1
|
Illarionova V, Rogova A, Tuchynskaya K, Volok V, Rogova Y, Baryshnikova V, Turchenko Y, Litov A, Kalyanova A, Siniugina A, Ishmukhametov A, Karganova G. Inapparent Tick-Borne Orthoflavivirus Infection in Macaca fascicularis: A Model for Antiviral Drug and Vaccine Research. Vaccines (Basel) 2023; 11:1754. [PMID: 38140159 PMCID: PMC10747564 DOI: 10.3390/vaccines11121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options. In this work, we assessed the model of the early stages of TBEV and POWV mono- and co-infections in Macaca fascicularis. Serological, biochemical, and virological parameters were investigated to describe the infection, including its impact on animal behavior. Viremia, neutralizing antibody dynamics, and viral load in organs were chosen as the main parameters distinguishing early-stage orthoflavivirus infection. Levels of IFNα, monocyte count, and cognitive test scores were proposed as additional informative indicators. An assessment of a tick-borne encephalitis vaccine using this model showed that it provided partial protection against POWV infection in Macaca fascicularis without signs of antibody-dependent enhancement of infection.
Collapse
Affiliation(s)
- Victoria Illarionova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1 bd. 3, Moscow 119991, Russia
| | - Anastasia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Ksenia Tuchynskaya
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Viktor Volok
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Research Institute for Systems Biology and Medicine (RISBM), Laboratory of Infectious Immunology, Moscow 117246, Russia
| | - Yulia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Victoria Baryshnikova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Yuriy Turchenko
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Alexander Litov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anna Kalyanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Alexandra Siniugina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Aydar Ishmukhametov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
2
|
Pripuzova NS, Gmyl LV, Romanova LI, Tereshkina NV, Rogova YV, Terekhina LL, Kozlovskaya LI, Vorovitch MF, Grishina KG, Timofeev AV, Karganova GG. Exploring of primate models of tick-borne flaviviruses infection for evaluation of vaccines and drugs efficacy. PLoS One 2013; 8:e61094. [PMID: 23585873 PMCID: PMC3621963 DOI: 10.1371/journal.pone.0061094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/05/2013] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8-16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.
Collapse
Affiliation(s)
- Natalia S. Pripuzova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Larissa V. Gmyl
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Lidiya Iu. Romanova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Natalia V. Tereshkina
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Yulia V. Rogova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Liubov L. Terekhina
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Liubov I. Kozlovskaya
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Mikhail F. Vorovitch
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Karina G. Grishina
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Andrey V. Timofeev
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Galina G. Karganova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
- * E-mail:
| |
Collapse
|
3
|
Ergünay K, Saygan MB, Aydoğan S, Litzba N, Sener B, Lederer S, Niedrig M, Hasçelik G, Us D. Confirmed exposure to tick-borne encephalitis virus and probable human cases of tick-borne encephalitis in Central/Northern Anatolia, Turkey. Zoonoses Public Health 2011; 58:220-7. [PMID: 20604912 DOI: 10.1111/j.1863-2378.2010.01342.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is the aetiological agent of tick-borne encephalitis (TBE), a potentially fatal central nervous system infection of humans. TBE is endemic in many areas of Europe and Asia; however, very scarce data on TBEV activity are available from Turkey. We aimed to identify TBEV exposure in healthy blood donors and the impact of TBEV in central nervous system infections in Central/Northern Anatolia. Two-thousand four hundred and fifty four sera, collected from blood donors at Ankara, Konya, Eskişehir and Zonguldak branches of the Turkish Red Crescent Middle Anatolia Regional Blood Center, were analysed for TBEV serosurveillance. Paired serum and cerebrospinal fluid samples from 108 patients with the diagnosis of aseptic meningitis/encephalitis of unknown aetiology were also evaluated to identify TBE and neuroborreliosis cases. Commercial enzyme-linked immunosorbent assays and indirect immunofluorescence tests were employed for antibody detection. Forty-seven donor samples (1.9%) were reactive for TBEV IgG. In 25 persons with IgG reactivity (53.1%), risk factors for tick-borne infections were revealed. One sample from Zonguldak province (1/198; 0.5%) in the Black Sea region of Turkey was confirmed to possess neutralizing antibodies via plaque reduction neutralization test. TBEV IgM was detected in 9.2% (8/108) of the patients. IgM was accompanied by IgG reactivity in two persons where, in one, recent history of a tick bite was also identified. Intrathecal antibody production for TBEV could not be demonstrated. No evidence for Borrelia infections could be found. Confirmed exposure to TBEV and/or an antigenically similar tick-borne flavivirus is documented for the first time in blood donors in Zonguldak in Northern Anatolia. Probable cases of TBE have also been identified from Central Anatolia. The epidemiology of TBEV activity in Turkey needs to be assessed and benefits of vaccination for general population, risk groups or travellers must be considered.
