-80. [PMID: 25310651 PMCID: PMC4227215 DOI: 10.3390/ijms151018267] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 01/02/2023] Open
Abstract
Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modification of bacterial tRNAs, and these enzymes may complex with one another or interact individually with the tRNA. Approximately, 100 tRNA modification enzymes have been identified with glucose-inhibited division (GidA) protein and MnmE being two of the enzymes studied. In Escherichia coli and Salmonella, GidA and MnmE bind together to form a functional complex responsible for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U34) of tRNAs. Studies have implicated this pathway in a major pathogenic regulatory mechanism as deletion of gidA and/or mnmE has attenuated several bacterial pathogens like Salmonella enterica serovar Typhimurium, Pseudomonas syringae, Aeromonas hydrophila, and many others. In this review, we summarize the potential role of the GidA/MnmE tRNA modification pathway in bacterial virulence, interactions with the host, and potential therapeutic strategies resulting from a greater understanding of this regulatory mechanism.
Collapse
|
24
|
In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. mBio 2014; 5:e01075-14. [PMID: 25096872 PMCID: PMC4128348 DOI: 10.1128/mbio.01075-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.
Collapse
|
25
|
Streptococcus pyogenes polymyxin B-resistant mutants display enhanced ExPortal integrity. J Bacteriol 2014; 196:2563-77. [PMID: 24794568 DOI: 10.1128/jb.01596-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The ExPortal protein secretion organelle in Streptococcus pyogenes is an anionic phospholipid-containing membrane microdomain enriched in Sec translocons and postsecretion protein biogenesis factors. Polymyxin B binds to and disrupts ExPortal integrity, resulting in defective secretion of several toxins. To gain insight into factors that influence ExPortal organization, a genetic screen was conducted to select for spontaneous polymyxin B-resistant mutants displaying enhanced ExPortal integrity. Whole-genome resequencing of 25 resistant mutants revealed from one to four mutations per mutant genome clustered primarily within a core set of 10 gene groups. Construction of mutants with individual deletions or insertions demonstrated that 7 core genes confer resistance and enhanced ExPortal integrity through loss of function, while 3 were likely due to gain of function and/or combinatorial effects. Core resistance genes include a transcriptional regulator of lipid biosynthesis, several genes involved in nutrient acquisition, and a variety of genes involved in stress responses. Two members of the latter class also function as novel regulators of the secreted SpeB cysteine protease. Analysis of the most frequently isolated mutation, a single nucleotide deletion in a track of 9 consecutive adenine residues in pstS, encoding a component of a high-affinity Pi transporter, suggests that this sequence functions as a molecular switch to facilitate stress adaptation. Together, these data suggest the existence of a membrane stress response that promotes enhanced ExPortal integrity and resistance to cationic antimicrobial peptides.
Collapse
|
26
|
Acid stress management by Cronobacter sakazakii. Int J Food Microbiol 2014; 178:21-8. [DOI: 10.1016/j.ijfoodmicro.2014.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/09/2014] [Accepted: 03/02/2014] [Indexed: 11/24/2022]
|
27
|
Fislage M, Brosens E, Deyaert E, Spilotros A, Pardon E, Loris R, Steyaert J, Garcia-Pino A, Versées W. SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization. Nucleic Acids Res 2014; 42:5978-92. [PMID: 24634441 PMCID: PMC4027165 DOI: 10.1093/nar/gku213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 11/12/2022] Open
Abstract
Transfer ribonucleic acid (tRNA) modifications, especially at the wobble position, are crucial for proper and efficient protein translation. MnmE and MnmG form a protein complex that is implicated in the carboxymethylaminomethyl modification of wobble uridine (cmnm(5)U34) of certain tRNAs. MnmE is a G protein activated by dimerization (GAD), and active guanosine-5'-triphosphate (GTP) hydrolysis is required for the tRNA modification to occur. Although crystal structures of MnmE and MnmG are available, the structure of the MnmE/MnmG complex (MnmEG) and the nature of the nucleotide-induced conformational changes and their relevance for the tRNA modification reaction remain unknown. In this study, we mainly used small-angle X-ray scattering to characterize these conformational changes in solution and to unravel the mode of interaction between MnmE, MnmG and tRNA. In the nucleotide-free state MnmE and MnmG form an unanticipated asymmetric α2β2 complex. Unexpectedly, GTP binding promotes further oligomerization of the MnmEG complex leading to an α4β2 complex. The transition from the α2β2 to the α4β2 complex is fast, reversible and coupled to GTP binding and hydrolysis. We propose a model in which the nucleotide-induced changes in conformation and oligomerization of MnmEG form an integral part of the tRNA modification reaction cycle.
