1
|
Targeting of microvillus protein Eps8 by the NleH effector kinases from enteropathogenic E. coli. Proc Natl Acad Sci U S A 2022; 119:e2204332119. [PMID: 35976880 PMCID: PMC9407544 DOI: 10.1073/pnas.2204332119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of human exposure. RECENT FINDINGS Advances in understanding E. coli O157:H7 pathogenesis include molecular mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal microbiome, inflammation, and reservoir maintenance. SUMMARY Many aspects of E. coli O157:H7 disease remain unclear and include the role of the human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm management likely hold solutions to reduce infections and increase food safety/security.
Collapse
|
3
|
Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy. Infect Immun 2022; 90:e0061421. [PMID: 35467397 DOI: 10.1128/iai.00614-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of programmed cell death (PCD) processes during bacterial infections is an evolving arms race between pathogens and their hosts. The initiation of apoptosis, necroptosis, and pyroptosis pathways are essential to immunity against many intracellular and extracellular bacteria. These cellular self-destructive mechanisms are used by the infected host to restrict and eliminate bacterial pathogens. Without a tight regulatory control, host cell death can become a double-edged sword. Inflammatory PCDs contribute to an effective immune response against pathogens, but unregulated inflammation aggravates the damage caused by bacterial infections. Thus, fine-tuning of these pathways is required to resolve infection while preserving the host immune homeostasis. In turn, bacterial pathogens have evolved secreted virulence factors or effector proteins that manipulate PCD pathways to promote infection. In this review, we discuss the importance of controlled cell death in immunity to bacterial infection. We also detail the mechanisms employed by type 3 secreted bacterial effectors to bypass these pathways and their importance in bacterial pathogenesis.
Collapse
|
4
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
5
|
In vivo studies on Citrobacter rodentium and host cell death pathways. Curr Opin Microbiol 2021; 64:60-67. [PMID: 34601305 DOI: 10.1016/j.mib.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Citrobacter rodentium is a mouse-specific extracellular enteropathogen, commonly used as a small animal model for studying human enteropathogenic Escherichia coli infections. Both pathogens share a core set of virulence factors, including a type III secretion system, which enables translocation of effector proteins into infected cells to subvert host antimicrobial responses. Notably, these bacterial effectors have been reported to specifically target components of the apoptotic, necroptotic and pyroptotic signaling cascades in vivo, resulting in compromised immune cell recruitment and impaired mucosal homeostasis. Identifying the contributions of each cell death modality to bacterial control in a physiological model represents a crucial step in furthering our understanding of host-pathogen evolution and may provide insight into the host evasion strategies utilised by other enteric pathogens.
Collapse
|
6
|
Type III secretion system effector subnetworks elicit distinct host immune responses to infection. Curr Opin Microbiol 2021; 64:19-26. [PMID: 34537517 DOI: 10.1016/j.mib.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
Citrobacter rodentium, a natural mouse pathogen which colonises the colon of immuno-competent mice, provides a robust model for interrogating host-pathogen-microbiota interactions in vivo. This model has been key to providing new insights into local host responses to enteric infection, including changes in intestinal epithelial cell immunometabolism and mucosal immunity. C. rodentium injects 31 bacterial effectors into epithelial cells via a type III secretion system (T3SS). Recently, these effectors were shown to be able to form multiple intracellular subnetworks which can withstand significant contractions whilst maintaining virulence. Here we highlight recent advances in understanding gut mucosal responses to infection and effector biology, as well as potential uses for artificial intelligence (AI) in understanding infectious disease and speculate on the role of T3SS effector networks in host adaption.
Collapse
|
7
|
Identification of a Family of Vibrio Type III Secretion System Effectors That Contain a Conserved Serine/Threonine Kinase Domain. mSphere 2021; 6:e0059921. [PMID: 34346702 PMCID: PMC8386410 DOI: 10.1128/msphere.00599-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus is a marine Gram-negative bacterium that is a leading cause of seafood-borne gastroenteritis. Pandemic strains of V. parahaemolyticus rely on a specialized protein secretion machinery known as the type III secretion system 2 (T3SS2) to cause disease. The T3SS2 mediates the delivery of effector proteins into the cytosol of infected cells, where they subvert multiple cellular pathways. Here, we identify a new T3SS2 effector protein encoded by VPA1328 (VP_RS21530) in V. parahaemolyticus RIMD2210633. Bioinformatic analysis revealed that VPA1328 is part of a larger family of uncharacterized T3SS effector proteins with homology to the VopG effector protein in Vibrio cholerae AM-19226. These VopG-like proteins are found in many but not all T3SS2 gene clusters and are distributed among diverse Vibrio species, including V. parahaemolyticus, V. cholerae, V. mimicus, and V. diabolicus and also in Shewanella baltica. Structure-based prediction analyses uncovered the presence of a conserved C-terminal kinase domain in VopG orthologs, similar to the serine/threonine kinase domain found in the NleH family of T3SS effector proteins. However, in contrast to NleH effector proteins, in tissue culture-based infections, VopG did not impede host cell death or suppress interleukin 8 (IL-8) secretion, suggesting a yet undefined role for VopG during V. parahaemolyticus infection. Collectively, our work reveals that VopG effector proteins, a new family of likely serine/threonine kinases, is widely distributed in the T3SS2 effector armamentarium among marine bacteria. IMPORTANCE Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function. In this study, we identified a novel Vibrio parahaemolyticus effector protein that is similar to the VopG effector of Vibrio cholerae. VopG-like effectors were found in diverse Vibrio species and contain a conserved serine/threonine kinase domain that bears similarity to the kinase domain in the enterohemorrhagic Escherichia coli (EHEC) and Shigella NleH effectors that manipulate host cell survival pathways and host immune responses. Together our findings identify a new family of Vibrio effector proteins and highlight the role of horizontal gene transfer events among marine bacteria in shaping T3SS gene clusters.
