1
|
Smirnov A, Daily KP, Gray MC, Ragland SA, Werner LM, Brittany Johnson M, Eby JC, Hewlett EL, Taylor RP, Criss AK. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. J Leukoc Biol 2023; 114:1-20. [PMID: 36882066 PMCID: PMC10949953 DOI: 10.1093/jleuko/qiad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
CR3 (CD11b/CD18; αmβ2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology
| | | | - Mary C. Gray
- Department of Microbiology, Immunology, and Cancer Biology
| | | | | | | | - Joshua C. Eby
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | | |
Collapse
|
2
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
3
|
Hu LI, Stohl EA, Seifert HS. The Neisseria gonorrhoeae type IV pilus promotes resistance to hydrogen peroxide- and LL-37-mediated killing by modulating the availability of intracellular, labile iron. PLoS Pathog 2022; 18:e1010561. [PMID: 35714158 PMCID: PMC9246397 DOI: 10.1371/journal.ppat.1010561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The Neisseria gonorrhoeae Type IV pilus is a multifunctional, dynamic fiber involved in host cell attachment, DNA transformation, and twitching motility. We previously reported that the N. gonorrhoeae pilus is also required for resistance against hydrogen peroxide-, antimicrobial peptide LL-37-, and non-oxidative, neutrophil-mediated killing. We tested whether the hydrogen peroxide, LL-37, and neutrophil hypersensitivity phenotypes in non-piliated N. gonorrhoeae could be due to elevated iron levels. Iron chelation in the growth medium rescued a nonpiliated pilE mutant from both hydrogen peroxide- and antimicrobial peptide LL-37-mediated killing, suggesting these phenotypes are related to iron availability. We used the antibiotic streptonigrin, which depends on free cytoplasmic iron and oxidation to kill bacteria, to determine whether piliation affected intracellular iron levels. Several non-piliated, loss-of-function mutants were more sensitive to streptonigrin killing than the piliated parental strain. Consistent with the idea that higher available iron levels in the under- and non-piliated strains were responsible for the higher streptonigrin sensitivity, iron limitation by desferal chelation restored resistance to streptonigrin in these strains and the addition of iron restored the sensitivity to streptonigrin killing. The antioxidants tiron and dimethylthiourea rescued the pilE mutant from streptonigrin-mediated killing, suggesting that the elevated labile iron pool in non-piliated bacteria leads to streptonigrin-dependent reactive oxygen species production. These antioxidants did not affect LL-37-mediated killing. We confirmed that the pilE mutant is not more sensitive to other antibiotics showing that the streptonigrin phenotypes are not due to general bacterial envelope disruption. The total iron content of the cell was unaltered by piliation when measured using ICP-MS suggesting that only the labile iron pool is affected by piliation. These results support the hypothesis that piliation state affects N. gonorrhoeae iron homeostasis and influences sensitivity to various host-derived antimicrobial agents. Neisseria gonorrhoeae is a bacterium that causes the sexually transmitted infection, gonorrhea. The bacteria express a fiber on their surface called a pilus that mediates many interactions of the bacterial cell with host cells and tissues. The ability to resist killing by white cells is one important ability that N. gonorrhoeae uses to allow infection of otherwise healthy people. We show here that the pilus help resist white cell killing by modulating the levels of iron within the bacterial cell.
Collapse
Affiliation(s)
- Linda I. Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elizabeth A. Stohl
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Gulati S, Beurskens FJ, de Kreuk BJ, Roza M, Zheng B, DeOliveira RB, Shaughnessy J, Nowak NA, Taylor RP, Botto M, He X, Ingalls RR, Woodruff TM, Song WC, Schuurman J, Rice PA, Ram S. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biol 2019; 17:e3000323. [PMID: 31216278 PMCID: PMC6602280 DOI: 10.1371/journal.pbio.3000323] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/01/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with “Fc-unmodified” chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 μg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) “complement-inactive” Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q−/− mice, when C5 function was blocked, or in C9−/− mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics. A chimeric antibody that contains a "complement-enhancing" mutation in Fc (so-called HexaBody technology) shows increased bactericidal activity compared to antibody bearing wild-type Fc and may represent a promising immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald P. Taylor
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Marina Botto
- Center for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Xianbao He
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Robin R. Ingalls
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SR); (FJB)
| |
Collapse
|
6
|
Jayasundara P, Regan DG, Seib KL, Jayasundara D, Wood JG. Modelling the in-host dynamics of Neisseria gonorrhoeae infection. Pathog Dis 2019; 77:5320890. [PMID: 30770529 DOI: 10.1093/femspd/ftz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
The bacterial species Neisseria gonorrhoeae (NG) has evolved to replicate effectively and exclusively in human epithelia, with its survival dependent on complex interactions between bacteria, host cells and antimicrobial agents. A better understanding of these interactions is needed to inform development of new approaches to gonorrhoea treatment and prevention but empirical studies have proven difficult, suggesting a role for mathematical modelling. Here, we describe an in-host model of progression of untreated male symptomatic urethral infection, including NG growth and interactions with epithelial cells and neutrophils, informed by in vivo and in vitro studies. The model reproduces key observations on bacterial load and clearance and we use multivariate sensitivity analysis to refine plausible ranges for model parameters. Model variants are also shown to describe mouse infection dynamics with altered parameter ranges that correspond to observed differences between human and mouse infection. Our results highlight the importance of NG internalisation, particularly within neutrophils, in sustaining infection in the human model, with ∼80% of the total NG population internalised from day 25 on. This new mechanistic model of in-host NG infection dynamics should also provide a platform for future studies relating to antimicrobial treatment and resistance and infection at other anatomical sites.
Collapse
Affiliation(s)
- Pavithra Jayasundara
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| | - David G Regan
- The Kirby Institute, UNSW Sydney, High Street, Kensington, NSW 2052, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast campus, Parklands Dr, Southport, QLD 4222, Australia
| | - Duleepa Jayasundara
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| | - James G Wood
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| |
Collapse
|
7
|
Quillin SJ, Hockenberry AJ, Jewett MC, Seifert HS. Neisseria gonorrhoeae Exposed to Sublethal Levels of Hydrogen Peroxide Mounts a Complex Transcriptional Response. mSystems 2018; 3:e00156-18. [PMID: 30320218 PMCID: PMC6172773 DOI: 10.1128/msystems.00156-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Neisseria gonorrhoeae mounts a substantial transcriptional program in response to hydrogen peroxide (HP), a prominent reactive oxygen species (ROS) encountered during infection. We tested which strain FA1090 genes show differential transcript abundance in response to sublethal amounts of HP to differentiate HP-responsive signaling from widespread cellular death and dysregulation. RNA sequencing (RNA-Seq) revealed that 150 genes were significantly upregulated and 143 genes downregulated following HP exposure. We annotated HP-responsive operons and all transcriptional start sites (TSSs) and identified which TSSs responded to HP treatment. We compared the HP responses and other previously reported genes and found only partial overlapping of other regulatory networks, indicating that the response to HP involves multiple biological functions. Using a representative subset of responsive genes, we validated the RNA-Seq results and found that the HP transcriptome was similar to that of sublethal organic peroxide. None of the genes in the representative subset, however, responded to sublethal levels of HOCl or O2 -. These results support the idea that N. gonorrhoeae may use variations in HP levels as a signal for different stages of infection. IMPORTANCE The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted disease gonorrhea. This bacterium encounters hydrogen peroxide produced from host cells during infection, but the organism survives in the presence of this antimicrobial agent. This work shows that the bacterium responds to hydrogen peroxide by regulating the expression of many genes involved in multiple processes.