Collapse
Affiliation(s)
- Marcus Fislage
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Elke Brosens
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Egon Deyaert
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Alessandro Spilotros
- EMBL Hamburg outstation c/o DESY, Notkestrasse 85, Geb. 25A, 22603 Hamburg, Germany
| | - Els Pardon
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Jan Steyaert
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Abel Garcia-Pino
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Wim Versées
- Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|
28
|
Posttranscriptional regulation of 2,4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2P24. Appl Environ Microbiol 2014; 80:3972-81. [PMID: 24747907 DOI: 10.1128/aem.00455-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a soilborne bacterium that synthesizes and excretes multiple antimicrobial metabolites. The polyketide compound 2,4-diacetylphloroglucinol (2,4-DAPG), synthesized by the phlACBD locus, is its major biocontrol determinant. This study investigated two mutants defective in antagonistic activity against Rhizoctonia solani. Deletion of the gidA (PM701) or trmE (PM702) gene from strain 2P24 completely inhibited the production of 2,4-DAPG and its precursors, monoacetylphloroglucinol (MAPG) and phloroglucinol (PG). The transcription of the phlA gene was not affected, but the translation of the phlA and phlD genes was reduced significantly. Two components of the Gac/Rsm pathway, RsmA and RsmE, were found to be regulated by gidA and trmE, whereas the other components, RsmX, RsmY, and RsmZ, were not. The regulation of 2,4-DAPG production by gidA and trmE, however, was independent of the Gac/Rsm pathway. Both the gidA and trmE mutants were unable to produce PG but could convert PG to MAPG and MAPG to 2,4-DAPG. Overexpression of PhlD in the gidA and trmE mutants could restore the production of PG and 2,4-DAPG. Taken together, these findings suggest that GidA and TrmE are positive regulatory elements that influence the biosynthesis of 2,4-DAPG posttranscriptionally.
Collapse
|
29
|
A novel gene involved in the survival of Streptococcus mutans under stress conditions. Appl Environ Microbiol 2013; 80:97-103. [PMID: 24123744 DOI: 10.1128/aem.02549-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Streptococcus mutans mutant defective in aciduricity was constructed by random-insertion mutagenesis. Sequence analysis of the mutant revealed a mutation in gidA, which is known to be involved in tRNA modification in Streptococcus pyogenes. Complementation of gidA by S. pyogenes gidA recovered the acid tolerance of S. mutans. Although the gidA-inactivated S. pyogenes mutant exhibited significantly reduced expression of multiple extracellular virulence proteins, the S. mutans mutant did not. On the other hand, the gidA mutant of S. mutans showed reduced ability to withstand exposure to other stress conditions (high osmotic pressure, high temperature, and bacitracin stress) besides an acidic environment. In addition, loss of GidA decreased the capacity for glucose-dependent biofilm formation by over 50%. This study revealed that gidA plays critical roles in the survival of S. mutans under stress conditions, including lower pH.
Collapse
|
30
|
Cho KH, Wright J, Svencionis J, Kim JH. The prince and the pauper: which one is real? The problem of secondary mutation during mutagenesis in Streptococcus pyogenes. Virulence 2013; 4:664-5. [PMID: 24128432 PMCID: PMC3925696 DOI: 10.4161/viru.26767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Kyu Hong Cho
- Department of Microbiology; Southern Illinois University; Carbondale, IL USA
| | - Jordan Wright
- Department of Microbiology; Southern Illinois University; Carbondale, IL USA
| | - Juan Svencionis
- Department of Microbiology; Southern Illinois University; Carbondale, IL USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine; The George Washington University Medical Center; Washington, DC USA
| |
Collapse
|
31
|
Complete Genome Sequence of emm Type 14 Streptococcus pyogenes Strain HSC5. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00612-13. [PMID: 23950122 PMCID: PMC3744678 DOI: 10.1128/genomea.00612-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pyogenes causes a greater diversity of human disease than any other bacterial pathogen. Here, we present the complete genome sequence of the emm type 14 S. pyogenes strain HSC5. This strain is a robust producer of the cysteine protease SpeB and is capable of producing infection in several different animal models.