Collapse
|
8
|
Riebisch AK, Mühlen S. Attaching and effacing pathogens: the effector ABC of immune subversion. Future Microbiol 2020; 15:945-958. [PMID: 32716209 DOI: 10.2217/fmb-2019-0274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The innate immune response resembles an essential barrier to bacterial infection. Many bacterial pathogens have, therefore, evolved mechanisms to evade from or subvert the host immune response in order to colonize, survive and multiply. The attaching and effacing pathogens enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Escherichia albertii and Citrobacter rodentium are Gram-negative extracellular gastrointestinal pathogens. They use a type III secretion system to inject effector proteins into the host cell to manipulate a variety of cellular processes. Over the last decade, considerable progress was made in identifying and characterizing the effector proteins of attaching and effacing pathogens that are involved in the inhibition of innate immune signaling pathways, in determining their host cell targets and elucidating the mechanisms they employ. Their functions will be reviewed here.
Collapse
Affiliation(s)
- Anna Katharina Riebisch
- Systems-Oriented Immunology & Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute for Molecular & Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.,Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sabrina Mühlen
- Institute for Infectiology, University of Münster, 48149 Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Hsp90 Interacts with the Bacterial Effector NleH1. Pathogens 2018; 7:pathogens7040087. [PMID: 30428538 PMCID: PMC6313503 DOI: 10.3390/pathogens7040087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) utilizes a type III secretion system (T3SS) to inject effector proteins into host cells. The EHEC NleH1 effector inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by reducing the nuclear translocation of the ribosomal protein S3 (RPS3). NleH1 prevents RPS3 phosphorylation by the IκB kinase-β (IKKβ). IKKβ is a central kinase in the NF-κB pathway, yet NleH1 only restricts the phosphorylation of a subset of the IKKβ substrates. We hypothesized that a protein cofactor might dictate this inhibitory specificity. We determined that heat shock protein 90 (Hsp90) interacts with both IKKβ and NleH1 and that inhibiting Hsp90 activity reduces RPS3 nuclear translocation.
Collapse
|
10
|
Kralicek SE, Nguyen M, Rhee KJ, Tapia R, Hecht G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. J Transl Med 2018; 98:477-488. [PMID: 29396422 PMCID: PMC5920738 DOI: 10.1038/s41374-017-0016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a foodborne pathogen that uses a type III secretion system to translocate effector molecules into host intestinal epithelial cells (IECs) subverting several host cell processes and signaling cascades. Interestingly, EPEC infection induces only modest intestinal inflammation in the host. The homologous EPEC effector proteins, NleH1 and NleH2, suppress the nuclear factor-κB (NF-κB) pathway and apoptosis in vitro. Increased apoptosis and activation of NF-κB and MAP kinases (MAPK) contribute to the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to determine if NleH1 and NleH2 also block MAPK pathways in vitro and in vivo, and to compare the effects of these bacterial proteins on a murine model of colitis. Cultured IECs were infected with various strains of EPEC expressing NleH1 and NleH2, or not, and the activation of ERK1/2 and p38 was determined. In addition, the impact of infection with various strains of EPEC on murine DSS colitis was assessed by change in body weight, colon length, histology, and survival. Activation of apoptosis and MAPK signaling were also evaluated. Our data show that NleH1, but not NleH2, suppresses ERK1/2 and p38 activation in vitro. Interestingly, NleH1 affords significantly greater protection against and hastens recovery from dextran sodium sulfate (DSS)-induced colitis compared to NleH2. Strikingly, colitis-associated mortality was abolished by infection with EPEC strains expressing NleH1. Interestingly, in vivo NleH1 suppresses activation of ERK1/2 and p38 and blocks apoptosis independent of the kinase domain that inhibits NF-κB. In contrast, NleH2 suppresses only caspase-3 and p38, but not ERK1/2. We conclude that NleH1 affords greater protection against and improves recovery from DSS colitis compared to NleH2 due to its ability to suppress ERK1/2 in addition to NF-κB, p38, and apoptosis. These findings warrant further investigation of anti-inflammatory bacterial proteins as novel treatments for IBD.