Collapse
Affiliation(s)
- Sarah J. Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam J. Hockenberry
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
9
|
Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu Rev Microbiol 2018; 71:665-686. [PMID: 28886683 DOI: 10.1146/annurev-micro-090816-093530] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and
Collapse
Affiliation(s)
- Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia 30033;
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland 20814-4799;
| |
Collapse
|
10
|
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis 2017; 75:3777971. [PMID: 28460033 PMCID: PMC5449626 DOI: 10.1093/femspd/ftx049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Gonorrhea has become resistant to most conventional antimicrobials used in clinical practice. The global spread of multidrug-resistant isolates of Neisseria gonorrhoeae could lead to an era of untreatable gonorrhea. New therapeutic modalities with novel mechanisms of action that do not lend themselves to the development of resistance are urgently needed. Gonococcal lipooligosaccharide (LOS) sialylation is critical for complement resistance and for establishing infection in humans and experimental mouse models. Here we describe two immunotherapeutic approaches that target LOS sialic acid: (i) a fusion protein that comprises the region in the complement inhibitor factor H (FH) that binds to sialylated gonococci and IgG Fc (FH/Fc fusion protein) and (ii) analogs of sialic acid that are incorporated into LOS but fail to protect the bacterium against killing. Both molecules showed efficacy in the mouse vaginal colonization model of gonorrhea and may represent promising immunotherapeutic approaches to target multidrug-resistant isolates. Disabling key gonococcal virulence mechanisms is an effective therapeutic strategy because the reduction of virulence is likely to be accompanied by a loss of fitness, rapid elimination by host immunity and consequently, decreased transmission.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B. de Oliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Hill SA, Masters TL, Wachter J. Gonorrhea - an evolving disease of the new millennium. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:371-389. [PMID: 28357376 PMCID: PMC5354566 DOI: 10.15698/mic2016.09.524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Neisseria gonorrhoeae (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge. More severe sequellae include salpingitis and pelvic inflammatory disease which may lead to sterility and/or ectopic pregnancy. Occasionally, the organism can disseminate as a bloodstream infection. Epidemiology, incidence and prevalence: Gonorrhea is a global disease infecting approximately 60 million people annually. In the United States there are approximately 300, 000 cases each year, with an incidence of approximately 100 cases per 100,000 population. Treatment and curability: Gonorrhea is susceptible to an array of antibiotics. Antibiotic resistance is becoming a major problem and there are fears that the gonococcus will become the next "superbug" as the antibiotic arsenal diminishes. Currently, third generation extended-spectrum cephalosporins are being prescribed. Molecular mechanisms of infection: Gonococci elaborate numerous strategies to thwart the immune system. The organism engages in extensive phase (on/off switching) and antigenic variation of several surface antigens. The organism expresses IgA protease which cleaves mucosal antibody. The organism can become serum resistant due to its ability to sialylate lipooligosaccharide in conjunction with its ability to subvert complement activation. The gonococcus can survive within neutrophils as well as in several other lymphocytic cells. The organism manipulates the immune response such that no immune memory is generated which leads to a lack of protective immunity.
Collapse
Affiliation(s)
- Stuart A. Hill
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Thao L. Masters
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Jenny Wachter
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| |
Collapse
|
12
|
|
13
|
Johnson MB, Ball LM, Daily KP, Martin JN, Columbus L, Criss AK. Opa+ Neisseria gonorrhoeae exhibits reduced survival in human neutrophils via Src family kinase-mediated bacterial trafficking into mature phagolysosomes. Cell Microbiol 2014; 17:648-65. [PMID: 25346239 DOI: 10.1111/cmi.12389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils' full antimicrobial arsenal.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Assembly of NADPH oxidase in human neutrophils is modulated by the opacity-associated protein expression State of Neisseria gonorrhoeae. Infect Immun 2013; 82:1036-44. [PMID: 24343654 DOI: 10.1128/iai.00881-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (the gonococcus, Gc) triggers a potent inflammatory response and recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils despite these cells' antimicrobial products, such as reactive oxygen species (ROS). ROS production in neutrophils is initiated by NADPH oxidase, which converts oxygen into superoxide. The subunits of NADPH oxidase are spatially separated between granules (gp91(phox)/p22(phox)) and the cytoplasm (p47(phox), p67(phox), and p40(phox)). Activation of neutrophils promotes the coassembly of NADPH oxidase subunits at phagosome and/or plasma membranes. While Gc-expressing opacity-associated (Opa) proteins can induce neutrophils to produce ROS, Opa-negative (Opa-) Gc does not stimulate neutrophil ROS production. Using constitutively Opa- and OpaD-positive (OpaD+) Gc bacteria in strain FA1090, we now show that the difference in ROS production levels in primary human neutrophils between these backgrounds can be attributed to differential assembly of NADPH oxidase. Neutrophils infected with Opa- Gc showed limited translocation of NADPH oxidase cytoplasmic subunits to cellular membranes, including the bacterial phagosome. In contrast, these subunits rapidly translocated to neutrophil membranes following infection with OpaD+ Gc. gp91(phox) and p22(phox) were recruited to Gc phagosomes regardless of bacterial Opa expression. These results suggest that Opa- Gc interferes with the recruitment of neutrophil NADPH oxidase cytoplasmic subunits to membranes, in particular, the p47(phox) "organizing" subunit, to prevent assembly of the holoenzyme, resulting in an absence of the oxidative burst.
Collapse
|
15
|
Anderson MT, Seifert HS. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene. PLoS One 2013; 8:e72183. [PMID: 23977246 PMCID: PMC3745409 DOI: 10.1371/journal.pone.0072183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae when investigating host cell interactions.
Collapse
Affiliation(s)
- Mark T. Anderson
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Constitutively Opa-expressing and Opa-deficient neisseria gonorrhoeae strains differentially stimulate and survive exposure to human neutrophils. J Bacteriol 2013; 195:2982-90. [PMID: 23625842 DOI: 10.1128/jb.00171-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Neisseria gonorrhoeae (the gonococcus [Gc]) opacity-associated (Opa) proteins mediate bacterial binding and internalization by human epithelial cells and neutrophils (polymorphonuclear leukocytes [PMNs]). Investigating the contribution of Opa proteins to gonococcal pathogenesis is complicated by high-frequency phase variation of the opa genes. We therefore engineered a derivative of Gc strain FA1090 in which all opa genes were deleted in frame, termed Opaless. Opaless Gc remained uniformly Opa negative (Opa(-)), whereas cultures of predominantly Opa(-) parental Gc and an intermediate lacking the "translucent" subset of opa genes (ΔopaBEGK) stochastically gave rise to Opa-positive (Opa(+)) bacterial colonies. Loss of Opa expression did not affect Gc growth. Opaless Gc survived exposure to primary human PMNs and suppressed the PMN oxidative burst akin to parental, Opa(-) bacteria. Notably, unopsonized Opaless Gc was internalized by adherent, chemokine-primed, primary human PMNs, by an actin-dependent process. When a non-phase-variable, in-frame allele of FA1090 opaD was reintroduced into Opaless Gc, the bacteria induced the PMN oxidative burst, and OpaD(+) Gc survived less well after exposure to PMNs compared to Opa(-) bacteria. These derivatives provide a robust system for assessing the role of Opa proteins in Gc biology.