Collapse
|
32
|
Cho KH, Kang SO. Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS One 2013; 8:e69425. [PMID: 23869242 PMCID: PMC3711813 DOI: 10.1371/journal.pone.0069425] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023] Open
Abstract
Small cyclic nucleotide derivatives are employed as second messengers by both prokaryotes and eukaryotes to regulate diverse cellular processes responding to various signals. In bacteria, c-di-AMP has been discovered most recently, and some Gram-positive pathogens including S. pyogenes use this cyclic nucleotide derivative as a second messenger instead of c-di-GMP, a well-studied important bacterial second messenger. GdpP, c-di-AMP phosphodiesterase, is responsible for degrading c-di-AMP inside cells, and the cellular role of GdpP in S. pyogenes has not been examined yet. To test the cellular role of GdpP, we created a strain with a nonpolar inframe deletion of the gdpP gene, and examined the properties of the strain including virulence. From this study, we demonstrated that GdpP influences the biogenesis of SpeB, the major secreted cysteine protease, at a post-translational level, susceptibility to the beta lactam antibiotic ampicillin, and is necessary for full virulence in a murine subcutaneous infection model.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA.
| | | |
Collapse
|
33
|
GidA Expression in Salmonella is Modulated Under Certain Environmental Conditions. Curr Microbiol 2013; 67:279-85. [DOI: 10.1007/s00284-013-0361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/26/2013] [Indexed: 01/03/2023]
|
34
|
Shippy DC, Eakley NM, Lauhon CT, Bochsler PN, Fadl AA. Virulence characteristics of Salmonella following deletion of genes encoding the tRNA modification enzymes GidA and MnmE. Microb Pathog 2013; 57:1-9. [DOI: 10.1016/j.micpath.2013.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 12/25/2022]
|
35
|
Le Breton Y, Mistry P, Valdes KM, Quigley J, Kumar N, Tettelin H, McIver KS. Genome-wide identification of genes required for fitness of group A Streptococcus in human blood. Infect Immun 2013; 81:862-75. [PMID: 23297387 PMCID: PMC3584890 DOI: 10.1128/iai.00837-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/15/2012] [Indexed: 12/27/2022] Open
Abstract
The group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed a mariner-based transposon, osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complex osKaR mutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tags en masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such as de novo nucleotide synthesis (purD, purA, pyrB, carA, carB, guaB), sugar metabolism (scrB, fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Pragnesh Mistry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kayla M. Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Jeffrey Quigley
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Nikhil Kumar
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hervé Tettelin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
36
|
Shippy DC, Fadl AA. Immunological characterization of a gidA mutant strain of Salmonella for potential use in a live-attenuated vaccine. BMC Microbiol 2012. [PMID: 23194372 PMCID: PMC3520829 DOI: 10.1186/1471-2180-12-286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella is often associated with gastrointestinal disease outbreaks in humans throughout the world due to the consumption of contaminated food. Our previous studies have shown that deletion of glucose-inhibited division gene (gidA) significantly attenuated Salmonella enterica serovar Typhimurium (STM) virulence in both in vitro and in vivo models of infection. Most importantly, immunization with the gidA mutant protected mice from a lethal dose challenge of wild-type STM. In this study, we further characterize the gidA mutant STM strain for potential use in a live-attenuated vaccine. Results The protective efficacy of immunization with the gidA mutant was evaluated by challenging immunized mice with a lethal dose of wild-type STM. Sera levels of IgG2a and IgG1, passive transfer of sera and cells, and cytokine profiling were performed to study the induction of humoral and cellular immune responses induced by immunization with the gidA mutant strain. Additionally, a lymphocyte proliferation assay was performed to gauge the splenocyte survival