1
|
Anisimov AP, Vagaiskaya AS, Trunyakova AS, Dentovskaya SV. Live Plague Vaccine Development: Past, Present, and Future. Vaccines (Basel) 2025; 13:66. [PMID: 39852845 PMCID: PMC11768842 DOI: 10.3390/vaccines13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
During the last 100 years, vaccine development has evolved from an empirical approach to one of the more rational vaccine designs where the careful selection of antigens and adjuvants is key to the desired efficacy for challenging pathogens and/or challenging populations. To improve immunogenicity while maintaining a favorable reactogenicity and safety profile, modern vaccine design must consider factors beyond the choice of target antigen alone. With new vaccine technologies currently emerging, it will be possible to custom-design vaccines for optimal efficacy in groups of people with different responses to vaccination. It should be noted that after a fairly long period of overwhelming dominance of papers devoted to subunit plague vaccines, materials devoted to the development of live plague vaccines have increasingly been published. In this review, we present our opinion on reasonable tactics for the development and application of live, safe, and protective human plague vaccines causing an enhanced duration of protection and breadth of action against various virulent strains in vaccination studies representing different ages, genders, and nucleotide polymorphisms of the genes responsible for immune response.
Collapse
Affiliation(s)
- Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (A.S.T.); (S.V.D.)
| | | | | | | |
Collapse
|
2
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024; 12:eesp00042023. [PMID: 39023252 PMCID: PMC11636237 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T. Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Bucarey SA, Maldonado LD, Duarte F, Hidalgo AA, Sáenz L. Oral Vaccine Formulation for Immunocastration Using a Live-Attenuated Salmonella ΔSPI2 Strain as an Antigenic Vector. Vaccines (Basel) 2024; 12:1400. [PMID: 39772060 PMCID: PMC11728726 DOI: 10.3390/vaccines12121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry. In this study, a Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant lacking the pathogenicity island 2 (S. Typhimurium ΔSPI2) was used as a vehicle and mucosal adjuvant to deliver two genetic constructs in an attempt to develop an oral immunological preparation against gonadotropin hormone-releasing hormone (GnRH). S. Typhimurium ΔSPI2 was transformed to carry two plasmids containing a modified GnRH gene repeated in tandem (GnRXG/Q), one under eukaryotic expression control (pDNA::GnRXG/Q) and another under prokaryotic expression control (pJexpress::GnRXG/Q). A group of three male BALB/c mice were orally immunized and vaccination-boosted 30 days later. The oral administration of S. Typhimurium ΔSPI2 transformed with both plasmids was effective in producing antibodies against GnRXG/Q, leading to a decrease in serum testosterone levels and testicular tissue atrophy, evidenced by a reduction in the transverse tubular diameter of the seminiferous tubules and a decrease in the number of layers of the seminiferous epithelium in the testes of the inoculated mice. These results suggest that S. Typhimurium ΔSPI2 can be used as a safe and simple system to produce an oral formulation against GnRH and that Salmonella-mediated oral antigen delivery is a novel, yet effective, alternative to induce an immune response against GnRH in a murine model, warranting further research in other animal species.
Collapse
Affiliation(s)
- Sergio A. Bucarey
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (L.D.M.)
| | - Lucy D. Maldonado
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (L.D.M.)
| | - Francisco Duarte
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (L.D.M.)
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago 8370134, Chile
| | - Leonardo Sáenz
- Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| |
Collapse
|
4
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
5
|
Swain B, Campodonico VA, Curtiss R. Recombinant Attenuated Edwardsiella piscicida Vaccine Displaying Regulated Lysis to Confer Biological Containment and Protect Catfish against Edwardsiellosis. Vaccines (Basel) 2023; 11:1470. [PMID: 37766146 PMCID: PMC10534663 DOI: 10.3390/vaccines11091470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
We implemented a unique strategy to construct a recombinant attenuated Edwardsiella vaccine (RAEV) with a biological containment phenotype that causes regulated bacterial cell wall lysis. This process ensures that the vaccine strain is not able to persist in the environment. The murA gene is responsible for the catalysis of one of the first steps in the biosynthesis of muramic acid, which is a crucial component of the bacterial cell wall. The regulated lysis phenotype was achieved by inserting the tightly regulated araC ParaBAD cassette in place of the chromosomal murA promoter. Strains with this mutation require growth media supplemented with arabinose in order to survive. Without arabinose, they are unable to synthesize the peptidoglycan cell wall. Following the colonization of fish lymphoid tissues, the murA protein is no longer synthesized due to the lack of arabinose. Lysis is subsequently achieved in vivo, thus preventing the generation of disease symptoms and the spread of the strain into the environment. Vaccine strain χ16016 with the genotype ΔPmurA180::TT araC ParaBADmurA is attenuated and shows a higher LD50 value than that of the wild-type strain. Studies have demonstrated that χ16016 induced TLR4, TLR5, TLR8, TLR9, NOD1 and NOD2-mediated NF-κB pathways and upregulated the gene expression of various cytokines, such as il-8, il-1β, tnf-a, il-6 and ifn-γ in catfish. We observed significant upregulation of the expression profiles of cd4, cd8 and mhc-II genes in different organs of vaccinated catfish. Vaccine strain χ16016 induced systemic and mucosal IgM titers and conferred significant protection to catfish against E. piscicida wild-type challenge. Our lysis RAEV is the first live attenuated vaccine candidate designed to be used in the aquaculture industry that displays this biological containment property.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
