1
|
Kaldalu N, Bērziņš N, Berglund Fick S, Sharma A, Andersson NC, Aedla J, Hinnu M, Puhar A, Hauryliuk V, Tenson T. Antibacterial compounds against non-growing and intracellular bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:25. [PMID: 40216902 PMCID: PMC11992225 DOI: 10.1038/s44259-025-00097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Slow- and non-growing bacterial populations, along with intracellular pathogens, often evade standard antibacterial treatments and are linked to persistent and recurrent infections. This necessitates the development of therapies specifically targeting nonproliferating bacteria. To identify compounds active against non-growing uropathogenic Escherichia coli (UPEC) we performed a drug-repurposing screen of 6454 approved drugs and drug candidates. Using dilution-regrowth assays, we identified 39 compounds that either kill non-growing UPEC or delay its regrowth post-treatment. The hits include fluoroquinolones, macrolides, rifamycins, biguanide disinfectants, a pleuromutilin, and anti-cancer agents. Twenty-nine of the hits have not previously been recognized as active against non-growing bacteria. The hits were further tested against non-growing Pseudomonas aeruginosa and Staphylococcus aureus. Ten compounds - solithromycin, rifabutin, mitomycin C, and seven fluoroquinolones-have strong bactericidal activity against non-growing P. aeruginosa, killing >4 log10 of bacteria at 2.5 µM. Solithromycin, valnemulin, evofosfamide, and satraplatin are unique in their ability to selectively target non-growing bacteria, exhibiting poor efficacy against growing bacteria. Finally, 31 hit compounds inhibit the growth of intracellular Shigella flexneri in a human enterocyte infection model, indicating their ability to permeate the cytoplasm of host cells. The identified compounds hold potential for treating persistent infections, warranting further comparative studies with current standard-of-care antibiotics.
Collapse
Affiliation(s)
- Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | | | | | - Atin Sharma
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | | | - Jüri Aedla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mariliis Hinnu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andrea Puhar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vasili Hauryliuk
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Science for Life Laboratory, Lund, Sweden.
- Virus Centre, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Saavedra-Sanchez L, Dickinson MS, Apte S, Zhang Y, de Jong M, Skavicus S, Heaton NS, Alto NM, Coers J. The Shigella flexneri effector IpaH1.4 facilitates RNF213 degradation and protects cytosolic bacteria against interferon-induced ubiquitylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611450. [PMID: 39282383 PMCID: PMC11398459 DOI: 10.1101/2024.09.05.611450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
A central signal that marshals host defense against many infections is the lymphocyte-derived cytokine interferon-gamma (IFNγ). The IFNγ receptor is expressed on most human cells and its activation leads to the expression of antimicrobial proteins that execute diverse cell-autonomous immune programs. One such immune program consists of the sequential detection, ubiquitylation, and destruction of intracellular pathogens. Recently, the IFNγ-inducible ubiquitin E3 ligase RNF213 was identified as a pivotal mediator of such a defense axis. RNF213 provides host protection against viral, bacterial, and protozoan pathogens. To establish infections, potentially susceptible intracellular pathogens must have evolved mechanisms that subdue RNF213-controlled cell-autonomous immunity. In support of this hypothesis, we demonstrate here that a causative agent of bacillary dysentery, Shigella flexneri, uses the type III secretion system (T3SS) effector IpaH1.4 to induce the degradation of RNF213. S. flexneri mutants lacking IpaH1.4 expression are bound and ubiquitylated by RNF213 in the cytosol of IFNγ-primed host cells. Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC). We find that ubiquitylation of S. flexneri is insufficient to kill intracellular bacteria, suggesting that S. flexneri employs additional virulence factors to escape from host defenses that operate downstream from RNF213-driven ubiquitylation. In brief, this study identified the bacterial IpaH1.4 protein as a direct inhibitor of mammalian RNF213 and highlights evasion of RNF213-driven immunity as a characteristic of the human-tropic pathogen Shigella.
Collapse
Affiliation(s)
- Luz Saavedra-Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mary S. Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shruti Apte
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yifeng Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Maarten de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samantha Skavicus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Goers L, Kim K, Stedman T, Canning P, Mou X, Ernst N, Coers J, Lesser C. Shigella IpaH9.8 limits GBP1-dependent LPS release from intracytosolic bacteria to suppress caspase-4 activation. Proc Natl Acad Sci U S A 2023; 120:e2218469120. [PMID: 37014865 PMCID: PMC10104580 DOI: 10.1073/pnas.2218469120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 04/05/2023] Open
Abstract
Pyroptosis is an inflammatory form of cell death induced upon recognition of invading microbes. During an infection, pyroptosis is enhanced in interferon-gamma-exposed cells via the actions of members of the guanylate-binding protein (GBP) family. GBPs promote caspase-4 (CASP4) activation by enhancing its interactions with lipopolysaccharide (LPS), a component of the outer envelope of Gram-negative bacteria. Once activated, CASP4 promotes the formation of noncanonical inflammasomes, signaling platforms that mediate pyroptosis. To establish an infection, intracellular bacterial pathogens, like Shigella species, inhibit pyroptosis. The pathogenesis of Shigella is dependent on its type III secretion system, which injects ~30 effector proteins into host cells. Upon entry into host cells, Shigella are encapsulated by GBP1, followed by GBP2, GBP3, GBP4, and in some cases, CASP4. It has been proposed that the recruitment of CASP4 to bacteria leads to its activation. Here, we demonstrate that two Shigella effectors, OspC3 and IpaH9.8, cooperate to inhibit CASP4-mediated pyroptosis. We show that in the absence of OspC3, an inhibitor of CASP4, IpaH9.8 inhibits pyroptosis via its known degradation of GBPs. We find that, while some LPS is present within the host cell cytosol of epithelial cells infected with wild-type Shigella, in the absence of IpaH9.8, increased amounts are shed in a GBP1-dependent manner. Furthermore, we find that additional IpaH9.8 targets, likely GBPs, promote CASP4 activation, even in the absence of GBP1. These observations suggest that by boosting LPS release, GBP1 provides CASP4-enhanced access to cytosolic LPS, thus promoting host cell death via pyroptosis.