in response to treatment with STM cell lysate. Mice immunized with the gidA mutant strain were fully protected from a lethal dose challenge of wild-type STM. Naïve mice receiving either cells or sera from immunized mice were partially protected from a lethal dose challenge of wild-type STM. The lymphocyte proliferation assay displayed a significant response of splenocytes from immunized mice when compared to splenocytes from non-immunized control mice. Furthermore, the immunized mice displayed significantly higher levels of IgG1 and IgG2a with a marked increase in IgG1. Additionally, immunization with the gidA mutant strain evoked higher levels of IL-2, IFN-γ, and IL-10 cytokines in splenocytes induced with STM cell lysate. Conclusions Together, the results demonstrate that immunization with the gidA mutant strain protects mice by inducing humoral and cellular immune responses with the humoral immune response potentially being the main mechanism of protection.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr, Madison, WI 53706, USA
| | | |
Collapse
|
37
|
Benítez-Páez A, Villarroya M, Armengod ME. The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA (NEW YORK, N.Y.) 2012; 18:1783-1795. [PMID: 22891362 PMCID: PMC3446703 DOI: 10.1261/rna.033266.112] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/26/2012] [Indexed: 05/28/2023]
Abstract
Modifying RNA enzymes are highly specific for substrate-rRNA or tRNA-and the target position. In Escherichia coli, there are very few multisite acting enzymes, and only one rRNA/tRNA dual-specificity enzyme, pseudouridine synthase RluA, has been identified to date. Among the tRNA-modifying enzymes, the methyltransferase responsible for the m(2)A synthesis at purine 37 in a tRNA set still remains unknown. m(2)A is also present at position 2503 in the peptidyl transferase center of 23S RNA, where it is introduced by RlmN, a radical S-adenosyl-L-methionine (SAM) enzyme. Here, we show that E. coli RlmN is a dual-specificity enzyme that catalyzes methylation of both rRNA and tRNA. The ΔrlmN mutant lacks m(2)A in both RNA types, whereas the expression of recombinant RlmN from a plasmid introduced into this mutant restores tRNA modification. Moreover, RlmN performs m(2)A(37) synthesis in vitro using a tRNA chimera as a substrate. This chimera has also proved useful to characterize some tRNA identity determinants for RlmN and other tRNA modification enzymes. Our data suggest that RlmN works in a late step during tRNA maturation by recognizing a precise 3D structure of tRNA. RlmN inactivation increases the misreading of a UAG stop codon. Since loss of m(2)A(37) from tRNA is expected to produce a hyperaccurate phenotype, we believe that the error-prone phenotype exhibited by the ΔrlmN mutant is due to loss of m(2)A from 23S rRNA and, accordingly, that the m(2)A2503 modification plays a crucial role in the proofreading step occurring at the peptidyl transferase center.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Bioinformatic Analysis Group—GABi, Centro de Investigación y Desarrollo en Biotecnología, Bogotá D.C., 111221 Colombia
| | - Magda Villarroya
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Unidad 721, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
38
|
Kang SO, Wright JO, Tesorero RA, Lee H, Beall B, Cho KH. Thermoregulation of capsule production by Streptococcus pyogenes. PLoS One 2012; 7:e37367. [PMID: 22615992 PMCID: PMC3355187 DOI: 10.1371/journal.pone.0037367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface.
Collapse
Affiliation(s)
- Song Ok Kang
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Jordan O. Wright
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Rafael A. Tesorero
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
| | - Hyunwoo Lee
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois, United States of America
| | - Bernard Beall
- Streptococcus Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kyu Hong Cho
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Armengod ME, Moukadiri I, Prado S, Ruiz-Partida R, Benítez-Páez A, Villarroya M, Lomas R, Garzón MJ, Martínez-Zamora A, Meseguer S, Navarro-González C. Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 2012; 94:1510-20. [PMID: 22386868 DOI: 10.1016/j.biochi.2012.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.