6
|
Gruzdev N, Pitcovski J, Katz C, Ruimi N, Eliahu D, Noach C, Rosenzweig E, Finger A, Shahar E. Development of toxin-antitoxin self-destructive bacteria, aimed for salmonella vaccination. Vaccine 2023:S0264-410X(23)00777-6. [PMID: 37400285 DOI: 10.1016/j.vaccine.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The most common source of foodborne Salmonella infection in humans is poultry eggs and meat, such that prevention of human infection is mostly achieved by vaccination of farm animals. While inactivated and attenuated vaccines are available, both present drawbacks. This study aimed to develop a novel vaccination strategy, which combines the effectiveness of live-attenuated and safety of inactivated vaccines by construction of inducible self-destructing bacteria utilizing toxin-antitoxin (TA) systems. Hok-Sok and CeaB-CeiB toxin-antitoxin systems were coupled with three induction systems aimed for activating cell killing upon lack of arabinose, anaerobic conditions or low concentration of metallic di-cations. The constructs were transformed into a pathogenic Salmonella enterica serovar Enteritidis strain and bacteria elimination was evaluated in vitro under specific activating conditions and in vivo following administration to chickens. Four constructs induced bacterial killing under the specified conditions, both in growth media and within macrophages. Cloacal swabs of all chicks orally administered transformed bacteria had no detectable levels of bacteria within 9 days of inoculation. By day ten, no bacteria were identified in the spleen and liver of most birds. Antibody immune response was raised toward TA carrying Salmonella which resembled response toward the wildtype bacteria. The constructs described in this study led to self-destruction of virulent Salmonella enteritidis both in vitro and in inoculated animals within a period which is sufficient for the induction of a protective immune response. This system may serve as a safe and effective live vaccine platform against Salmonella as well as other pathogenic bacteria.
Collapse
Affiliation(s)
- Nady Gruzdev
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Jacob Pitcovski
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Chen Katz
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Nili Ruimi
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | - Dalia Eliahu
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel
| | | | | | | | - Ehud Shahar
- MIGAL Research Institute in the Galilee, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
7
|
Listeria-vectored multi-antigenic tuberculosis vaccine protects C57BL/6 and BALB/c mice and guinea pigs against Mycobacterium tuberculosis challenge. Commun Biol 2022; 5:1388. [PMID: 36539517 PMCID: PMC9764316 DOI: 10.1038/s42003-022-04345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and is a leading cause of death from a single infectious agent. New TB vaccines are urgently needed to augment immunity conferred by the current modestly protective BCG vaccine. We have developed live attenuated recombinant Listeria monocytogenes (rLm)-vectored TB vaccines expressing five [Mpt64/23.5-EsxH/TB10.4-EsxA/ESAT6-EsxB/CFP10-Ag85B/r30] (rLmMtb5Ag) or nine (additionally EsxN-PPE68-EspA-TB8.4) immunoprotective Mtb antigens (rLmMtb9Ag) and evaluated them for safety, immunogenicity and efficacy as standalone vaccines in two mouse models and an outbred guinea pig model. In immunogenicity studies, rLmMtb5Ag administered subcutaneously induces significantly enhanced antigen-specific CD4+ and CD8+ T-cell responses in C57BL/6 and BALB/c mice, and rLmMtb9Ag induces antigen-specific CD4+ and CD8+ T-cell proliferation in guinea pigs. In efficacy studies, both rLmMtb5Ag and rLmMtb9Ag are safe and protect C57BL/6 and BALB/c mice and guinea pigs against aerosol challenge with highly virulent Mtb. Hence, multi-antigenic rLm vaccines hold promise as new vaccines against TB.
Collapse
|
8
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
9
|
Pereira M, Oh JK, Kang DK, Engstrand L, Valeriano VD. Hacking Commensal Bacteria to Consolidate the Adaptive Mucosal Immune Response in the Gut-Lung Axis: Future Possibilities for SARS-CoV-2 Protection. BIOTECH 2022; 11:3. [PMID: 35822811 PMCID: PMC9245903 DOI: 10.3390/biotech11010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious diseases caused by mucosal pathogens significantly increase mortality and morbidity. Thus, the possibility to target these pathogens at their primary entry points can consolidate protective immunity. Regarding SARS-CoV-2 infection, it has been observed that the upper respiratory mucosa is highly affected and that dysregulation of resident microbiota in the gut-lung axis plays a crucial role in determining symptom severity. Thus, understanding the possibility of eliciting various mucosal and adaptive immune responses allows us to effectively design bacterial mucosal vaccine vectors. Such design requires rationally selecting resident bacterial candidates as potential host carriers, evaluating effective carrier proteins for stimulating an immune response, and combining these two to improve antigenic display and immunogenicity. This review investigated mucosal vaccine vectors from 2015 to present, where a few have started to utilize Salmonella and lactic acid bacteria (LAB) to display SARS-CoV-2 Spike S proteins or fragments. Although current literature is still lacking for its studies beyond in vitro or in vivo efficiency, decades of research into these vectors show promising results. Here, we discuss the mucosal immune systems focusing on the gut-lung axis microbiome and offer new insight into the potential use of alpha streptococci in the upper respiratory tract as a vaccine carrier.