Collapse
Affiliation(s)
- Lisa Goers
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Kyungsub Kim
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Teagan C. Stedman
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
| | - Patrick J. Canning
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
| | - Xiangyu Mou
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Nadja Heinz Ernst
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27110
- Department of Immunology, Duke University Medical Center, Durham, NC27110
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Broad Institute of Massachusetts General Hospital and Harvard, Cambridge, MA02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
| |
Collapse
|
4
|
CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing. mSystems 2023; 8:e0104522. [PMID: 36541764 PMCID: PMC9948704 DOI: 10.1128/msystems.01045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Shigella is a Gram-negative bacterium that invades the human gut epithelium. The resulting infection, shigellosis, is the deadliest bacterial diarrheal disease. Much of the information about the genes dictating the pathophysiology of Shigella, both on the chromosome and the virulence plasmid, was obtained by classical reverse genetics. However, technical limitations of the prevalent mutagenesis techniques restrict the generation of mutants in a single reaction to a small number, preventing large-scale targeted mutagenesis of Shigella and the subsequent assessment of phenotype. We adopted a CRISPR-Cas-dependent approach, where a nickase Cas9 and cytidine deaminase fusion is guided by single guide RNA (sgRNA) to introduce targeted C→T transitions, resulting in internal stop codons and premature termination of translation. In proof-of-principle experiments using an mCherry fluorescent reporter, we were able to generate loss-of-function mutants in both Escherichia coli and Shigella flexneri with up to 100% efficacy. Using a modified fluctuation assay, we determined that under optimized conditions, the frequency of untargeted mutations introduced by the Cas9-deaminase fusion was in the same range as spontaneous mutations, making our method a safe choice for bacterial mutagenesis. Furthermore, we programmed the method to mutate well-characterized chromosomal and plasmid-borne Shigella flexneri genes and found the mutant phenotype to be similar to those of the reported gene deletion mutants, with no apparent polar effects at the phenotype level. This method can be used in a 96-well-plate format to increase the throughput and generate an array of targeted loss-of-function mutants in a few days. IMPORTANCE Loss-of-function mutagenesis is critical in understanding the physiological role of genes. Therefore, high-throughput techniques to generate such mutants are important for facilitating the assessment of gene function at a pace that matches systems biology approaches. However, to our knowledge, no such method was available for generating an array of single gene mutants in an important enteropathogen-Shigella. This pathogen causes high morbidity and mortality in children, and antibiotic-resistant strains are quickly emerging. Therefore, determination of the function of unknown Shigella genes is of the utmost importance to develop effective strategies to control infections. Our present work will bridge this gap by providing a rapid method for generating loss-of-function mutants. The highly effective and specific method has the potential to be programmed to generate multiple mutants in a single, massively parallel reaction. By virtue of plasmid compatibility, this method can be extended to other members of Enterobacteriaceae.
Collapse
|
5
|
Tadala L, Langenbach D, Dannborg M, Cervantes-Rivera R, Sharma A, Vieth K, Rieckmann LM, Wanders A, Cisneros DA, Puhar A. Infection-induced membrane ruffling initiates danger and immune signaling via the mechanosensor PIEZO1. Cell Rep 2022; 40:111173. [PMID: 35947957 DOI: 10.1016/j.celrep.2022.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Microorganisms are generally sensed by receptors recognizing microbial molecules, which evoke changes in cellular activities and gene expression. Bacterial pathogens induce secretion of the danger signal ATP as an early alert response of intestinal epithelial cells, initiating overt inflammation. However, what triggers ATP secretion during infection is unclear. Here we show that the inherently mechanosensitive plasma membrane channel PIEZO1 acts as a sensor for bacterial entry. PIEZO1 is mechanically activated by invasion-induced membrane ruffles upstream of Ca2+ influx and ATP secretion. Mimicking mechanical stimuli of pathogen uptake with sterile beads equally elicits ATP secretion. Chemical or genetic PIEZO1 inactivation inhibits mechanically induced ATP secretion. Moreover, chemical or mechanical PIEZO1 activation evokes gene expression in immune and barrier pathways. Thus, mechanosensation of invasion-induced plasma membrane distortion initiates immune signaling upon infection, independently of detection of microbial molecules. Hence, PIEZO1-dependent detection of infection is driven by physical signals instead of chemical ligands.
