1
|
Sebastiampillai S, Nitz M. Selective inhibition of NikA mediated Ni(II) import in E. coli by the Indium(III)-EDTA complex. Metallomics 2025; 17:mfaf008. [PMID: 40037903 DOI: 10.1093/mtomcs/mfaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Nickel is a required nutrient for bacteria to produce [NiFe]-hydrogenase and urease enzymes. [NiFe]-hydrogenase catalyzes the reversible conversion of hydrogen into protons and electrons and urease catalyzes the hydrolysis of urea into carbon dioxide and ammonia-both key in bacterial pathogenesis. As such, nickel trafficking and homeostasis are interesting targets for potential antibacterial strategies. In E. coli, NikA binds a Ni(II)-(L-His)2 chelate in the periplasm and delivers this complex to the NikBCDE transporter. Blocking Ni(II) uptake by NikA would prevent the biosynthesis of active [NiFe]-hydrogenase. Fe(III)-EDTA is a potent ligand for NikA, however due to the potential for reduction of Fe(III) to Fe(II), it has limited utility. Using Fe(III)-EDTA as a starting point for inhibitor design, similar stable complexes of Bismuth(III), Lutetium(III) and Indium(III) were investigated. The In(III)-EDTA complex is a potent inhibitor of cellular [NiFe]-hydrogenase activity (IC50 of 600 μM ± 100 μM) while being nontoxic to bacterial growth. The mechanism of In(III)-EDTA hydrogenase inhibition was confirmed by the inhibition of Ni(II)-dependent processing of HycE (hydrogenase-3), which could be rescued with the addition of exogenous nickel. To elucidate the binding affinity of In(III)-EDTA to NikA, isothermal titration calorimetry (ITC) was carried out, revealing stoichiometric 1:1 binding with a Kd of 17.3 µM ± 3.0 µM. Indium concentrations determined by inductively coupled plasma mass spectrometry in E. coli cells in the presence or absence of NikA showed no discernable difference, further supporting the competitive inhibition of nickel uptake by blocking NikA.
Collapse
Affiliation(s)
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
2
|
Hemara LM, Hoyte SM, Arshed S, Schipper MM, Wood PN, Marshall SL, Andersen MT, Patterson HR, Vanneste JL, Peacock L, Jayaraman J, Templeton MD. Genomic Biosurveillance of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Biovar 3 Reveals Adaptation to Selective Pressures in New Zealand Orchards. MOLECULAR PLANT PATHOLOGY 2025; 26:e70056. [PMID: 39915983 PMCID: PMC11802661 DOI: 10.1111/mpp.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
In the late 2000s, a pandemic of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) devastated kiwifruit orchards growing susceptible, yellow-fleshed cultivars. New Zealand's kiwifruit industry has since recovered, following the deployment of the tolerant cultivar 'Zesy002'. However, little is known about the extent to which the Psa population is evolving since its arrival. Over 500 Psa3 isolates from New Zealand kiwifruit orchards were sequenced between 2010 and 2022, from commercial monocultures and diverse germplasm collections. While effector loss was previously observed on Psa-resistant germplasm vines, effector loss appears to be rare in commercial orchards, where the dominant cultivars lack Psa resistance. However, a new Psa3 variant, which has lost the effector hopF1c, has arisen. The loss of hopF1c appears to have been mediated by the movement of integrative conjugative elements introducing copper resistance into this population. Following this variant's identification, in-planta pathogenicity and competitive fitness assays were performed to better understand the risk and likelihood of its spread. While hopF1c loss variants had similar in-planta growth to wild-type Psa3, a lab-generated ∆hopF1c strain could outcompete the wild type on select hosts. Further surveillance was conducted in commercial orchards where these variants were originally isolated, with 6.6% of surveyed isolates identified as hopF1c loss variants. These findings suggest that the spread of these variants is currently limited, and they are unlikely to cause more severe symptoms than the current population. Ongoing genome biosurveillance of New Zealand's Psa3 population is recommended to enable early detection and management of variants of interest.
Collapse
Affiliation(s)
- Lauren M. Hemara
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Stephen M. Hoyte
- Ruakura Research CentreThe New Zealand Institute for Plant and Food Research LimitedHamiltonNew Zealand
| | - Saadiah Arshed
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Magan M. Schipper
- Ruakura Research CentreThe New Zealand Institute for Plant and Food Research LimitedHamiltonNew Zealand
| | - Peter N. Wood
- The New Zealand Institute for Plant and Food Research LimitedHawke’s BayNew Zealand
| | - Sergio L. Marshall
- Ruakura Research CentreThe New Zealand Institute for Plant and Food Research LimitedHamiltonNew Zealand
| | - Mark T. Andersen
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Haileigh R. Patterson
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Joel L. Vanneste
- Ruakura Research CentreThe New Zealand Institute for Plant and Food Research LimitedHamiltonNew Zealand
| | | | - Jay Jayaraman
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Matthew D. Templeton
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Mount Albert Research Centre, The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| |
Collapse
|
3
|
Mazzei L, Tria G, Ciurli S, Cianci M. Exploring the conformational space of the mobile flap in Sporosarcina pasteurii urease by cryo-electron microscopy. Int J Biol Macromol 2024; 283:137904. [PMID: 39571870 DOI: 10.1016/j.ijbiomac.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
To fully understand enzymatic dynamics, it is essential to explore the complete conformational space of a biological catalyst. The catalytic mechanism of the nickel-dependent urease, the most efficient enzyme known, holds significant relevance for medical, pharmaceutical, and agro-environmental applications. A critical aspect of urease function is the conformational change of a helix-turn-helix motif that covers the active site cavity, known as the mobile flap. This motif has been observed in either an open or a closed conformation through X-ray crystallography studies and has been proposed to stabilize the coordination of a urea molecule to the essential dinuclear Ni(II) cluster in the active site, a requisite for subsequent substrate hydrolysis. This study employs cryo-electron microscopy (cryo-EM) to investigate the transient states within the conformational space of the mobile flap, devoid of the possible constraints of crystallization conditions and solid-state effects. By comparing two cryo-EM structures of Sporosarcina pasteurii urease, one in its native form and the other inhibited by N-(n-butyl) phosphoric triamide (NBPTO), we have unprecedently identified an intermediate state between the open and the catalytically efficient closed conformation of the helix-turn-helix motif, suggesting a role of its tip region in this transition between the two states.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Giancarlo Tria
- Florence Center for Electron Nanoscopy (FloCEN), c/o Chemistry Department "Ugo Schiff", University of Florence, I-50019 Sesto Fiorentino, (FI), Italy; National Research Council, Institute of Cristallography URT Caserta c/o University of Campania "Luigi Vanvitelli", I-81100 Caserta, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy.