Collapse
Affiliation(s)
- K Ergünay
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
5
|
Macdonald J, Tonry J, Hall RA, Williams B, Palacios G, Ashok MS, Jabado O, Clark D, Tesh RB, Briese T, Lipkin WI. NS1 protein secretion during the acute phase of West Nile virus infection. J Virol 2005; 79:13924-33. [PMID: 16254328 PMCID: PMC1280181 DOI: 10.1128/jvi.79.22.13924-13933.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 07/21/2005] [Indexed: 12/14/2022] Open
Abstract
The West Nile virus (WNV) nonstructural protein NS1 is a protein of unknown function that is found within, associated with, and secreted from infected cells. We systematically investigated the kinetics of NS1 secretion in vitro and in vivo to determine the potential use of this protein as a diagnostic marker and to analyze NS1 secretion in relation to the infection cycle. A sensitive antigen capture enzyme-linked immunosorbent assay (ELISA) for detection of WNV NS1 (polyclonal-ACE) was developed, as well as a capture ELISA for the specific detection of NS1 multimers (4G4-ACE). The 4G4-ACE detected native NS1 antigens at high sensitivity, whereas the polyclonal-ACE had a higher specificity for recombinant forms of the protein. Applying these assays we found that only a small fraction of intracellular NS1 is secreted and that secretion of NS1 in tissue culture is delayed compared to the release of virus particles. In experimentally infected hamsters, NS1 was detected in the serum between days 3 and 8 postinfection, peaking on day 5, the day prior to the onset of clinical disease; immunoglobulin M (IgM) antibodies were detected at low levels on day 5 postinfection. Although real-time PCR gave the earliest indication of infection (day 1), the diagnostic performance of the 4G4-ACE was comparable to that of real-time PCR during the time period when NS1 was secreted. Moreover, the 4G4-ACE was found to be superior in performance to both the IgM and plaque assays during this time period, suggesting that NS1 is a viable early diagnostic marker of WNV infection.
Collapse
Affiliation(s)
- Joanne Macdonald
- Jerome L. and Dawn Greene Infectious Disease Laboratory, Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th St, Rm. 1801, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Within the flavivirus family, viruses that cause natural infections of the central nervous system (CNS) principally include members of the Japanese encephalitis virus (JEV) serogroup and the tick-borne encephalitis virus (TBEV) serocomplex. The pathogenesis of diseases involves complex interactions of viruses, which differ in neurovirulence potential, and a number of host factors, which govern susceptibility to infection and the capacity to mount effective antiviral immune responses both in the periphery and within the CNS. This chapter summarizes progress in the field of flavivirus neuropathogenesis. Mosquito-borne and tickborne viruses are considered together. Flavivirus neuropathogenesis involves both neuroinvasiveness (capacity to enter the CNS) and neurovirulence (replication within the CNS), both of which can be manipulated experimentally. Neuronal injury as a result of bystander effects may be a factor during flavivirus neuropathogenesis given that microglial activation and elaboration of inflammatory mediators, including IL-1β and TNF-α, occur in the CNS during these infections and may accompany the production of nitric oxide and peroxynitrite, which can cause neurotoxicity.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
7
|
Schmaljohn C, Custer D, VanderZanden L, Spik K, Rossi C, Bray M. Evaluation of tick-borne encephalitis DNA vaccines in monkeys. Virology 1999; 263:166-74. [PMID: 10544091 DOI: 10.1006/viro.1999.9918] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tick-borne encephalitis is usually caused by infection with one of two flaviviruses: Russian spring summer encephalitis virus (RSSEV) or Central European encephalitis virus (CEEV). We previously demonstrated that gene gun inoculation of mice with naked DNA vaccines expressing the prM and E genes of these viruses resulted in long-lived homologous and heterologous protective immunity (Schmaljohn et al., 1997). To further evaluate these vaccines, we inoculated rhesus macaques by gene gun with the RSSEV or CEEV vaccines or with both DNA vaccines and compared resulting antibody titers with those obtained by vaccination with a commercial, formalin-inactivated vaccine administered at the human dose. Vaccinations were given at days 0, 30, and 70. All of the vaccines elicited antibodies detected by ELISA and by