Collapse
Affiliation(s)
- Lalitha Tadala
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Dorothee Langenbach
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Mirjam Dannborg
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Atin Sharma
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Kevin Vieth
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Lisa M Rieckmann
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Alkwin Wanders
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden; Department of Pathology, Aalborg University Hospital, 9100 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - David A Cisneros
- Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
6
|
Arnold C, Ellwanger K, Kufer TA. Analysis of the Localization of NLRs upon Shigella flexneri Infection Exemplified by NOD1. Methods Mol Biol 2022; 2421:37-56. [PMID: 34870810 DOI: 10.1007/978-1-0716-1944-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
NOD-like receptors (NLRs) are a family of pattern recognition receptors, able to respond to conserved microbial structures and endogenous danger signals. The NLR NOD1 responds to bacterial peptidoglycan, leading to recruitment of RIPK2, following activation of NFκB and MAPK pathways. In this chapter, we describe a fluorescent light microscopic approach to analyze the subcellular distribution of NOD1 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri. This method is based on exogenously expressed EGFP-tagged NOD1 and describes a protocol to obtain inducible cell lines with functional NOD1 signaling. The described protocol is useful to study NOD1 function, also in living cells, using live cell imaging and can be adopted for the study of other NLR proteins.
Collapse
Affiliation(s)
- Christine Arnold
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
7
|
Steinle H, Ellwanger K, Kufer TA. Assaying RIPK2 Activation by Complex Formation. Methods Mol Biol 2022; 2523:133-150. [PMID: 35759195 DOI: 10.1007/978-1-0716-2449-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The receptor-interacting serine/threonine-protein kinase-2 (RIPK2, RIP2) is a key player in downstream signaling of nuclear oligomerization domain (NOD)-like receptor (NLR)-mediated innate immune response against bacterial infections. RIPK2 is recruited following activation of the pattern recognition receptors (PRRs) NOD1 and NOD2 by sensing bacterial peptidoglycans leading to activation of NF-κB and MAPK pathways and the production of pro-inflammatory cytokines. Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells, also called RIPosomes. These can be induced by Shigella flexneri or by the inhibition of RIPK2 by small compounds, such as GSK583 and gefitinib.In this chapter, we describe fluorescent light microscopic and Western blot approaches to analyze the cytoplasmic aggregation of RIPK2 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri, or by the treatment with RIPK2 inhibitors. This method is based on HeLa cells stably expressing eGFP-tagged RIPK2 and describes a protocol to induce and visualize RIPosome formation. The described method is useful to study the deposition of RIPK2 in speck-like structures, also in living cells, using live cell imaging and can be adopted for the study of other inhibitory proteins or to further analyze the process of RIPosome structure assembly.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany.
| |
Collapse
|
8
|
Pei G, Zyla J, He L, Moura‐Alves P, Steinle H, Saikali P, Lozza L, Nieuwenhuizen N, Weiner J, Mollenkopf H, Ellwanger K, Arnold C, Duan M, Dagil Y, Pashenkov M, Boneca IG, Kufer TA, Dorhoi A, Kaufmann SHE. Cellular stress promotes NOD1/2-dependent inflammation via the endogenous metabolite sphingosine-1-phosphate. EMBO J 2021; 40:e106272. [PMID: 33942347 PMCID: PMC8246065 DOI: 10.15252/embj.2020106272] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular stress has been associated with inflammation, yet precise underlying mechanisms remain elusive. In this study, various unrelated stress inducers were employed to screen for sensors linking altered cellular homeostasis and inflammation. We identified the intracellular pattern recognition receptors NOD1/2, which sense bacterial peptidoglycans, as general stress sensors detecting perturbations of cellular homeostasis. NOD1/2 activation upon such perturbations required generation of the endogenous metabolite sphingosine-1-phosphate (S1P). Unlike peptidoglycan sensing via the leucine-rich repeats domain, cytosolic S1P directly bound to the nucleotide binding domains of NOD1/2, triggering NF-κB activation and inflammatory responses. In sum, we unveiled a hitherto unknown role of NOD1/2 in surveillance of cellular homeostasis through sensing of the cytosolic metabolite S1P. We propose S1P, an endogenous metabolite, as a novel NOD1/2 activator and NOD1/2 as molecular hubs integrating bacterial and metabolic cues.