| |
Collapse
|
4
|
Awan B, Khan MA, Ahmad I, Masood A, Raza A, Khaliq S, Ullah F, Ahmed J, Khan MR. Norfloxacin derivatives as DNA gyrase and urease inhibitors: synthesis, biological evaluation and molecular docking. Future Med Chem 2023; 15:2181-2194. [PMID: 37997685 DOI: 10.4155/fmc-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Background: DNA gyrase and urease enzymes are important targets for the treatment of gastroenteritis, appendicitis, tuberculosis, urinary tract infections and Crohn's disease. Materials & methods: Esterification of norfloxacin was performed to enhance DNA gyrase and urease enzyme inhibition potential. Structure elucidation and chemical characterization were done through spectral (1H NMR, Fourier transform IR, 13C NMR) and carbon, hydrogen, nitrogen and sulfur analysis along with molecular docking. Results & conclusion: The majority of derivatives exhibited significant results but the 3e derivative showed maximum bactericidal, DPPH scavenging (96%), DNA gyrase and urease enzyme inhibitory activity with IC50 of 0.15 ± 0.24 and 1.14 ± 0.11 μM respectively which was further supported by molecular docking studies. So, the active derivatives can serve as a lead compound for the treatment of various pathological conditions.
Collapse
Affiliation(s)
- Breena Awan
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College, London, SE1 9NH, UK
| | - Irshad Ahmad
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anum Masood
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Asim Raza
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saharish Khaliq
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Javed Ahmed
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Khan
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
5
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
6
|
Madduri BTSA, Bell SL. Bug in the code: TB blocks DNA repair. Cell Host Microbe 2023; 31:1769-1771. [PMID: 37944488 DOI: 10.1016/j.chom.2023.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Protecting the cell's genome is crucial for survival, but infection causes damage that compromises genetic integrity. In this issue of Cell Host & Microbe, Lui et al. dissect how Mycobacterium tuberculosis exploits DNA damage using a secreted protein that inhibits DNA repair to create an environment conducive to bacterial replication.
Collapse
Affiliation(s)
- Bala T S A Madduri
- Center for Emerging & Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samantha L Bell
- Center for Emerging & Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
7
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
8
|
Xiong Z, Zhang N, Xu L, Deng Z, Limwachiranon J, Guo Y, Han Y, Yang W, Scharf DH. Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence. Microbiol Spectr 2023; 11:e0350822. [PMID: 36916906 PMCID: PMC10100864 DOI: 10.1128/spectrum.03508-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
The number of patients suffering from fungal diseases has constantly increased during the last decade. Among the fungal pathogens, the airborne filamentous fungus Aspergillus fumigatus can cause chronic and fatal invasive mold infections. So far, only three major classes of drugs (polyenes, azoles, and echinocandins) are available for the treatment of life-threatening fungal infections, and all present pharmacological drawbacks (e.g., low solubility or toxicity). Meanwhile, clinical antifungal-resistant isolates are continuously emerging. Therefore, there is a high demand for novel antifungal drugs, preferentially those that act on new targets. We studied urease and the accessory proteins in A. fumigatus to determine their biochemical roles and their influence on virulence. Urease is crucial for the growth on urea as the sole nitrogen source, and the transcript and protein levels are elevated on urea media. The urease deficient mutant displays attenuated virulence, and its spores are more susceptible to macrophage-mediated killing. We demonstrated that this observation is associated with an inability to prevent the acidification of the phagosome. Furthermore, we could show that a nickel-chelator inhibits growth on urea. The nickel chelator is also able to reverse the effects of urease on macrophage killing and phagosome acidification, thereby reducing virulence in systemic and trachea infection models. IMPORTANCE The development of antifungal drugs is an urgent task, but it has proven to be difficult due to many similarities between fungal and animal cells. Here, we characterized the urease system in A. fumigatus, which depends on nickel for activity. Notably, nickel is not a crucial element for humans. Therefore, we went further to explore the role of nickel-dependent urease in host-pathogen interactions. We were able to show that urease is important in preventing the acidification of the phagosome and therefore reduces the killing of conidia by macrophages. Furthermore, the deletion of urease shows reduced virulence in murine infection models. Taken together, we identified urease as an essential virulence factor of A. fumigatus. We were able to show that the application of the nickel-chelator dimethylglyoxime is effective in both in vitro and in vivo infection models. This suggests that nickel chelators or urease inhibitors are potential candidates for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Liru Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiduo Deng
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jarukitt Limwachiranon
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaojie Guo
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Han
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Biophysics and Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel H. Scharf
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Synthesis, Characterization, and Biological Evaluation of 2-(N-((2'-(2H-tetrazole-5-yl)-[1,1'-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl Butanoic Acid Derivatives. Molecules 2023; 28:molecules28041908. [PMID: 36838897 PMCID: PMC9959676 DOI: 10.3390/molecules28041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
This study aimed to evaluate 2-(N-((2'-(2H-tetrazole-5-yl)-[1,1'-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl butanoic acid-based ester derivatives as a new class of angiotensin-II receptor antagonists. For this purpose, a series of compounds were synthesized using a variety of phenols. Their chemical characterization was established by FTIR, 1HNMR, and 13CNMR techniques. The biological activities including antioxidant potentials using the DPPH assay, the antihypertensive assay, the urease enzyme inhibition assay, and the antibacterial assay using agar well diffusion methods were performed. All the new compounds showed significant free radical scavenging potentials more than the parent drug while retaining antihypertensive potentials along with urease inhibition properties. However, the AV2 test compound was found to be the most potent against hypertension. Most of the synthesized analogs showed urease inhibitory actions. Molecular docking studies were performed for all the active analogs to decode the binding detail of the ligands with receptors of the enzyme's active site.
Collapse
|
10
|
Nadolinskaia NI, Kotliarova MS, Goncharenko AV. Fighting Tuberculosis: In Search of a BCG Replacement. Microorganisms 2022; 11:microorganisms11010051. [PMID: 36677343 PMCID: PMC9863999 DOI: 10.3390/microorganisms11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.