Collapse
Affiliation(s)
- M-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Molecular Genetics, Avenida Autopista del Saler, 16-3, 46012-Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Erova TE, Kosykh VG, Sha J, Chopra AK. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA). Gene 2012; 498:280-7. [PMID: 22391092 DOI: 10.1016/j.gene.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/29/2012] [Accepted: 02/16/2012] [Indexed: 01/16/2023]
Abstract
Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
41
|
Mikheil DM, Shippy DC, Eakley NM, Okwumabua OE, Fadl AA. Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella. J Antibiot (Tokyo) 2012; 65:185-92. [DOI: 10.1038/ja.2012.5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Yu H, Kim KS. mRNA context dependent regulation of cytotoxic necrotizing factor 1 translation by GidA, a tRNA modification enzyme in Escherichia coli. Gene 2012; 491:116-22. [PMID: 22020226 PMCID: PMC3223105 DOI: 10.1016/j.gene.2011.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/29/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022]
Abstract
Cytotoxic necrotizing factor 1 (CNF1), the paradigm of Rho GTPase activating bacterial toxins has been shown to promote E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, but its synthesis and secretion is unclear. In this study, we performed mini Tn5 mutagenesis screen to identify genetic requirements for CNF1 production and secretion. Transposon mutagenesis screen of meningitis-causing E. coli K1 strain RS218 revealed that CNF1 production was markedly decreased in a transposon mutant (NBC-28G9) where transposon insertion occurred in the 5' end of gidA gene. In contrast, total deletion of gidA gene has less drastic effect on the production of CNF1. The N-terminus truncated GidA exhibited dominant negative effect on the production of CNF1. The inhibition of CNF1 production by N-terminus truncated GidA was shown to occur at the translational level. This was supported by our demonstrations that cnf1 mRNA transcription levels did not differ between strains RS218 and NBC-28G9; and the production of recombinant CNF1 under the control of artificial promoter was also repressed by truncated GidA. Progressive deletion of DNA regions in cnf1 gene identified two putative regions that were responsible for translational inhibition mediated by truncated GidA.
Collapse
Affiliation(s)
- Hao Yu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, MD 21287
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, MD 21287
| |
Collapse
|
43
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
44
|
Shippy DC, Eakley NM, Bochsler PN, Chopra AK, Fadl AA. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog 2011; 50:303-13. [PMID: 21320585 DOI: 10.1016/j.micpath.2011.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/29/2011] [Accepted: 02/04/2011] [Indexed: 01/03/2023]
Abstract
Salmonella enterica serovar Typhimurium is a frequent cause of enteric disease due to the consumption of contaminated food. Identification and characterization of bacterial factors involved in Salmonella pathogenesis would help develop effective strategies for controlling salmonellosis. To investigate the role of glucose-inhibited division gene (gidA) in Salmonella virulence, we constructed a Salmonella mutant strain in which gidA was deleted. Deletion of gidA rendered Salmonella deficient in the invasion of intestinal epithelial cells, bacterial motility, intracellular survival, and induction of cytotoxicity in host cells. Deletion of gidA rendered the organism to display a filamentous morphology compared to the normal rod-shaped nature of Salmonella. Furthermore, a significant attenuation in the induction of inflammatory cytokines and chemokines, histopathological lesions, and systemic infection was observed in mice infected with the gidA mutant. Most importantly, a significant increase in LD(50) was observed in mice infected with the gidA mutant, and mice immunized with the gidA mutant were able to survive a lethal dose of wild-type Salmonella. Additionally, deletion of gidA significantly altered the expression of several bacterial factors associated with pathogenesis as indicated by global transcriptional and proteomic profiling. Taken together, our data indicate GidA as a potential regulator of Salmonella virulence genes.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, United States
| | | | | | | | | |
Collapse
|
45
|
Siddique A, Buisine N, Chalmers R. The transposon-like Correia elements encode numerous strong promoters and provide a potential new mechanism for phase variation in the meningococcus. PLoS Genet 2011; 7:e1001277. [PMID: 21283790 PMCID: PMC3024310 DOI: 10.1371/journal.pgen.1001277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/14/2010] [Indexed: 01/05/2023] Open