Collapse
Affiliation(s)
- Gang Pei
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Present address:
Institute of ImmunologyFriedrich‐Loeffler‐InstitutGreifswald‐Insel RiemsGermany
| | - Joanna Zyla
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Department of Data Science and EngineeringSilesian University of TechnologyGliwicePoland
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular PhysicsKey Laboratory of Magnetic Resonance in Biological SystemsNational Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pedro Moura‐Alves
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Nuffield Department of MedicineLudwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Heidrun Steinle
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Philippe Saikali
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
| | - Laura Lozza
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
| | | | - January Weiner
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
| | | | - Kornelia Ellwanger
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Christine Arnold
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular PhysicsKey Laboratory of Magnetic Resonance in Biological SystemsNational Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulia Dagil
- Institute of Immunology of the Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Mikhail Pashenkov
- Institute of Immunology of the Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Ivo Gomperts Boneca
- Institut PasteurDepartment of Microbiology, Biology and Genetics of the Bacterial Cell WallParisFrance
- CNRS UMR2001Integrative and Molecular MicrobiologyParisFrance
- INSERMÉquipe AVENIRParisFrance
| | - Thomas A Kufer
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Anca Dorhoi
- Institute of ImmunologyFriedrich‐Loeffler‐InstitutGreifswald‐Insel RiemsGermany
- Faculty of Mathematics and Natural SciencesUniversity of GreifswaldGreifswaldGermany
| | - Stefan HE Kaufmann
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Hagler Institute for Advanced Study at Texas A&M UniversityCollege StationTXUSA
| |
Collapse
|
9
|
Steinle H, Ellwanger K, Mirza N, Briese S, Kienes I, Pfannstiel J, Kufer TA. 14-3-3 and erlin proteins differentially interact with RIPK2 complexes. J Cell Sci 2021; 134:jcs258137. [PMID: 34152391 DOI: 10.1242/jcs.258137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern recognition receptors NOD1 and NOD2 (referred to collectively as NOD1/2). Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20 (also known as TNFAIP3), erlin-1, erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, erlin-1 and erlin-2 (erlin-1/2) specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated using protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ubiquitin ligase XIAP and treatment with RIPK2 inhibitors also led to the formation of RIPK2 cytosolic complexes. Although erlin-1/2 were recruited to RIPK2 complexes following XIAP inhibition, these proteins did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of erlin-1/2 to RIPK2 suggests a role in innate immune signaling, the biological response regulated by the erlin-1/2-RIPK2 association remains to be determined.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Nora Mirza
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim Mass Spectrometry Module, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| |
Collapse
|
10
|
A novel lamprey antibody sequence to multimerize and increase the immunogenicity of recombinant viral and bacterial vaccine antigens. Vaccine 2020; 38:7905-7915. [PMID: 33153770 DOI: 10.1016/j.vaccine.2020.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Hemagglutinin, the major surface protein of influenza viruses, was recombinantly expressed in eukaryotic cells as a monomer instead of its native trimer, and was only immunogenic when administered with an adjuvant [Pion et al. 2014]. In order to multimerize this antigen to increase its immunogenicity, a cysteine-rich peptide sequence found at the extreme C-terminus of lamprey variable lymphocyte receptor (VLR)-B antibodies was fused to various recombinant hemagglutinin (rHA) proteins from A and B influenza virus strains. The rHA-Lamp fusion (rHA fused to the lamprey sequence) protein was expressed in Leishmania tarentolae and Chinese hamster ovary (CHO) cells and shown to produce several multimeric forms. The multimers produced were very stable and more immunogenic in mice than monomeric rHA. The lamprey VLR-B sequence was also used to multimerize the neuraminidase (NA) of influenza viruses expressed in CHO cells. For some viral strains, the NA was expressed as a tetramer like the native viral NA form. In addition, the lamprey VLR-B sequence was fused with two surface antigens of Shigella flexneri 2a, the invasion plasmid antigen D and a double mutated soluble form of the membrane expression of the invasion plasmid antigen H namely MxiH. The fusion proteins were expressed in Escherichia coli to produce the respective multimer protein forms. The resulting proteins had similar multimeric forms as rHA-Lamp protein and were more immunogenic in mice than the monomer forms. In conclusion, the VLR-B sequence can be used to increase the immunogenicity of recombinant viral and bacterial antigens, thus negating the need for adjuvants.
Collapse
|
11
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Ellwanger K, Briese S, Arnold C, Kienes I, Heim V, Nachbur U, Kufer TA. XIAP controls RIPK2 signaling by preventing its deposition in speck-like structures. Life Sci Alliance 2019; 2:2/4/e201900346. [PMID: 31350258 PMCID: PMC6660644 DOI: 10.26508/lsa.201900346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022] Open
Abstract
This study provides evidence that the NOD1/2-associated kinase RIPK2 localizes to detergent insoluble cytosolic complexes upon activation and suggests novel regulatory mechanisms for RIPK2 signaling. The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for linking activation of the pattern recognition receptors NOD1 and NOD2 to cellular signaling events. Recently, it was shown that RIPK2 can form higher order molecular structures in vitro. Here, we demonstrate that RIPK2 forms detergent insoluble complexes in the cytosol of host cells upon infection with invasive enteropathogenic bacteria. Formation of these structures occurred after NF-κB activation and depended on the caspase activation and recruitment domain of NOD1 or NOD2. Complex formation upon activation required RIPK2 autophosphorylation at Y474 and was influenced by phosphorylation at S176. We found that the E3 ligase X-linked inhibitor of apoptosis (XIAP) counteracts complex formation of RIPK2, accordingly mutation of the XIAP ubiquitylation sites in RIPK2 enhanced complex formation. Taken together, our work reveals novel roles of XIAP in the regulation of RIPK2 and expands our knowledge on the function of RIPK2 posttranslational modifications in NOD1/2 signaling.
Collapse
Affiliation(s)
- Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christine Arnold
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Valentin Heim
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Mirza N, Sowa AS, Lautz K, Kufer TA. NLRP10 Affects the Stability of Abin-1 To Control Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2018; 202:218-227. [PMID: 30510071 DOI: 10.4049/jimmunol.1800334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
NOD-like receptors (NLR) are critical regulators of innate immune signaling. The NLR family consists of 22 human proteins with a conserved structure containing a central oligomerization NACHT domain, an N-terminal interaction domain, and a variable number of C-terminal leucine-rich repeats. Most NLR proteins function as cytosolic pattern recognition receptors with activation of downstream inflammasome signaling, NF-κB, or MAPK activation. Although NLRP10 is the only NLR protein lacking the leucine rich repeats, it has been implicated in multiple immune pathways, including the regulation of inflammatory responses toward Leishmania major and Shigella flexneri infection. In this study, we identify Abin-1, a negative regulator of NF-κB, as an interaction partner of NLRP10 that binds to the NACHT domain of NLRP10. Using S. flexneri as an infection model in human epithelial cells, our work reveals a novel function of NLRP10 in destabilizing Abin-1, resulting in enhanced proinflammatory signaling. Our data give insight into the molecular mechanism underlying the function of NLRP10 in innate immune responses.