Collapse
|
11
|
Mazzei L, Cianci M, Ciurli S. Inhibition of Urease by Hydroquinones: A Structural and Kinetic Study. Chemistry 2022; 28:e202201770. [PMID: 35994380 PMCID: PMC9826003 DOI: 10.1002/chem.202201770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/11/2023]
Abstract
Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheVia Brecce Bianche 1060131AnconaItaly
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| |
Collapse
|
12
|
Silva LOS, Moreira TR, Gonçales RA, Tomazett MV, Parente-Rocha JA, Mattos K, Paccez JD, Ruiz OH, Pereira M, Soares CMDA, Weber SS, Cruz-Leite VRM, Borges CL. Paracoccidioides lutzii Formamidase Contributes to Fungal Survival in Macrophages. Microorganisms 2022; 10:microorganisms10102011. [PMID: 36296287 PMCID: PMC9608497 DOI: 10.3390/microorganisms10102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is a crucial nutrient for microorganisms that compose essential biomolecules. However, hosts limit this nutrient as a strategy to counter infections, therefore, pathogens use adaptive mechanisms to uptake nitrogen from alternative sources. In fungi, nitrogen catabolite repression (NCR) activates transcription factors to acquire nitrogen from alternative sources when preferential sources are absent. Formamidase has been related to nitrogen depletion in Aspergillus nidulans through formamide degradation to use the released ammonia as a nitrogen source. In Paracoccidioides spp., formamidase is highly expressed in transcriptomic and proteomic analyses. Here, we aim to investigate the importance of formamidase to Paracoccidioides lutzii. Thereby, we developed a P. lutzii silenced strain of fmd gene (AsFmd) by antisense RNA technology using Agrobacterium tumefaciens-mediated transformation (ATMT). The AsFmd strain led to increased urease expression, an enzyme related to nitrogen assimilation in other fungi, suggesting that P. lutzii might explore urease as an alternative route for ammonia metabolism as a nitrogen source. Moreover, formamidase was important for fungal survival inside macrophages, as fungal recovery after macrophage infection was lower in AsFmd compared to wild-type (WT) strain. Our findings suggest potential alternatives of nitrogen acquisition regulation in P. lutzii, evidencing formamidase influence in fungal virulence.
Collapse
Affiliation(s)
- Lana O’Hara Souza Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Thalison Rodrigues Moreira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4700-000 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4800-000 Braga, Portugal
| | - Mariana Vieira Tomazett
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Karine Mattos
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Juliano Domiraci Paccez
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Orville Hernandez Ruiz
- MICROBA Research Group—Cellular and Molecular Biology Unit—CIB, School of Microbiology, University of Antioquia, Medellín 050010, Colombia
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Simone Schneider Weber
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Vanessa Rafaela Milhomem Cruz-Leite
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, Brazil
- Correspondence: (V.R.M.C.-L.); (C.L.B.); Tel.: +55-62-3521-1110 (C.L.B.)
| |
Collapse
|
13
|
CRISPR Interference Reveals That All- Trans-Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A. mBio 2022; 13:e0368321. [PMID: 35038923 PMCID: PMC8764544 DOI: 10.1128/mbio.03683-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a protective replicative niche for Mycobacterium tuberculosis (Mtb) but can kill the infecting bacterium when appropriately activated. To identify mechanisms of clearance, we compared levels of bacterial restriction by human macrophages after treatment with 26 compounds, including some currently in clinical trials for tuberculosis. All-trans-retinoic acid (ATRA), an active metabolite of vitamin A, drove the greatest increase in Mtb control. Bacterial clearance was transcriptionally and functionally associated with changes in macrophage cholesterol trafficking and lipid metabolism. To determine how these macrophage changes affected bacterial control, we performed the first Mtb CRISPR interference screen in an infection model, identifying Mtb genes specifically required to survive in ATRA-activated macrophages. These data showed that ATRA treatment starves Mtb of cholesterol and the downstream metabolite propionyl coenzyme A (propionyl-CoA). Supplementation with sources of propionyl-CoA, including cholesterol, abrogated the restrictive effect of ATRA. This work demonstrates that targeting the coupled metabolism of Mtb and the macrophage improves control of infection and that it is possible to genetically map the mode of bacterial death using CRISPR interference. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a leading cause of death due to infectious disease. Improving the immune response to tuberculosis holds promise for fighting the disease but is limited by our lack of knowledge as to how the immune system kills M. tuberculosis. Our research identifies a potent way to make relevant immune cells more effective at fighting M. tuberculosis and then uses paired human and bacterial genomic methods to determine the mechanism of that improved bacterial clearance.
Collapse
|
14
|
Liu S, Wu W, Zhao Q, Liang H, Che S, Zhang H, Liu R, Zhang Q, Bartlam M. Structural characterization of the urease accessory protein UreF from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun 2022; 78:75-80. [PMID: 35102896 PMCID: PMC8805216 DOI: 10.1107/s2053230x22000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 02/03/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that mostly affects those with weakened immune systems. Urease is a vital enzyme that can hydrolyze urea to ammonia and carbon dioxide as a source of nitrogen for growth. Urease is also a K. pneumoniae virulence factor that enables survival of the bacterium under nutrient-limiting conditions. UreF, an important nickel-binding urease accessory protein, is involved in the insertion of Ni2+ into the active site of urease. Here, the crystal structure of UreF from K. pneumoniae (KpUreF) is reported. Functional data show that KpUreF forms a stable dimer in solution. These results may provide a starting point for the design of urease inhibitors.
Collapse
Affiliation(s)
- Shimeng Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Wenyue Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qi Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Han Liang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Shiyou Che
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Hao Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Ruihua Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qionglin Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China,Correspondence e-mail: ,
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China,Correspondence e-mail: ,
| |
Collapse
|
15
|
Activity- and Enrichment-Based Metaproteomics Insights into Active Urease from the Rumen Microbiota of Cattle. Int J Mol Sci 2022; 23:ijms23020817. [PMID: 35055002 PMCID: PMC8776097 DOI: 10.3390/ijms23020817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
Regulation of microbial urease activity plays a crucial role in improving the utilization efficiency of urea and reducing nitrogen emissions to the environment for ruminant animals. Dealing with the diversity of microbial urease and identifying highly active urease as the target is the key for future regulation. However, the identification of active urease in the rumen is currently limited due to large numbers of uncultured microorganisms. In the present study, we describe an activity- and enrichment-based metaproteomic analysis as an approach for the discovery of highly active urease from the rumen microbiota of cattle. We conducted an optimization method of protein extraction and purification to obtain higher urease activity protein. Cryomilling was the best choice among the six applied protein extraction methods (ultrasonication, bead beating, cryomilling, high-pressure press, freeze-thawing, and protein extraction kit) for obtaining protein with high urease activity. The extracted protein by cryomilling was further enriched through gel filtration chromatography to obtain the fraction with the highest urease activity. Then, by using SDS-PAGE, the gel band including urease was excised and analyzed using LC-MS/MS, searching against a metagenome-derived protein database. Finally, we identified six microbial active ureases from 2225 rumen proteins, and the identified ureases were homologous to those of Fibrobacter and Treponema. Moreover, by comparing the 3D protein structures of the identified ureases and known ureases, we found that the residues in the β-turn of flap regions were nonconserved, which might be crucial in influencing the flexibility of flap regions and urease activity. In conclusion, the active urease from rumen microbes was identified by the approach of activity- and enrichment-based metaproteomics, which provides the target for designing a novel efficient urease inhibitor to regulate rumen microbial urease activity.