Abstract
Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- DNA Transposable Elements/genetics
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Humans
- Meningitis, Meningococcal/microbiology
- Molecular Sequence Data
- Neisseria gonorrhoeae/genetics
- Neisseria meningitidis/genetics
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- RNA, Small Untranslated/genetics
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Azeem Siddique
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Nicolas Buisine
- Evolution des Régulation Endocriniennes, Museum National d'Histoire Naturelle, Paris, France
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
46
|
Li W, Liu L, Qiu D, Chen H, Zhou R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int J Med Microbiol 2010; 300:482-8. [PMID: 20554247 DOI: 10.1016/j.ijmm.2010.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/16/2010] [Accepted: 04/18/2010] [Indexed: 01/01/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen for swine and humans. Previous research about the mechanism of SS2 infection was largely established on in vitro or ex vivo models. In this study, we focused on the identification of SS2 genes preferentially expressed in vivo during natural infection in pigs. Eighty SS2 genes were identified to be up-regulated in the porcine brains and lungs by selective capture of transcribed sequences (SCOTS) and comparative dot blot analysis, followed by quantitative RT-PCR validation. These genes could be classified into 5 functional categories: metabolism, cell wall associated proteins, transporters, cell replication, and function unknown. Some of these genes may contribute to the survival and pathogenesis of SS2 in the host via the following strategies. First, SS2 evades the host innate immune clearance through modifying its metabolism and cell wall composition as indicated by the up-regulation of the corresponding gene ldh and pbp2A, respectively. Secondly, SS2 adapts to the in vivo conditions by inducing the expression of the two-component signal transduction system VicKR which may function on the target genes such as pcsB involved in stress response and cell wall biosynthesis. Thirdly, SS2 enhances its virulence in vivo by up-regulating the virulence genes, such as sly, pdgA, ssp, gidA, gcp and hp1311. Further study of these in vivo up-regulated genes will contribute to understanding the in vivo survival mechanism and pathogenesis of SS2.
Collapse
Affiliation(s)
- Wei Li
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Hongshan District, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
47
|
Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression. Infect Immun 2010; 78:2754-67. [PMID: 20385762 DOI: 10.1128/iai.01370-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes, a multiple-auxotrophic human pathogen, regulates virulence gene expression according to nutritional availability during various stages in the infection process or in different infection sites. We discovered that CvfA influenced the expression of virulence genes according to growth phase and nutritional status. The influence of CvfA in C medium, rich in peptides and poor in carbohydrates, was most pronounced at the stationary phase. Under these conditions, up to 30% of the transcriptome exhibited altered expression; the levels of expression of multiple virulence genes were altered, including the genes encoding streptokinase, CAMP factor, streptolysin O, M protein (more abundant in the CvfA(-) mutant), SpeB, mitogenic factor, and streptolysin S (less abundant). The increase of carbohydrates or peptides in media restored the levels of expression of the virulence genes in the CvfA(-) mutant to wild-type levels (emm, ska, and cfa by carbohydrates; speB by peptides). Even though the regulation of gene expression dependent on nutritional stress is commonly linked to the stringent response, the levels of ppGpp were not altered by deletion of cvfA. Instead, CvfA interacted with enolase, implying that CvfA, a putative RNase, controls the transcript decay rates of virulence factors or their regulators according to nutritional status. The virulence of CvfA(-) mutants was highly attenuated in murine models, indicating that CvfA-mediated gene regulation is necessary for the pathogenesis of S. pyogenes. Taken together, the CvfA-enolase complex in S. pyogenes is involved in the regulation of virulence gene expression by controlling RNA degradation according to nutritional stress.
Collapse
|
48
|
Interactome analysis of longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus. Proc Natl Acad Sci U S A 2010; 107:4693-8. [PMID: 20179180 DOI: 10.1073/pnas.0906384107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.