Collapse
Affiliation(s)
- Marcela Pereira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden; (M.P.); (J.K.O.); (L.E.)
| | - Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden; (M.P.); (J.K.O.); (L.E.)
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea;
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden; (M.P.); (J.K.O.); (L.E.)
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden; (M.P.); (J.K.O.); (L.E.)
| |
Collapse
|
10
|
A triple-sugar regulated Salmonella vaccine protects against Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poult Sci 2021; 101:101592. [PMID: 34922043 PMCID: PMC8686071 DOI: 10.1016/j.psj.2021.101592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
Gram-positive Clostridium perfringens type G, the causative agent of necrotic enteritis (NE), has gained more attention in the poultry industry due to governmental restrictions on the use of growth-promoting antibiotics in poultry feed. Our previous work has proved that regulated delayed lysis Salmonella vaccines delivering a plasmid encoding an operon fusion of the nontoxic C-terminal adhesive part of alpha toxin and a GST-NetB toxin fusion were able to elicit significant protective immunity in broilers against C. perfringens challenge. We recently improved our S. Typhimurium antigen delivery vaccine strain by integrating a rhamnose-regulated O-antigen synthesis gene enabling a triple-sugar regulation system to control virulence, antigen-synthesis and lysis in vivo traits. The strain also includes a ΔsifA mutation that was previously shown to increase the immunogenicity of and level of protective immunity induced by Salmonella vectored influenza and Eimeria antigens. The new antigen-delivery vaccine vector system confers on the vaccine strain a safe profile and improved protection against C. perfringens challenge. The strain with the triple-sugar regulation system delivering a regulated lysis plasmid pG8R220 encoding the PlcC and GST-NetB antigens protected chickens at a similar level observed in antibiotic-treated chickens. Feed conversion and growth performance were also similar to antibiotic-treated chickens. These studies made use of a severe C. perfringens challenge with lesion formation and mortality enhanced by pre-exposure to Eimeria maxima oocysts. The vaccine achieved effectiveness through three different immunization routes, oral, spray and in drinking water. The vaccine has a potential for application in commercial hatcher and broiler-rearing conditions.
Collapse
|
11
|
Kong W. Development of Antiviral Vaccine Utilizing Self-Destructing Salmonella for Antigen and DNA Vaccine Delivery. Methods Mol Biol 2021; 2225:39-61. [PMID: 33108656 DOI: 10.1007/978-1-0716-1012-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Vaccines are the most effective means to prevent infectious diseases, especially for viral infection. The key to an excellent antiviral vaccine is the ability to induce long-term protective immunity against a specific virus. Bacterial vaccine vectors have been used to impart protection against self, as well as heterologous antigens. One significant benefit of using live bacterial vaccine vectors is their ability to invade and colonize deep effector lymphoid tissues after mucosal delivery. The bacterium Salmonella is considered the best at this deep colonization. This is critically essential for inducing protective immunity. This chapter describes the methodology for developing genetically modified self-destructing Salmonella (GMS) vaccine delivery systems targeting influenza infection. Specifically, the methods covered include the procedures for the development of GMSs for protective antigen delivery to induce cellular immune responses and DNA vaccine delivery to induce systemic immunity against the influenza virus. These self-destructing GMS could be modified to provide effective biological containment for genetically engineered bacteria used for a diversity of purposes in addition to vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Female
- Genes, Lethal
- Genetic Engineering/methods
- Humans
- Immunity, Cellular/drug effects
- Immunity, Mucosal/drug effects
- Immunization/methods
- Influenza Vaccines/genetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Organisms, Genetically Modified
- Plasmids/chemistry
- Plasmids/metabolism
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Transgenes
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Wei Kong
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
12
|
Recent Advances in the Pursuit of an Effective Acinetobacter baumannii Vaccine. Pathogens 2020; 9:pathogens9121066. [PMID: 33352688 PMCID: PMC7766458 DOI: 10.3390/pathogens9121066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii has been a major cause of nosocomial infections for decades. The absence of an available vaccine coupled with emerging multidrug resistance has prevented the medical community from effectively controlling this human pathogen. Furthermore, the ongoing pandemic caused by SARS-CoV-2 has increased the risk of hospitalized patients developing ventilator-associated pneumonia caused by bacterial opportunists including A. baumannii. The shortage of antibiotics in the development pipeline prompted the World Health Organization to designate A. baumannii a top priority for the development of new medical countermeasures, such as a vaccine. There are a number of important considerations associated with the development of an A. baumannii vaccine, including strain characteristics, diverse disease manifestations, and target population. In the past decade, research efforts have revealed a number of promising new immunization strategies that could culminate in a safe and protective vaccine against A. baumannii. In this review, we highlight the recent progress in the development of A. baumannii vaccines, discuss potential challenges, and propose future directions to achieve an effective intervention against this human pathogen.