Collapse
|
16
|
Ryvchin R, Dubinsky V, Rabinowitz K, Wasserberg N, Dotan I, Gophna U. Alteration in Urease-producing Bacteria in the Gut Microbiomes of Patients with Inflammatory Bowel Diseases. J Crohns Colitis 2021; 15:2066-2077. [PMID: 34111242 DOI: 10.1093/ecco-jcc/jjab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Bacterial urease is a major virulence factor of human pathogens, and murine models have shown that it can contribute to the pathogenesis of inflammatory bowel diseases [IBD]. METHODS The distribution of urease-producing bacteria in IBD was assessed using public faecal metagenomic data from various cohorts, including non-IBD controls [n = 55], patients with Crohn's disease [n = 291] or ulcerative colitis [n = 214], and patients with a pouch [n = 53]. The ureA gene and the taxonomic markers gyrA, rpoB, and recA were used to estimate the percentage of urease producers in each sample. RESULTS Levels of urease producers in patients with IBD and non-IBD controls were comparable. In non-IBD controls and most IBD patients, urease producers were primarily acetate-producing genera such as Blautia and Ruminococcus. A shift in the type of the dominant urease producers towards Proteobacteria and Bacilli was observed in a subset of all IBD subtypes, which correlated with faecal calprotectin levels in one cohort. Some patients with IBD had no detectable urease producers. In patients with a pouch, the probiotic-associated species Streptococcus thermophilus was more common as a main urease producer than in other IBD phenotypes, and it generally did not co-occur with other Bacilli or with Proteobacteria. CONCLUSIONS Unlike all non-IBD controls, patients with IBD often showed a shift towards Bacilli or Proteobacteria or a complete loss of urease production. Probiotics containing the species S. thermophilus may have a protective effect against colonisation by undesirable urease-producing bacteria in a subset of patients with a pouch.
Collapse
Affiliation(s)
- Ron Ryvchin
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Dubinsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keren Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Mazzei L, Massai L, Cianci M, Messori L, Ciurli S. Medicinal Au(I) compounds targeting urease as prospective antimicrobial agents: unveiling the structural basis for enzyme inhibition. Dalton Trans 2021; 50:14444-14452. [PMID: 34585201 DOI: 10.1039/d1dt02488d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A few gold compounds were recently found to show antimicrobial properties in vitro, holding great promise for the discovery of new drugs to overcome antibiotic resistance. Here, the inhibition of the bacterial virulence factor urease by four Au(I)-compounds, namely Au(PEt3)Cl, Au(PEt3)Br, Au(PEt3)I and [Au(PEt3)2]Cl, obtained from the antiarthritic Au(I)-drug Auranofin and earlier reported to act as antimicrobials, is investigated. The three monophosphino Au(I) complexes showed IC50 values in the 30-100 nM range, while the diphosphino Au(I) complex, though being less active, still showed a IC50 value of 7 μM. The structural basis for this inhibition was provided by solving the crystal structures of urease co-crystallized with Au(PEt3)I and [Au(PEt3)2]Cl: at least two Au(I) ions bind the enzyme in a flap domain involved in the catalysis, thus obliterating enzyme activity. Peculiar changes observed in the two structures reveal implications for the mechanism of soft metal binding and enzyme inactivation.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| |
Collapse
|
18
|
Osei-Wusu S, Otchere ID, Morgan P, Musah AB, Siam IM, Asandem D, Afum T, Asare P, Asante-Poku A, Kusi KA, Gagneux S, Yeboah-Manu D. Genotypic and phenotypic diversity of Mycobacterium tuberculosis complex genotypes prevalent in West Africa. PLoS One 2021; 16:e0255433. [PMID: 34437584 PMCID: PMC8389432 DOI: 10.1371/journal.pone.0255433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2-Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Ishaque Mintah Siam
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Asandem
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| |
Collapse
|
19
|
Chelerythrine Chloride: A Potential Rumen Microbial Urease Inhibitor Screened by Targeting UreG. Int J Mol Sci 2021; 22:ijms22158212. [PMID: 34360977 PMCID: PMC8347364 DOI: 10.3390/ijms22158212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibition of ruminal microbial urease is of particular interest due to its crucial role in regulating urea-N utilization efficiency and nitrogen pollution in the livestock industry. Acetohydroxamic acid (AHA) is currently the only commercially available urease inhibitor, but it has adverse side effects. The urease accessory protein UreG, which facilitates the functional incorporation of the urease nickel metallocentre, has been proposed in developing urease inhibitor through disrupting urease maturation. The objective of this study was to screen natural compounds as potential urease inhibitors by targeting UreG in a predominant ruminal microbial urease. In silico screening and in vitro tests for potential inhibitors were performed using molecular docking and an assay for the GTPase activity of UreG. Chelerythrine chloride was selected as a potential urease inhibitor of UreG with an inhibition concentration IC50 value of 18.13 μM. It exhibited mixed inhibition, with the Ki value being 26.28 μM. We further explored its inhibition mechanism using isothermal titration calorimetry (ITC) and circular dichroism (CD) spectroscopy, and we found that chelerythrine chloride inhibited the binding of nickel to UreG and induced changes in the secondary structure, especially the α-helix and β-sheet of UreG. Chelerythrine chloride formed a pi-anion interaction with the Asp41 residue of UreG, which is an important residue in initiating the conformational changes of UreG. In conclusion, chelerythrine chloride exhibited a potential inhibitory effect on urease, which provided new evidence for strategies to develop novel urease inhibitors targeting UreG to reduce nitrogen excretion from ruminants.
Collapse
|
20
|
Singh A, Anang V, Verma C, Saraswati SSK, Rana AK, Bandyopadhyay U, Chadha A, Natarajan K. Bcl2 negatively regulates Protective Immune Responses During Mycobacterial Infection. Biomol Concepts 2021; 12:94-109. [PMID: 34304400 DOI: 10.1515/bmc-2021-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
We previously reported that M. tb on its own as well as together with HIV inhibits macrophage apoptosis by upregulating the expression of Bcl2 and Inhibitor of Apoptosis (IAP). In addition, recent reports from our lab showed that stimulation of either macrophages or BMDCs results in the significant upregulation of Bcl2. In this report, we delineate the role of Bcl2 in mediating defense responses from dendritic cells (BMDCs) during mycobacterial infection. Inhibiting Bcl2 led to a significant decrease in intracellular bacterial burden in BMDCs. To further characterize the role of Bcl2 in modulating defense responses, we inhibited Bcl2 in BMDCs as well as human PBMCs to monitor their activation and functional status in response to mycobacterial infection and stimulation with M. tb antigen Rv3416. Inhibiting Bcl2 generated protective responses including increased expression of co-stimulatory molecules, oxidative burst, pro-inflammatory cytokine expression and autophagy. Finally, co-culturing human PBMCs and BMDCs with antigen-primed T cells increased their proliferation, activation and effector function. These results point towards a critical role for Bcl2 in regulating BMDCs defense responses to mycobacterial infection.
