1
|
Pan D, Sun Y, Zhang J, Zeng J, Yu S, Zhao D, Dong Z, Liu M, Liu S, Wang W, Wang S. An active protein from Dendrobium officinale residue: Protects the gastric mucosa and stabilized in the gastrointestinal tract. Int J Biol Macromol 2025; 294:139387. [PMID: 39753178 DOI: 10.1016/j.ijbiomac.2024.139387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
A large number of by-products generated in the food industry is discarded as waste, especially the residue left after extracting plant resources, which is typically repurposed as fertilizer. In this study, we extracted and purified a new protein, DOP1, from the residue of Dendrobium officinale Kimura & Migo (D. officinale), and explored the protective effect of DOP1 on alcohol-induced gastric mucosal injury. Its amino acid composition and the stability of secondary structure were measured by amino acid analysis and various spectroscopic methods. The microscopic morphology of DOP1 was observed by electron microscopy and its particle distribution was determined to be in the range of 3.7-5.5 nm. In addition, DOP1 was found to exhibit excellent protective activity against alcohol-induced gastric mucosal injury, as well as anti-inflammatory and antioxidant activities by in vitro and in vivo activity assays, which may be related to the upregulation of TFF2 through the activation of PPARγ. Intriguingly, DOP1 does not degrade and remains active after being digested by the gastrointestinal tract. From an economic and sustainable perspective, the discovery of DOP1 will provide new opportunities for the enhanced utilization and sustainable development of D. officinale resources.
Collapse
Affiliation(s)
- Daian Pan
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yanling Sun
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiayi Zhang
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing Zeng
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, China
| | - Meichen Liu
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shichao Liu
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Weinan Wang
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Siming Wang
- Changchun University of Chinese Medicine, Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Fasina YO, Obanla TO, Ekunseitan DA, Dosu G, Richardson J, Apalowo OO. Role of trefoil factors in maintaining gut health in food animals. Front Vet Sci 2024; 11:1434509. [PMID: 39628866 PMCID: PMC11612906 DOI: 10.3389/fvets.2024.1434509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
It is imperative to preserve the integrity of the gastrointestinal system in spite of the persistent existence of harmful chemicals and microbial flora in the gut. This is made possible by essential healing initiators called Trefoil factors which helps in mucosal reconstitution and tissue development on the gastrointestinal surface. The trefoil factors are a class of abundant secreted proteins that are essential for epithelial continuity (TFFs). Trefoil factor family (TFF) proteins are biologically active peptides that play significant role in safeguarding, restoring and continuity of the gastrointestinal tract (GIT) epithelium, through collaborative modulations with mucins in the mucosal layer. These peptides are readily produced in reaction to epithelial damage in the digestive tract, thereby contributing to the healing and restituting of the epithelial layers of the intestine. In addition, considerable evidence indicated that TFF peptides trigger proliferation, migration and angiogenesis, all which are crucial processes for wound healing. There is also increasing evidence that TFF peptides modulate the mucosal immune system. These protective properties, suggest that dietary manipulation strategies targeted at enhancing the expression and synthesis of TFF peptides at optimal levels in the GIT epithelium, may constitute a plausible alternative strategy to the use of in-feed antibiotic growth promoters to maintain epithelial integrity and promote resistance to enteric pathogens. This review describes TFF peptides, with importance to their biological functions and involvement in gastrointestinal mucosal protection and repair in food animals.
Collapse
Affiliation(s)
- Yewande O. Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | | | | | | | | | | |
Collapse
|
3
|
Ortiz JA, Ghazalli N, Lopez K, Rawson J, McCown EM, Oh E, Irimia JM, Jou K, Mares J, Chen MH, Wu X, Zook HN, Quijano JC, Erdem N, Lizarraga A, Kandeel F, Fueger PT, Thurmond DC, Ku HT. Trefoil Factor 2 Expressed by the Murine Pancreatic Acinar Cells Is Required for the Development of Islets and for β-Cell Function During Aging. Diabetes 2024; 73:1447-1461. [PMID: 38905124 PMCID: PMC11333379 DOI: 10.2337/db23-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Exocrine-to-endocrine cross talk in the pancreas is crucial to maintain β-cell function. However, the molecular mechanisms underlying this cross talk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of β-cells in vitro, but its physiological role in vivo in the pancreas is unknown. Also, it remains unclear which pancreatic cell type expresses Tff2 protein. We therefore created a mouse model with a conditional knockout of Tff2 in the murine pancreas. We find that the Tff2 protein is preferentially expressed in acinar but not ductal or endocrine cells. Tff2 deficiency in the pancreas reduces β-cell mass on embryonic day 16.5. However, homozygous mutant mice are born without a reduction of β-cells and with acinar Tff3 compensation by day 7. When mice are aged to 1 year, both male and female homozygous and male heterozygous mutants develop impaired glucose tolerance without affected insulin sensitivity. Perifusion analysis reveals that the second phase of glucose-stimulated insulin secretion from islets is reduced in aged homozygous mutant compared with controls. Collectively, these results demonstrate a previously unknown role of Tff2 as an exocrine acinar cell-derived protein required for maintaining functional endocrine β-cells in mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jose A. Ortiz
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Nadiah Ghazalli
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Kassandra Lopez
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Erika M. McCown
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Eunjin Oh
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Jose M. Irimia
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, City of Hope, Duarte, CA
| | - Kevin Jou
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Jacob Mares
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | | | - Xiwei Wu
- Comprehensive Metabolic Phenotyping Core, City of Hope, Duarte, CA
| | - Heather N. Zook
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Janine C. Quijano
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Neslihan Erdem
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Anahy Lizarraga
- Eugene and Ruth Roberts Summer Student Academy, City of Hope, Duarte, CA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Patrick T. Fueger
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, City of Hope, Duarte, CA
| | - Debbie C. Thurmond
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
4
|
An R, Ni Z, Xie E, Rey FE, Kendziorski C, Thibeault SL. Single-cell view into the role of microbiota shaping host immunity in the larynx. iScience 2024; 27:110156. [PMID: 38974468 PMCID: PMC11225822 DOI: 10.1016/j.isci.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| | - Zijian Ni
- Department of Statistics, College of Letters and Sciences , UW-Madison, Madison, WI, USA
| | - Elliott Xie
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Federico E. Rey
- Department of Bacteriology, College of Agriculture and Life Sciences, UW-Madison, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, UW-Madison, Madison, WI, USA
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Salm F, Znalesniak EB, Laskou A, Harder S, Schlüter H, Hoffmann W. Expression Profiling along the Murine Intestine: Different Mucosal Protection Systems and Alterations in Tff1-Deficient Animals. Int J Mol Sci 2023; 24:12684. [PMID: 37628863 PMCID: PMC10454331 DOI: 10.3390/ijms241612684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Tff1 is a typical gastric peptide secreted together with the mucin, Muc5ac. Tff1-deficient (Tff1KO) mice are well known for their prominent gastric phenotype and represent a recognized model for antral tumorigenesis. Notably, intestinal abnormalities have also been reported in the past in these animals. Here, we have compared the expression of selected genes in Tff1KO mice and their corresponding wild-type littermates (RT-PCR analyses), focusing on different mucosal protection systems along the murine intestine. As hallmarks, genes were identified with maximum expression in the proximal colon and/or the duodenum: Agr2, Muc6/A4gnt/Tff2, Tff1, Fut2, Gkn2, Gkn3, Duox2/Lpo, Nox1. This is indicative of different protection systems such as Tff2/Muc6, Tff1-Fcgbp, gastrokines, fucosylation, and reactive oxygen species (ROS) in the proximal colon and/or duodenum. Few significant transcriptional changes were observed in the intestine of Tff1KO mice when compared with wild-type littermates, Clca1 (Gob5), Gkn1, Gkn2, Nox1, Tff2. We also analyzed the expression of Tff1, Tff2, and Tff3 in the pancreas, liver, and lung of Tff1KO and wild-type animals, indicating a cross-regulation of Tff gene expression. Furthermore, on the protein level, heteromeric Tff1-Fcgbp and various monomeric Tff1 forms were identified in the duodenum and a high-molecular-mass Tff2/Muc6 complex was identified in the proximal colon (FPLC, proteomics).