Collapse
Affiliation(s)
- Nora Mirza
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; and
| | - Anna S Sowa
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; and
| | - Katja Lautz
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50931 Cologne, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany; and
| |
Collapse
|
15
|
Wu G, Yi Y. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol Immunol 2018; 103:220-228. [DOI: 10.1016/j.molimm.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
16
|
Synthetic bottom-up approach reveals the complex interplay of Shigella effectors in regulation of epithelial cell death. Proc Natl Acad Sci U S A 2018; 115:6452-6457. [PMID: 29866849 DOI: 10.1073/pnas.1801310115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the course of an infection, many Gram-negative bacterial pathogens use complex nanomachines to directly inject tens to hundreds of proteins (effectors) into the cytosol of infected host cells. These effectors rewire processes to promote bacterial replication and spread. The roles of effectors in pathogenesis have traditionally been investigated by screening for phenotypes associated with their absence, a top-down approach that can be limited, as effectors often act in a functionally redundant or additive manner. Here we describe a synthetic Escherichia coli-based bottom-up platform to conduct gain-of-function screens for roles of individual Shigella effectors in pathogenesis. As proof of concept, we screened for Shigella effectors that limit cell death induced on cytosolic entry of bacteria into epithelial cells. Using this platform, in addition to OspC3, an effector known to inhibit cell death via pyroptosis, we have identified OspD2 and IpaH1.4 as cell death inhibitors. In contrast to almost all type III effectors, OspD2 does not target a host cell process, but rather regulates the activity of the Shigella type III secretion apparatus limiting the cytosolic delivery (translocation) of effectors during an infection. Remarkably, by limiting the translocation of a single effector, VirA, OspD2 controls the timing of epithelial cell death via calpain-mediated necrosis. Together, these studies provide insight into the intricate manner by which Shigella effectors interact to establish a productive intracytoplasmic replication niche before the death of infected epithelial cells.
Collapse
|
17
|
Stoddard PR, Williams TA, Garner E, Baum B. Evolution of polymer formation within the actin superfamily. Mol Biol Cell 2017; 28:2461-2469. [PMID: 28904122 PMCID: PMC5597319 DOI: 10.1091/mbc.e15-11-0778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
While many are familiar with actin as a well-conserved component of the eukaryotic cytoskeleton, it is less often appreciated that actin is a member of a large superfamily of structurally related protein families found throughout the tree of life. Actin-related proteins include chaperones, carbohydrate kinases, and other enzymes, as well as a staggeringly diverse set of proteins that use the energy from ATP hydrolysis to form dynamic, linear polymers. Despite differing widely from one another in filament structure and dynamics, these polymers play important roles in ordering cell space in bacteria, archaea, and eukaryotes. It is not known whether these polymers descended from a single ancestral polymer or arose multiple times by convergent evolution from monomeric actin-like proteins. In this work, we provide an overview of the structures, dynamics, and functions of this diverse set. Then, using a phylogenetic analysis to examine actin evolution, we show that the actin-related protein families that form polymers are more closely related to one another than they are to other nonpolymerizing members of the actin superfamily. Thus all the known actin-like polymers are likely to be the descendants of a single, ancestral, polymer-forming actin-like protein.
Collapse
Affiliation(s)
- Patrick R Stoddard
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Ethan Garner
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Buzz Baum
- MRC-Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute of Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
18
|
Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A 2017; 114:9954-9959. [PMID: 28847968 DOI: 10.1073/pnas.1707098114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enteroinvasive bacterium Shigella is a facultative intracellular bacterium known, in vitro, to invade a large diversity of cells through the delivery of virulence effectors into the cell cytoplasm via a type III secretion system (T3SS). Here, we provide evidence that the injection of T3SS effectors does not necessarily result in cell invasion. Indeed, we demonstrate through optimization of a T3SS injection reporter that effector injection without subsequent cell invasion, termed the injection-only mechanism, is the main strategy used by Shigella to target human immune cells. We show that in vitro-activated human peripheral blood B, CD4+ T, and CD8+ T lymphocytes as well as switched memory B cells are mostly targeted by the injection-only mechanism. B and T lymphocytes residing in the human colonic lamina propria, encountered by Shigella upon its crossing of the mucosal barrier, are also mainly targeted by injection-only. These findings reveal that cells refractory to invasion can still be injected, thus extending the panel of host cells manipulated to the benefit of the pathogen. Future analysis of the functional consequences of the injection-only mechanism toward immune cells will contribute to the understanding of the priming of adaptive immunity, which is known to be altered during the course of natural Shigella infection.
Collapse
|
19
|
Sunkavalli U, Aguilar C, Silva RJ, Sharan M, Cruz AR, Tawk C, Maudet C, Mano M, Eulalio A. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS Pathog 2017; 13:e1006327. [PMID: 28394930 PMCID: PMC5398735 DOI: 10.1371/journal.ppat.1006327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.