Collapse
Affiliation(s)
- Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | - Ankush Kumar Rana
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Upasana Bandyopadhyay
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Attinder Chadha
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni-Enzyme: The Reactivity of a Key Thiol With Mono- and Di-Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021; 60:6029-6035. [PMID: 33245574 DOI: 10.1002/anie.202014706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/30/2022]
Abstract
The inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by a class of six aromatic poly-hydroxylated molecules, namely mono- and dimethyl-substituted catechols, was investigated on the basis of the inhibitory efficiency of the catechol scaffold. The aim was to probe the key step of a mechanism proposed for the inhibition of SPU by catechol, namely the sulfanyl radical attack on the aromatic ring, as well as to obtain critical information on the effect of substituents of the catechol aromatic ring on the inhibition efficacy of its derivatives. The crystal structures of all six SPU-inhibitors complexes, determined at high resolution, as well as kinetic data obtained on JBU and theoretical studies of the reaction mechanism using quantum mechanical calculations, revealed the occurrence of an irreversible inactivation of urease by means of a radical-based autocatalytic multistep mechanism, and indicate that, among all tested catechols, the mono-substituted 3-methyl-catechol is the most efficient inhibitor for urease.
Collapse
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| |
Collapse
|
22
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni‐Enzyme: The Reactivity of a Key Thiol With Mono‐ and Di‐Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Chemistry and Biology of Metals Université Grenoble Alpes, CEA CNRS 17 Avenue des Martyrs 38000 Grenoble France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Via Brecce Bianche 60131 Ancona Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| |
Collapse
|
23
|
Reedoy KS, Loots DT, Beukes D, Reenen MV, Pillay B, Pillay M. Mycobacterium tuberculosis curli pili (MTP) is associated with significant host metabolic pathways in an A549 epithelial cell infection model and contributes to the pathogenicity of Mycobacterium tuberculosis. Metabolomics 2020; 16:116. [PMID: 33084984 DOI: 10.1007/s11306-020-01736-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A clear understanding of the metabolome of Mycobacterium tuberculosis and its target host cell during infection is fundamental for the development of novel diagnostic tools, effective drugs and vaccines required to combat tuberculosis. The surface-located Mycobacterium tuberculosis curli pili (MTP) adhesin forms initial contact with the host cell and is therefore important for the establishment of infection. OBJECTIVE The aim of this investigation was to determine the role of MTP in modulating pathogen and host metabolic pathways in A549 epithelial cells infected with MTP proficient and deficient strains of M. tuberculosis. METHODS Uninfected A549 epithelial cells, and those infected with M. tuberculosis V9124 wild-type strain, Δmtp and the mtp-complemented strains, were subjected to metabolite extraction, two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS) and bioinformatic analyses. Univariate and multivariate statistical tests were used to identify metabolites that were significantly differentially produced in the WT-infected and ∆mtp-infected A549 epithelial cell models, comparatively. RESULTS A total of 46 metabolites occurred in significantly lower relative concentrations in the Δmtp-infected cells, indicating a reduction in nucleic acid synthesis, amino acid metabolism, glutathione metabolism, oxidative stress, lipid metabolism and peptidoglycan, compared to those cells infected with the WT strain. CONCLUSION The absence of MTP was associated with significant changes to the host metabolome, suggesting that this adhesin is an important contributor to the pathogenicity of M. tuberculosis, and supports previous findings of its potential as a suitable drug, vaccine and diagnostic target.
Collapse
Affiliation(s)
- K S Reedoy
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa
| | - D T Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - D Beukes
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - M van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - B Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - M Pillay
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
24
|
Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages. Cell Rep 2020; 29:3580-3591.e4. [PMID: 31825837 PMCID: PMC6915324 DOI: 10.1016/j.celrep.2019.11.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/05/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
Nitrogen metabolism of Mycobacterium tuberculosis (Mtb) is crucial for the survival of this important pathogen in its primary human host cell, the macrophage, but little is known about the source(s) and their assimilation within this intracellular niche. Here, we have developed 15N-flux spectral ratio analysis (15N-FSRA) to explore Mtb’s nitrogen metabolism; we demonstrate that intracellular Mtb has access to multiple amino acids in the macrophage, including glutamate, glutamine, aspartate, alanine, glycine, and valine; and we identify glutamine as the predominant nitrogen donor. Each nitrogen source is uniquely assimilated into specific amino acid pools, indicating compartmentalized metabolism during intracellular growth. We have discovered that serine is not available to intracellular Mtb, and we show that a serine auxotroph is attenuated in macrophages. This work provides a systems-based tool for exploring the nitrogen metabolism of intracellular pathogens and highlights the enzyme phosphoserine transaminase as an attractive target for the development of novel anti-tuberculosis therapies. Mycobacterium tuberculosis utilizes multiple amino acids as nitrogen sources in human macrophages 15N-FSRA tool identified the intracellular nitrogen sources Glutamine is the predominant nitrogen donor for M. tuberculosis Serine biosynthesis is essential for the survival of intracellular M. tuberculosis
Collapse
|
25
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
26
|
Zhang X, Zhao S, He Y, Zheng N, Yan X, Wang J. Pipeline for Targeted Meta-Proteomic Analyses to Assess the Diversity of Cattle Rumen Microbial Urease. Front Microbiol 2020; 11:573414. [PMID: 33072036 PMCID: PMC7531017 DOI: 10.3389/fmicb.2020.573414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023] Open
Abstract
In the rumen of cattle, urease produced by ureolytic bacteria catalyzes the hydrolysis of urea to ammonia, which plays an important role in nitrogen metabolism and animal production. A high diversity of rumen bacterial urease genes was observed in our previous study; however, information on urease protein diversity could not be determined due to technical limitations. Here, we developed a targeted meta-proteomic pipeline to analyze rumen urease protein diversity. Protein extraction (duration of cryomilling in liquid nitrogen), protein digestion state (in-solution or in-gel), and the digestion enzyme used (trypsin or Glu-C/Lys-C) were optimized, and the digested peptides were analyzed by LC-MS/MS. Four minutes was the best duration for cryomilling and yielded the highest urease activity. Trypsin digestion of in-gel proteins outperformed other digestion methods and yielded the greatest number of identifications and superior peptide performance in regards to the digestion efficiency and high-score peptide. The annotation of peptides by PEAKS software revealed diversity among urease proteins, with the predominant proteins being from Prochlorococcus, Helicobacter, and uncultured bacteria. In conclusion, trypsin digestion of in-gel proteins was the optimal method for the meta-proteomic pipeline analyzing rumen microbial ureases. This pipeline provides a guide for targeted meta-proteomic analyses in other ecosystems.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianghua Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J Biol Inorg Chem 2020; 25:829-845. [PMID: 32809087 PMCID: PMC7433671 DOI: 10.1007/s00775-020-01808-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
This review is an attempt to retrace the chronicle that starts from the discovery of the role of nickel as the essential metal ion in urease for the enzymatic catalysis of urea, a key step in the biogeochemical cycle of nitrogen on Earth, to the most recent progress in understanding the chemistry of this historical enzyme. Data and facts are presented through the magnifying lenses of the authors, using their best judgment to filter and elaborate on the many facets of the research carried out on this metalloenzyme over the years. The tale is divided in chapters that discuss and describe the results obtained in the subsequent leaps in the knowledge that led from the discovery of a biological role for Ni to the most recent advancements in the comprehension of the relationship between the structure and function of urease. This review is intended not only to focus on the bioinorganic chemistry of this beautiful metal-based catalysis, but also, and maybe primarily, to evoke inspiration and motivation to further explore the realm of bio-based coordination chemistry.