Collapse
|
13
|
Troxell B, Mendoza M, Ali R, Koci M, Hassan H. Attenuated Salmonella enterica Serovar Typhimurium, Strain NC983, Is Immunogenic, and Protective against Virulent Typhimurium Challenges in Mice. Vaccines (Basel) 2020; 8:vaccines8040646. [PMID: 33153043 PMCID: PMC7711481 DOI: 10.3390/vaccines8040646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars are significant health burden worldwide. Although much effort has been devoted to developing typhoid-based vaccines for humans, currently there is no NTS vaccine available. Presented here is the efficacy of a live attenuated serovar Typhimurium strain (NC983). Oral delivery of strain NC983 was capable of fully protecting C57BL/6 and BALB/c mice against challenge with virulent Typhimurium. Strain NC983 was found to elicit an anti-Typhimurium IgG response following administration of vaccine and boosting doses. Furthermore, in competition experiments with virulent S. Typhimurium (ATCC 14028), NC983 was highly defective in colonization of the murine liver and spleen. Collectively, these results indicate that strain NC983 is a potential live attenuated vaccine strain that warrants further development.
Collapse
Affiliation(s)
- Bryan Troxell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Mary Mendoza
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Rizwana Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
- Microbiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +919-515-7081; Fax: +919-515-2625
| |
Collapse
|
14
|
Kong W, Wang X, Fields E, Okon B, Jenkins MC, Wilkins G, Brovold M, Golding T, Gonzales A, Golden G, Clark-Curtiss J, Curtiss R. Mucosal Delivery of a Self-destructing Salmonella-Based Vaccine Inducing Immunity Against Eimeria. Avian Dis 2020; 64:254-268. [PMID: 33112952 DOI: 10.1637/aviandiseases-d-19-00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2019] [Indexed: 11/05/2022]
Abstract
A programmed self-destructive Salmonella vaccine delivery system was developed to facilitate efficient colonization in host tissues that allows release of the bacterial cell contents after lysis to stimulate mucosal, systemic, and cellular immunities against a diversity of pathogens. Adoption and modification of these technological improvements could form part of an integrated strategy for cost-effective control and prevention of infectious diseases, including those caused by parasitic pathogens. Avian coccidiosis is a common poultry disease caused by Eimeria. Coccidiosis has been controlled by medicating feed with anticoccidial drugs or administering vaccines containing low doses of virulent or attenuated Eimeria oocysts. Problems of drug resistance and nonuniform administration of these Eimeria resulting in variable immunity are prompting efforts to develop recombinant Eimeria vaccines. In this study, we designed, constructed, and evaluated a self-destructing recombinant attenuated Salmonella vaccine (RASV) lysis strain synthesizing the Eimeria tenella SO7 antigen. We showed that the RASV lysis strain χ11791(pYA5293) with a ΔsifA mutation enabling escape from the Salmonella-containing vesicle (or endosome) successfully colonized chicken lymphoid tissues and induced strong mucosal and cell-mediated immunities, which are critically important for protection against Eimeria challenge. The results from animal clinical trials show that this vaccine strain significantly increased food conversion efficiency and protection against weight gain depression after challenge with 105E. tenella oocysts with concomitant decreased oocyst output. More importantly, the programmed regulated lysis feature designed into this RASV strain promotes bacterial self-clearance from the host, lessening persistence of vaccine strains in vivo and survival if excreted, which is a critically important advantage in a vaccine for livestock animals. Our approach should provide a safe, cost-effective, and efficacious vaccine to control coccidiosis upon addition of additional protective Eimeria antigens. These improved RASVs can also be modified for use to control other parasitic diseases infecting other animal species.