Collapse
Affiliation(s)
- Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Znalesniak EB, Laskou A, Salm F, Haupenthal K, Harder S, Schlüter H, Hoffmann W. The Forms of the Lectin Tff2 Differ in the Murine Stomach and Pancreas: Indications for Different Molecular Functions. Int J Mol Sci 2023; 24:ijms24087059. [PMID: 37108221 PMCID: PMC10138697 DOI: 10.3390/ijms24087059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Electroacupuncture Zusanli (ST36) Relieves Somatic Pain in Colitis Rats by Inhibiting Dorsal Root Ganglion Sympathetic-Sensory Coupling and Neurogenic Inflammation. Neural Plast 2023; 2023:9303419. [PMID: 36910013 PMCID: PMC9998159 DOI: 10.1155/2023/9303419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/09/2022] [Accepted: 12/09/2022] [Indexed: 03/06/2023] Open
Abstract
Referred somatic pain triggered by hyperalgesia is common in patients with inflammatory bowel disease (IBD). It was reported that sprouting of sympathetic nerve fibers into the dorsal root ganglion (DGR) and neurogenic inflammation were related to neuropathic pain, the excitability of neurons, and afferents. The purpose of the study was to explore the potential and mechanism of electroacupuncture (EA) at Zusanli (ST36) for the intervention of colon inflammation and hyperalgesia. Sprague-Dawley (SD) was randomly divided into four groups, including control, model, EA, and sham-EA. Our results showed EA treatment significantly attenuated dextran sulfate sodium- (DSS-) induced colorectal lesions and inflammatory cytokine secretion, such as TNF-α, IL-1β, PGE2, and IL-6. EA also inhibited mechanical and thermal pain hypersensitivities of colitis rats. Importantly, EA effectively abrogated the promotion effect of DSS on ipsilateral lumbar 6 (L6) DRG sympathetic-sensory coupling, manifested as the sprouting of tyrosine hydroxylase- (TH-) positive sympathetic fibers into sensory neurons and colocalization of and calcitonin gene-related peptide (CGRP). Furthermore, EA at Zusanli (ST36) activated neurogenic inflammation, characterized by decreased expression of substance P (SP), hyaluronic acid (HA), bradykinin (BK), and prostacyclin (PGI2) in colitis rat skin tissues corresponding to the L6 DRG. Mechanically, EA treatment reduced the activation of the TRPV1/CGRP, ERK, and TLR4 signaling pathways in L6 DRG of colitis rats. Taken together, we presumed that EA treatment improved colon inflammation and hyperalgesia, potentially by suppressing the sprouting of sympathetic nerve fibers into the L6 DGR and neurogenic inflammation via deactivating the TRPV1/CGRP, ERK, and TLR4 signaling pathways.
Collapse
|
8
|
Orso C, Cony B, Silva J, Furtado J, Mann M, Frazzon J, Frazzon A, Andretta I, Ribeiro A. Effect of live Eimeria vaccination or salinomycin on growth and immune status in broiler chickens receiving in-feed inclusion of gelatin and vitamin E. Poult Sci 2022; 101:102206. [DOI: 10.1016/j.psj.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 10/07/2022] Open
|
9
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
11
|
Hasebe K, Yamaguchi J, Kokuryo T, Yokoyama Y, Ochiai Y, Nagino M, Ebata T. Trefoil factor family 2 inhibits cholangiocarcinogenesis by regulating the PTEN pathway in mice. Carcinogenesis 2021; 42:1496-1505. [PMID: 34644378 DOI: 10.1093/carcin/bgab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022] Open
Abstract
Trefoil factor family 2 (TFF2) is one of three trefoil factor family proteins and is expressed abundantly in the gastrointestinal epithelium. Recent studies have shown that TFF2 acts as a tumor suppressor in gastric and pancreatic carcinogenesis; however, little is known about its function in cholangiocarcinogenesis. To investigate the function of TFF2 in cholangiocellular carcinoma (CCC), immunohistochemistry of surgically resected human CCC samples was performed. TFF2 expression was upregulated in the early stage and lost in the late stage of cholangiocarcinogenesis, suggesting the association of TFF2 and CCC. A TFF2 expression vector was then transfected into a CCC cell line (HuCCT1) in vitro, revealing that TFF2 functions as a tumor suppressor not only by inhibiting proliferation and invasion but also by promoting the apoptosis of cancer cells. In addition, PTEN signaling activity was downregulated by TFF2, suggesting an association between TFF2 and PTEN. Next, hepatic carcinogenesis model mice (KC; albumin-Cre/Lox-Stop-Lox KRAS G12D) were bred with TFF2-knockout mice to generate a TFF2-deficient mouse model (KC/TFF2 -/-). Although the incidence of hepatocellular carcinoma was not different between KC/TFF2 -/- mice and control mice, biliary intraepithelial neoplasm (BilIN), the precursor of CCC, was frequently found in the biliary epithelium of KC/TFF2 -/- mice. Immunohistochemistry revealed that BilIN samples from these mice did not express PTEN. In addition, two KC/TFF2 -/- mice developed CCC adjacent to BilIN, suggesting that TFF2 functions to inhibit the development of CCC in vivo. These results indicate that TFF2 acts as a tumor suppressor to inhibit the development of CCC by regulating PTEN activity.
Collapse
Affiliation(s)
- Keiji Hasebe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Ochiai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Ghanemi A, Yoshioka M, St-Amand J. Trefoil Factor Family Member 2: From a High-Fat-Induced Gene to a Potential Obesity Therapy Target. Metabolites 2021; 11:metabo11080536. [PMID: 34436477 PMCID: PMC8401738 DOI: 10.3390/metabo11080536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity has its epidemiological patterns continuously increasing. With controlling both diet and exercise being the main approaches to manage the energy metabolism balance, a high-fat (HF) diet is of particular importance. Indeed, lipids have a low satiety potential but a high caloric density. Thus, focusing on pharmacologically targetable pathways remains an approach with promising therapeutic potential. Within this context, trefoil factor family member 2 (Tff2) has been characterized as specifically induced by HF diet rather than low-fat diet. TFF2 has also been linked to diverse neurological mechanisms and metabolic patterns suggesting its role in energy balance. The hypothesis is that TFF2 would be a HF diet-induced signal that regulates metabolism with a focus on lipids. Within this review, we put the spotlight on key findings highlighting this line of thought. Importantly, the hypothetical mechanisms pointed highlight TFF2 as an important contributor to obesity development via increasing lipids intestinal absorption and anabolism. Therefore, an outlook for future experimental activities and evaluation of the therapeutic potential of TFF2 inhibition is given. Indeed, its knockdown or downregulation would contribute to an antiobesity phenotype. We believe this work represents an addition to our understanding of the lipidic molecular implications in obesity, which will contribute to develop therapies aiming to manage the lipidic metabolic pathways including the absorption, storage and metabolism via targeting TFF2-related pathways. We briefly discuss important relevant concepts for both basic and clinical researchers.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
13
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
14
|
Ghanemi A, Yoshioka M, St-Amand J. High-Fat Diet-Induced Trefoil Factor Family Member 2 (TFF2) to Counteract the Immune-Mediated Damage in Mice. Animals (Basel) 2021; 11:ani11020258. [PMID: 33494143 PMCID: PMC7909836 DOI: 10.3390/ani11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High-fat (HF) diet induces both immune-mediated damage and trefoil factor family member 2 (Tff2) expression. As TFF2 has tissue repair and protection properties, this suggests that HF diet-induced Tff2 production and the resulting TFF2 mucosal protective effects would be a mechanism to counteract the HF diet-induced tissue damage. On the other hand, the induction of Tff2 by HF diet could indicate that TFF2 is a food intake regulator (appetite control) since Tff2 is also expressed in the brain. This highlights the importance of exploring TFF2-related pathways in the context of obesity management towards potential therapies. Abstract Physiological homeostasis requires a balance between the immunological functions and the resulting damage/side effects of the immunological reactions including those related to high-fat (HF) diet. Within this context, whereas HF diet, through diverse mechanisms (such as inflammation), leads to immune-mediated damage, trefoil factor family member 2 (Tff2) represents a HF diet-induced gene. On the other hand, TFF2 both promotes tissue repair and reduces inflammation. These properties are towards counteracting the immune-mediated damage resulting from the HF diet. These observations suggest that the HF diet-induction of Tff2 could be a regulatory pathway aiming to counteract the immune-mediated damage resulting from the HF diet. Interestingly, since Tff2 expression increases with HF diet and with Tff2 also expressed in the brain, we also hypothesize that TFF2 could be a HF diet-induced food intake-control signal that reduces appetite. This hypothesis fits with counteracting the immune damage since reducing the food intake will reduce the HF intake and therefore, reduces the HF diet-induced tissue damage. Such food intake signaling would be an indirect mechanism by which TFF2 promotes tissue repair as well as a pathway worth exploring for potential obesity management pharmacotherapies.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 46448); Fax: +1-(418)-654-2298
| |
Collapse
|
15
|
Dysregulated Immune Responses by ASK1 Deficiency Alter Epithelial Progenitor Cell Fate and Accelerate Metaplasia Development during H. pylori Infection. Microorganisms 2020; 8:microorganisms8121995. [PMID: 33542169 PMCID: PMC7765114 DOI: 10.3390/microorganisms8121995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
The mechanism of H. pylori-induced atrophy and metaplasia has not been fully understood. Here, we demonstrate the novel role of Apoptosis signal-regulating kinase 1 (ASK1) and downstream MAPKs as a regulator of host immune responses and epithelial maintenance against H. pylori infection. ASK1 gene deficiency resulted in enhanced inflammation with numerous inflammatory cells including Gr-1+CD11b+ myeloid-derived suppressor cells (MDSCs) recruited into the infected stomach. Increase of IL-1β release from apoptotic macrophages and enhancement of TH1-polarized immune responses caused STAT1 and NF-κB activation in epithelial cells in ASK1 knockout mice. Dysregulated immune and epithelial activation in ASK1 knockout mice led to dramatic expansion of gastric progenitor cells and massive metaplasia development. Bone marrow transplantation experiments revealed that ASK1 in inflammatory cells is critical for inducing immune disorder and metaplastic changes in epithelium, while ASK1 in epithelial cells regulates cell proliferation in stem/progenitor zone without changes in inflammation and differentiation. These results suggest that H. pylori-induced immune cells may regulate epithelial homeostasis and cell fate as an inflammatory niche via ASK1 signaling.