Collapse
Affiliation(s)
- Sarah E. Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Mai Nguyen
- Cortexyme Inc, South San Francisco, CA, USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, Republic of Korea
| | - Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Gail Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
11
|
Wang G, Feuerbacher LA, Hardwidge PR. Influence of Intestinal Microbiota Transplantation and NleH Expression on Citrobacter rodentium Colonization of Mice. Pathogens 2018; 7:E35. [PMID: 29601470 PMCID: PMC6027419 DOI: 10.3390/pathogens7020035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
The intestinal microbiota plays an important role in regulating host resistance to enteric pathogens. The relative abundance of the microbiota is dependent upon both genetic and environmental factors. The attaching and effacing pathogens enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium cause diarrheal disease and translocate type III secretion system effector proteins into host cells to inhibit pro-inflammatory host responses. Here we determined the influence of both the intestinal microbiota and the expression of the C. rodentium NleH effector on C. rodentium colonization in different mouse models. We performed fecal transplantation experiments between C57BL/6J and C57BL/10ScNJ mice and found that such microbiota transfers altered both the host resistance to C. rodentium infection as well as the benefit or detriment of expressing NleH to C. rodentium intestinal colonization.
Collapse
Affiliation(s)
- Gaochan Wang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Leigh Ann Feuerbacher
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Philip R Hardwidge
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
12
|
Shenoy AR, Furniss RCD, Goddard PJ, Clements A. Modulation of Host Cell Processes by T3SS Effectors. Curr Top Microbiol Immunol 2018; 416:73-115. [PMID: 30178263 DOI: 10.1007/82_2018_106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection.
Collapse
Affiliation(s)
- Avinash R Shenoy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Philippa J Goddard
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Abigail Clements
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK.
| |
Collapse
|
13
|
Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free Radic Biol Med 2017; 105:93-101. [PMID: 27677568 DOI: 10.1016/j.freeradbiomed.2016.09.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Changes in the composition of gut-associated microbial communities may underlie many inflammatory and allergic diseases. However, the processes that help maintain a stable community structure are poorly understood. Here we review topical work elucidating the nutrient-niche occupied by facultative anaerobic bacteria of the family Enterobacteriaceae, whose predominance within the gut-associated microbial community is a common marker of dysbiosis. A paucity of exogenous respiratory electron acceptors limits growth of Enterobacteriaceae within a balanced gut-associated microbial community. However, recent studies suggest that the availability of oxygen in the large bowel is markedly elevated by changes in host physiology that accompany antibiotic treatment or infection with enteric pathogens, such as Salmonella serovars or attaching and effacing (AE) pathogens. The resulting increase in oxygen availability, alone or in conjunction with other electron acceptors, drives an uncontrolled luminal expansion of Enterobacteriaceae. Insights into the underlying mechanisms provide important clues about factors that control the balance between the host and its resident microbial communities.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Zhuang X, Chen Z, He C, Wang L, Zhou R, Yan D, Ge B. Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins. Cell Mol Immunol 2017; 14:237-244. [PMID: 27796284 PMCID: PMC5360883 DOI: 10.1038/cmi.2016.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
To successfully infect host cells and evade the host immune response, a type III secretion system (T3SS) is commonly used by enteric bacterial pathogens such as enteropathogenic Escherichia coli (EPEC). Recent findings have revealed that various effectors are injected into host cells through the T3SS and exert an inhibitory effect on inflammatory signaling pathways, subverting the immune responses to these pathogens. Here we review recent studies aimed at addressing the modulation of several important inflammatory signaling pathways modulated by EPEC effector proteins, such as the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, which provides insight into the unfinished work in this unexplored field and helps to identify novel positions in inflammatory signaling networks for EPEC effectors.Cellular & Molecular Immunology advance online publication, 31 October 2016; doi:10.1038/cmi.2016.52.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zijuan Chen
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxi He
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lin Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ruixue Zhou
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dapeng Yan
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baoxue Ge
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
15
|
Pearson JS, Giogha C, Wong Fok Lung T, Hartland EL. The Genetics of EnteropathogenicEscherichia coliVirulence. Annu Rev Genet 2016; 50:493-513. [DOI: 10.1146/annurev-genet-120215-035138] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaclyn S. Pearson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Cristina Giogha
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| |
Collapse
|
16
|
Wang S, Liu X, Xu X, Yang D, Wang D, Han X, Shi Y, Tian M, Ding C, Peng D, Yu S. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli. Front Microbiol 2016; 7:1387. [PMID: 27630634 PMCID: PMC5005338 DOI: 10.3389/fmicb.2016.01387] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023] Open
Abstract
Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC.