Collapse
|
17
|
Stohl EA, Chan YA, Hackett KT, Kohler PL, Dillard JP, Seifert HS. Neisseria gonorrhoeae virulence factor NG1686 is a bifunctional M23B family metallopeptidase that influences resistance to hydrogen peroxide and colony morphology. J Biol Chem 2012; 287:11222-33. [PMID: 22334697 DOI: 10.1074/jbc.m111.338830] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Department of Microbiology-Immunology, Northwestern Medical School Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
18
|
A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 2012; 10:178-90. [PMID: 22290508 DOI: 10.1038/nrmicro2713] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria-neutrophil relationship and proposes potential benefits of this relationship for the pathogen.
Collapse
|
19
|
Packiam M, Wu H, Veit SJ, Mavrogiorgos N, Jerse AE, Ingalls RR. Protective role of Toll-like receptor 4 in experimental gonococcal infection of female mice. Mucosal Immunol 2012; 5:19-29. [PMID: 21937985 PMCID: PMC3240729 DOI: 10.1038/mi.2011.38] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neisseria gonorrhoeae is a common bacterial sexually transmitted infection. Like all Gram-negative bacteria, the outer membrane of the gonococcus is rich in endotoxin, a known ligand for Toll-like receptor (TLR)4. However, the role of endotoxin and that of its cognate receptor TLR4 in the mucosal response to acute gonococcal infection in the genital tract of women is unclear. To test this, we examined the course of infection after vaginal inoculation of N. gonorrhoeae in mice carrying the Lps(d) mutation in Tlr4, which renders them unresponsive to endotoxin. Although there was no difference in the duration of colonization, Lps(d) mice had a significantly higher peak bacterial burden which coincided with a massive polymorphonuclear cell influx and concomitant upregulation of a subset of inflammatory cytokine and chemokine markers. Notably, infected Lps(d) mice showed a decrease in interleukin-17, suggesting that Th17 responses are more dependent on TLR4 signaling in vivo. Defective polymorphonuclear cell-mediated and complement-independent serum killing of gonococci in Lps(d) mice was also observed and may account for the increased bacterial burden. This is the first in vivo evidence that TLR4-regulated factors modulate early inflammatory responses to gonococcal infection in the female reproductive tract and control bacterial replication.
Collapse
Affiliation(s)
- Mathanraj Packiam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Hong Wu
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sandra J. Veit
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nikolaos Mavrogiorgos
- Section of Infections Diseases, Boston Medical Center/Boston University School of Medicine, Boston, MA 02118
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814,Corresponding authors. Mailing address for Robin R. Ingalls: Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118. Phone: (617) 414-4778. Fax: (617) 414-5280. , Mailing address for Ann E. Jerse: Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799. Phone: (301) 295-9629. Fax: (301) 295-3773.
| | - Robin R. Ingalls
- Section of Infections Diseases, Boston Medical Center/Boston University School of Medicine, Boston, MA 02118,Corresponding authors. Mailing address for Robin R. Ingalls: Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118. Phone: (617) 414-4778. Fax: (617) 414-5280. , Mailing address for Ann E. Jerse: Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799. Phone: (301) 295-9629. Fax: (301) 295-3773.
| |
Collapse
|
20
|
Defining the roles of human carcinoembryonic antigen-related cellular adhesion molecules during neutrophil responses to Neisseria gonorrhoeae. Infect Immun 2011; 80:345-58. [PMID: 22064717 DOI: 10.1128/iai.05702-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symptomatic infection of humans with Neisseria gonorrhoeae is characterized by a neutrophil-rich cervical or urethral exudate, suggesting that neutrophils are important both for the clearance of these bacteria and for the pathogenesis of gonorrhea. Neisseria interacts with neutrophils through ligation of human carcinoembryonic antigen related-cellular adhesion molecules (CEACAMs) by their surface-expressed Opa proteins, resulting in bacterial binding, engulfment, and neutrophil activation. Multiple CEACAMs are expressed by human neutrophils, and yet their coexpression has precluded understanding of the relative contribution of each CEACAM to functional responses of neutrophils during neisserial infection. In this work, we directly address the role of each CEACAM during infection by introducing individual human CEACAMs into a differentiated murine MPRO cell line-derived neutrophil model. Murine neutrophils cannot bind the human-restricted Neisseria; however, we show that introducing any of the Opa-binding CEACAMs of human neutrophils (CEACAM1, CEACAM3, and CEACAM6) allows binding and entry of Neisseria into murine neutrophils. While CEACAM1- and CEACAM6-expressing neutrophils bind more bacteria, neisserial uptake via these two receptors unexpectedly proceeds without appreciable neutrophil activation. In stark contrast, neisserial engulfment via CEACAM3 recapitulates the oxidative burst and intracellular granule release seen during human neutrophil infection. Finally, by coexpressing multiple CEACAMs in our model, we show that the expression of CEACAM1 and CEACAM6 potentiate, rather than hinder, CEACAM3-dependent responses of neutrophils, exposing a cooperative role for this family of proteins during neisserial infection of neutrophils. These observations illustrate a divergence in function of CEACAMs in neutrophils and implicate the human-restricted CEACAM3 in the neutrophil innate response to neisserial infection.
Collapse
|
21
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
22
|
Edwards JL, Butler EK. The Pathobiology of Neisseria gonorrhoeae Lower Female Genital Tract Infection. Front Microbiol 2011; 2:102. [PMID: 21747805 PMCID: PMC3129011 DOI: 10.3389/fmicb.2011.00102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/25/2011] [Indexed: 11/13/2022] Open
Abstract
Infection and disease associated with Neisseria gonorrhoeae, the gonococcus, continue to be a global health problem. Asymptomatic and subclinical gonococcal infections occur at a high frequency in females; thus, the true incidence of N. gonorrhoeae infections are presumed to be severely underestimated. Inherent to this asymptomatic/subclinical diseased state is the continued prevalence of this organism within the general population, as well as the medical, economic, and social burden equated with the observed chronic, disease sequelae. As infections of the lower female genital tract (i.e., the uterine cervix) commonly result in subclinical disease, it follows that the pathobiology of cervical gonorrhea would differ from that observed for other sites of infection. In this regard, the potential responses to infection that are generated by the female reproductive tract mucosa are unique in that they are governed, in part, by cyclic fluctuations in steroid hormone levels. The lower female genital tract has the further distinction of being able to functionally discriminate between resident commensal microbiota and transient pathogens. The expression of functionally active complement receptor 3 by the lower, but not the upper, female genital tract mucosa; together with data indicating that gonococcal adherence to and invasion of primary cervical epithelial cells and tissue are predominately aided by this surface-expressed host molecule; provide one explanation for asymptomatic/subclinical gonococcal cervicitis. However, co-evolution of the gonococcus with its sole human host has endowed this organism with variable survival strategies that not only aid these bacteria in successfully evasion of immune detection and function but also enhance cervical colonization and cellular invasion. To this end, we herein summarize current knowledge pertaining to the pathobiology of gonococcal infection of the human cervix.