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Xiao Wang
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Emilia Fields
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Blessing Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Gary Wilkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Tiana Golding
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Amanda Gonzales
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
15
|
Gao X, Xu K, Yang G, Shi C, Huang H, Wang J, Yang W, Liu J, Liu Q, Kang Y, Jiang Y, Wang C. Construction of a novel DNA vaccine candidate targeting F gene of genotype VII Newcastle disease virus and chicken IL-18 delivered by Salmonella. J Appl Microbiol 2019; 126:1362-1372. [PMID: 30785663 DOI: 10.1111/jam.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
AIMS Genotype VII Newcastle disease (ND) is one of the most epidemic and serious infectious diseases in the poultry industry. A novel vaccine targeting VII Newcastle disease virus (NDV) is still proving elusive. METHODS AND RESULTS In this study, we constructed regulated delayed lysis Salmonella strains expressing either a fusion protein (F) alone under an eukaryotic CMV promoter or together with chicken IL-18 (chIL-18) as a molecular adjuvant under prokaryotic Ptrc promoter, named pYL1 and pYL23 respectively. Oral immunization with recombinant strains induced NDV-specific serum IgG antibodies in both pYL1- and pYL23-immunized chickens. The presence of chIL-18 significantly increased lymphocyte proliferation in immunized chickens, as well as the percentages of CD3+ CD4+ and CD3+ CD8+ T cells in serum, even if a statistically significant difference did not exist. After a virulent challenge, pYL23 immunization provided about 80% protection at day 10 postinfection, compared with 60% of protection offered by pYL1 immunization and 100% protection in the inactivated vaccine group, indicating the enhanced immune response provided by chIL-18, which was also confirmed by histochemical analysis. CONCLUSIONS Recombinant lysis Salmonella-vectored DNA vaccine could provide us a novel potential option for controlling NDV infection. SIGNIFICANCE AND IMPACT OF THE STUDY This study took use of a regulated delayed lysis Salmonella vector for the design of an orally administrated vaccine against NDV.
Collapse
Affiliation(s)
- X Gao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - K Xu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - G Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - C Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - H Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - J Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - W Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - J Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Q Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Y Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Y Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - C Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, Lim M, Cao W, Guillemette S, Cho CS. M cell targeting engineered biomaterials for effective vaccination. Biomaterials 2018; 192:75-94. [PMID: 30439573 DOI: 10.1016/j.biomaterials.2018.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023]
Abstract
Vaccines are one of the greatest medical interventions of all time and have been successful in controlling and eliminating a myriad of diseases over the past two centuries. Among several vaccination strategies, mucosal vaccines have wide clinical applications and attract considerable interest in research, showing potential as innovative and novel therapeutics. In mucosal vaccination, targeting (microfold) M cells is a frontline prerequisite for inducing effective antigen-specific immunostimulatory effects. In this review, we primarily focus on materials engineered for use as vaccine delivery platforms to target M cells. We also describe potential M cell targeting areas, methods to overcome current challenges and limitations of the field. Furthermore, we present the potential of biomaterials engineering as well as various natural and synthetic delivery technologies to overcome the challenges of M cell targeting, all of which are absent in current literature. Finally, we briefly discuss manufacturing and regulatory processes to bring a robust perspective on the feasibility and potential of this next-generation vaccine technology.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emma Reesor
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Mohammad Azad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Michael Lim
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Wuji Cao
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Simon Guillemette
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
17
|
Xu C, Zhang BZ, Lin Q, Deng J, Yu B, Arya S, Yuen KY, Huang JD. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect Dis 2018; 18:195. [PMID: 29699491 PMCID: PMC5921394 DOI: 10.1186/s12879-018-3104-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus. METHODS Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7-9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student's t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant. RESULTS Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains. CONCLUSIONS The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.
Collapse
Affiliation(s)
- Chen Xu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qiubin Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Smriti Arya
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. .,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China. .,Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
18
|
Bai F, Li Z, Umezawa A, Terada N, Jin S. Bacterial type III secretion system as a protein delivery tool for a broad range of biomedical applications. Biotechnol Adv 2018; 36:482-493. [PMID: 29409784 DOI: 10.1016/j.biotechadv.2018.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/08/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
A protein delivery tool based on bacterial type III secretion system (T3SS) has been broadly applied in biomedical researches. In this review, we summarize various applications of the T3SS-mediate protein delivery which enables translocation of proteins directly into mammalian cells without protein purification. Some of the remarkable advancements include delivery of antigens for therapeutic vaccines, nucleases for genome editing, transcription factors for cellular reprogramming and stem cells differentiation, and signaling molecules for post-translational proteomics studies. With continued improvement of the T3SS-mediated protein delivery tools, even wider application of the technology is anticipated.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Naohiro Terada
- Department of Pathology College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
19
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
20
|
Burda WN, Brenneman KE, Gonzales A, Curtiss R. Conversion of RpoS - Attenuated Salmonella enterica Serovar Typhi Vaccine Strains to RpoS + Improves Their Resistance to Host Defense Barriers. mSphere 2018; 3:e00006-18. [PMID: 29507892 PMCID: PMC5830471 DOI: 10.1128/msphere.00006-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The vast majority of live attenuated typhoid vaccines are constructed from the Salmonella enterica serovar Typhi strain Ty2, which is devoid of a functioning alternative sigma factor, RpoS, due to the presence of a frameshift mutation. RpoS is a specialized sigma factor that plays an important role in the general stress response of a number of Gram-negative organisms, including Salmonella. Previous studies have demonstrated that this sigma factor is necessary for survival following exposure to acid, hydrogen peroxide, nutrient-limiting conditions, and starvation. In addition, studies with Salmonella enterica serovar Typhimurium and the mouse model of typhoid fever have shown that RpoS is important in colonization and survival within the infected murine host. We converted 4 clinically studied candidate typhoid vaccine strains derived from Ty2 [CVD908-htrA, Ty800, and χ9639(pYA3493)] and the licensed live typhoid vaccine Ty21a (also derived from Ty2) to RpoS+ and compared their abilities to withstand environmental stresses that may be encountered within the host to those of the RpoS- parent strains. The results of our study indicate that strains that contain a functional RpoS were better able to survive following stress and that they would be ideal for further development as safe, effective vaccines to prevent S. Typhi infections or as vectors in recombinant attenuated Salmonella vaccines (RASVs) designed to protect against other infectious disease agents in humans. The S. Typhi strains constructed and described here will be made freely available upon request, as will the suicide vector used to convert rpoS mutants to RpoS+. IMPORTANCE Recombinant attenuated Salmonella vaccines (RASVs) represent a unique prevention strategy to combating infectious disease because they utilize the ability of Salmonella to invade and colonize deep effector lymphoid tissues and deliver hetero- and homologous derived antigens at the lowest immunizing dose. Our recent clinical trial in human volunteers indicated that an RpoS+ derivative of Ty2 was better at inducing immune responses than its RpoS- counterpart. In this study, we demonstrate that a functional RpoS allele is beneficial for developing effective live attenuated vaccines against S. Typhi or in using S. Typhi as a recombinant attenuated vaccine vector to deliver other protective antigens.