Collapse
Affiliation(s)
- Shaohui Wang
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Xin Liu
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural SciencesShanghai, China; College of Veterinary Medicine, Yangzhou UniversityYangzhou, China
| | - Xuan Xu
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Denghui Yang
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Dong Wang
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Yonghong Shi
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University Yangzhou, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute - Chinese Academy of Agricultural Sciences Shanghai, China
| |
Collapse
|
17
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
18
|
Hodgson A, Wan F. Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition. Mol Microbiol 2016; 99:439-52. [PMID: 26449378 PMCID: PMC5003429 DOI: 10.1111/mmi.13245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Pathogens have evolved a myriad of ways to abrogate and manipulate the host response to infections. Of the various mechanisms involved, pathogen-encoded and sometimes host-encoded proteases are an important category of virulence factors that cause robust changes on the host response by targeting key proteins along signaling cascades. The nuclear factor kappaB (NF-κB) signaling pathway is a crucial regulatory mechanism for the cell, controlling the expression of survival, immune and proliferation genes. Proteases from pathogens of almost all types have been demonstrated to target and cleave members of the NF-κB signaling pathway at nearly every level. This review provides discussion of proteases targeting the most abundant NF-κB subunit, p65, and the impact of protease-mediated p65 cleavage on the immune responses and survival of the infected host cell. After examining various examples of protease interference, it becomes evident that the cleavage fragments produced by pathogen-driven proteolytic processing should be further characterized to determine whether they have novel and unique functions within the cell. The selective targeting of p65 and its effect on gene transcription reveals unique mechanisms by which pathogens acutely alter their microenvironment, and further research may open new opportunities for novel therapeutics to combat pathogens.
Collapse
Affiliation(s)
- Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Wier EM, Fu K, Hodgson A, Sun X, Wan F. Caspase-3 cleaved p65 fragment dampens NF-κB-mediated anti-apoptotic transcription by interfering with the p65/RPS3 interaction. FEBS Lett 2015; 589:3581-7. [PMID: 26526615 PMCID: PMC4655178 DOI: 10.1016/j.febslet.2015.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/11/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Caspase-3-mediated p65 cleavage is believed to suppress nuclear factor-kappa B (NF-κB)-mediated anti-apoptotic transactivation in cells undergoing apoptosis. However, only a small percentage of p65 is cleaved during apoptosis, not in proportion to the dramatic reduction in NF-κB transactivation. Here we show that the p65(1-97) fragment generated by Caspase-3 cleavage interferes with ribosomal protein S3 (RPS3), an NF-κB "specifier" subunit, and selectively retards the nuclear translocation of RPS3, thus dampening the RPS3/NF-κB-dependent anti-apoptotic gene expression. Our findings reveal a novel cell fate determination mechanism to ensure cells undergo programed cell death through interfering with RPS3/NF-κB-conferred anti-apoptotic transcription by the fragment from partial p65 cleavage by activated Caspase-3.
Collapse
Affiliation(s)
- Eric M Wier
- Department of Biochemistry and Molecular Biology, USA
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, USA
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Sanchez-Villamil J, Navarro-Garcia F. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 2015; 10:1009-33. [DOI: 10.2217/fmb.15.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| |
Collapse
|
21
|
Hodgson A, Wier EM, Fu K, Sun X, Yu H, Zheng W, Sham HP, Johnson K, Bailey S, Vallance BA, Wan F. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015; 11:e1004705. [PMID: 25756944 PMCID: PMC4355070 DOI: 10.1371/journal.ppat.1004705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Attaching/Effacing (A/E) pathogens including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and the rodent equivalent Citrobacter rodentium are important causative agents of foodborne diseases. Upon infection, a myriad of virulence proteins (effectors) encoded by A/E pathogens are injected through their conserved type III secretion systems (T3SS) into host cells where they interfere with cell signaling cascades, in particular the nuclear factor kappaB (NF-κB) signaling pathway that orchestrates both innate and adaptive immune responses for host defense. Among the T3SS-secreted non-LEE-encoded (Nle) effectors, NleC, a metalloprotease, has been recently elucidated to modulate host NF-κB signaling by cleaving NF-κB Rel subunits. However, it remains elusive how NleC recognizes NF-κB Rel subunits and how the NleC-mediated cleavage impacts on host immune responses in infected cells and animals. In this study, we show that NleC specifically targets p65/RelA through an interaction with a unique N-terminal sequence in p65. NleC cleaves p65 in intestinal epithelial cells, albeit a small percentage of the molecule, to generate the p65¹⁻³⁸ fragment during C. rodentium infection in cultured cells. Moreover, the NleC-mediated p65 cleavage substantially affects the expression of a subset of NF-κB target genes encoding proinflammatory cytokines/chemokines, immune cell infiltration in the colon, and tissue injury in C. rodentium-infected mice. Mechanistically, the NleC cleavage-generated p65¹⁻³⁸ fragment interferes with the interaction between p65 and ribosomal protein S3 (RPS3), a 'specifier' subunit of NF-κB that confers a subset of proinflammatory gene transcription, which amplifies the effect of cleaving only a small percentage of p65 to modulate NF-κB-mediated gene expression. Thus, our results reveal a novel mechanism for A/E pathogens to specifically block NF-κB signaling and inflammatory responses by cleaving a small percentage of p65 and targeting the p65/RPS3 interaction in host cells, thus providing novel insights into the pathogenic mechanisms of foodborne diseases.
Collapse
Affiliation(s)
- Andrea Hodgson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric M. Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Wenxin Zheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ho Pan Sham
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kaitlin Johnson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
23
|
Santos AS, Finlay BB. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol 2015; 17:318-32. [PMID: 25588886 DOI: 10.1111/cmi.12412] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022]
Abstract
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways--specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling--are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.