Collapse
|
16
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
17
|
Braga Emidio N, Brierley SM, Schroeder CI, Muttenthaler M. Structure, Function, and Therapeutic Potential of the Trefoil Factor Family in the Gastrointestinal Tract. ACS Pharmacol Transl Sci 2020; 3:583-597. [PMID: 32832864 DOI: 10.1021/acsptsci.0c00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Trefoil factor family peptides (TFF1, TFF2, and TFF3) are key players in protecting, maintaining, and repairing the gastrointestinal tract. Accordingly, they have the therapeutic potential to treat and prevent a variety of gastrointestinal disorders associated with mucosal damage. TFF peptides share a conserved motif, including three disulfide bonds that stabilize a well-defined three-loop-structure reminiscent of a trefoil. Although multiple functions have been described for TFF peptides, their mechanisms at the molecular level remain poorly understood. This review presents the status quo of TFF research relating to gastrointestinal disorders. Putative TFF receptors and protein partners are described and critically evaluated. The therapeutic potential of these peptides in gastrointestinal disorders where altered mucosal biology plays a crucial role in the underlying etiology is discussed. Finally, areas of investigation that require further research are addressed. Thus, this review provides a comprehensive update on TFF literature as well as guidance toward future research to better understand this peptide family and its therapeutic potential for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medicial Research Insittitue (FHMRI), Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Heuer F, Stürmer R, Heuer J, Kalinski T, Lemke A, Meyer F, Hoffmann W. Different Forms of TFF2, A Lectin of the Human Gastric Mucus Barrier: In Vitro Binding Studies. Int J Mol Sci 2019; 20:ijms20235871. [PMID: 31771101 PMCID: PMC6928932 DOI: 10.3390/ijms20235871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Trefoil factor family 2 (TFF2) and the mucin MUC6 are co-secreted from human gastric and duodenal glands. TFF2 binds MUC6 as a lectin and is a constituent of the gastric mucus. Herein, we investigated human gastric extracts by FPLC and identified mainly high- but also low-molecular-mass forms of TFF2. From the high-molecular-mass forms, TFF2 can be completely released by boiling in SDS or by harsh denaturing extraction. The low-molecular-mass form representing monomeric TFF2 can be washed out in part from gastric mucosa specimens with buffer. Overlay assays with radioactively labeled TFF2 revealed binding to the mucin MUC6 and not MUC5AC. This binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the monoclonal antibody HIK1083. TFF2 binding was also inhibited by Me-β-Gal, but not the α anomer. Thus, both the α1,4GlcNAc as well as the juxtaperipheral β-galactoside residues of the characteristic GlcNAcα1→4Galβ1→R moiety of human MUC6 are essential for TFF2 binding. Furthermore, there are major differences in the TFF2 binding characteristics when human is compared with the porcine system. Taken together, TFF2 appears to fulfill an important role in stabilizing the inner insoluble gastric mucus barrier layer, particularly by its binding to the mucin MUC6.
Collapse
Affiliation(s)
- Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Antje Lemke
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
19
|
Grover M, Dasari S, Bernard CE, Chikkamenahalli LL, Yates KP, Pasricha PJ, Sarosiek I, McCallum R, Koch KL, Abell TL, Kuo B, Shulman RJ, Gibbons SJ, McKenzie TJ, Kellogg TA, Kendrick ML, Tonascia J, Hamilton FA, Parkman HP, Farrugia G. Proteomics in gastroparesis: unique and overlapping protein signatures in diabetic and idiopathic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G716-G726. [PMID: 31482734 PMCID: PMC6879892 DOI: 10.1152/ajpgi.00115.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in diabetic mice. Loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages has been reported in full-thickness gastric biopsies from gastroparesis patients. We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying, and symptoms. Full-thickness gastric antrum biopsies were obtained from nine DG patients, seven IG patients, and five nondiabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1,305 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity pathway analysis and correlations were carried out. Multiple-testing corrected P < 0.05 was considered statistically significant. Seventy-three proteins were differentially expressed in DG, 132 proteins were differentially expressed in IG, and 40 proteins were common to DG and IG. In both DG and IG, "Role of Macrophages, Fibroblasts and Endothelial Cells" was the most statistically significant altered pathway [DG false discovery rate (FDR) = 7.9 × 10-9; IG FDR = 6.3 × 10-12]. In DG, properdin expression correlated with GCSI bloating (r = -0.99, FDR = 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C-ζ type, and complement C2 correlated with 4 h gastric retention (r = -0.97, FDR = 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Protein expression changes suggest a central role of macrophage-driven immune dysregulation in gastroparesis, specifically, complement activation in diabetic gastroparesis.NEW & NOTEWORTHY This study uses SOMAscan, a novel proteomics assay for determination of altered proteins and associated molecular pathways in human gastroparesis. Seventy-three proteins were changed in diabetic gastroparesis, 132 in idiopathic gastroparesis compared with controls. Forty proteins were common in both. Macrophage-based immune dysregulation pathway was most significantly affected in both diabetic and idiopathic gastroparesis. Proteins involved in the complement and prostaglandin synthesis pathway were associated with symptoms and gastric emptying delay in diabetic gastroparesis.
Collapse
Affiliation(s)
| | - Surendra Dasari
- 2Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Katherine P. Yates
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Irene Sarosiek
- 5Texas Tech University Health Sciences Center, El Paso, Texas
| | | | | | | | - Braden Kuo
- 8Massachusetts General Hospital, Boston, Massachusetts
| | | | - Simon J. Gibbons
- 1Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - James Tonascia
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Frank A. Hamilton
- 11National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | | | | |
Collapse
|
20
|
Muhammad JS, Eladl MA, Khoder G. Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8:23. [PMID: 30781778 PMCID: PMC6471032 DOI: 10.3390/pathogens8010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is ranked fifth in cancer list and has the third highest mortality rate. Helicobacter pylori is a class I carcinogen and a predominant etiological factor of gastric cancer. H. pylori infection may induce carcinogenesis via epigenetic alterations in the promoter region of various genes. H. pylori is known to induce hypermethylation-silencing of several tumor suppressor genes in H. pylori-infected cancerous and H. pylori-infected non-cancerous gastric mucosae. This article presents a review of the published literature mainly from the last year 15 years. The topic focuses on H. pylori-induced DNA methylation linked to gastric cancer development. The authors have used MeSH terms "Helicobacter pylori" with "epigenetic," "DNA methylation," in combination with "gastric inflammation", gastritis" and "gastric cancer" to search SCOPUS, PubMed, Ovid, and Web of Science databases. The success of epigenetic drugs such as de-methylating agents in the treatment of certain cancers has led towards new prospects that similar approaches could also be applied against gastric cancer. However, it is very important to understand the role of all the genes that have already been linked to H. pylori-induced DNA methylation in order to in order to evaluate the potential benefits of epigenetic drugs.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|
21
|
Exocrine tissue-driven TFF2 prevents apoptotic cell death of endocrine lineage during pancreas organogenesis. Sci Rep 2019; 9:1636. [PMID: 30733468 PMCID: PMC6367380 DOI: 10.1038/s41598-018-38062-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
During embryogenesis, exocrine and endocrine pancreatic tissues are formed in distinct regions within the branched ductal structure in mice. We previously reported that exocrine-specific inactivation of Pdx1 by Elastase-Cre caused not only hypoplastic exocrine formation but also substantial endocrine defects resulting in diabetic phenotype, indicating the existence of an exocrine-driven factor(s) that regulates proper endocrine development. In this study, we identified Trefoil Factor 2 (TFF2) as an exocrine gene expressed from embryonic day 16.5 to adulthood in normal mice but significantly less in our Pdx1 mutants. Using in vitro explant culture of embryonic pancreatic tissue, we demonstrated that TFF2 prevented the apoptosis of insulin-producing cells but that antagonizing CXCR4, a known TFF2 receptor, suppressed this anti-apoptotic effect in the mutants. Furthermore, the antagonist in normal pancreatic tissue accelerated the apoptosis of insulin-producing cells, indicating that the TFF2/CXCR4 axis maintains embryonic insulin-producing cells in normal development. TFF2 also suppressed the apoptosis of Nkx6.1+ endocrine precursors in mutant pancreata, but this effect was unperturbed by the CXCR4 antagonist, suggesting the existence of an unknown receptor for TFF2. These findings suggest TFF2 is a novel exocrine factor that supports the survival of endocrine cells in the multiple stages of organogenesis through distinct receptors.