Collapse
Affiliation(s)
- Jennifer L Edwards
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
23
|
Johnson MB, Criss AK. Resistance of Neisseria gonorrhoeae to neutrophils. Front Microbiol 2011; 2:77. [PMID: 21747795 PMCID: PMC3128980 DOI: 10.3389/fmicb.2011.00077] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/31/2011] [Indexed: 01/04/2023] Open
Abstract
Infection with the human-specific bacterial pathogen Neisseria gonorrhoeae triggers a potent, local inflammatory response driven by polymorphonuclear leukocytes (neutrophils or PMNs). PMNs are terminally differentiated phagocytic cells that are a vital component of the host innate immune response and are the first responders to bacterial and fungal infections. PMNs possess a diverse arsenal of components to combat microorganisms, including the production of reactive oxygen species and release of degradative enzymes and antimicrobial peptides. Despite numerous PMNs at the site of gonococcal infection, N. gonorrhoeae can be cultured from the PMN-rich exudates of individuals with acute gonorrhea, indicating that some bacteria resist killing by neutrophils. The contribution of PMNs to gonorrheal pathogenesis has been modeled in vivo by human male urethral challenge and murine female genital inoculation and in vitro using isolated primary PMNs or PMN-derived cell lines. These systems reveal that some gonococci survive and replicate within PMNs and suggest that gonococci defend themselves against PMNs in two ways: they express virulence factors that defend against PMNs' oxidative and non-oxidative antimicrobial components, and they modulate the ability of PMNs to phagocytose gonococci and to release antimicrobial components. In this review, we will highlight the varied and complementary approaches used by N. gonorrhoeae to resist clearance by human PMNs, with an emphasis on gonococcal gene products that modulate bacterial-PMN interactions. Understanding how some gonococci survive exposure to PMNs will help guide future initiatives for combating gonorrheal disease.
Collapse
Affiliation(s)
| | - Alison K. Criss
- Department of Microbiology, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
24
|
Schook PO, Stohl EA, Criss AK, Seifert HS. The DNA-binding activity of the Neisseria gonorrhoeae LexA orthologue NG1427 is modulated by oxidation. Mol Microbiol 2011; 79:846-60. [PMID: 21299643 PMCID: PMC3080098 DOI: 10.1111/j.1365-2958.2010.07491.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neisseria gonorrhoeae is a human-specific organism that is not usually exposed to UV light or chemicals but is likely to encounter reactive oxygen species during infection. Exposure of N. gonorrhoeae to sublethal hydrogen peroxide revealed that the ng1427 gene was upregulated sixfold. N. gonorrhoeae was thought to lack an SOS system, although NG1427 shows amino acid sequence similarity to the SOS response regulator LexA from Escherichia coli. Similar to LexA and other S24 peptidases, NG1427 undergoes autoproteolysis in vitro, which is facilitated by either the gonococcal or E. coli RecA proteins or high pH, and autoproteolysis requires the active and cleavage site residues conserved between LexA and NG1427. NG1427 controls a three gene regulon: itself; ng1428, a Neisseria-specific, putative integral membrane protein; and recN, a DNA repair gene known to be required for oxidative damage survival. Full NG1427 regulon de-repression requires RecA following methyl methanesulphonate or mitomycin C treatment, but is largely RecA-independent following hydrogen peroxide treatment. NG1427 binds specifically to the operator regions of the genes it controls, and DNA binding is abolished by oxidation of the single cysteine residue encoded in NG1427. We propose that NG1427 is inactivated independently of RecA by oxidation.
Collapse
Affiliation(s)
- Paul O.P. Schook
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth A. Stohl
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | | | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Barth KR, Isabella VM, Wright LF, Clark VL. Resistance to peroxynitrite in Neisseria gonorrhoeae. MICROBIOLOGY (READING, ENGLAND) 2009; 155:2532-2545. [PMID: 19406894 PMCID: PMC2718066 DOI: 10.1099/mic.0.028092-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/27/2009] [Accepted: 04/29/2009] [Indexed: 12/23/2022]
Abstract
Neisseria gonorrhoeae encodes a number of important genes that aid in survival during times of oxidative stress. The same immune cells capable of oxygen-dependent killing mechanisms also have the capacity to generate reactive nitrogen species (RNS) that may function antimicrobially. F62 and eight additional gonococcal strains displayed a high level of resistance to peroxynitrite, while Neisseria meningitidis and Escherichia coli showed a four- to seven-log and a four-log decrease in viability, respectively. Mutation of gonococcal orthologues that are known or suspected to be involved in RNS defence in other bacteria (ahpC, dnrN and msrA) resulted in no loss of viability, suggesting that N. gonorrhoeae has a novel mechanism of resistance to peroxynitrite. Whole-cell extracts of F62 prevented the oxidation of dihydrorhodamine, and decomposition of peroxynitrite was not dependent on ahpC, dnrN or msrA. F62 grown in co-culture with E. coli strain DH10B was shown to protect E. coli viability 10-fold. Also, peroxynitrite treatment of F62 did not result in accumulation of nitrated proteins, suggesting that an active peroxynitrite reductase is responsible for peroxynitrite decomposition rather than a protein sink for amino acid modification.
Collapse
Affiliation(s)
- Kenneth R Barth
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Lori F Wright
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Criss AK, Katz BZ, Seifert HS. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell Microbiol 2009; 11:1074-87. [PMID: 19290914 PMCID: PMC2771623 DOI: 10.1111/j.1462-5822.2009.01308.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) is characterized by abundant neutrophil (PMN, polymorphonuclear leucocyte) influx, but PMNs cannot clear initial infection, indicating that Gc possess defences against PMN challenge. In this study, survival of liquid-grown Gc was monitored after synchronous infection of adherent, interleukin 8-treated human PMNs. 40-70% of FA1090 Gc survived 1 h of PMN exposure, after which bacterial numbers increased. Assays with bacterial viability dyes along with soybean lectin to detect extracellular Gc revealed that a subset of both intracellular and extracellular PMN-associated Gc were viable. Gc survival was unaffected in PMNs chemically or genetically deficient for producing reactive oxygen species (ROS). This result held true even for OpaB+ Gc, which stimulate neutrophil ROS production. Catalase- and RecA-deficient Gc, which are more sensitive to ROS in vitro, had no PMN survival defect. recN and ngo1686 mutant Gc also exhibit increased sensitivity to ROS and PMNs, but survival of these mutants was not rescued in ROS-deficient cells. The ngo1686 mutant showed increased sensitivity to extracellular but not intracellular PMN killing. We conclude that Gc are remarkably resistant to PMN killing, killing occurs independently of neutrophil ROS production and Ngo1686 and RecN defend Gc from non-oxidative PMN antimicrobial factors.
Collapse
Affiliation(s)
- Alison K Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
27
|
A strain-specific catalase mutation and mutation of the metal-binding transporter gene mntC attenuate Neisseria gonorrhoeae in vivo but not by increasing susceptibility to oxidative killing by phagocytes. Infect Immun 2008; 77:1091-102. [PMID: 19114548 DOI: 10.1128/iai.00825-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The hallmark of gonorrhea is an intense inflammatory response that is characterized by polymorphonuclear leukocytes (PMNs) with intracellular gonococci. A redundancy of defenses may protect Neisseria gonorrhoeae from phagocyte-derived reactive oxygen species. Here we showed that a gonococcal catalase (kat) mutant in strain MS11 was more sensitive to H(2)O(2) than mutants in cytochrome c peroxidase (ccp), methionine sulfoxide reductase (msrA), or the metal-binding protein (mntC) of the MntABC transporter. kat ccp and kat ccp mntC mutants were significantly more sensitive to H(2)O(2) than mutants in any single factor. None of the mutants showed increased susceptibility to murine PMNs. Recovery of the mntC and kat ccp mntC mutants from the lower genital tract of BALB/c mice, but not the kat or kat ccp mutants, was significantly reduced relative to wild-type bacteria. Interestingly, unlike the MS11 kat mutant, a kat mutant of strain FA1090 was attenuated during competitive infection with wild-type FA1090 bacteria. The FA1090 kat mutant and MS11 mntC mutant were also attenuated in mice that are unable to generate a phagocytic respiratory burst. We conclude that inactivation of three well-characterized antioxidant genes (kat, ccp, and mntC) does not increase gonococcal susceptibility to the phagocytic respiratory burst during infection and that gonococcal catalase and the MntC protein confer an unidentified advantage in vivo. In the case of catalase, this advantage is strain specific. Finally, we also showed that an msrA mutant of strain MS11 demonstrated delayed attenuation in BALB/c but not C57BL/6 mice. Therefore, MsrA/B also appears to play a role in infection that is dependent on host genetic background.