Collapse
Affiliation(s)
- Ushasree Sunkavalli
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Carmen Aguilar
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ricardo Jorge Silva
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ana Rita Cruz
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Claire Maudet
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ana Eulalio
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
20
|
Mechanisms of Horizontal Cell-to-Cell Transfer of Wolbachia spp. in Drosophila melanogaster. Appl Environ Microbiol 2017; 83:AEM.03425-16. [PMID: 28087534 DOI: 10.1128/aem.03425-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is an intracellular endosymbiont present in most arthropod and filarial nematode species. Transmission between hosts is primarily vertical, taking place exclusively through the female germ line, although horizontal transmission has also been documented. The results of several studies indicate that Wolbachia spp. can undergo transfer between somatic and germ line cells during nematode development and in adult flies. However, the mechanisms underlying horizontal cell-to-cell transfer remain largely unexplored. Here, we establish a tractable system for probing horizontal transfer of Wolbachia cells between Drosophila melanogaster cells in culture using fluorescence in situ hybridization (FISH). First, we show that horizontal transfer is independent of cell-to-cell contact and can efficiently take place through the culture medium within hours. Further, we demonstrate that efficient transfer utilizes host cell phagocytic and clathrin/dynamin-dependent endocytic machinery. Lastly, we provide evidence that this process is conserved between species, showing that horizontal transfer from mosquito to Drosophila cells takes place in a similar fashion. Altogether, our results indicate that Wolbachia utilizes host internalization machinery during infection, and this mechanism is conserved across insect species.IMPORTANCE Our work has broad implications for the control and treatment of tropical diseases. Wolbachia can confer resistance against a variety of human pathogens in mosquito vectors. Elucidating the mechanisms of horizontal transfer will be useful for efforts to more efficiently infect nonnatural insect hosts with Wolbachia as a biological control agent. Further, as Wolbachia is essential for the survival of filarial nematodes, understanding horizontal transfer might provide new approaches to treating human infections by targeting Wolbachia Finally, this work provides a key first step toward the genetic manipulation of Wolbachia.
Collapse
|
21
|
Development of recombinant vaccine candidate molecule against Shigella infection. Vaccine 2016; 34:5376-5383. [DOI: 10.1016/j.vaccine.2016.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 11/22/2022]
|
22
|
Murillo I, Martinez-Argudo I, Blocker AJ. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip. Sci Rep 2016; 6:27649. [PMID: 27277624 PMCID: PMC4899799 DOI: 10.1038/srep27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/24/2016] [Indexed: 01/25/2023] Open
Abstract
Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB’s role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction.
Collapse
Affiliation(s)
- I Murillo
- School of Cellular &Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom
| | - I Martinez-Argudo
- School of Cellular &Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom.,Área de Genética, Facultad de Ciencias Ambientales y Bioquímica, Universitdad de Castilla-La Mancha, E-45071, Toledo, Spain
| | - A J Blocker
- Schools of Cellular &Molecular Medicine and Biochemistry, University of Bristol, BS8 1TD, Bristol, United Kingdom
| |
Collapse
|
23
|
The type III secretion system apparatus determines the intracellular niche of bacterial pathogens. Proc Natl Acad Sci U S A 2016; 113:4794-9. [PMID: 27078095 DOI: 10.1073/pnas.1520699113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon entry into host cells, intracellular bacterial pathogens establish a variety of replicative niches. Although some remodel phagosomes, others rapidly escape into the cytosol of infected cells. Little is currently known regarding how professional intracytoplasmic pathogens, including Shigella, mediate phagosomal escape. Shigella, like many other Gram-negative bacterial pathogens, uses a type III secretion system to deliver multiple proteins, referred to as effectors, into host cells. Here, using an innovative reductionist-based approach, we demonstrate that the introduction of a functional Shigella type III secretion system, but none of its effectors, into a laboratory strain of Escherichia coli is sufficient to promote the efficient vacuole lysis and escape of the modified bacteria into the cytosol of epithelial cells. This establishes for the first time, to our knowledge, a direct physiologic role for the Shigella type III secretion apparatus (T3SA) in mediating phagosomal escape. Furthermore, although protein components of the T3SA share a moderate degree of structural and functional conservation across bacterial species, we show that vacuole lysis is not a common feature of T3SA, as an effectorless strain of Yersinia remains confined to phagosomes. Additionally, by exploiting the functional interchangeability of the translocator components of the T3SA of Shigella, Salmonella, and Chromobacterium, we demonstrate that a single protein component of the T3SA translocon-Shigella IpaC, Salmonella SipC, or Chromobacterium CipC-determines the fate of intracellular pathogens within both epithelial cells and macrophages. Thus, these findings have identified a likely paradigm by which the replicative niche of many intracellular bacterial pathogens is established.
Collapse
|
24
|
Bonnet M, Tran Van Nhieu G. How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells. Front Cell Infect Microbiol 2016; 6:16. [PMID: 26904514 PMCID: PMC4748038 DOI: 10.3389/fcimb.2016.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.
Collapse
Affiliation(s)
- Mariette Bonnet
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| |
Collapse
|
25
|
Determination of cell uptake pathways for tumor inhibitor lysyl oxidase propeptide. Mol Oncol 2015; 10:1-23. [PMID: 26297052 DOI: 10.1016/j.molonc.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
The lysyl oxidase propeptide (LOX-PP) is derived from pro-lysyl oxidase (Pro-LOX) by extracellular biosynthetic proteolysis. LOX-PP inhibits breast and prostate cancer xenograft tumor growth and has tumor suppressor activity. Although, several intracellular targets and molecular mechanisms of action of LOX-PP have been identified, LOX-PP uptake pathways have not been reported. Here we demonstrate that the major uptake pathway for recombinant LOX-PP (rLOX-PP) is PI3K-dependent macropinocytosis in PWR-1E, PC3, SCC9, MDA-MB-231 cell lines. A secondary pathway appears to be dynamin- and caveola dependent. The ionic properties of highly basic rLOX-PP provide buffering capacity at both high and low pHs. We suggest that the buffering capacity of rLOX-PP, which serves to limit endosomal acidification, sustains PI3K-dependent macropinocytosis in endosomes which in turn is likely to facilitate LOX-PP endosomal escape into the cytoplasm and its observed interactions with cytoplasmic targets and nuclear uptake.