Collapse
|
22
|
Antiinflammatory peptides: current knowledge and promising prospects. Inflamm Res 2018; 68:125-145. [PMID: 30560372 DOI: 10.1007/s00011-018-1208-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties. METHODS In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects. RESULTS In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years. CONCLUSION This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.
Collapse
|
23
|
Sung GH, Chang H, Lee JY, Song SY, Kim HS. Pancreatic-cancer-cell-derived trefoil factor 2 impairs maturation and migration of human monocyte-derived dendritic cells in vitro. Anim Cells Syst (Seoul) 2018; 22:368-381. [PMID: 30533259 PMCID: PMC6282439 DOI: 10.1080/19768354.2018.1527721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a challenging disease with a high mortality rate. While the importance of crosstalk between cancer and immune cells has been well documented, the understanding of this complex molecular network is incomplete. Thus, identification of the secreted proteins contributing to the immunosuppressive microenvironment in pancreatic cancer is crucial for effective diagnosis and/or therapy. We utilized a public microarray dataset (GSE16515) from the Gene Expression Omnibus database to identify genes for secreted proteins in pancreatic cancer. RT-PCR and ELISA of the pancreatic cancer cell lines validated the cellular origin of the selected genes. For functional assay of the selected proteins, we utilized human-monocyte-derived dendritic cells (DCs). From the list of the secreted proteins, trefoil factor 2 (TFF2) was further examined as a potential chemokine/cytokine. While TFF2 did not significantly affect the phenotypic maturation and the allostimulatory capacity of DCs, TFF2 preferentially attracted immature (but not mature) DCs and inhibited their endocytic activity. Our data suggest that TFF2 from pancreatic cancer cells may attract immature DCs and affect the initial stage of DC maturation, thereby contributing to the induction of immune tolerance against pancreatic cancer.
Collapse
Affiliation(s)
- Gi-Ho Sung
- Institute for Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- Department of Microbiology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do, Republic of Korea
| | - Hyun Chang
- Hematology and Medical Oncology, International St Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Ji-Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Si Young Song
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Soo Kim
- Institute for Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| |
Collapse
|
24
|
The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018; 23:molecules23051151. [PMID: 29751628 PMCID: PMC6100456 DOI: 10.3390/molecules23051151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin (BabA) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 (TFF2) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.
Collapse
|
25
|
Chen X, Hu Y, Xie Y, Wang Y. High salt diet can down-regulate TFF2 expression level in gastric mucosa of MGs after H. pylori infection. Microb Pathog 2018; 118:316-321. [PMID: 29601867 DOI: 10.1016/j.micpath.2018.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
This study aimed to elucidate the effect of Helicobacter pylori (H. pylori) and high salt diet on Trefoil factor 2 (TFF2) expression level of Mongolian gerbils (MGs) gastric mucosa. The results of H. pylori identification and histopathology showed that H. pylori infected MGs model was built successfully. According to the immunohistochemical staining results, 25% (4/16) of H. pylori infected MGs with high salt diet showed high TFF2 expression, which was significantly lower than H. pylori infection group 61% (11/18)(P = 0.045). The results suggested that High salt diet could down-regulated TFF2 expression level of MGs gastric mucosa induced by H. pylori infection.
Collapse
Affiliation(s)
- Xue Chen
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China
| | - You Hu
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China
| | - Ying Xie
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China
| | - Ying Wang
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Hung LY, Oniskey TK, Sen D, Krummel MF, Vaughan AE, Cohen NA, Herbert DR. Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1161-1170. [PMID: 29458008 DOI: 10.1016/j.ajpath.2018.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
Abstract
Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and nonhematopoietic-derived cells is essential for host protection, proliferation of alveolar type 2 cells, and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury. Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells under steady-state and infectious injury conditions.
Collapse
Affiliation(s)
- Li-Yin Hung
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California
| | - Taylor K Oniskey
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California
| | - Debasish Sen
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Andrew E Vaughan
- Department of Biological Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Noam A Cohen
- Department of Otorhinololaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California.
| |
Collapse
|
27
|
Znalesniak EB, Fu T, Salm F, Händel U, Hoffmann W. Transcriptional Responses in the Murine Spleen after Toxoplasma gondii Infection: Inflammasome and Mucus-Associated Genes. Int J Mol Sci 2017; 18:ijms18061245. [PMID: 28604600 PMCID: PMC5486068 DOI: 10.3390/ijms18061245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022] Open
Abstract
The spleen plays an important role in coordinating both adaptive and innate immune responses. Here, the transcriptional response to T. gondii infection in the murine spleen was characterized concerning inflammasome sensors (two different models: seven days after oral or four weeks after intraperitoneal infection). Additionally, Tff1KO and Tff3KO mice were investigated because TFF genes are often upregulated during inflammation. The expression of the pattern-recognition receptors Nlrp3, Nlrp12, and Nlrp1a was significantly increased after infection. This increase was diminished in Tff1KO and Tff3KO mice pointing towards a positive regulation of the inflammatory response by Tff1 and Tff3. Furthermore, the transcription of Tff1 (encoding a motogenic lectin) and other secretory genes was analyzed, i.e., gastrokines (Gkn), IgG Fc binding protein (Fcgbp), and the mucin Muc2. The corresponding gene products belong to an interactome protecting mucous epithelia. Tff1 was significantly induced after infection, which might increase the motility of immune cells. In contrast, Gkn3, Fcgbp, and Muc2 were downregulated seven days after oral infection; whereas four weeks after i.p. infection only Gkn3 remained downregulated. This might be an indication that Gkn3, Fcgbp, and Muc2 are involved in the transient disruption of the splenic architecture and its reorganization, which is characteristic after T. gondii infection.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Ting Fu
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Ulrike Händel
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
28
|
Zeolite-Containing Mixture Supplementation Ameliorated Dextran Sodium Sulfate-Induced Colitis in Mice by Suppressing the Inflammatory Bowel Disease Pathway and Improving Apoptosis in Colon Mucosa. Nutrients 2017; 9:nu9050467. [PMID: 28481231 PMCID: PMC5452197 DOI: 10.3390/nu9050467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is induced by multiple environmental factors, and there is still no known treatment capable of curing the disease completely. We propose a zeolite-containing mixture (Hydryeast®, HY)-a multi-component nutraceutical of which the main ingredients are Azumaceramics (mixture of zeolite and oyster shell burned under high temperature), citric acid, red rice yeast (monascus) and calcium stearate-as a nutraceutical intervention in IBD to ameliorate dextran sodium sulfate (DSS)-induced colitis. We show the mechanism through integrated omics using transcriptomics and proteomics. C57BL6 mice were given an AIN-93G basal diet or a 0.8% HY containing diet and sterilized tap water for 11 days. Colitis was then induced by 1.5% (w/v) DSS-containing water for 9 days. HY fed mice showed significantly improved disease activity index and colon length compared to DSS mice. Colonic mucosa microarray analysis plus RT-PCR results indicate HY supplementation may ameliorate inflammation by inhibiting the intestinal inflammatory pathway and suppress apoptosis by curbing the expression of genes like tumor protein 53 and epidermal growth factor receptor and by upregulating epithelial protection-related proteins such as epithelial cell adhesion molecule and tenascin C, thus maintaining mucosal immune homeostasis and epithelial integrity, mirroring the proteome analysis results. HY appears to have a suppressive effect on colitis.