Collapse
|
28
|
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa(-) and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat-killed. Liquid-grown Opa(-) Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signalling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrhoeal disease.
Collapse
Affiliation(s)
- Alison K Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
29
|
Soler-García AA, Jerse AE. Neisseria gonorrhoeae catalase is not required for experimental genital tract infection despite the induction of a localized neutrophil response. Infect Immun 2007; 75:2225-33. [PMID: 17296753 PMCID: PMC1865741 DOI: 10.1128/iai.01513-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae produces several antioxidant defenses, including high levels of catalase, which may facilitate the persistence during an inflammatory response via neutralization of H2O2 produced by phagocytes. In vivo testing of the role of catalase in gonococcal survival is critical since several physiological factors impact interactions between N. gonorrhoeae and polymorphonuclear leukocytes (PMNs). Here we assessed the importance of gonococcal catalase in a surrogate model of female genital tract infection. Female BALB/c mice were treated with 17-beta estradiol to promote susceptibility to N. gonorrhoeae and inoculated intravaginally with wild-type gonococci or a catalase (kat) deletion mutant. A localized PMN influx occurred in an average of 43 and 81% of mice infected with wild-type or kat mutant gonococci, respectively, and PMNs associated with numerous wild-type or catalase-deficient bacteria were observed in vaginal smears. The combined results of six experiments showed a significant difference in the number of days wild-type bacteria were recovered compared to the catalase-deficient gonococci. However, there was much variability between experiments, and we found no correlation between PMN influx, colonization load, and clearance of wild-type or kat mutant bacteria. Estradiol treatment did not impair bacterial uptake, the luminol-dependent chemiluminescence response, or the killing capacity of isolated murine PMNs against N. gonorrhoeae or Staphylococcus aureus. Our data suggest N. gonorrhoeae is not significantly challenged by H2O2 produced by PMNs in the murine lower genital tract; alternatively, redundant defense mechanisms may protect the gonococcus from reactive oxygen species during infection.
Collapse
Affiliation(s)
- Angel A Soler-García
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
30
|
Criss AK, Seifert HS. Gonococci exit apically and basally from polarized epithelial cells and exhibit dynamic changes in type IV pili. Cell Microbiol 2006; 8:1430-43. [PMID: 16922862 PMCID: PMC2290004 DOI: 10.1111/j.1462-5822.2006.00722.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type IV pili are a major virulence factor of the obligate human pathogen Neisseria gonorrhoeae (the gonococcus; Gc). Pili facilitate bacterial adherence to epithelial cells, but their participation in later steps of epithelial infection, particularly intracellular replication and exit, is poorly understood. Using polarized T84 cells as a model for mature mucosal epithelia, pilus dynamics in piliated, Opa-expressing Gc were examined over time. T84 infection was characterized by a several-hour delay in the growth of cell-associated bacteria and by non-directional exit of Gc, the first time these phenomena have been reported. During infection, non-piliated progeny arose stochastically from piliated progenitors. Piliated and non-piliated Gc replicated and exited from T84 cell monolayers equally well, demonstrating that piliation did not influence Gc survival during epithelial infection. The frequency with which pilin variants arose from a defined piliated progenitor during T84 cell infection was found to be sufficiently high to account for the extensive pilin variation reported during human infection. However, the repertoire of variants appearing in association with T84 cells was similar to what was seen in the absence of cells, demonstrating that polarized epithelial cells can support Gc replication without selecting for a subset of pilin variants or piliation states.
Collapse
Affiliation(s)
- Alison K. Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
31
|
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006; 70:344-61. [PMID: 16760307 PMCID: PMC1489540 DOI: 10.1128/mmbr.00044-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Seib KL, Simons MP, Wu HJ, McEwan AG, Nauseef WM, Apicella MA, Jennings MP. Investigation of oxidative stress defenses of Neisseria gonorrhoeae by using a human polymorphonuclear leukocyte survival assay. Infect Immun 2005; 73:5269-72. [PMID: 16041054 PMCID: PMC1201195 DOI: 10.1128/iai.73.8.5269-5272.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neisseria gonorrhoeae has well-characterized oxidative stress defense systems that protect against oxidative killing in in vitro assays. In contrast, mutant strains of N. gonorrhoeae lacking oxidative stress defenses are identical to the wild type when tested in an ex vivo survival assay using human polymorphonuclear leukocytes.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Simons MP, Nauseef WM, Apicella MA. Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. Infect Immun 2005; 73:1971-7. [PMID: 15784537 PMCID: PMC1087443 DOI: 10.1128/iai.73.4.1971-1977.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae causes severe exudative urethritis. The exudates from infected individuals contain large numbers of polymorphonuclear leukocytes (PMN) with ingested gonococci. The fate of N. gonorrhoeae within PMN has been a topic of debate for years. In this study, we examined the interactions of N. gonorrhoeae with PMN adherent to surfaces as a system that better models events during clinical disease. Using chemiluminescence to measure reactive oxygen species (ROS), we found that N. gonorrhoeae stimulated PMN to produce a respiratory burst. Different kinetics were seen when PMN were stimulated with opsonized zymosan particles. In addition, ROS were produced predominantly inside the PMN in response to gonococci. Laser scanning confocal microscopy and transmission electron microscopy showed that N. gonorrhoeae rapidly associated with PMN under these experimental conditions and was internalized. Some gonococci were cleared in the first 30 to 60 min after phagocytosis, but a majority of the population persisted for 6 h after phagocytosis. Quantification of viable organisms showed that a significant portion of the population resisted killing. The viability of this subpopulation remained unchanged for 2 h after phagocytosis. A significant increase of viable gonococci from 1 to 6 h was also observed, suggesting intracellular replication. Four different N. gonorrhoeae strains demonstrated the same capacity to resist PMN-mediated killing, whereas Escherichia coli was rapidly killed by PMN under the same conditions. Taken together, these findings suggest that a subpopulation of N. gonorrhoeae resists killing and replicates within PMN phagosomes in spite of NADPH oxidase activation.
Collapse
Affiliation(s)
- Mark P Simons
- Department of Microbiology, 3-403 Bowen Science Building, University of Iowa, 51 Newton Rd., Iowa City, IA 52242, USA
| | | | | |
Collapse
|
34
|
Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 2004; 17:965-81, table of contents. [PMID: 15489357 PMCID: PMC523569 DOI: 10.1128/cmr.17.4.965-981.2004] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms used by the gonococcus to initiate infection exhibit gender specificity. The clinical presentations of disease are also strikingly different upon comparison of gonococcal urethritis to gonococcal cervicitis. An intimate association occurs between the gonococcus and the urethral epithelium and is mediated by the asialoglycoprotein receptor. Gonococcal interaction with the urethral epithelia cell triggers cytokine release, which promotes neutrophil influx and an inflammatory response. Similarly, gonococcal infection of the upper female genital tract also results in inflammation. Gonococci invade the nonciliated epithelia, and the ciliated cells are subjected to the cytotoxic effects of tumor necrosis factor alpha induced by gonococcal peptidoglycan and lipooligosaccharide. In contrast, gonococcal infection of the lower female genital tract is typically asymptomatic. This is in part the result of the ability of the gonococcus to subvert the alternative pathway of complement present in the lower female genital tract. Gonococcal engagement of complement receptor 3 on the cervical epithelia results in membrane ruffling and does not promote inflammation. A model of gonococcal pathogenesis is presented in the context of the male and female human urogenital tracts.