Collapse
Affiliation(s)
- Andrew S Santos
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
24
|
Abstract
ABSTRACT
The inflammatory response is an integral part of host defense against enterohemorrhagic
Escherichia coli
(EHEC) infection and also contributes to disease pathology. In this article we explore the factors leading to inflammation during EHEC infection and the mechanisms EHEC and other attaching and effacing (A/E) pathogens have evolved to suppress inflammatory signaling. EHEC stimulates an inflammatory response in the intestine through host recognition of bacterial components such as flagellin and lipopolysaccharide. In addition, the activity of Shiga toxin and some type III secretion system effectors leads to increased tissue inflammation. Various infection models of EHEC and other A/E pathogens have revealed many of the immune factors that mediate this response. In particular, the outcome of infection is greatly influenced by the ability of an infected epithelial cell to mount an effective host inflammatory response. The inflammatory response of infected enterocytes is counterbalanced by the activity of type III secretion system effectors such as NleE and NleC that modify and inhibit components of the signaling pathways that lead to proinflammatory cytokine production. Overall, A/E pathogens have taught us that innate mucosal immune responses in the gastrointestinal tract during infection with A/E pathogens are highly complex and ultimate clearance of the pathogen depends on multiple factors, including inflammatory mediators, bacterial burden, and the function and integrity of resident intestinal epithelial cells.
Collapse
|
25
|
Fraiture M, Brunner F. Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria. Front Microbiol 2014; 5:320. [PMID: 25101059 PMCID: PMC4105635 DOI: 10.3389/fmicb.2014.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/11/2014] [Indexed: 01/07/2023] Open
Abstract
Within the past decade, remarkable similarities between the molecular organization of animal and plant systems for non-self discrimination were revealed. Obvious parallels exist between the molecular structures of the receptors mediating the recognition of pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) with plant pattern recognition receptors strikingly resembling mammalian Toll-like receptors. Mitogen-activated protein kinase cascades, leading to the transcriptional activation of immunity-associated genes, illustrate the conservation of whole molecular building blocks of PAMP/MAMP-induced signaling. Enteropathogenic Salmonella and Escherichia coli use a type three secretion system (T3SS) to inject effector proteins into the mammalian host cell to subvert defense mechanisms and promote gut infection. Lately, disease occurrence was increasingly associated with bacteria-contaminated fruits and vegetables and common themes have emerged with regard to whether and how effectors target innate immune responses in a trans-kingdom manner. We propose that numerous Salmonella or E. coli effectors may be active in planta and tend to target central components (hubs) of immune signaling pathways.
Collapse
Affiliation(s)
- Malou Fraiture
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| | - Frédéric Brunner
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| |
Collapse
|
26
|
Feuerbacher LA, Hardwidge PR. Influence of NleH effector expression, host genetics, and inflammation on Citrobacter rodentium colonization of mice. Microbes Infect 2014; 16:429-33. [PMID: 24613200 PMCID: PMC4040159 DOI: 10.1016/j.micinf.2014.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 01/06/2023]
Abstract
The Escherichia coli NleH1 and NleH2 virulence proteins differentially regulate host transcription of innate immunity genes. The mouse pathogen Citrobacter rodentium encodes one NleH protein, which functions equivalently to E. coli NleH1. We examined the impact of host genetics and intestinal inflammation on the contribution of NleH to C. rodentium colonization of mice differing in LPS responsiveness. NleH expression was detrimental to C. rodentium in C57BL/10ScNJ mice, which do not mount LPS-induced inflammatory responses. This phenotype was reversed if inflammation was induced by chemical means. C. rodentium that expressed both E. coli NleH1 and NleH2 was hypervirulent in C3H/HeJ mice.
Collapse
Affiliation(s)
- Leigh Ann Feuerbacher
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Philip R Hardwidge
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
27
|
Halavaty AS, Anderson SM, Wawrzak Z, Kudritska M, Skarina T, Anderson WF, Savchenko A. Type III effector NleH2 from Escherichia coli O157:H7 str. Sakai features an atypical protein kinase domain. Biochemistry 2014; 53:2433-5. [PMID: 24712300 DOI: 10.1021/bi500016j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The crystal structure of a C-terminal domain of enterohemorrhagic Escherichia coli type III effector NleH2 has been determined to 2.6 Å resolution. The structure resembles those of protein kinases featuring the catalytic, activation, and glycine-rich loop motifs and ATP-binding site. The position of helix αC and the lack of a conserved arginine within an equivalent HRD motif suggested that the NleH2 kinase domain's active conformation might not require phosphorylation. The activation segment markedly contributed to the dimerization interface of NleH2, which can also accommodate the NleH1-NleH2 heterodimer. The C-terminal PDZ-binding motif of NleH2 provided bases for interaction with host proteins.