Collapse
|
28
|
Coelho T, Halicki P, Silva L, Menezes Vicenti J, Gonçalves B, Almeida da Silva P, Ramos D. Metal‐based antimicrobial strategies against intramacrophageMycobacterium tuberculosis. Lett Appl Microbiol 2020; 71:146-153. [DOI: 10.1111/lam.13298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- T.S. Coelho
- Núcleo de Pesquisa em Microbiologia Médica Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - P.C.B. Halicki
- Núcleo de Pesquisa em Microbiologia Médica Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
- Núcleo de Desenvolvimento de Novos Fármacos Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - L. Silva
- Núcleo de Pesquisa em Microbiologia Médica Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
- Núcleo de Desenvolvimento de Novos Fármacos Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - J.R. Menezes Vicenti
- Escola de Química de Alimentos Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - B.L. Gonçalves
- Escola de Química de Alimentos Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - P.E. Almeida da Silva
- Núcleo de Pesquisa em Microbiologia Médica Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
- Núcleo de Desenvolvimento de Novos Fármacos Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| | - D.F. Ramos
- Núcleo de Pesquisa em Microbiologia Médica Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
- Núcleo de Desenvolvimento de Novos Fármacos Faculdade de Medicina Universidade Federal do Rio Grande – FURG Rio Grande Brazil
| |
Collapse
|
29
|
Kataria R, Khatkar A. Lead Molecules for Targeted Urease Inhibition: An Updated Review from 2010 -2018. Curr Protein Pept Sci 2020; 20:1158-1188. [PMID: 30894105 DOI: 10.2174/1389203720666190320170215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
The field of enzyme inhibition is a tremendous and quickly growing territory of research. Urease a nickel containing metalloenzyme found in bacteria, algae, fungi, and plants brings hydrolysis of urea and plays important role in environmental nitrogen cycle. Apart from this it was found to be responsible for many pathological conditions due to its presence in many microorganisms such as H. Pylori, a ureolytic bacteria having urease which elevates pH of gastric medium by hydrolyzing urea present in alimentary canal and help the bacteria to colonize and spread infection. Due to the infections caused by the various bacterial ureases such as Bacillus pasteurii, Brucella abortus, H. pylori, H. mustelae, Klebsiella aerogenes, Klebsiella tuberculosis, Mycobacterium tuberculosis, Pseudomonas putida, Sporosarcina pasteurii and Yersinia enterocolitica, it has been the current topic of today's research. About a wide range of compounds from the exhaustive literature survey has been discussed in this review which is enveloped into two expansive classes, as Inhibitors from synthetic origin and Inhibitors from natural origin. Moreover active site details of enzyme, mechanism of catalysis of substrate by enzyme, uses of plant urease and its pathogenic behavior has been included in the current review. So, overall, this review article diagrams the current landscape of the developments in the improvements in the thriving field of urease inhibitory movement in medicinal chemistry from year 2010 to 2018, with an emphasis on mechanism of action of inhibitors that may be used for more development of recent and strong urease inhibitors and open up new doors for assist examinations in a standout amongst the most lively and promising regions of research.
Collapse
Affiliation(s)
- Ritu Kataria
- International Institute of Pharmaceutical Sciences, Sonepat, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
30
|
Behra PRK, Pettersson BMF, Ramesh M, Dasgupta S, Kirsebom LA. Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members. Sci Rep 2019; 9:19259. [PMID: 31848383 PMCID: PMC6917791 DOI: 10.1038/s41598-019-55464-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern “omics” approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, MmucT, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why MmucT forms a rough colony morphotype.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
31
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
32
|
Bishai WR, Timmins GS. Potential for breath test diagnosis of urease positive pathogens in lung infections. J Breath Res 2019; 13:032002. [DOI: 10.1088/1752-7163/ab2225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickel‐Dependent Enzyme. Angew Chem Int Ed Engl 2019; 58:7415-7419. [DOI: 10.1002/anie.201903565] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl)Faculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| |
Collapse
|
34
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickel‐Dependent Enzyme. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl)Faculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| |
Collapse
|
35
|
Kanwal, Khan M, Arshia, Khan KM, Parveen S, Shaikh M, Fatima N, Choudhary MI. Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorg Chem 2019; 83:595-610. [DOI: 10.1016/j.bioorg.2018.10.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
|
36
|
Zhou C, Bhinderwala F, Lehman MK, Thomas VC, Chaudhari SS, Yamada KJ, Foster KW, Powers R, Kielian T, Fey PD. Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathog 2019; 15:e1007538. [PMID: 30608981 PMCID: PMC6343930 DOI: 10.1371/journal.ppat.1007538] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/23/2019] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic infections resulting in significant morbidity. Urease, an enzyme that generates NH3 and CO2 from urea, is key to pH homeostasis in bacterial pathogens under acidic stress and nitrogen limitation. However, the function of urease in S. aureus niche colonization and nitrogen metabolism has not been extensively studied. We discovered that urease is essential for pH homeostasis and viability in urea-rich environments under weak acid stress. The regulation of urease transcription by CcpA, Agr, and CodY was identified in this study, implying a complex network that controls urease expression in response to changes in metabolic flux. In addition, it was determined that the endogenous urea derived from arginine is not a significant contributor to the intracellular nitrogen pool in non-acidic conditions. Furthermore, we found that during a murine chronic renal infection, urease facilitates S. aureus persistence by promoting bacterial fitness in the low-pH, urea-rich kidney. Overall, our study establishes that urease in S. aureus is not only a primary component of the acid response network but also an important factor required for persistent murine renal infections. Urease has been reported to be crucial to bacteria in environmental adaptation, virulence, and defense against host immunity. Although the function of urease in S. aureus is not clear, recent evidence suggests that urease is important for acid resistance in various niches. Our study deciphered a function of S. aureus urease both in laboratory conditions and during host colonization. Furthermore, we uncovered the major components of the regulatory system that fine-tunes the expression of urease. Collectively, this study established the dual function of urease which serves as a significant part of the S. aureus acid response while also serving as an enzyme required for persistent kidney infections and potential subsequent staphylococcal metastasis.