Collapse
Affiliation(s)
- Jennifer L Edwards
- Department of Microbiology, The University of Iowa, 51 Newton Rd., BSB 3-403, Iowa City, IA 52242, USA
| | | |
Collapse
|
35
|
Abstract
The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology & Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
36
|
Mosleh IM, Huber LA, Steinlein P, Pasquali C, Günther D, Meyer TF. Neisseria gonorrhoeae porin modulates phagosome maturation. J Biol Chem 1998; 273:35332-8. [PMID: 9857075 DOI: 10.1074/jbc.273.52.35332] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The porin (PorB) of Neisseria gonorrhoeae has been implicated in the pathogenesis of this species. Porin is believed to translocate from the bacterial outer membrane into target cell membranes affecting various cell functions. Here we investigated the effect of porin on phagosome maturation. Phagocytosis of latex beads by human macrophages was allowed in the presence or absence of purified porin. Isolation of latex bead-containing phagosomes and subsequent two-dimensional gel electrophoresis revealed substantial differences in the phagosomal protein composition. Immunoblotting detected higher amounts of annexin II and the early endocytic markers Rab5 and transferrin receptor and decreased levels of the late endocytic markers Rab7 and cathepsin D in phagosomes obtained in the presence of porin compared with those obtained in its absence. Furthermore, association of Rab4 with the latex bead-containing phagosomes was revealed by flow cytometry. The amount of this small GTPase was markedly higher in the phagosomes isolated in the presence of porin. The data thus indicate that neisserial porin is itself able to arrest phagosome maturation within macrophages.
Collapse
Affiliation(s)
- I M Mosleh
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Spitznagel JK. Origins and development of peptide antibiotic research. From extracts to abstracts to contracts. Mol Biotechnol 1998; 10:237-45. [PMID: 9951703 DOI: 10.1007/bf02740844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
That cationic proteins might be factors on the antimicrobial defenses of mammalian hosts and are apparently associated with the cytoplasmic granules of phagocytic leukocytes first became evident on the late nineteenth century. It remained, however, for development of sophisticated microanalytic techniques in microbiology, cell biology and protein biochemistry to place these hypotheses in the realm of established theory. This article is a brief summary of significant steps in the development of this theory. It also attempts to outline the firmly established scope and significance of these developments both for the theory of immunity to infection in the different phyla and for the now global quest for new antibiotics.
Collapse
Affiliation(s)
- J K Spitznagel
- Woodruff Health Sciences Center, Emory University School of Medicine, Atlanta, GA 30322-4510, USA
| |
Collapse
|
38
|
Estabrook MM, Zhou D, Apicella MA. Nonopsonic phagocytosis of group C Neisseria meningitidis by human neutrophils. Infect Immun 1998; 66:1028-36. [PMID: 9488392 PMCID: PMC108012 DOI: 10.1128/iai.66.3.1028-1036.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1997] [Accepted: 12/30/1997] [Indexed: 02/06/2023] Open
Abstract
Although complement-mediated bactericidal activity in serum has long been known to be very important in host defense against Neisseria meningitidis, recent studies have shown that opsonic phagocytosis by neutrophils is also important. The purpose of this study was to determine if endemic group C N. meningitidis strains were susceptible to nonopsonic (complement- and antibody-independent) phagocytosis by human neutrophils, which is a well-described phenomenon for Neisseria gonorrhoeae. Gonococci that possess one or more of a group of heat-modifiable outer membrane proteins (called opacity-associated [Opa] proteins) are phagocytosed by neutrophils in the absence of serum. We found that four serogroup C meningococcal strains bearing the lacto-N-neotetraose (LNnT) structure on lipooligosaccharide (LOS) were phagocytosed by neutrophils in the absence of antibody and active complement. Confocal microscopy confirmed that the organisms were internalized by neutrophils. This susceptibility was not restricted to carrier isolates, since two of the strains were cultured from blood or cerebrospinal fluid. All four strains expressed Opa protein and had relatively less endogenous LOS and capsule sialylation compared to six strains that were resistant to this type of phagocytosis. Nonopsonic phagocytosis of two of the four strains was inhibited by exogenous sialylation of LOS LNnT and the binding of monoclonal antibody to LNnT. However, an isogenic mutant that lacked the LNnT structure was fully susceptible to nonopsonic phagocytosis. We conclude that group C meningococci can be phagocytosed by neutrophils in the absence of antibody and active complement possibly by two different mechanisms. Expression of Opa protein and downregulation of endogenous surface sialic acids analogous to what is seen for N. gonorrhoeae might be necessary for N. meningitidis as well.
Collapse
Affiliation(s)
- M M Estabrook
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
39
|
Knepper B, Heuer I, Meyer TF, van Putten JP. Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins. Infect Immun 1997; 65:4122-9. [PMID: 9317017 PMCID: PMC175593 DOI: 10.1128/iai.65.10.4122-4129.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Experiments in vitro suggest that Neisseria gonorrhoeae surface variation plays a key role in gonococcal pathogenesis by providing the appropriate bacterial phenotypes to go through different stages of the infection. Here we report on the effects of phase and antigen variation of two major gonococcal adhesins, pili and opacity (Opa) outer membrane proteins, on the interaction of the gonococci with human monocytes. Using a set of recombinants of gonococcus strain MS11 that each express 1 of 11 genetically defined Opa proteins or a defined type of pilus, we found that both Opa proteins and pili promote bacterial phagocytosis by monocytes in the absence of serum and that this feature largely depends on the type of protein that is expressed. One of the Opa proteins (Opa[50]) strongly promoted uptake by monocytes but had little effect on the interaction with polymorphonuclear leukocytes under the conditions employed. Similarly, the phagocytosis-promoting effect of the pili was much more pronounced in monocytes than in neutrophils (4-fold versus 22-fold stimulation of uptake, respectively). Only a subpopulation of both types of phagocytes actively ingested bacteria, as has been observed during natural infections. Measurements of luminol-enhanced chemiluminescence demonstrated that phagocytosis of opaque but not piliated gonococci was accompanied by an increase in oxygen-reactive metabolites. These findings demonstrate that the monocyte response towards gonococci is highly dependent on the bacterial phenotype and differs from the neutrophil response. This diversity in bacterial behavior towards various types of human phagocytic cells underlines the biological impact of gonococcal surface variation and may explain previous contradictory results on this subject.