Collapse
|
49
|
Charity JC, Blalock LT, Costante-Hamm MM, Kasper DL, Dove SL. Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog 2009; 5:e1000641. [PMID: 19876386 PMCID: PMC2763202 DOI: 10.1371/journal.ppat.1000641] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022] Open
Abstract
In Francisella tularensis, the SspA protein family members MglA and SspA form a complex that associates with RNA polymerase (RNAP) to positively control the expression of virulence genes critical for the intramacrophage growth and survival of the organism. Although the association of the MglA-SspA complex with RNAP is evidently central to its role in controlling gene expression, the molecular details of how MglA and SspA exert their effects are not known. Here we show that in the live vaccine strain of F. tularensis (LVS), the MglA-SspA complex works in concert with a putative DNA-binding protein we have called PigR, together with the alarmone guanosine tetraphosphate (ppGpp), to regulate the expression of target genes. In particular, we present evidence that MglA, SspA, PigR and ppGpp regulate expression of the same set of genes, and show that mglA, sspA, pigR and ppGpp null mutants exhibit similar intramacrophage growth defects and are strongly attenuated for virulence in mice. We show further that PigR interacts directly with the MglA-SspA complex, suggesting that the central role of the MglA and SspA proteins in the control of virulence gene expression is to serve as a target for a transcription activator. Finally, we present evidence that ppGpp exerts its effects by promoting the interaction between PigR and the RNAP-associated MglA-SspA complex. Through its responsiveness to ppGpp, the contact between PigR and the MglA-SspA complex allows the integration of nutritional cues into the regulatory network governing virulence gene expression. Guanosine tetraphosphate (ppGpp) is a small molecule that is produced by many different bacteria in response to nutrient limitation. Although ppGpp has been shown to play an important role in controlling the expression of virulence genes in several pathogenic bacteria, few studies have addressed how this occurs. Here we show that in the intracellular pathogen F. tularensis, ppGpp plays a critical role in controlling the expression of genes required for intracellular replication and virulence, and we uncover the molecular basis for its effect. In particular, we show that ppGpp works in concert with three other essential regulators of virulence gene expression in F. tularensis—a putative DNA-binding protein that we have called PigR and the SspA protein family members MglA and SspA. Our study provides evidence that ppGpp functions to promote the interaction between PigR and a component of F. tularensis RNA polymerase (RNAP) comprising the MglA and SspA proteins. By influencing the interaction between PigR and the RNAP-associated MglA-SspA complex, ppGpp serves to tie the nutritional status of the cell to the expression of genes that are essential for survival in the host.
Collapse
Affiliation(s)
- James C. Charity
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - LeeAnn T. Blalock
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle M. Costante-Hamm
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis L. Kasper
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
GidA posttranscriptionally regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 2009; 191:5785-92. [PMID: 19592591 DOI: 10.1128/jb.00335-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes two interconnected acyl-homoserine lactone quorum-sensing (acyl-HSL QS) systems, LasRI and RhlRI, to regulate the expression of hundreds of genes. The QS circuitry itself is integrated into a complex network of regulation by other factors. However, our understanding of this network is still unlikely to be complete, as a comprehensive, saturating approach to identifying regulatory components has never been attempted. Here, we utilized a nonredundant P. aeruginosa PA14 transposon library to identify additional genes that regulate QS at the level of LasRI/RhlRI. We initially screened all 5,459 mutants for loss of function in one QS-controlled trait (skim milk proteolysis) and then rescreened attenuated candidates for defects in other QS phenotypes (LasA protease, rhamnolipid, and pyocyanin production) to exclude mutants defective in functions other than QS. We identified several known and novel genes, but only two novel genes, gidA and pcnB, affected all of the traits assayed. We characterized gidA, which exhibited the most striking QS phenotypes, further. This gene is predicted to encode a conserved flavin adenine dinucleotide-binding protein involved in tRNA modification. Inactivation of the gene primarily affected rhlR-dependent QS phenotypes such as LasA, pyocyanin, and rhamnolipid production. GidA affected RhlR protein but not transcript levels and also had no impact on LasR and acyl-HSL production. Overexpression of rhlR in a gidA mutant partially restored QS-dependent phenotypes. Taken together, these results indicate that GidA selectively controls QS gene expression posttranscriptionally via RhlR-dependent and -independent pathways.
Collapse
|