Collapse
|
29
|
Gastric toxicity involving alterations of gastritis-related protein expression in mice following long-term exposure to nano TiO 2. Food Res Int 2017; 95:38-45. [DOI: 10.1016/j.foodres.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
31
|
Yamaguchi J, Mino-Kenudson M, Liss AS, Chowdhury S, Wang TC, Fernández-del Castillo C, Lillemoe KD, Warshaw AL, Thayer SP. Loss of Trefoil Factor 2 From Pancreatic Duct Glands Promotes Formation of Intraductal Papillary Mucinous Neoplasms in Mice. Gastroenterology 2016; 151:1232-1244.e10. [PMID: 27523981 PMCID: PMC5396548 DOI: 10.1053/j.gastro.2016.07.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/16/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known about the origin of pancreatic intraductal papillary mucinous neoplasms (IPMN). Pancreatic duct glands (PDGs) are gland-like outpouches budding off the main pancreatic ducts that function as a progenitor niche for the ductal epithelium; they express gastric mucins and have characteristics of side-branch IPMNs. We investigated whether PDGs are a precursor compartment for IPMNs and the role of Trefoil factor family 2 (TFF2)-a protein expressed by PDGs and the gastric mucosa that are involved in epithelial repair and tumor suppression. METHODS We obtained pancreatectomy specimens from 20 patients with chronic pancreatitis, 13 with low-grade side-branch IPMNs, and 15 patients with PDAC; histologically normal pancreata were used as controls (n = 18). Samples were analyzed by immunohistochemistry to detect TFF1 and TFF2 and cell proliferation. We performed mitochondrial DNA mutational mapping studies to determine the cell lineage and fate of PDG cells. Pdx1-Cre;LSL-KRASG12D (KC) mice were bred with TFF2-knockout mice to generate KC/Tff2-/- and KC/Tff2+/- mice. Pancreata were collected and histologically analyzed for formation of IPMN, pancreatic intraepithelial neoplasias, and PDAC, in addition to proliferation and protein expression. Human pancreatic ductal epithelial cells and PDAC cell lines were transfected with vectors to overexpress or knock down TFF2 or SMAD4. RESULTS Histologic analysis of human samples revealed gastric-type IPMN to comprise 2 molecularly distinct layers: a basal crypt segment that expressed TFF2 and overlying papillary projections. Proliferation occurred predominantly in the PDG-containing basal segments. Mitochondrial mutation mapping revealed a 97% match between the profiles of proliferating PDG cells and their overlying nonproliferative IPMN cells. In contrast to KC mice, 2-month-old KC/Tff2+/- and KC/Tff2-/- mice developed prominent papillary structures in the duct epithelium with cystic metaplasia of the PDG, which resembled human IPMN; these expressed gastric mucins (MUC5AC and MUC6), but not the intestinal mucin MUC2. KC/TFF2-knockout mice developed a greater number and higher grade of pancreatic intraepithelial neoplasias than KC mice, and 1 mouse developed an invasive adenocarcinoma. Expression of TFF2 reduced proliferation of PDAC cells 3-fold; this effect required up-regulation and activation of SMAD4. We found expression of TFF2 to be down-regulated in human PDAC by hypermethylation of its promoter. CONCLUSIONS In histologic analyses of human IPMNs, we found PDGs to form the basal segment and possibly serve as a progenitor compartment. TFF2 has tumor-suppressor activity in the mouse pancreas and prevents formation of mucinous neoplasms.
Collapse
Affiliation(s)
- Junpei Yamaguchi
- Andrew L. Warshaw Institute for Pancreatic Cancer Research, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | | | - Andrew S. Liss
- Andrew L. Warshaw Institute for Pancreatic Cancer Research, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Sanjib Chowdhury
- Division of Surgical Oncology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Timothy C. Wang
- Division of Digestive & Liver Diseases and Irving Cancer Research Center, Columbia University Medical Center, New York, NY
| | - Carlos Fernández-del Castillo
- Andrew L. Warshaw Institute for Pancreatic Cancer Research, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Keith D. Lillemoe
- Andrew L. Warshaw Institute for Pancreatic Cancer Research, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Andrew L. Warshaw
- Andrew L. Warshaw Institute for Pancreatic Cancer Research, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Sarah P. Thayer
- Andrew L. Warshaw Institute for Pancreatic Cancer Research, Department of Surgery, Massachusetts General Hospital, Boston, MA,Division of Surgical Oncology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
32
|
Dhar P, Ng GZ, Sutton P. How host regulation of Helicobacter pylori-induced gastritis protects against peptic ulcer disease and gastric cancer. Am J Physiol Gastrointest Liver Physiol 2016; 311:G514-20. [PMID: 27469367 DOI: 10.1152/ajpgi.00146.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/26/2016] [Indexed: 01/31/2023]
Abstract
The bacterial pathogen Helicobacter pylori is the etiological agent of a range of gastrointestinal pathologies including peptic ulcer disease and the major killer, gastric adenocarcinoma. Infection with this bacterium induces a chronic inflammatory response in the gastric mucosa (gastritis). It is this gastritis that, over decades, eventually drives the development of H. pylori-associated disease in some individuals. The majority of studies investigating H. pylori pathogenesis have focused on factors that promote disease development in infected individuals. However, an estimated 85% of those infected with H. pylori remain completely asymptomatic, despite the presence of pathogenic bacteria that drive a chronic gastritis that lasts many decades. This indicates the presence of highly effective regulatory processes in the host that, in most cases, keeps a check on inflammation and protect against disease. In this minireview we discuss such known host factors and how they prevent the development of H. pylori-associated pathologies.
Collapse
Affiliation(s)
- Poshmaal Dhar
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia; and
| | - Garrett Z Ng
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia; and
| | - Philip Sutton
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Centre for Animal Biotechnology, School of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia; and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM, Hayakawa Y, Xu T, Westphalen CB, Dubeykovskiy A, Chen D, Friedman RA, Asfaha S, Nagar K, Tailor Y, Muthupalani S, Fox JG, Kitajewski J, Wang TC. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun 2016; 7:10517. [PMID: 26841680 PMCID: PMC4742920 DOI: 10.1038/ncomms10517] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022] Open
Abstract
CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer. During colorectal inflammation and cancer, myeloid cells accumulate in the spleen and suppress the host immunity response. In this study, the authors use a mouse model of colitis to demonstrate that upon vagus stimulation splenic memory T cells release TFF2, which suppresses the expansion of myeloid cells and cancer progression.
Collapse
Affiliation(s)
- Zina Dubeykovskaya
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Yiling Si
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Daniel L Worthley
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA.,Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, 81377 Munich, Germany
| | - Aleksandra M Urbanska
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Yoku Hayakawa
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ting Xu
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - C Benedikt Westphalen
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Alexander Dubeykovskiy
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Pb 8905, N-7491 Trondheim, Norway
| | - Richard A Friedman
- Department of Biomedical Informatics, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Samuel Asfaha
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Karan Nagar
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Sureshkumar Muthupalani
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James G Fox
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jan Kitajewski
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| |
Collapse
|
34
|
Valenzuela MA, Canales J, Corvalán AH, Quest AFG. Helicobacter pylori-induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol 2015; 21:12742-12756. [PMID: 26668499 PMCID: PMC4671030 DOI: 10.3748/wjg.v21.i45.12742] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The sequence of events associated with the development of gastric cancer has been described as “the gastric precancerous cascade”. This cascade is a dynamic process that includes lesions, such as atrophic gastritis, intestinal metaplasia and dysplasia. According to this model, Helicobacter pylori (H. pylori) infection targets the normal gastric mucosa causing non-atrophic gastritis, an initiating lesion that can be cured by clearing H. pylori with antibiotics or that may then linger in the case of chronic infection and progress to atrophic gastritis. The presence of virulence factors in the infecting H. pylori drives the carcinogenesis process. Independent epidemiological and animal studies have confirmed the sequential progression of these precancerous lesions. Particularly long-term follow-up studies estimated a risk of 0.1% for atrophic gastritis/intestinal metaplasia and 6% in case of dysplasia for the long-term development of gastric cancer. With this in mind, a better understanding of the genetic and epigenetic changes associated with progression of the cascade is critical in determining the risk of gastric cancer associated with H. pylori infection. In this review, we will summarize some of the most relevant mechanisms and focus predominantly but not exclusively on the discussion of gene promoter methylation and miRNAs in this context.
Collapse
|
35
|
Fu T, Znalesniak EB, Kalinski T, Möhle L, Biswas A, Salm F, Dunay IR, Hoffmann W. TFF Peptides Play a Role in the Immune Response Following Oral Infection of Mice with Toxoplasma Gondii. Eur J Microbiol Immunol (Bp) 2015; 5:221-31. [PMID: 26495133 PMCID: PMC4598890 DOI: 10.1556/1886.2015.00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 01/22/2023] Open
Abstract
The peptide trefoil factor family 3 (TFF3) is a major constituent of the intestinal mucus, playing an important role in the repair of epithelial surfaces. To further understand the role of TFF3 in the protection of intestinal epithelium, we tested the influence of TFF3 in a murine Toxoplasma gondii-induced ileitis model. Surprisingly, TFF3KO mice showed a reduced immune response in the ileum when compared to wild-type animals. Interleukin-12 and interferon-γ expression levels as well as the number of CD4+ lymphocytes were reduced in the infected TFF3KO mice. These effects were in line with the trend of elevated parasite levels in the ileum. Moreover, TFF1 expression was upregulated in the spleen of infected mice. These initial results indicate that TFF3 is involved in the immune pathology of T. gondii infection-induced intestinal inflammation. Thus far, the mechanisms of how TFF3 influences the immune response are not fully understood. Further studies should identify if TFF3 affects mucus sensing of dendritic cells and how TFF3 is involved in regulating the immune response as an intrinsic secretory peptide of immune cells.