Collapse
Affiliation(s)
- B Knepper
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | | | |
Collapse
|
40
|
McNeil G, Virji M. Phenotypic variants of meningococci and their potential in phagocytic interactions: the influence of opacity proteins, pili, PilC and surface sialic acids. Microb Pathog 1997; 22:295-304. [PMID: 9160299 DOI: 10.1006/mpat.1996.0126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous studies we have examined the roles of meningococcal surface structures (capsule, lipopolysaccharides, pili and opacity proteins: Opa and Opc) in bacterial interactions with human epithelial, endothelial and mononuclear phagocytic cells. In the current investigations, using defined derivatives of a serogroup A strain C751 and a serogroup B strain MC58, we studied the roles of these structures with human polymorphonuclear phagocytes (PMN). In addition, we examined the potential influence of the pilus-associated protein, PilC, previously known to affect epithelial cell interactions. The data show, that, as with monocytes, opacity proteins affect bacterial interactions with PMN and require surface sialic acids (on capsule and LPS) to be down-modulated in order to function. Also, in contrast to their role in human epithelial and endothelial adherence, neither pili nor PilC expression had any effect on phagocytic cell interactions with respect to induction of chemiluminescence as well as phagocytic killing. Examination of the relative influence of Opa and Opc indicated that Opa proteins are more effective than Opc in PMN interactions whereas the reverse was the case with monocytes. These results suggest that Opa and Opc mediate interactions with phagocytic cells via distinct mechanisms. Observations presented here and reported previously collectively show that the structural requirements of meningococci for interacting with phagocytes, in the absence of opsonins, are present in the phenotype which is often isolated from the nasopharynx (asialylated, piliated, Opa/Opc+) whereas the phenotype prevalent in the blood (sialyted, piliated, Opa/Opc+) retains the ability to adhere to endothelial cells (via pili) but appears to be refractory to interactions with phagocytic cells.
Collapse
Affiliation(s)
- G McNeil
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, U.K
| | | |
Collapse
|
41
|
Qu XD, Harwig SS, Oren AM, Shafer WM, Lehrer RI. Susceptibility of Neisseria gonorrhoeae to protegrins. Infect Immun 1996; 64:1240-5. [PMID: 8606085 PMCID: PMC173910 DOI: 10.1128/iai.64.4.1240-1245.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We developed a sensitive and quantitative radial diffusion method to ascertain the susceptibility of six strains of Neisseria gonorrhoeae to antimicrobial peptides derived from mammalian leukocytes. The test organisms included the well-characterized serum-resistant FA19 and serum-sensitive F62 strains plus four antibiotic-resistant clinical isolates. Although each N. gonorrhoeae strain was resistant to human neutrophil defensins, all six were exquisitely sensitive to protegrins, a family of small beta-sheet antimicrobial peptides recently identified in porcine leukocytes. Protegrin-treated N. gonorrhoeae became vacuolated and had striking membrane changes when viewed by transmission and scanning electron microscopy. Because low concentrations of protegrins can also inactivate Chlamydia trachomatis and human immunodeficiency virus, they show promise for development as topical agents to avert sexually transmitted diseases.
Collapse
Affiliation(s)
- X D Qu
- Department of Medicine, UCLA Center for the Health Sciences, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
42
|
Bjerknes R, Guttormsen HK, Solberg CO, Wetzler LM. Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst. Infect Immun 1995; 63:160-7. [PMID: 7806353 PMCID: PMC172973 DOI: 10.1128/iai.63.1.160-167.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Porins are trimeric proteins that constitute water-filled pores that allow transmembrane diffusion of small solutes through the outer membrane layer of gram-negative bacteria. The porins are capable of inserting into the membranes of eucaryotic cells, and in the present study we have examined the in vitro effects on neutrophil functions of the following purified porins: meningococcal outer membrane protein classes 1 and 3 and gonococcal outer membrane protein 1B (P1B). The neisserial porins inhibited human neutrophil chemoattractant-induced actin polymerization and degranulation of both primary and secondary granules. The neutrophil expression of immunoglobulin G (IgG) Fc receptors II (Fc gamma RII; CDw32) and III (Fc gamma RIII; CD16), as well as the activation-dependent downregulation of Fc gamma RIII, were reduced by the meningococcal and gonococcal porins. The neisserial porins impaired the upregulation of complement receptors 1 (CD35) and 3 (CD11b) and inhibited the phagocytic capacity of neutrophils, as evaluated by the uptake of meningococci (strain 44/76) in the presence of patient serum containing known amounts of IgG against meningococcal porins. The porins also primed neutrophils to increase their intracellular hydrogen peroxide production in response to FMLP, whereas no such priming was observed if the neutrophil protein kinase C was stimulated directly with phorbol myristate acetate. The neisserial porins influenced neutrophil functions in a time- and concentration-dependent manner. The meningococcal class 1 outer membrane protein and the gonococcal P1B tended to alter neutrophil functions more than the meningococcal class 3 protein. Thus, the neisserial porins inhibited human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but primed the neutrophils to increase their oxidative burst. It remains to be determined whether these in vitro observations reflect mechanisms that may be of importance for the interaction between neutrophils and Neisseria species in vivo.
Collapse
Affiliation(s)
- R Bjerknes
- Department of Pediatrics, University of Bergen, Haukeland Hospital, Norway
| | | | | | | |
Collapse
|
43
|
Elkins C, Barkley KB, Carbonetti NH, Coimbre AJ, Sparling PF. Immunobiology of purified recombinant outer membrane porin protein I of Neisseria gonorrhoeae. Mol Microbiol 1994; 14:1059-75. [PMID: 7715444 DOI: 10.1111/j.1365-2958.1994.tb01339.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gonococcal porins (Por) from strains FA19 (Por-1, serogroup A), MS11 (Por-2, serogroup B) and FA6434 (Por-5, a hybrid porin containing epitopes from both serogroups), were expressed in Escherichia coli and purified under non-denaturing conditions. Porins were inserted into liposomes, and they were bound by monoclonal antibodies which bind native Por and intact gonococci, but not denatured Por. All three recombinant porins (rPor) were highly immunogenic in rabbits without additional adjuvant. The rPor antisera were specific for Por by Western blotting and whole-cell radioimmunoprecipitation and were broadly cross-reactive within serogroups. Post-immune, but not pre-immune, sera bound to intact gonococci, induced deposition of complement components C3 and C9 onto gonococcal membranes and increased association with and activation of human neutrophils. Gonococci were not killed in bactericidal assays, and there was no phagocytic killing with gonococci opsonized with recombinant antisera. Lack of killing in bactericidal assays was not caused by the presence of blocking antibodies to the outer-membrane protein Rmp.
Collapse
Affiliation(s)
- C Elkins
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill 27599
| | | | | | | | | |
Collapse
|
44
|
Waldbeser LS, Ajioka RS, Merz AJ, Puaoi D, Lin L, Thomas M, So M. The opaH locus of Neisseria gonorrhoeae MS11A is involved in epithelial cell invasion. Mol Microbiol 1994; 13:919-28. [PMID: 7815949 DOI: 10.1111/j.1365-2958.1994.tb00483.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to produce a successful infection, Neisseria gonorrhoeae (GC) must attach to and invade mucosal epithelial cells. To identify GC gene products involved in this early interaction with host cells we constructed a gene bank derived from a clinical isolate of GC, and isolated a clone which had the capacity to adhere to the human endometrial adenocarcinoma tissue-culture line HEC-1-B. The cloned sequence was identified as a member of the opa gene family whose protein products have been associated with virulence. The GC chromosome contains numerous variant opa genes which, in MS11, are designated opaA-K. Previous work showed that expression of opaC confers a highly invasive phenotype upon strain MS11. When our cloned opa gene was mutated and returned to the GC MS11A chromosome by transformation and homologous recombination, we isolated one transformant that was significantly reduced in its invasive capacity. The locus mutated in this transformant was identified as opaH. Our results indicate that invasiveness of GC for human epithelial cells can be determined by more than one opa gene in strain MS11A.