Collapse
Affiliation(s)
- Whittney N. Burda
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Karen E. Brenneman
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Amanda Gonzales
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Roy Curtiss
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
21
|
Listeria-Vectored Vaccine Expressing the Mycobacterium tuberculosis 30-Kilodalton Major Secretory Protein via the Constitutively Active prfA* Regulon Boosts Mycobacterium bovis BCG Efficacy against Tuberculosis. Infect Immun 2017. [PMID: 28630063 DOI: 10.1128/iai.00245-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective Mycobacterium bovis BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein (r30/antigen 85B [Ag85B]) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated L. monocytogenes vectors, L. monocytogenes ΔactA (LmI), L. monocytogenes ΔactA ΔinlB (LmII), and L. monocytogenes ΔactA ΔinlB prfA* (LmIII), we constructed five rLm30 vaccine candidates expressing r30 linked in frame to the L. monocytogenes listeriolysin O signal sequence and driven by the hly promoter (h30) or linked in frame to the ActA N-terminal 100 amino acids and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm30 expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the largest amount of r30 in broth culture, all five rLm30 vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting of BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T cells expressing the three cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) (P < 0.001) and splenic and lung CD8+ T cells expressing IFN-γ (P < 0.0001). In mice and guinea pigs, the rLmIII/a30 and rLmI/h30 vaccines were generally more potent booster vaccines than r30 with an adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting of mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized M. tuberculosis (P < 0.01).
Collapse
|
22
|
Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens. Appl Environ Microbiol 2016; 83:AEM.02782-16. [PMID: 27815271 DOI: 10.1128/aem.02782-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice.
Collapse
|
23
|
aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant. mBio 2016; 7:mBio.01220-16. [PMID: 27601574 PMCID: PMC5013297 DOI: 10.1128/mbio.01220-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. Recombinant attenuated bacterial vector systems based on genetically engineered Salmonella have been developed as highly potent vaccines. Due to the pathogenic properties of Salmonella, efficient attenuation is required for clinical applications. Since the hallmark study by Hoiseth and Stocker in 1981 (S. K. Hoiseth and B. A. D. Stocker, Nature 291:238–239, 1981, http://dx.doi.org/10.1038/291238a0), the auxotrophic ΔaroA mutation has been generally considered safe and universally used to attenuate bacterial strains. Here, we are presenting the remarkable finding that a deletion of aroA leads to pronounced alterations of gene expression, metabolism, and cellular physiology, which resulted in increased immunogenicity, virulence, and adjuvant potential of Salmonella. These results suggest that the enhanced immunogenicity of aroA-deficient Salmonella strains might be advantageous for optimizing bacterial vaccine carriers and immunotherapy. Accordingly, we demonstrate a superior performance of ΔaroA Salmonella in bacterium-mediated tumor therapy. In addition, the present study highlights the importance of a functional shikimate pathway to sustain bacterial physiology and metabolism.