Collapse
Affiliation(s)
- Andrei S Halavaty
- Center for Structural Genomics of Infectious Diseases (CSGID), Molecular Pharmacology and Biological Chemistry, Northwestern University , Chicago, Illinois 60611, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhou M, Guo Z, Duan Q, Hardwidge PR, Zhu G. Escherichia coli type III secretion system 2: a new kind of T3SS? Vet Res 2014; 45:32. [PMID: 24641581 PMCID: PMC3977695 DOI: 10.1186/1297-9716-45-32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/07/2014] [Indexed: 01/16/2023] Open
Abstract
Type III secretion systems (T3SSs) are employed by Gram-negative bacteria to deliver effector proteins into the cytoplasm of infected host cells. Enteropathogenic Escherichia coli use a T3SS to deliver effector proteins that result in the creation of the attaching and effacing lesions. The genome sequence of the Escherichia coli pathotype O157:H7 revealed the existence of a gene cluster encoding components of a second type III secretion system, the E. coli type III secretion system 2 (ETT2). Researchers have revealed that, although ETT2 may not be a functional secretion system in most (or all) strains, it still plays an important role in bacterial virulence. This article summarizes current knowledge regarding the E. coli ETT2, including its genetic characteristics, prevalence, function, association with virulence, and prospects for future work.
Collapse
Affiliation(s)
| | | | | | | | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
29
|
Kovalchuk O, Walz P, Kovalchuk I. Does bacterial infection cause genome instability and cancer in the host cell? Mutat Res 2014; 761:1-14. [PMID: 24472301 DOI: 10.1016/j.mrfmmm.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/08/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Research of the past several decades suggests that bacterial infection can lead to genome instability of the host cell often resulting in cancer development. However, there is still a substantial lack of knowledge regarding possible mechanisms involved in the development of genomic instability. Several questions remain unanswered, namely: Why has the causative relationship between the bacterial infection and cancer been established only for a small number of cancers? What is the mechanism responsible for the induction of genome instability and cancer? Is the infection process required to cause genome instability and cancer? In this review, we present a hypothesis that the bacterial infection, exposure to heat-killed bacteria or even some bacterial determinants may trigger genome instability of exposed and distal cells, and thus may cause cancer. We will discuss the mechanisms of host responses to the bacterial infection and present the possible pathways leading to genome instability and cancer through exposure to bacteria.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| | - Paul Walz
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| |
Collapse
|
30
|
Canova MJ, Molle V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J Biol Chem 2014; 289:9473-9. [PMID: 24554701 DOI: 10.1074/jbc.r113.529917] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Collapse
Affiliation(s)
- Marc J Canova
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, 34095 Montpellier Cedex 05, France
| | | |
Collapse
|
31
|
Jayamani E, Mylonakis E. Effector triggered manipulation of host immune response elicited by different pathotypes of Escherichia coli. Virulence 2014; 5:733-9. [PMID: 25513774 PMCID: PMC4189879 DOI: 10.4161/viru.29948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Effectors are virulence factors that are secreted by bacteria during an infection in order to subvert cellular processes or induce the surveillance system of the host. Pathogenic microorganisms encode effectors, toxins and components of secretion systems that inject the effectors to the host. Escherichia coli is part of the innocuous commensal microbial flora of the gastrointestinal tract. However, pathogenic E. coli can cause diarrheal and extraintestinal diseases. Pathogenic E. coli uses secretion systems to inject an array of effector proteins directly into the host cells. Herein, we discuss the effectors secreted by different pathotypes of E. coli and provide an overview of strategies employed by effectors to target the host cellular and subcellular processes as well as their role in triggering host immune response.
Collapse
Affiliation(s)
- Elamparithi Jayamani
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| |
Collapse
|
32
|
Fu K, Sun X, Zheng W, Wier EM, Hodgson A, Tran DQ, Richard S, Wan F. Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 2013; 4:1909. [PMID: 23715268 PMCID: PMC3684077 DOI: 10.1038/ncomms2916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/19/2013] [Indexed: 12/23/2022] Open
Abstract
CD25, the alpha chain of the interleukin-2 receptor, is expressed in activated T cells and has a significant role in autoimmune disease and tumorigenesis; however, the mechanisms regulating transcription of CD25 remain elusive. Here we identify the Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel non-Rel component in the nuclear factor-kappaB (NF-κB) complex that confers CD25 transcription. Our results demonstrate that Sam68 has an essential role in the induction and maintenance of CD25 in T cells. T-cell receptor engagement triggers translocation of the inhibitor of NF-κB kinase alpha (IKKα) from the cytoplasm to the nucleus, where it phosphorylates Sam68, causing complex formation with NF-κB in the nucleus. These findings reveal the important roles of KH domain-containing components and their spatial interactions with IKKs in determining the binding targets of NF-κB complexes, thus shedding novel insights into the regulatory specificity of NF-κB.