Collapse
|
26
|
Bravo V, Puhar A, Sansonetti P, Parsot C, Toro CS. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp. PLoS One 2015; 10:e0121785. [PMID: 25811616 PMCID: PMC4374849 DOI: 10.1371/journal.pone.0121785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.
Collapse
Affiliation(s)
- Verónica Bravo
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Puhar
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
- * E-mail: (CP); (CT)
| | - Cecilia S. Toro
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (CP); (CT)
| |
Collapse
|
27
|
Longet S, Vonarburg C, Lötscher M, Miescher S, Zuercher A, Corthésy B. Reconstituted human polyclonal plasma-derived secretory-like IgM and IgA maintain the barrier function of epithelial cells infected with an enteropathogen. J Biol Chem 2014; 289:21617-26. [PMID: 24951593 PMCID: PMC4118121 DOI: 10.1074/jbc.m114.549139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/13/2014] [Indexed: 01/05/2023] Open
Abstract
Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.
Collapse
Affiliation(s)
- Stéphanie Longet
- From the R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, 1011 Lausanne, Switzerland and
| | | | - Marius Lötscher
- CSL Behring AG, Wankdorfstrasse 10, 3000 Bern 22, Switzerland
| | - Sylvia Miescher
- CSL Behring AG, Wankdorfstrasse 10, 3000 Bern 22, Switzerland
| | - Adrian Zuercher
- CSL Behring AG, Wankdorfstrasse 10, 3000 Bern 22, Switzerland
| | - Blaise Corthésy
- From the R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, 1011 Lausanne, Switzerland and CSL Behring AG, Wankdorfstrasse 10, 3000 Bern 22, Switzerland
| |
Collapse
|
28
|
Baxt LA, Goldberg MB. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One 2014; 9:e94653. [PMID: 24722587 PMCID: PMC3983221 DOI: 10.1371/journal.pone.0094653] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min.), the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr) by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG). Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.
Collapse
Affiliation(s)
- Leigh A. Baxt
- Department of Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Puhar A, Tronchère H, Payrastre B, Nhieu GTV, Sansonetti PJ. A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 2014; 39:1121-31. [PMID: 24332032 DOI: 10.1016/j.immuni.2013.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
Abstract
Upon infection with Shigella flexneri, epithelial cells release ATP through connexin hemichannels. However, the pathophysiological consequence and the regulation of this process are unclear. Here we showed that in intestinal epithelial cell ATP release was an early alert response to infection with enteric pathogens that eventually promoted inflammation of the gut. Shigella evolved to escape this inflammatory reaction by its type III secretion effector IpgD, which blocked hemichannels via the production of the lipid PtdIns5P. Infection with an ipgD mutant resulted in rapid hemichannel-dependent accumulation of extracellular ATP in vitro and in vivo, which preceded the onset of inflammation. At later stages of infection, ipgD-deficient Shigella caused strong intestinal inflammation owing to extracellular ATP. We therefore describe a new paradigm of host-pathogen interaction based on endogenous danger signaling and identify extracellular ATP as key regulator of mucosal inflammation during infection. Our data provide new angles of attack for the development of anti-inflammatory molecules.
Collapse
Affiliation(s)
- Andrea Puhar
- Inserm U786, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France; Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France.
| | - Hélène Tronchère
- Inserm U1048, I2MC, 31432 Toulouse Cedex 4, France; Université Toulouse 3, I2MC, 31432 Toulouse Cedex 4, France
| | - Bernard Payrastre
- Inserm U1048, I2MC, 31432 Toulouse Cedex 4, France; Université Toulouse 3, I2MC, 31432 Toulouse Cedex 4, France; CHU Toulouse, Laboratoire d'Hématologie, 31432 Toulouse Cedex 4, France
| | - Guy Tran Van Nhieu
- Inserm U1050, Equipe Communication Intercellulaire et Infections Microbiennes, CIRB, 75231 Paris Cedex 5, France; CNRS UMR7241, Equipe Communication Intercellulaire et Infections Microbiennes, CIRB, 75231 Paris Cedex 5, France; Collège de France, Equipe Communication Intercellulaire et Infections Microbiennes, CIRB, 75231 Paris Cedex 5, France
| | - Philippe J Sansonetti
- Inserm U786, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France; Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 75724 Paris Cedex 15, France.