Collapse
Affiliation(s)
- Ting Fu
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Thomas Kalinski
- Institute of Pathology, Otto-von-Guericke University Magdeburg , Germany
| | - Luisa Möhle
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Aindrila Biswas
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| | - Ildiko Rita Dunay
- Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg , Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg , Germany
| |
Collapse
|
36
|
Hoffmann W. TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more (Review). Int J Oncol 2015. [PMID: 26201258 DOI: 10.3892/ijo.2015.3090] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide TFF2 (formerly 'spasmolytic polypeptide'), a member of the trefoil factor family (TFF) containing two TFF domains, is mainly expressed together with the mucin MUC6 in the gastric epithelium and duodenal Brunner's glands. Pathologically, TFF2 expression is observed ectopically during stone diseases, chronic inflammatory conditions and in several metaplastic and neoplastic epithelia; most prominent being the 'spasmolytic polypeptide-expressing metaplasia' (SPEM), which is an established gastric precancerous lesion. TFF2 plays a critical role in maintaining gastric mucosal integrity and appears to restrain tumorigenesis in the stomach. Recently, porcine TFF2 has been shown to interact with the gastric mucin MUC6 and thus stabilize the gastric mucus barrier. On the one hand, TFF2 binds to MUC6 via non-covalent lectin interactions with the glycotope GlcNAcα1→4Galβ1→R. On the other hand, TFF2 is probably also covalently bound to MUC6 via disulfide bridges. Thus, implications for the complex multimeric assembly, cross-linking, and packaging of MUC6 as well as the rheology of gastric mucus are discussed in detail in this review. Furthermore, TFF2 is also expressed in minor amounts in the immune and nervous systems. Thus, similar to galectins, its lectin activity would perfectly enable TFF2 to form multivalent complexes and cross-linked lattices with a plethora of transmembrane glycoproteins and thus modulate different signal transduction processes. This could explain the multiple and diverse biological effects of TFF2 [e.g., motogenic, (anti)apoptotic, and angiogenic effects]. Finally, a function during fertilization is also possible for TFF domains because they occur as shuffled modules in certain zona pellucida proteins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| |
Collapse
|
37
|
Kitessa SM, Nattrass GS, Forder REA, McGrice HA, Wu SB, Hughes RJ. Mucin gene mRNA levels in broilers challenged with eimeria and/or Clostridium perfringens. Avian Dis 2015; 58:408-14. [PMID: 25518436 DOI: 10.1637/10757-122313-reg.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of Eimeria (EM) and Clostridium perfringens (CP) challenges on the mRNA levels of genes involved in mucin (Muc) synthesis (Muc2, Muc5ac, Muc13, and trefoil family factor-2 [TFF2]), inflammation (tumor necrosis factor alpha [TNF-alpha] and interleukin-18 [IL-18]), and metabolic processes (cluster of differentiation [CD]36) in the jejunum of broilers were investigated. Two parallel experiments involving 1) EM challenge and 2) EM and CP challenges were conducted. The first experiment was a 2 X 2 study with 12 birds per treatment (N = 48) involving fishmeal substitution (25%) in the diet (FM) and EM challenge. The treatments were: Control (FM-, EM-), Fishmeal (FM+, EM-), EM challenge (FM-, EM+), and fishmeal substitution and EM challenge (FM+, EM+). The second experiment was a 2 X 2 X 2 experiment with six birds per treatment (N = 48) involving fishmeal (FM-, FM+), Eimeria (EM-, EM+), and C perfringens (CP-, CP+). In both arms of the study, male broilers were given a starter diet for the whole period of 16 days, except those assigned to FM+, where 25% of the starter ration was replaced with fishmeal from days 8 to 14. EM inoculation was performed on day 9 and CP inoculation on days 14 and 15. The EM challenge birds were euthanatized for sampling on day 13; postmortem examination and sampling for the Eimeria plus C perfringens challenge arm of the study were on day 16. In the Eimeria challenge arm of the study, fishmeal supplementation significantly suppressed the mRNA levels of TNF-alpha, TFF2, and IL-18 pre-CP inoculation but simultaneously increased the levels of Muc13 and CD36 mRNAs. Birds challenged with Eimeria exhibited increased mRNA levels of Muc13, Muc5ac, TNF-alpha, and IL-18. In the Eimeria and C. perfringens challenge arm, birds exposed to EM challenge exhibited significantly lower mRNA levels of Muc2 and CD36. The mRNA levels of CD36 were also significantly suppressed by CP challenge. Our results showed that the transcription of mucin synthesis genes in the jejunum of broilers is modulated by fishmeal inclusion in the diet. Furthermore, we show for the first time suppression of CD36 mRNA levels in the intestine of broilers challenged with Eimeria or C. perfringens.
Collapse
|
38
|
Buzzelli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS, Judd LM. IL33 Is a Stomach Alarmin That Initiates a Skewed Th2 Response to Injury and Infection. Cell Mol Gastroenterol Hepatol 2015; 1:203-221.e3. [PMID: 28210674 PMCID: PMC5301136 DOI: 10.1016/j.jcmgh.2014.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)33 is a recently described alarmin that is highly expressed in the gastric mucosa and potently activates Th2 immunity. It may play a pivotal role during Helicobacter pylori infection. Here, we delineate the role of IL33 in the normal gastric mucosa and in response to gastropathy. METHODS IL33 expression was evaluated in mice and human biopsy specimens infected with H pylori and in mice after dosing with aspirin. IL33 expression was localized in the gastric mucosa using immunofluorescence. Mice were given 1 or 7 daily doses of recombinant IL33 (1 μg/dose), and the stomach and the spleen responses were quantified morphologically, by flow cytometry and using quantitative reverse-transcription polymerase chain reaction and immunoblotting. RESULTS In mice, the IL33 protein was localized to the nucleus of a subpopulation of surface mucus cells, and co-localized with the surface mucus cell markers Ulex Europaeus 1 (UEA1), and Mucin 5AC (Muc5AC). A small proportion of IL33-positive epithelial cells also were Ki-67 positive. IL33 and its receptor Interleukin 1 receptor-like 1 (ST2) were increased 4-fold after acute (1-day) H pylori infection, however, this increase was not apparent after 7 days and IL33 expression was reduced 2-fold after 2 months. Similarly, human biopsy specimens positive for H pylori had a reduced IL33 expression. Chronic IL33 treatment in mice caused systemic activation of innate lymphoid cell 2 and polarization of macrophages to the M2 phenotype. In the stomach, IL33-treated mice developed transmural inflammation and mucous metaplasia that was mediated by Th2/signal transducer and activator of transcription 3 signaling. Rag-1-/- mice, lacking mature lymphocytes, were protected from IL33-induced gastric pathology. CONCLUSIONS IL33 is highly expressed in the gastric mucosa and promotes the activation of T helper 2-cytokine-expressing cells. The loss of IL33 expression after prolonged H pylori infection may be permissive for the T helper 1-biased immune response observed during H pylori infection and subsequent precancerous progression.
Collapse
Key Words
- AB, Alcian blue
- DC, dendritic cell
- ELISA, enzyme-linked immunosorbent assay
- ERK, extracellular signal–regulated kinase
- FBS, fetal bovine serum
- Gastric Cancer
- HBSS, Hank’s balanced salt solution
- Helicobacter pylori
- IL, interleukin
- IL33
- ILC, innate lymphoid cell
- Inflammatory Response
- NF-κB, nuclear factor-κB
- PAS, periodic acid–Schiff
- PCR, polymerase chain reaction
- QRT-PCR, quantitative reverse-transcription polymerase chain reaction
- SMC, surface mucus cells
- SPF, specific pathogen free
- SS1, Sydney strain 1
- STAT, signal transducer and activator of transcription
- TFF, trefoil factor
- Th, T-helper
- WT, wild type
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Jon N. Buzzelli
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Heather V. Chalinor
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Daniel I. Pavlic
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Philip Sutton
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | - Trevelyan R. Menheniott
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Andrew S. Giraud
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Murdoch Children's Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia,Correspondence Address correspondence to: Louise Judd, PhD, Royal Children’s Hospital–Murdoch Children’s Research Institute, Gastrointestinal Research in Inflammation and Pathology, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia 3052. fax: (61) 3-9936-6528.