Collapse
Affiliation(s)
- Chunyi Zhou
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - McKenzie K. Lehman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sujata S. Chaudhari
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kelsey J. Yamada
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kirk W. Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
37
|
Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, Kulkarni M, Casadevall A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog 2018; 14:e1007144. [PMID: 29906292 PMCID: PMC6021110 DOI: 10.1371/journal.ppat.1007144] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carlos M. De Leon-Rodriguez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Diego C. P. Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eric H. Jung
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
38
|
Nieuwenhuizen NE, Kaufmann SHE. Next-Generation Vaccines Based on Bacille Calmette-Guérin. Front Immunol 2018; 9:121. [PMID: 29459859 PMCID: PMC5807593 DOI: 10.3389/fimmu.2018.00121] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis (Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille Calmette-Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major disease manifestation and source of dissemination. The protective efficacy of BCG is on average 50% but varies substantially with geographical location and is poorer in those with previous exposure to mycobacteria. BCG can also cause adverse reactions in immunocompromised individuals. However, BCG has contributed to reduced infant TB mortality by protecting against extrapulmonary TB. In addition, BCG has been associated with reduced general childhood mortality by stimulating immune responses. In order to improve the efficacy of BCG, two major strategies have been employed. The first involves the development of recombinant live mycobacterial vaccines with improved efficacy and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb antigens. This article reviews recombinant BCG strains that have been tested against TB in animal models. This includes BCG strains that have been engineered to induce increased immune responses by the insertion of genes for Mtb antigens, mammalian cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, and the manipulation of bacterial genes in order to increase antigen presentation and immune activation. Subunit vaccines for boosting BCG are also briefly discussed.
Collapse
|
39
|
Neisseria flavescens: A Urease-Expressing Potential Pathogen Isolated from Gastritis Patients. Curr Microbiol 2017; 75:186-193. [PMID: 29063969 DOI: 10.1007/s00284-017-1364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Parasitic pathogens, such as H. pylori (Helicobacter pylori), are considered as primary elements for causing stomach infection and leading to chronic gastritis or ulcers. Here, an unreported urease- and oxidase-producing Neisseria flavescens-like bacteria was isolated from the gastroscopic biopsies of 14C-UBT-positive gastritis patients. The isolate expressed the activity of urease, which is a pathogenic factor and considered as a reliable marker for diagnosis of H. pylori infection. However, the isolate didn't express the key functional genes of H. pylori including vacA and hpaA, and also the morphological feature of isolate was significantly different with H. pylori. Eventually, the 16S rDNA of isolate was sequenced and its sequence shared about 99.8% similarity with the N. flavescens standard strains, but about 20.8% similarity with the H. pylori. Further study of antibiotics-resistance revealed the N. flavescens isolate is high resistant to metronidazole, but highly sensitive to ampicillin sodium. To summarize, a urease-expressing N. flavescens strain was isolated and identified from Chinese gastritis patients; the encouraging results provides an important reference for the further study of its pathogenicity and the reasonable diagnosis and use of antibiotics clinically.
Collapse
|
40
|
tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nat Commun 2016; 7:13302. [PMID: 27834374 PMCID: PMC5114619 DOI: 10.1038/ncomms13302] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria. Mycobacteria can adapt to the stress of human infection by entering a dormant state. Here the authors show that hypoxia-induced dormancy in M. bovis BCG involves the reprogramming of tRNA wobble modifications and copy numbers, coupled with biased use of synonymous codons in survival genes.
Collapse
|
41
|
Mazzei L, Cianci M, Musiani F, Lente G, Palombo M, Ciurli S. Inactivation of urease by catechol: Kinetics and structure. J Inorg Biochem 2016; 166:182-189. [PMID: 27888701 DOI: 10.1016/j.jinorgbio.2016.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Urease is a Ni(II)-containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbamate at a rate 1015 times higher than the uncatalyzed reaction. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Therefore, efficient urease inhibitors are actively sought. In this study, we describe a molecular characterization of the interaction between urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) with catechol, a model polyphenol. In particular, catechol irreversibly inactivates both SPU and JBU with a complex radical-based autocatalytic multistep mechanism. The crystal structure of the SPU-catechol complex, determined at 1.50Å resolution, reveals the structural details of the enzyme inhibition.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Michele Cianci
- European Molecular Biology Laboratory, DESY, Hamburg, Germany
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gábor Lente
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Hungary
| | - Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| |
Collapse
|
42
|
Ramakrishnan G, Chandra NR, Srinivasan N. Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv. MOLECULAR BIOSYSTEMS 2016; 11:3316-31. [PMID: 26429199 DOI: 10.1039/c5mb00476d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug repurposing to explore target space has been gaining pace over the past decade with the upsurge in the use of systematic approaches for computational drug discovery. Such a cost and time-saving approach gains immense importance for pathogens of special interest, such as Mycobacterium tuberculosis H37Rv. We report a comprehensive approach to repurpose drugs, based on the exploration of evolutionary relationships inferred from the comparative sequence and structural analyses between targets of FDA-approved drugs and the proteins of M. tuberculosis. This approach has facilitated the identification of several polypharmacological drugs that could potentially target unexploited M. tuberculosis proteins. A total of 130 FDA-approved drugs, originally intended against other diseases, could be repurposed against 78 potential targets in M. tuberculosis. Additionally, we have also made an attempt to augment the chemical space by recognizing compounds structurally similar to FDA-approved drugs. For three of the attractive cases we have investigated the probable binding modes of the drugs in their corresponding M. tuberculosis targets by means of structural modelling. Such prospective targets and small molecules could be prioritized for experimental endeavours, and could significantly influence drug-discovery and drug-development programmes for tuberculosis.