plaque-reduction neutralization tests. The neutralizing antibody responses persisted for at least 15 weeks after the final vaccination. Because monkeys are not uniformly susceptible to tick-borne encephalitis, the protective properties of the vaccines were assessed by passive transfer of monkey sera to mice and subsequent challenge of the mice with RSSEV or CEEV. One hour after transfer, mice that received 50 microl of sera from monkeys vaccinated with both DNA vaccines had circulating neutralizing antibody levels <20-80. All of these mice were protected from challenge with RSSEV or CEEV. Mice that received 10 microl of sera from monkeys vaccinated with the individual DNA vaccines, both DNA vaccines, or a commercial vaccine were partially to completely protected from RSSEV or CEEV challenge. These data suggest that DNA vaccines may offer protective immunity to primates similar to that obtained with a commercial inactivated-virus vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- Biolistics
- Drug Evaluation, Preclinical
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Europe
- Female
- Immunization, Passive
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Russia
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Inactivated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- C Schmaljohn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Jordan EK, Woodward RA, Shiferaw Y, Black J, Safar J. Evaluation of intra-blood brain barrier IgG synthesis rate and blood brain barrier function in normal rhesus monkeys. Primates 1994. [DOI: 10.1007/bf02381956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kenyon RH, Rippy MK, McKee KT, Zack PM, Peters CJ. Infection of Macaca radiata with viruses of the tick-borne encephalitis group. Microb Pathog 1992; 13:399-409. [PMID: 1297916 DOI: 10.1016/0882-4010(92)90083-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our studies confirmed the susceptibility of Macaca radiata (bonnet macaques) to Kyasanur Forest disease (KFD) and enabled us to demonstrate KFD virus-specific gastrointestinal and lymphoid lesions. Significant histopathological changes occurred in the small and large intestine, spleen and lymph nodes; and viral antigens were found in these same organs by immunohistochemistry. Viral antigen-positive cells were always associated with histological evidence of necrosis, which suggests that cell death occurred directly from viral replication or secondarily from attack by immune mechanisms. In contrast, M. radiata infected with Omsk virus did not show any signs of clinical disease, and no virus could be isolated from tissues or blood at the end of the experiment. However, M. radiata infected with Russian spring-summer encephalitis (RSSE) developed clinical signs in the central nervous system; and, in one monkey, RSSE virus was isolated from the brain, and viral antigen was localized in neurons. Our data indicate that M. radiata is an excellent model to study human disease caused by KFD virus and could serve as a model for human disease caused by other, related strains of this group of viruses.
Collapse
Affiliation(s)
- R H Kenyon
- Disease Assessment Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011
| | | | | | | | | |
Collapse
|
10
|
Crooks AJ, Lee JM, Dowsett AB, Stephenson JR. Purification and analysis of infectious virions and native non-structural antigens from cells infected with tick-borne encephalitis virus. J Chromatogr A 1990; 502:59-68. [PMID: 2157727 DOI: 10.1016/s0021-9673(01)89563-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By employing the techniques of column chromatography and membrane filtration, we have succeeded in purifying flavivirus particles with low particle to infectivity ratios and free from contamination with cellular proteins. Virus particles purified by this method have an average diameter of 53 nm, a particle to infectivity ratio of less than 10, and a KD (partition coefficient) consistent with a molecular weight of 2.63 x 10(7). In addition it has been possible to purify the extracellular form of non-structural protein 1 (NS1), which in its native form appears to be a hexamer. It is also apparent from these studies that the slowly sedimenting haemagglutinin particle (or SHA) is an artifact of purification methods using gradient centrifugation. This technology should not only prove useful in the laboratory for studying the detailed structure of these viruses and the proteins encoded by them, but should also prove useful in industrial vaccine manufacture where large volumes of highly pathogenic material are handled.