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21025, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Grishin AM, Cherney M, Anderson DH, Phanse S, Babu M, Cygler M. NleH defines a new family of bacterial effector kinases. Structure 2013; 22:250-9. [PMID: 24373767 DOI: 10.1016/j.str.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
Abstract
Upon host cell infection, pathogenic Escherichia coli hijacks host cellular processes with the help of 20-60 secreted effector proteins that subvert cellular processes to create an environment conducive to bacterial survival. The NleH effector kinases manipulate the NF-κB pathway and prevent apoptosis. They show low sequence similarity to human regulatory kinases and contain two domains, the N-terminal, likely intrinsically unfolded, and a C-terminal kinase-like domain. We show that these effectors autophosphorylate on sites located predominantly in the N-terminal segment. The kinase domain displays a minimal kinase fold, but lacks an activation loop and the GHI subdomain. Nevertheless, all catalytically important residues are conserved. ATP binding proceeds with minimal structural rearrangements. The NleH structure is the first for the bacterial effector kinases family. NleHs and their homologous effector kinases form a new kinase family within the cluster of eukaryotic-like kinases that includes also Rio, Bud32, and KdoK families.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Maia Cherney
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Deborah H Anderson
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir Willam Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
34
|
Pham TH, Gao X, Singh G, Hardwidge PR. Escherichia coli virulence protein NleH1 interaction with the v-Crk sarcoma virus CT10 oncogene-like protein (CRKL) governs NleH1 inhibition of the ribosomal protein S3 (RPS3)/nuclear factor κB (NF-κB) pathway. J Biol Chem 2013; 288:34567-74. [PMID: 24145029 DOI: 10.1074/jbc.m113.512376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterohemorrhagic Escherichia coli and other attaching/effacing bacterial pathogens cause diarrhea in humans. These pathogens use a type III secretion system to inject virulence proteins (effectors) into host cells, some of which inhibit the innate immune system. The enterohemorrhagic E. coli NleH1 effector prevents the nuclear translocation of RPS3 (ribosomal protein S3) to inhibit its participation as a nuclear "specifier" of NF-κB binding to target gene promoters. NleH1 binds to RPS3 and inhibits its phosphorylation on Ser-209 by IκB kinase-β (IKKβ). However, the precise mechanism of this inhibition is unclear. NleH1 possesses a Ser/Thr protein kinase activity that is essential both for its ability to inhibit the RPS3/NF-κB pathway and for full virulence of the attaching/effacing mouse pathogen Citrobacter rodentium. However, neither RPS3 nor IKKβ is a substrate of NleH1 kinase activity. We therefore screened ∼9,000 human proteins to identify NleH1 kinase substrates and identified CRKL (v-Crk sarcoma virus CT10 oncogene-like protein), a substrate of the BCR/ABL kinase. Knockdown of CRKL abundance prevented NleH1 from inhibiting RPS3 nuclear translocation and NF-κB activity. CRKL residues Tyr-198 and Tyr-207 were required for interaction with NleH1. Lys-159, the kinase-active site of NleH1, was necessary for its interaction with CRKL. We also identified CRKL as an IKKβ interaction partner, mediated by CRKL Tyr-198. We propose that the CRKL interaction with IKKβ recruits NleH1 to the IKKβ complex, where NleH1 then inhibits the RPS3/NF-κB pathway.
Collapse
Affiliation(s)
- Thanh H Pham
- From the College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506 and
| | | | | | | |
Collapse
|
35
|
Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol 2013; 21:430-41. [DOI: 10.1016/j.tim.2013.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
|
36
|
Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFκB signalling. MICROBIOLOGY-SGM 2013; 159:2001-2013. [PMID: 23873783 PMCID: PMC3799228 DOI: 10.1099/mic.0.069369-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human body is constantly challenged by a variety of commensal and pathogenic micro-organisms that trigger the immune system. Central in the first line of defence is the pattern-recognition receptor (PRR)-induced stimulation of the NFκB pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokines and/or antimicrobial peptides results in recruitment of professional phagocytes and bacterial clearance. To overcome this, bacteria have developed mechanisms for targeted interference in every single step in the PRR–NFκB pathway to dampen host inflammatory responses. This review aims to briefly overview the PRR–NFκB pathway in relation to the immune response and give examples of the diverse bacterial evasion mechanisms including changes in the bacterial surface, decoy production and injection of effector molecules. Targeted regulation of inflammatory responses is needed and bacterial molecules developed for immune evasion could provide future anti-inflammatory agents.