Collapse
Affiliation(s)
- L S Waldbeser
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-2098
| | | | | | | | | | | | | |
Collapse
|
45
|
Rest RF, Liu J, Talukdar R, Frangipane JV, Simon D. Interaction of pathogenic Neisseria with host defenses. What happens in vivo? Ann N Y Acad Sci 1994; 730:182-96. [PMID: 8080170 DOI: 10.1111/j.1749-6632.1994.tb44248.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N. gonorrhoeae initiates infection by adhering to and invading columnar epithelial cells. Over time these activities often induce inflammation, with the influx of neutrophils and serum into the urethral lumen, cervical os, conjunctiva, and the like. At least some of these infected niches contain CMP-NANA (cytidine monophospho-N-acetyl neuraminic acid, also called CMP-sialic), contain sialylated gonococci, and are relatively or strictly anaerobic due to neutrophil and gonococcal metabolism and to the site of disease, that is, the peritoneal cavity. Gonococci thus encounter environmental conditions, reagents, and substrates in the human body that are not normally present in vitro. Knapp and Clark were the first to successfully grow gonococci anaerobically in an easily reproducible system, allowing researchers to begin to investigate in vitro the effects of anaerobiosis on gonococcal virulence traits. As a result of a series of elegant and in depth studies, Smith and Parsons and their colleagues showed that growth in CMP-NANA confers on the gonococcus a high degree of phenotypic (readily reversible) serum resistance and that CMP-NANA is available in vivo at sites of gonococcal infection and disease; gonococci become covalently coated with sialic acid and they become serum resistant (reviewed in refs. 8-10). Given that gonococci growing in the absence of oxygen or in the presence of CMP-NANA probably more closely resemble gonococci growing inside the human host, we studied several possible virulence traits of gonococci cultivated under these conditions. We first observed that anaerobic growth (in the absence of CMP-NANA) increases gonococcal resistance to killing by low (but not high) concentrations of normal human serum. We also asked whether anaerobic growth affected gonococcal association with host cells. Contrary to the effects on serum killing, anaerobic growth (in the absence of CMP-NANA) does not appear to affect the ability of gonococci (expressing certain adhesive outer membrane proteins called Opa proteins) to bind to and enter human epithelial cell lines or to bind to or resist killing by human neutrophils. The results from studies investigating the modulatory role of CMP-NANA were more striking. Growth in CMP-NANA dramatically inhibits the adherence of Opa+ gonococci to human neutrophils. It does not, however, appear to significantly decrease their sensitivity to phagocytic killing or to in vitro killing by lysosomal contents (aqueous extracts of human neutrophil granules).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R F Rest
- Department of Microbiology and Immunology, Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102-1192
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- T F Meyer
- Max-Planck-Institut für Biologie, Abt. Infektionsbiologie, Tübingen, Germany
| | | | | |
Collapse
|
47
|
Zheng HY, Hassett DJ, Bean K, Cohen MS. Regulation of catalase in Neisseria gonorrhoeae. Effects of oxidant stress and exposure to human neutrophils. J Clin Invest 1992; 90:1000-6. [PMID: 1522209 PMCID: PMC329956 DOI: 10.1172/jci115912] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied the effects of oxidant stress on the catalase activity and hydrogen peroxide sensitivity of Neisseria gonorrhoeae. N. gonorrhoeae is an obligate pathogen of man that evokes a remarkable but ineffective neutrophil response. Gonococci make no superoxide dismutase but express high catalase activity. Gonococcal catalase activity increased threefold when organisms were subjected to 1.0 mM hydrogen peroxide. This increase in catalase activity was marked by a parallel increase in protein concentration recognized by a rabbit polyclonal antibody raised against the purified gonococcal enzyme. Catalase was primarily localized to the gonococcal cytoplasm in the presence or absence of stress; only a single isoenzyme of catalase could be identified. Exposure of gonococci to neutrophil-derived oxidants was accomplished by stimulating neutrophils with phorbol myristate acetate or by using gonococcal Opa variants that interacted with neutrophils with different degrees of efficiency. Gonococci exposed to neutrophils demonstrated a twofold increase in catalase activity in spite of some reduction in viability. Exposure of gonococci to 1.0 mM hydrogen peroxide made the organisms significantly more resistant to higher concentrations of hydrogen peroxide and to neutrophils than control organisms. These results suggest that catalase is an important defense for N. gonorrhoeae during attack by human neutrophils. The rapid response of this enzyme to hydrogen peroxide should be taken into consideration in studies designed to evaluate the interaction between neutrophils and gonococci.
Collapse
Affiliation(s)
- H Y Zheng
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill 27599
| | | | | | | |
Collapse
|
48
|
Taha MK, Larribe M, Dupuy B, Giorgini D, Marchal C. Role of pilA, an essential regulatory gene of Neisseria gonorrhoeae, in the stress response. J Bacteriol 1992; 174:5978-81. [PMID: 1522071 PMCID: PMC207136 DOI: 10.1128/jb.174.18.5978-5981.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sequence analysis has shown that PilA, a transcriptional regulator of pilin gene expression in Neisseria gonorrhoeae, has extensive homology with the 54-kDa protein of the signal recognition particle of eukaryotes and its receptor, as well as with two proteins of Escherichia coli, FtsY and Ffh, which have been proposed to be a part of a signal recognition particle-like apparatus. We tested the putative role of PilA in protein export in N. gonorrhoeae and did not find any effect. However, we did observe induction of a heat shock response and a previously described slow-growth phenotype when PilA function was impaired. We also examined the interference of pilA expression in E. coli with the function of the products of ftsY and ffh and observed an accumulation of pre-beta-lactamase. We argue against a direct role for PilA in protein export in gonococci and propose instead that PilA is involved in the modulation of cell growth rate in response to different environmental conditions.
Collapse
Affiliation(s)
- M K Taha
- Unité des Neisseria, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
49
|
Belland RJ, Chen T, Swanson J, Fischer SH. Human neutrophil response to recombinant neisserial Opa proteins. Mol Microbiol 1992; 6:1729-37. [PMID: 1630313 DOI: 10.1111/j.1365-2958.1992.tb01345.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interactions of human neutrophils with recombinant Escherichia coli expressing gonococcal outer membrane Opa proteins were examined using chemiluminescent and biological assays. Seven opa loci from Neisseria gonorrhoeae MS11 4.8 were expressed as beta-lactamase-Opa fusion proteins that contained all but the mature N-terminal amino acid of the full-length Opa protein fused to three N-terminal amino acids derived from the mature beta-lactamase. The Opa fusion proteins were exported and assembled in the outer membrane of E. coli in a manner similar to that of Opa in N. gonorrhoeae, as evaluated by antibody binding and in situ proteolytic cleavage. All fusion proteins exhibited the characteristic heat-modifiable migration in SDS-polyacrylamide gel electrophoresis that typifies Opa proteins of neisseriae. Opa fusion proteins conferred on E. coli the ability to stimulate a chemiluminescent response from human neutrophils in the absence of antibody or complement. The nature of the response in terms of chemiluminescence, phagocytosis, and killing was in all cases analogous to that seen using N. gonorrhoeae expressing the equivalent Opa protein. Neither E. coli nor gonococci expressing OpaA elicited a response from neutrophils. Use of E. coli expressing Opa fusions should be useful in defining their biological activities and pathogenic roles.
Collapse
Affiliation(s)
- R J Belland
- Laboratory of Microbial Structure and Function, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | | | |
Collapse
|
50
|
Cohen MS, Sparling PF. Mucosal infection with Neisseria gonorrhoeae. Bacterial adaptation and mucosal defenses. J Clin Invest 1992; 89:1699-705. [PMID: 1601981 PMCID: PMC295852 DOI: 10.1172/jci115770] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M S Cohen
- Department of Medicine, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|