Collapse
Affiliation(s)
- A J Crooks
- Division of Biologics, Centre for Applied Microbiology and Research, Porton Down, Salisbury, U.K
| | | | | | | |
Collapse
|
11
|
Phillpotts RJ, Stephenson JR, Porterfield JS. Passive immunization of mice with monoclonal antibodies raised against tick-borne encephalitis virus. Brief report. Arch Virol 1987; 93:295-301. [PMID: 3827600 DOI: 10.1007/bf01310983] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adult Balb/c mice were passively immunized with monoclonal antibodies (100 micrograms/mouse) raised against tick-borne encephalitis (TBE) virus then challenged 24 hours later s.c. with 10 LD50 of TBE virus (Nëudorfl isolate). None of the mice showed evidence of premature death although all except one of the monoclonal antibodies tested are capable of enhancing the infectivity of TBE virus in the Fc receptor-bearing mouse macrophage-like cell line P 388 D 1. The ability of monoclonal antibodies to neutralize TBE virus in vitro, and to fix complement was examined, and of these properties only a single monoclonal antibody, which was able to neutralize virus, was also able to protect mice against virus challenge.
Collapse
|
12
|
|
13
|
Kayser M, Klein H, Paasch I, Pilaski J, Blenk H, Heeg K. Human antibody response to immunization with 17D yellow fever and inactivated TBE vaccine. J Med Virol 1985; 17:35-45. [PMID: 2995571 DOI: 10.1002/jmv.1890170106] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The antibody response against flaviviruses tick-borne encephalitis (TBE), Kyasanur Forest disease (KFD), Murray Valley encephalitis (MVE), West Nile fever (WNF), Japanese B encephalitis (JE), dengue 2 (DEN-2), and yellow fever (YF) was studied in humans after administration of an inactivated TBE virus vaccine. Individuals were either prevaccinated with 17D yellow fever (experimental group) or without any previous exposure to flaviviruses (control group). The appearance of serum titres of homologous and heterologous haemagglutination inhibition (HI) antibodies, heterotypic DEN-2 neutralizing antibodies, and TBE enzyme-linked immunosorbent assay (ELISA) antibodies were examined. Individuals prevaccinated with the 17D yellow fever developed an antibody pattern that contrasted with that of the control group. This pattern was characterized as follows: (1) Predominantly anti-TBE IgG antibodies appeared earlier and in higher titres than in the control group, (2) heterologous HI antibodies cross-reacting with the WN flavivirus subgroup preceded the appearance of homologous HI antibodies, (3) a broad spectrum HI response was observed against all flaviviruses tested, and (4) low titre heterotypic DEN-2 neutralizing antibodies were formed in about half of the cases. These observations are discussed in the context of cross-reactivity, cross-protection and virus infection enhancement.
Collapse
|
14
|
Lee JM, Stephenson JR. Antigenic relationships between an isolate of the Western Subtype of tick-borne encephalitis virus and an inactivated vaccine derived from it. Vaccine 1985; 3:292-6. [PMID: 2998112 DOI: 10.1016/s0264-410x(85)90077-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High mutation rates resulting from the error prone replicases of RNA viruses could lead to antigenic alterations in viral products and pose significant problems during the manufacture of vaccines against RNA viruses. The production of a vaccine against tick-borne encephalitis virus has been monitored using both polyclonal sera and a library of monoclonal antibodies. Only a few antigenic changes were detected during the alteration of host cell from mouse brain to avian fibroblasts and upon subsequent expansion of the virus population during several rounds of replication. In addition, when the formalin inactivation process was monitored for antigenic change, virtually none was detected.
Collapse
|
15
|
Hambleton P, Bailey NE, Fitzgeorge RB, Baskerville A. Clinical chemical responses to experimental airborne legionellosis in the guinea-pig. BRITISH JOURNAL OF EXPERIMENTAL PATHOLOGY 1985; 66:173-83. [PMID: 2580546 PMCID: PMC2041043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Legionella pneumophila infection of guinea-pigs by the aerosol route with either of two strains, one (serogroup I) giving an acute the other (serogroup 3) giving a protracted illness, induced a pyrexia and similar pneumonic lesions. With both strains there was a bacteraemia with early decreases in serum iron and zinc and increases in serum copper concentrations. Marked changes in other serum components were evident only in those animals which had protracted illness (serogroup 3-infected animals). These included transient increases in aminotransferase, creatine kinase and sorbitol dehydrogenase activities and triglyceride levels, together with gradual decreases in alkaline phosphatase and leucine aminopeptidase activities. Serum lysozyme activity and acute-phase protein synthesis increased, as did the ratio of phenylalanine to tyrosine. The findings confirm the relevance of the aerosol-infected guinea-pig model for the investigation of the disease processes and evaluation of therapeutic measures for use in man.
Collapse
|