Collapse
|
24
|
Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol 2016; 2016:8451728. [PMID: 27051423 PMCID: PMC4802035 DOI: 10.1155/2016/8451728] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023] Open
Abstract
The rising incidence of cancer cases worldwide generates an urgent need of novel treatment options. Applying bacteria may represent a valuable therapeutic variant that is intensively investigated nowadays. Interestingly, the idea to apply bacteria wittingly or unwittingly dates back to ancient times and was revived in the 19th century mainly by the pioneer William Coley. This review summarizes and compares the results of the past 150 years in bacteria mediated tumor therapy from preclinical to clinical studies. Lessons we have learned from the past provide a solid foundation on which to base future efforts. In this regard, several perspectives are discussed by which bacteria in addition to their intrinsic antitumor effect can be used as vector systems that shuttle therapeutic compounds into the tumor. Strategic solutions like these provide a sound and more apt exploitation of bacteria that may overcome limitations of conventional therapies.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
25
|
Jiang Y, Mo H, Willingham C, Wang S, Park JY, Kong W, Roland KL, Curtiss R. Protection Against Necrotic Enteritis in Broiler Chickens by Regulated Delayed Lysis Salmonella Vaccines. Avian Dis 2016; 59:475-85. [PMID: 26629620 DOI: 10.1637/11094-041715-reg] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Necrotic enteritis (NE), caused by Gram-positive Clostridium perfringens type A strains, has gained more attention in the broiler industry due to governmental restrictions affecting the use of growth-promoting antibiotics in feed. To date, there is only one commercial NE vaccine available, based on the C. perfringens alpha toxin. However, recent work has suggested that the NetB toxin, not alpha toxin, is the most critical virulence factor for causing NE. These findings notwithstanding, it is clear from prior research that immune responses against both toxins can provide some protection against NE. In this study, we delivered a carboxyl-terminal fragment of alpha toxin and a GST-NetB fusion protein using a novel attenuated Salmonella vaccine strain designed to lyse after 6-10 rounds of replication in the chicken host. We immunized birds with vaccine strains producing each protein individually, a mixture of the two strains, or with a single vaccine strain that produced both proteins. Immunization with strains producing either of the single proteins was not protective, but immunization with a mixture of the two or with a single strain producing both proteins resulted in protective immunity. The vaccine strain synthesizing both PlcC and GST-NetB was able to elicit strong production of intestinal IgA, IgY, and IgM antibodies and significantly protect broilers against C. perfringens challenge against both mild and severe challenges. Although not part of our experimental plan, the broiler chicks we obtained for these studies were apparently contaminated during transit from the hatchery with group D Salmonella. Despite this drawback, the vaccines worked well, indicating applicability to real-world conditions.
Collapse
Affiliation(s)
- Yanlong Jiang
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Hua Mo
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Crystal Willingham
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Shifeng Wang
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Jie-Yeun Park
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Wei Kong
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Kenneth L Roland
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Roy Curtiss
- A Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287.,B School of Life Sciences, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
26
|
Novel vaccine antigen combinations elicit protective immune responses against Escherichia coli sepsis. Vaccine 2015; 34:656-662. [PMID: 26707217 DOI: 10.1016/j.vaccine.2015.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
Systemic infections caused by extraintestinal pathogenic Escherichia coli (ExPEC) have emerged as the most common community-onset bacterial infections and are major causes of nosocomial infections worldwide. The management of ExPEC infections has been complicated by the heterogeneity of ExPEC strains and the emergence of antibiotic resistance, thus their prevention through vaccination would be beneficial. The protective efficacy of four common ExPEC antigen candidates composed of common pilus antigens EcpA and EcpD and iron uptake proteins IutA and IroN, were tested by both active and passive immunization in lethal and non-lethal murine models of sepsis. Additionally, antibody raised to a synthetic form of a conserved surface polysaccharide, β-(1-6)-linked poly-N-acetylglucosamine (dPNAG) containing 9 monomers of (non-acetylated) glucosamine (9GlcNH2) conjugated to tetanus toxoid TT (9GlcNH2-TT) was tested in passive immunization protocols. Active immunization of mice with recombinant antigens EcpA, EcpD, IutA, or IroN elicited high levels of total IgG antibody of IgG1/IgG2a isotypes, and were determined to be highly protective against E. coli infection in lethal and non-lethal sepsis challenges. Moreover, passive immunization against these four antigens resulted in significant reductions of bacteria in internal organs and blood of the mice, especially when the challenge strain was grown in iron-restricted media. Inclusion of antibodies to PNAG increased the efficacy of the passive immunization under conditions where the challenge bacteria were grown in LB medium but not in iron-restricted media. The information and data presented are the first step toward the development of a broadly protective vaccine against sepsis-causing E. coli strains.