Collapse
Affiliation(s)
- Gayatri Ramakrishnan
- Indian Institute of Science Mathematics Initiative, Indian Institute of Science, Bangalore-560012, India and Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India.
| | - Nagasuma R Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
43
|
Wee WY, Tan TK, Jakubovics NS, Choo SW. Whole-Genome Sequencing and Comparative Analysis of Mycobacterium brisbanense Reveals a Possible Soil Origin and Capability in Fertiliser Synthesis. PLoS One 2016; 11:e0152682. [PMID: 27031249 PMCID: PMC4816395 DOI: 10.1371/journal.pone.0152682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
Collapse
Affiliation(s)
- Wei Yee Wee
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Tze King Tan
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nicholas S. Jakubovics
- Center for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Genome Solutions Sdn Bhd, Suite 8, Innovation Incubator UM, Level 5, Research Management & Innovation Complex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
- * E-mail:
| |
Collapse
|
44
|
Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease. J Inorg Biochem 2016; 154:42-9. [DOI: 10.1016/j.jinorgbio.2015.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/22/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022]
|
45
|
Williams KJ, Jenkins VA, Barton GR, Bryant WA, Krishnan N, Robertson BD. Deciphering the metabolic response of Mycobacterium tuberculosis to nitrogen stress. Mol Microbiol 2015; 97:1142-57. [PMID: 26077160 PMCID: PMC4950008 DOI: 10.1111/mmi.13091] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2014] [Indexed: 12/21/2022]
Abstract
A key component to the success of Mycobacterium tuberculosis as a pathogen is the ability to sense and adapt metabolically to the diverse range of conditions encountered in vivo, such as oxygen tension, environmental pH and nutrient availability. Although nitrogen is an essential nutrient for every organism, little is known about the genes and pathways responsible for nitrogen assimilation in M. tuberculosis. In this study we have used transcriptomics and chromatin immunoprecipitation and high‐throughput sequencing to address this. In response to nitrogen starvation, a total of 185 genes were significantly differentially expressed (96 up‐regulated and 89 down regulated; 5% genome) highlighting several significant areas of metabolic change during nitrogen limitation such as nitrate/nitrite metabolism, aspartate metabolism and changes in cell wall biosynthesis. We identify GlnR as a regulator involved in the nitrogen response, controlling the expression of at least 33 genes in response to nitrogen limitation. We identify a consensus GlnR binding site and relate its location to known transcriptional start sites. We also show that the GlnR response regulator plays a very different role in M. tuberculosis to that in non‐pathogenic mycobacteria, controlling genes involved in nitric oxide detoxification and intracellular survival instead of genes involved in nitrogen scavenging.
Collapse
Affiliation(s)
- Kerstin J Williams
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Victoria A Jenkins
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Geraint R Barton
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, SW7 2AZ, UK
| | - William A Bryant
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, SW7 2AZ, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
46
|
Timmins GS. Detecting virulence and drug-resistance mycobacterial phenotypes in vivo. Trends Microbiol 2015; 23:321-3. [PMID: 25800730 PMCID: PMC4458167 DOI: 10.1016/j.tim.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 11/15/2022]
Abstract
Bacterial phenotypes are predominantly studied in culture because detection of their specific metabolic pathways in the host is challenging. Development of stable-isotope breath tests, allowing in situ phenotype analyses, may endow diagnostics with new modalities based upon direct monitoring of in vivo microbial metabolism and host-pathogen phenotypic interactions.
Collapse
Affiliation(s)
- Graham S Timmins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
47
|
Gouzy A, Poquet Y, Neyrolles O. Amino acid capture and utilization within the Mycobacterium tuberculosis phagosome. Future Microbiol 2015; 9:631-7. [PMID: 24957090 DOI: 10.2217/fmb.14.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mycobacterium tuberculosis, the agent of TB, is a facultative intracellular bacterial pathogen that replicates inside host macrophages and other phagocytes within a membrane-bound vacuole or phagosome. How M. tuberculosis captures and exploits vital nutrients inside host cells is an intensive research area that might lead to novel therapeutics for tuberculosis. Recent reports provided evidence that M. tuberculosis relies on amino acid uptake and degradation pathways to thrive inside its host. This opens novel research venues for the development of innovative antimicrobials against TB.
Collapse
Affiliation(s)
- Alexandre Gouzy
- Centre National de la Recherche Scientifique (CNRS), UMR 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 Route de Narbonne, 31077 Toulouse Cedex 04, France
| | | | | |
Collapse
|
48
|
Kim HM, Ahn BE, Lee JH, Roe JH. Regulation of a nickel–cobalt efflux system and nickel homeostasis in a soil actinobacterium Streptomyces coelicolor. Metallomics 2015; 7:702-9. [DOI: 10.1039/c4mt00318g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In nickel-tolerantStreptomyces coelicolor, a highly nickel-sensitive regulator (Nur) for nickel uptake systems and an extremely insensitive regulator (NmtR) for a nickel efflux pump constitute the nickel homeostasis system.
Collapse
Affiliation(s)
- Hae Mi Kim
- School of Biological Sciences, and Institute of Microbiology
- Seoul National University
- Seoul 151-742, Korea
| | - Bo-Eun Ahn
- School of Biological Sciences, and Institute of Microbiology
- Seoul National University
- Seoul 151-742, Korea
| | - Ju-Hyung Lee
- School of Biological Sciences, and Institute of Microbiology
- Seoul National University
- Seoul 151-742, Korea
| | - Jung-Hye Roe
- School of Biological Sciences, and Institute of Microbiology
- Seoul National University
- Seoul 151-742, Korea
| |
Collapse
|
49
|
Abstract
Several major pathogens, including Mycobacterium tuberculosis, parasitize host cells and exploit host-derived nutrients to sustain their own metabolism. Although the carbon sources that are used by M. tuberculosis have been extensively studied, the mechanisms by which mycobacteria capture and metabolize nitrogen, which is another essential constituent of biomolecules, have only recently been revisited. In this Progress article, we discuss central nitrogen metabolism in M. tuberculosis, the mechanisms that are used by this pathogen to obtain nitrogen from its host and the potential role of nitrogen capture and metabolism in virulence.
Collapse
|
50
|
Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, Caire-Brandli I, de Chastellier C, Wu TD, Poincloux R, Brosch R, Guerquin-Kern JL, Schnappinger D, Sório de Carvalho LP, Poquet Y, Neyrolles O. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog 2014; 10:e1003928. [PMID: 24586151 PMCID: PMC3930563 DOI: 10.1371/journal.ppat.1003928] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Alexandre Gouzy
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Gérald Larrouy-Maumus
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, United Kingdom
| | - Daria Bottai
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Florence Levillain
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Alexia Dumas
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Joshua B. Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Irène Caire-Brandli
- Centre d'Immunologie de Marseille-Luminy (CIML), Inserm UMR 1104, CNRS UMR 7280, Aix-Marseille University UM 2, Marseille, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy (CIML), Inserm UMR 1104, CNRS UMR 7280, Aix-Marseille University UM 2, Marseille, France
| | - Ting-Di Wu
- Institut Curie, Laboratoire de Microscopie Ionique, Orsay, France
- INSERM U759, Orsay, France
| | - Renaud Poincloux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Laboratoire de Microscopie Ionique, Orsay, France
- INSERM U759, Orsay, France
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | | | - Yannick Poquet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| |
Collapse
|