Collapse
Affiliation(s)
- Mona Johannessen
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Fatemeh Askarian
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Maria Sangvik
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Johanna E Sollid
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
37
|
Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, DeOliveira RB, Garrett WS, Lu X, O’Malley J, Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AKK, Maira-Litràn T, Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz LO, Pelton SI, Golenbock DT, Pier GB. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 2013; 110:E2209-18. [PMID: 23716675 PMCID: PMC3683766 DOI: 10.1073/pnas.1303573110] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
Collapse
Affiliation(s)
- Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Rosane B. DeOliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wendy S. Garrett
- Departments of Immunology and Infectious Diseases, Genetics and Complex Diseases, Dana–Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115
| | - Xi Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Jennifer O’Malley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Kathryn Kinzel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Astrid Rey
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Christophe Perrin
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Alexander K. K. Kayatani
- Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Tomas Maira-Litràn
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Lauren O. Bakaletz
- The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Stephen I. Pelton
- Department of Pediatric Infectious Diseases, Boston University Medical Center, Boston, MA 02118
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
Gao X, Wang X, Pham TH, Feuerbacher LA, Lubos ML, Huang M, Olsen R, Mushegian A, Slawson C, Hardwidge PR. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe 2013; 13:87-99. [PMID: 23332158 DOI: 10.1016/j.chom.2012.11.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/04/2012] [Accepted: 11/13/2012] [Indexed: 01/17/2023]
Abstract
Modulation of NF-κB-dependent responses is critical to the success of attaching/effacing (A/E) human pathogenic E. coli (EPEC and EHEC) and the natural mouse pathogen Citrobacter rodentium. NleB, a highly conserved type III secretion system effector of A/E pathogens, suppresses NF-κB activation, but the underlying mechanisms are unknown. We identified the mammalian glycolysis enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an NleB-interacting protein. Further, we discovered that GAPDH interacts with the TNF receptor-associated factor 2 (TRAF2), a protein required for TNF-α-mediated NF-κB activation, and regulates TRAF2 polyubiquitination. During infection, NleB functions as a translocated N-acetyl-D-glucosamine (O-GlcNAc) transferase that modifies GAPDH. NleB-mediated GAPDH O-GlcNAcylation disrupts the TRAF2-GAPDH interaction to suppress TRAF2 polyubiquitination and NF-κB activation. Eliminating NleB O-GlcNAcylation activity attenuates C. rodentium colonization of mice. These data identify GAPDH as a TRAF2 signaling cofactor and reveal a virulence strategy employed by A/E pathogens to inhibit NF-κB-dependent host innate immune responses.
Collapse
Affiliation(s)
- Xiaofei Gao
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wier EM, Neighoff J, Sun X, Fu K, Wan F. Identification of an N-terminal truncation of the NF-κB p65 subunit that specifically modulates ribosomal protein S3-dependent NF-κB gene expression. J Biol Chem 2012; 287:43019-29. [PMID: 23115242 DOI: 10.1074/jbc.m112.388694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NF-κB is a pleiotrophic transcription factor that plays a prominent regulatory role in various cellular processes. Although previous efforts have focused on its activation, how NF-κB selects specific target genes in response to discrete signals remains puzzling. In addition to the well defined Rel protein components of NF-κB, the ribosomal protein S3 (RPS3) was identified to be an essential component of specific NF-κB complexes. RPS3 synergistically interacts with the NF-κB p65 subunit to achieve optimal binding and transactivation of a subset of NF-κB target genes, thus providing regulatory specificity. Emerging evidence suggests an important role for the RPS3-p65 interaction in context-specific NF-κB gene transcription. The food-borne pathogen Escherichia coli O157:H7 impacts the transcription of a subset of NF-κB target genes encoding proinflammatory cytokines and chemokines in host cells by preventing the nuclear translocation of RPS3, but not p65. The N terminus of p65 is crucial for RPS3 binding. Although several p65 N-terminal fragments are generated by either protease cleavage or alternative mRNA splicing under certain pathophysiological conditions, the role of these fragments in modulating NF-κB signaling, in particular RPS3-dependent selective gene transcription, has not been fully characterized. Here we report that an N-terminal fragment of p65 (amino acids 21-186) can selectively modulate NF-κB gene transcription by competing for RPS3 binding to p65. This 21-186 fragment preferentially localizes in the cytoplasm where it delays stimuli-induced RPS3 nuclear translocation, without affecting the nuclear translocation of p65. Our findings thus uncover a new cytoplasmic function for the N-terminal domain of p65 and provide a novel strategy for selective inhibition of NF-κB gene transcription.
Collapse
Affiliation(s)
- Eric M Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
40
|
A distinct regulatory sequence is essential for the expression of a subset of nle genes in attaching and effacing Escherichia coli. J Bacteriol 2012; 194:5589-603. [PMID: 22904277 DOI: 10.1128/jb.00190-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli uses a type III secretion system (T3SS), encoded in the locus of enterocyte effacement (LEE) pathogenicity island, to translocate a wide repertoire of effector proteins into the host cell in order to subvert cell signaling cascades and promote bacterial colonization and survival. Genes encoding type III-secreted effectors are located in the LEE and scattered throughout the chromosome. While LEE gene regulation is better understood, the conditions and factors involved in the expression of effectors encoded outside the LEE are just starting to be elucidated. Here, we identified a highly conserved sequence containing a 13-bp inverted repeat (IR), located upstream of a subset of genes coding for different non-LEE-encoded effectors in A/E pathogens. Site-directed mutagenesis and deletion analysis of the nleH1 and nleB2 regulatory regions revealed that this IR is essential for the transcriptional activation of both genes. Growth conditions that favor the expression of LEE genes also facilitate the activation of nleH1 and nleB2; however, their expression is independent of the LEE-encoded positive regulators Ler and GrlA but is repressed by GrlR and the global regulator H-NS. In contrast, GrlA and Ler are required for nleA expression, while H-NS silences it. Consistent with their role in the regulation of nleA, purified Ler and H-NS bound to the regulatory region of nleA upstream of its promoter. This work shows that at least two modes of regulation control the expression of effector genes in attaching and effacing (A/E) pathogens, suggesting that a subset of effector functions may be coordinately expressed in a particular niche or time during infection.
Collapse
|