Collapse
|
27
|
da Silva AJ, Zangirolami TC, Novo-Mansur MTM, Giordano RDC, Martins EAL. Live bacterial vaccine vectors: an overview. Braz J Microbiol 2015; 45:1117-29. [PMID: 25763014 PMCID: PMC4323283 DOI: 10.1590/s1517-83822014000400001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
Collapse
Affiliation(s)
- Adilson José da Silva
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Teresa Cristina Zangirolami
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Departamento de Genética e Evolução Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Roberto de Campos Giordano
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Elizabeth Angélica Leme Martins
- Centro de Biotecnologia Instituto Butantan São PauloSP Brazil Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
29
|
Sali M, Dainese E, Morandi M, Zumbo A, Rocca S, Goussard S, Palù G, Grillot-Courvalin C, Delogu G, Manganelli R. Homologous prime boosting based on intranasal delivery of non-pathogenic invasive Escherichia coli expressing MPT64, decreases Mycobacterium tuberculosis dissemination. Vaccine 2014; 32:4051-8. [DOI: 10.1016/j.vaccine.2014.05.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
|
30
|
Deng YH, He HY, Zhang FJ. Immunogenicity and protective efficacy conferred by a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin strain expressing interleukin-12p70 of human cytokine and Ag85A of Mycobacterium tuberculosis fusion protein. Scand J Immunol 2013; 78:497-506. [PMID: 24283772 DOI: 10.1111/sji.12116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) immunization provides protection against tuberculosis (TB) in infants, but the antituberculosis protective immunity wanes gradually after initial immunization and lasts less than 15 years. Therefore, more efficacious vaccines are urgently needed. In this study, we constructed a new tuberculosis vaccine of recombinant BCG strain (rBCG-IA), which could express IL-12p70 of human cytokine and Ag85A of M. tuberculosis fusion protein, and investigated its immunogenicity in BALB/c mice by measuring antibody titres, proliferation rate of splenocytes, ratios of CD4(+) T and CD8(+) T cells stimulated by specific antigens and levels of IFN-γ production in antigen-stimulated splenocyte cultures. Meanwhile, we evaluated its protective efficacy against M. tuberculosis H37Rv infection through detecting lung histopathology, organ bacterial loads and lung acid-fast stain. Immunogenicity experiments illustrated that from 2nd to 8th week after immunization, the rBCG-IA vaccine was able to induce the highest level of antibody titres, proliferation rate of splenocytes and IFN-γ production among groups and gained improved ratio of CD4(+) T and CD8(+) T cells from 6th to 8th week after vaccination. And from 2nd to 8th week after M. tuberculosis H37Rv infection, the score of pathology and bacterial loads in the rBCG-IA group were obviously lower than that in rBCG-I group, rBCG-A group or control group (PBST group), but similar to that in BCG group. This study suggested that rBCG-IA was able to elicit stronger humoral and cellular immune responses, but could only confer similar protective efficacy compared with its parental BCG vaccine.
Collapse
Affiliation(s)
- Y H Deng
- Department of Human Anatomy, Medical College, Kunming University of Science and Technology, Kunming, China
| | | | | |
Collapse
|
31
|
Kong W, Clark-Curtiss J, Curtiss R. Utilizing Salmonella for antigen delivery: the aims and benefits of bacterial delivered vaccination. Expert Rev Vaccines 2013; 12:345-7. [PMID: 23560914 DOI: 10.1586/erv.13.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect Immun 2013; 81:3148-62. [PMID: 23774599 DOI: 10.1128/iai.00097-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens.
Collapse
|
33
|
Deng YH, He HY, Zhang BS. Evaluation of protective efficacy conferred by a recombinant Mycobacterium bovis BCG expressing a fusion protein of Ag85A-ESAT-6. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:48-56. [PMID: 23357605 DOI: 10.1016/j.jmii.2012.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/01/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously constructed a recombinant bacille Calmette-Guérin (rBCG-AE) strain that could express a fused Ag85A-ESAT-6 protein. That study suggested that the rBCG-AE strain was able to induce a higher titer of antibody and elicit a more long-lived and stronger Th1-type cellular immune responses than the parental BCG strain, the rBCG-A strain (i.e., expressing Ag85A), or the rBCG-E strain (i.e., expressing ESAT-6). METHODS In the current study, we further investigated the strain's protective efficacy against Mycobacterium tuberculosis H37Rv infection in BALB/c mice through evaluating organ bacterial loads, lung histopathology, lung immunohistochemistry, and net weight gain or loss by using conventional BCG, rBCG-A, and rBCG-E as the controls. RESULTS From the 3rd to 9th weeks after the challenge infection, the bacterial counts were significantly lower in tissues (e.g., spleen and lung tissues) in the mice immunized with rBCG-AE than in the control group, but were higher than the counts in the BCG group. The pathological damage in the lung tissues of the rBCG-AE group gradually improved from the 6th to 9th weeks after being infected with M. tuberculosis H37Rv, but the score of pathological changes in the rBCG-AE group was obviously higher than the score in the BCG group. There was no difference in the percentage of IFN-γ and iNOS positive cells in the lung tissues of the rBCG-AE and BCG groups. CONCLUSION The results suggest that rBCG-AE can not promote protective efficacy against M. tuberculosis H37Rv infection, compared to the BCG vaccine.
Collapse
Affiliation(s)
- Yi-Hao Deng
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China.
| | - Hong-Yun He
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China
| | - Ben-Si Zhang
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China
| |
Collapse
|
34
|
Abstract
Infectious diseases are responsible for an overwhelming number of deaths worldwide and their clinical management is often hampered by the emergence of multi-drug-resistant strains. Therefore, prevention through vaccination currently represents the best course of action to combat them. However, immune escape and evasion by pathogens often render vaccine development difficult. Furthermore, most currently available vaccines were empirically designed. In this review, we discuss why rational design of vaccines is not only desirable but also necessary. We introduce recent developments towards specifically tailored antigens, adjuvants, and delivery systems, and discuss the methodological gaps and lack of knowledge still hampering true rational vaccine design. Finally, we address the potential and limitations of different strategies and technologies for advancing vaccine development.
Collapse
Affiliation(s)
- Christine Rueckert
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|