| |
Collapse
|
39
|
Judd LM, Chalinor HV, Walduck A, Pavlic DI, Däbritz J, Dubeykovskaya Z, Wang TC, Menheniott TR, Giraud AS. TFF2 deficiency exacerbates weight loss and alters immune cell and cytokine profiles in DSS colitis, and this cannot be rescued by wild-type bone marrow. Am J Physiol Gastrointest Liver Physiol 2015; 308:G12-24. [PMID: 25324506 PMCID: PMC9925116 DOI: 10.1152/ajpgi.00172.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The trefoil factor TFF2 is a member of a tripartite family of small proteins that is produced by the stomach and the colon. Recombinant TFF2, when applied intrarectally in a rodent model of hapten colitis, hastens mucosal healing and reduces inflammatory indexes. Additionally, TFF2 is expressed in immune organs, supporting a potential immunomodulatory and reparative role in the bowel. In this study we confirm that TFF2 is expressed in the colon and is specifically enriched in epithelial cells relative to colonic leukocytes. TFF2-deficient, but not TFF1-deficient, mice exhibit a more severe response to acute or chronic dextran sulfate (DSS)-induced colitis that correlates with a 50% loss of expression of TFF3, the principal colonic trefoil. In addition, the response to acute colitis is associated with altered expression of IL-6 and IL-33, but not other inflammatory cytokines. While TFF2 can reduce macrophage responsiveness and block inflammatory cell recruitment to the colon, the major role in limiting the susceptibility to acute colitis appears to be maintenance of barrier function. Bone marrow transfer experiments demonstrate that leukocyte expression of TFF2 is not sufficient for prevention of colitis induction but, rather, that the gastrointestinal epithelium is the primary source of TFF2. Together, these findings illustrate that epithelial TFF2 is an important endogenous regulator of gut mucosal homeostasis that can modulate immune and epithelial compartments. Because of its extreme stability, even in the corrosive gut lumen, TFF2 is an attractive candidate as an oral therapeutic scaffold for future drug development in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Louise M. Judd
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Heather V. Chalinor
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | - Daniel I. Pavlic
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jan Däbritz
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Zinaida Dubeykovskaya
- 3Department of Medicine and Irving Cancer Research Centre, Columbia University, New York, New York
| | - Timothy C. Wang
- 3Department of Medicine and Irving Cancer Research Centre, Columbia University, New York, New York
| | - Trevelyan R. Menheniott
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Andrew S. Giraud
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Hanisch FG, Bonar D, Schloerer N, Schroten H. Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. J Biol Chem 2014; 289:27363-75. [PMID: 25124036 DOI: 10.1074/jbc.m114.597757] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is the major cause of gastric cancer and remains an important health care challenge. The trefoil factor peptides are a family of small highly conserved proteins that are claimed to play essential roles in cytoprotection and epithelial repair within the gastrointestinal tract. H. pylori colocalizes with MUC5AC at the gastric surface epithelium, but not with MUC6 secreted in concert with TFF2 by deep gastric glands. Both components of the gastric gland secretome associate non-covalently and show increased expression upon H. pylori infection. Although blood group active O-glycans of the Lewis-type form the basis of H. pylori adhesion to the surface mucin layer and to epithelial cells, α1,4-GlcNAc-capped O-glycans on gastric mucins were proposed to inhibit H. pylori growth as a natural antibiotic. We show here that the gastric glycoform of TFF2 is a calcium-independent lectin, which binds with high specificity to O-linked α1,4-GlcNAc-capped hexasaccharides on human and porcine stomach mucin. The structural assignments of two hexasaccharide isomers and the binding active glycotope were based on mass spectrometry, linkage analysis, (1)H nuclear magnetic resonance spectroscopy, glycan inhibition, and lectin competition of TFF2-mucin binding. Neoglycolipids derived from the C3/C6-linked branches of the two isomers revealed highly specific TFF2 binding to the 6-linked trisaccharide in GlcNAcα1-4Galβ1-4GlcNAcβ1-6(Fucα1-2Galβ1-3)GalNAc-ol(Structure 1). Supposedly, lectin TFF2 is involved in protection of gastric epithelia via a functional relationship to defense against H. pylori launched by antibiotic α1,4-GlcNAc-capped mucin glycans. Lectin-carbohydrate interaction may have also an impact on more general functional aspects of TFF members by mediating their binding to cell signaling receptors.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, the Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Köln,
| | - David Bonar
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln
| | - Nils Schloerer
- the Institute of Organic Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, and
| | - Horst Schroten
- the University Children's Hospital, Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
41
|
Davaro F, Forde SD, Garfield M, Jiang Z, Halmen K, Tamburro ND, Kurt-Jones E, Fitzgerald KA, Golenbock DT, Wang D. 3-Hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin)-induced 28-kDa interleukin-1β interferes with mature IL-1β signaling. J Biol Chem 2014; 289:16214-22. [PMID: 24790079 DOI: 10.1074/jbc.m114.571505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multiple clinical trials have shown that the 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors known as statins have anti-inflammatory effects. However, the underlying molecular mechanism remains unclear. The proinflammatory cytokine interleukin-1β (IL-1β) is synthesized as a non-active precursor. The 31-kDa pro-IL-1β is processed into the 17-kDa active form by caspase-1-activating inflammasomes. Here, we report a novel signaling pathway induced by statins, which leads to processing of pro-IL-1β into an intermediate 28-kDa form. This statin-induced IL-1β processing is independent of caspase-1- activating inflammasomes. The 28-kDa form of IL-1β cannot activate interleukin-1 receptor-1 (IL1R1) to signal inflammatory responses. Instead, it interferes with mature IL-1β signaling through IL-1R1 and therefore may dampen inflammatory responses initiated by mature IL-1β. These results may provide new clues to explain the anti-inflammatory effects of statins.
Collapse
Affiliation(s)
- Facundo Davaro
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Sorcha D Forde
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Mark Garfield
- NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Zhaozhao Jiang
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Kristen Halmen
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Nelsy Depaula Tamburro
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Evelyn Kurt-Jones
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Katherine A Fitzgerald
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Douglas T Golenbock
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Donghai Wang
- From the Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| |
Collapse
|
42
|
Royce SG, Li X, Tortorella S, Goodings L, Chow BSM, Giraud AS, Tang MLK, Samuel CS. Mechanistic insights into the contribution of epithelial damage to airway remodeling. Novel therapeutic targets for asthma. Am J Respir Cell Mol Biol 2014; 50:180-92. [PMID: 23980699 DOI: 10.1165/rcmb.2013-0008oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been suggested that an inherent airway epithelial repair defect is the root cause of airway remodeling in asthma. However, the relationship between airway epithelial injury and repair, airway remodeling, and airway hyperresponsiveness (AHR) has not been directly examined. We investigated the contribution of epithelial damage and repair to the development of airway remodeling and AHR using a validated naphthalene (NA)-induced murine model of airway injury. In addition, we examined the endogenous versus exogenous role of the epithelial repair peptide trefoil factor 2 (TFF2) in disease pathogenesis. A single dose of NA (200 mg/kg in 10 ml/kg body weight corn oil [CO] vehicle, intraperitoneally) was administered to mice. Control mice were treated with CO (10 ml/kg body weight, intraperitoneally). At 12, 24, 48, and 72 hours after NA or CO injection, AHR and various measures of airway remodeling were examined by invasive plethysmography and morphometric analyses, respectively. TFF2-deficient mice and intranasal treatment were used to examine the role of the epithelial repair peptide. NA treatment induced denudation and apoptosis of airway epithelial cells, goblet cell metaplasia, elevated AHR, and increased levels of endogenous TFF2. Airway epithelial changes peaked at 12 hours after NA treatment, whereas airway remodeling changes were observed from 48 hours. TFF2 was protective against epithelial damage and induced remodeling and was found to mediate organ protection via a platelet-derived growth factor-associated mechanism. Our findings directly demonstrate the contribution of epithelial damage to airway remodeling and AHR and suggest that preventing airway epithelial damage and promoting epithelial repair may have therapeutic implications for asthma treatment.
Collapse
Affiliation(s)
- Simon G Royce
- 1 Department of Allergy and Immune Disorders, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
De Giorgio MR, Yoshioka M, Riedl I, Moreault O, Cherizol RG, Shah AA, Blin N, Richard D, St-Amand J. Trefoil factor family member 2 (Tff2) KO mice are protected from high-fat diet-induced obesity. Obesity (Silver Spring) 2013; 21:1389-95. [PMID: 23754443 DOI: 10.1002/oby.20165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 11/02/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Trefoil factor family member 2 (Tff2) is a small gut peptide, mainly known for its protective and healing functions. As previously demonstrated, high-fat (HF) feeding can rapidly and specifically modulate Tff2 transcription in key tissues of mice, including the duodenum and mesenteric adipose tissue, therefore suggesting a novel role for this gene in energy balance. DESIGN AND METHODS To explore whether and how Tff2 can influence feeding behavior and energy metabolism, Tff2 knock-out (KO) mice were challenged with HF diet for 12 weeks, hence food and energy intakes, body composition, as well as energy excretion and serum lipid and hormonal levels were analyzed. Finally, energy efficiency was estimated. RESULTS Tff2 KO mice showed a greater appetite and higher energy intake compared to wild-type (WT). Consistently, they presented lower levels of serum leptin, and increased transcription of agouti-related protein (Agrp) in the hypothalamus. Though energy and triglyceride fecal excretion were augmented in Tff2 KO mice, digestible energy intake was superior. However, KO mice were finally protected from HF diet-induced obesity, and accumulated less weight and fat depots than WT animals, while keeping a normal lean mass. Energy efficiency was lower in HF-KO mice, while energy expenditure and locomotor activity were globally increased. CONCLUSIONS The present work demonstrates previously unsuspected roles for Tff2 and suggests it to be a mastermind in the control of energy balance and a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Maria Rita De Giorgio
- Functional Genomics Laboratory, CREMOGH, CRCHUQ and Department of Molecular Medicine, Laval University, Québec City, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The unfolded protein response is activated in Helicobacter-induced gastric carcinogenesis in a non-cell autonomous manner. J Transl Med 2013; 93:112-22. [PMID: 23108377 DOI: 10.1038/labinvest.2012.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mucous metaplasia (MM) is an aberrant secretory phenotype that arises during Helicobacter-induced gastric carcinogenesis. HSPA5, a key modulator of the unfolded protein response (UPR) activated by endoplasmic reticulum (ER) stress is overexpressed in gastric cancer (GC). We studied activation of the UPR in MM and GC in humans and mice. We assessed RNA and protein levels of ER stress markers (HSPA5, XBP1, and CHOP) in human GC, and correlated with Helicobacter pylori (H. pylori) status, then surveyed HSPA5 in normal gastric mucosa and gastric pre-neoplasia including gastritis and intestinal metaplasia (IM). The role of H. pylori infection in the UPR was assessed by co-culture with AGS GC cells. ER stress markers in metaplasia and dysplasia from transgenic K19-Wnt1/C2mE mice and C57Bl/6 mice with chronic Helicobacter felis (H. felis) infection were compared. HSPA5 was overexpressed in 24/73 (33%) of human GC. Induction of HSPA5 and XBP1 splicing was associated with H. pylori-associated GC (P=0.007 for XBP1 splicing). HSPA5 was overexpressed in MM but not gastritis in patients with H. pylori infection. Stimulation of AGS cells with CagA-positive H. pylori suppressed HSPA5 expression and XBP1 splicing. In the normal gastric mucosa of human and mouse, HSPA5 was constitutively expressed in MIST1-positive chief cells. Increased Hspa5 and Chop expression were found in dysplasia of C57Bl/6 mice with chronic H. felis infection but was absent in spontaneous gastric dysplasia in K19-Wnt1/C2mE mice with concomitant loss of Mist1 expression, similar to that observed in H. pylori-associated human GC. Induction of the UPR in the milieu of Helicobacter-induced chronic inflammation and MM may promote neoplastic transformation of Helicobacter-infected gastric mucosa.
Collapse
|
45
|
Hanisch FG, Ragge H, Kalinski T, Meyer F, Kalbacher H, Hoffmann W. Human gastric TFF2 peptide contains an N-linked fucosylated N,N'-diacetyllactosediamine (LacdiNAc) oligosaccharide. Glycobiology 2012; 23:2-11. [PMID: 22997242 DOI: 10.1093/glycob/cws131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the human stomach, the peptide trefoil factor family 2 (TFF2) is secreted together with the mucin MUC6 by mucous neck cells (MNCs) and antral gland cells. TFF2 is strongly associated with the gastric mucus and promotes gastric restitution. Here, TFF2 was purified from the human corpus and antrum, respectively, by size-exclusion chromatography, and the N-linked glycan structure at N-15 of the mature peptide was determined. As a hallmark, the unusual monofucosylated N,N'-diacetylhexosediamine (tentatively assigned as GalNAcβ1 → 4GlcNAc, LacdiNAc) modification was detected as the terminal structure of a bi-antennary complex type N-glycan exhibiting also core fucosylation. Replicate analyses did not show microheterogeneities in the fraction of peptide-N-glycosidase F cleaved and permethylated N-glycans when analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). On the glycopeptide level, a minor glycan microheterogeneity was evident in liquid chromatography-electrospray ionization (ESI)-MS, demonstrating the presence of underfucosylated species. The tryptic TFF2 N-glycopeptide p34-39 (LSPHNR N-glycosylated with Fuc3Hex3HexNAc6) was identified by both ESI-tandem mass spectrometry and MALDI-post-source decay analysis. Lectin analyses with the Wisteria floribunda agglutinin indicated the potential presence of LacdiNAc terminating glycans and revealed minor differences between TFF2 from fundic units, i.e. MNCs, and antral units, i.e. antral gland cells. Strikingly, on the level of the primary structure, there was no indication that the formation of the proposed LacdiNAc structure is cis-controlled by a peptidic determinant related to the published sequences.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, and Central Bioanalytics, Center for Molecular Medicine Cologne, University Köln, Germany
| | | | | | | | | | | |
Collapse
|
46
|
McBerry C, Egan CE, Rani R, Yang Y, Wu D, Boespflug N, Boon L, Butcher B, Mirpuri J, Hogan SP, Denkers EY, Aliberti J, Herbert DR. Trefoil factor 2 negatively regulates type 1 immunity against Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2012; 189:3078-84. [PMID: 22896633 DOI: 10.4049/jimmunol.1103374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12-mediated type 1 inflammation confers host protection against the parasitic protozoan Toxoplasma gondii. However, production of IFN-γ, another type 1 inflammatory cytokine, also drives lethality from excessive injury to the intestinal epithelium. As mechanisms that restore epithelial barrier function following infection remain poorly understood, this study investigated the role of trefoil factor 2 (TFF2), a well-established regulator of mucosal tissue repair. Paradoxically, TFF2 antagonized IL-12 release from dendritic cells (DCs) and macrophages, which protected TFF2-deficient (TFF2(-/-)) mice from T. gondii pathogenesis. Dysregulated intestinal homeostasis in naive TFF2(-/-) mice correlated with increased IL-12/23p40 levels and enhanced T cell recruitment at baseline. Infected TFF2(-/-) mice displayed low rates of parasite replication and reduced gut immunopathology, whereas wild-type (WT) mice experienced disseminated infection and lethal ileitis. p38 MAPK activation and IL-12p70 production was more robust from TFF2(-/-)CD8+ DC compared with WT CD8+ DC and treatment of WT DC with rTFF2 suppressed TLR-induced IL-12/23p40 production. Neutralization of IFN-γ and IL-12 in TFF2(-/-) animals abrogated resistance shown by enhanced parasite replication and infection-induced morbidity. Hence, TFF2 regulated intestinal barrier function and type 1 cytokine release from myeloid phagocytes, which dictated the outcome of oral T. gondii infection in mice.
Collapse
Affiliation(s)
- Cortez McBerry
- Division of Molecular Immunology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wills-Karp M, Rani R, Dienger K, Lewkowich I, Fox JG, Perkins C, Lewis L, Finkelman FD, Smith DE, Bryce PJ, Kurt-Jones EA, Wang TC, Sivaprasad U, Hershey GK, Herbert DR. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. ACTA ACUST UNITED AC 2012; 209:607-22. [PMID: 22329990 PMCID: PMC3302229 DOI: 10.1084/jem.20110079] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The repair protein trefoil factor 2 promotes Th2 responses to helminth infection and allergens in part by inducing IL-33. The molecular mechanisms that drive mucosal T helper type 2 (TH2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a TH2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal TH2 responses.
Collapse
Affiliation(s)
- Marsha Wills-Karp
- Division of Immunobiology and 2 Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shah AA, Mihalj M, Ratkay I, Lubka-Pathak M, Balogh P, Klingel K, Bohn E, Blin N, Baus-Loncar M. Increased Susceptibility toYersinia enterocoliticaInfection ofTff2Deficient Mice. Cell Physiol Biochem 2012; 30:853-62. [DOI: 10.1159/000341463] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
|
49
|
Patel MK, Trombly MI, Kurt-Jones EA. Innate immune responses to Helicobacter pylori infection: an overview. Methods Mol Biol 2012; 921:205-7. [PMID: 23015506 DOI: 10.1007/978-1-62703-005-2_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immune receptors detect Helicobacter pylori infection and trigger downstream signaling events that result in the production of cytokines and interferon-β. This chapter gives an overview of the receptors and their roles in responding to H. pylori infection and details the downstream signaling events. The tools that have been developed to study the innate immune response to H. pylori are also discussed. Understanding the immune response to H. pylori is critical to develop better treatments for H. pylori-induced disease states including gastric malignancies and cancer.
Collapse
Affiliation(s)
- Milan K Patel
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
50
|
Rogers AB. Gastric Helicobacter spp. in animal models: pathogenesis and modulation by extragastric coinfections. Methods Mol Biol 2012; 921:175-188. [PMID: 23015504 DOI: 10.1007/978-1-62703-005-2_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Animal models are used to study complex host, microbial, and environmental influences associated with gastric Helicobacter infection. Evidence that gastric helicobacters are pathogenic in animals first came from ferrets. Felids, nonhuman primates, and many other species also harbor stomach helicobacters. Today, mice are preferred by most researchers for scientific investigation because of cost-efficiencies, rapid reproduction, choice of laboratory reagents, and availability of genetically engineered models. Infection with Helicobacter felis or H. pylori Sydney strain-1 in appropriate mouse strains produces disease with remarkable similarities to H. pylori in humans. Due to recent advances in genetic engineering, in vivo imaging, and system-wide genomics and proteomics, these models will become even more widespread in the future. Recently, it has been shown that extragastric infections can dramatically affect the severity of disease induced by gastric Helicobacter spp. through heterologous immunity. These models provide proof-of-principle for the "African enigma" wherein gastric cancer is underrepresented in low-lying tropical countries with concurrently high H. pylori and internal parasite prevalence. Helicobacter gastritis and carcinogenesis in mouse models may be augmented or ameliorated by other infectious agents depending on the character of the invoked immune response. Knowledge gained from the Human Microbiome Project and other investigations is certain to shed new light on the influence of extragastric bacterial, viral, fungal, and parasitic coinfections on H. pylori-associated peptic ulcer disease and gastric adenocarcinoma.
Collapse
Affiliation(s)
- Arlin B Rogers
- Lineberger Comprehensive Cancer Center and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|