| |
Collapse
|
30
|
Kakisu E, Bolla P, Abraham AG, de Urraza P, De Antoni GL. Lactobacillus plantarum isolated from kefir: Protection of cultured Hep-2 cells against Shigella invasion. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Vonaesch P, Cardini S, Sellin ME, Goud B, Hardt WD, Schauer K. Quantitative insights into actin rearrangements and bacterial target site selection from Salmonella Typhimurium infection of micropatterned cells. Cell Microbiol 2013; 15:1851-65. [PMID: 23648178 DOI: 10.1111/cmi.12154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 12/31/2022]
Abstract
Reorganization of the host cell actin cytoskeleton is crucial during pathogen invasion. We established micropatterned cells as a standardized infection model for cell invasion to quantitatively study actin rearrangements triggered by Salmonella Typhimurium (S. Tm). Micropatterns of extracellular matrix proteins force cells to adopt a reproducible shape avoiding strong cell-to-cell variations, a major limitation in classical cell culture conditions. S. Tm induced F-actin-rich ruffles and invaded micropatterned cells similar to unconstrained cells. Yet, standardized conditions allowed fast and unbiased comparison of cellular changes triggered by the SipA and SopE bacterial effector proteins. Intensity measurements in defined regions revealed that the content of pre-existing F-actin remained unchanged during infection, suggesting that newly polymerized F-actin in bacteria-triggered ruffles originates from the G-actin pool. Analysing bacterial target sites, we found that bacteria did not show any preferences for the local actin cytoskeleton specificities. Rather, invasion was constrained to a specific 'cell height', due to flagella-mediated near-surface swimming. We found that invasion sites were similar to bacterial binding sites, indicating that S. Tm can induce a permissive invasion site wherever it binds. As micropatterned cells can be infected by many different pathogens they represent a valuable new tool for quantitative analysis of host-pathogen interactions.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Str. 12, 8093, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Menning M, Kufer TA. A role for the Ankyrin repeat containing protein Ankrd17 in Nod1- and Nod2-mediated inflammatory responses. FEBS Lett 2013; 587:2137-42. [DOI: 10.1016/j.febslet.2013.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/17/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
|
33
|
Song HM, Deng L, Khashab NM. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds. NANOSCALE 2013; 5:4321-4329. [PMID: 23563097 DOI: 10.1039/c3nr33712j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80 °C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs.
Collapse
Affiliation(s)
- Hyon Min Song
- Physical Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
34
|
Antibody-DEPENDENT, FcγRI-mediated neutralization of HIV-1 in TZM-bl cells occurs independently of phagocytosis. J Virol 2013; 87:5287-90. [PMID: 23408628 DOI: 10.1128/jvi.00278-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that expression of human FcγRI on TZM-bl cells potentiates neutralization by gp41 membrane-proximal external region (MPER)-specific antibodies. Here we show that lysosomotropic reagents known to block phagocytosis do not diminish this effect. We also show that FcγRI occasionally potentiates neutralization by antibodies against the V3 loop of gp120 and cluster I of gp41. We conclude that FcγRI provides a kinetic advantage for neutralizing antibodies against partially cryptic epitopes independent of phagocytosis.
Collapse
|
35
|
Ambrosi C, Pompili M, Scribano D, Zagaglia C, Ripa S, Nicoletti M. Outer membrane protein A (OmpA): a new player in shigella flexneri protrusion formation and inter-cellular spreading. PLoS One 2012; 7:e49625. [PMID: 23166731 PMCID: PMC3498225 DOI: 10.1371/journal.pone.0049625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/11/2012] [Indexed: 11/24/2022] Open
Abstract
Outer membrane protein A (OmpA) is a multifaceted predominant outer membrane protein of Escherichia coli and other Enterobacteriaceae whose role in the pathogenesis of various bacterial infections has recently been recognized. Here, the role of OmpA on the virulence of Shigella flexneri has been investigated. An ompA mutant of wild-type S. flexneri 5a strain M90T was constructed (strain HND92) and it was shown to be severely impaired in cell-to-cell spreading since it failed to plaque on HeLa cell monolayers. The lack of OmpA significantly reduced the levels of IcsA while the levels of cell associated and released IcsP-cleaved 95 kDa amino-terminal portion of the mature protein were similar. Nevertheless, the ompA mutant displayed IcsA exposed across the entire bacterial surface. Surprisingly, the ompA mutant produced proper F-actin comet tails, indicating that the aberrant IcsA exposition at bacterial lateral surface did not affect proper activation of actin-nucleating proteins, suggesting that the absence of OmpA likely unmasks mature or cell associated IcsA at bacterial lateral surface. Moreover, the ompA mutant was able to invade and to multiply within HeLa cell monolayers, although internalized bacteria were found to be entrapped within the host cell cytoplasm. We found that the ompA mutant produced significantly less protrusions than the wild-type strain, indicating that this defect could be responsible of its inability to plaque. Although we could not definitely rule out that the ompA mutation might exert pleiotropic effects on other S. flexneri genes, complementation of the ompA mutation with a recombinant plasmid carrying the S. flexneri ompA gene clearly indicated that a functional OmpA protein is required and sufficient for proper IcsA exposition, plaque and protrusion formation. Moreover, an independent ompA mutant was generated. Since we found that both mutants displayed identical virulence profile, these results further supported the findings presented in this study.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Dip. di Scienze Sperimentali e Cliniche, Università “G. D’Annunzio’ di Chieti, Chieti, Italy
| | - Monica Pompili
- Dip. di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | | | - Carlo Zagaglia
- Dip. di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Sandro Ripa
- Dip. di Biologia Molecolare, Cellulare e Animale Università di Camerino, Camerino (MC), Italy
| | - Mauro Nicoletti
- Dip. di Scienze Sperimentali e Cliniche, Università “G. D’Annunzio’ di Chieti, Chieti, Italy
| |
Collapse
|
36
|
Lautz K, Damm A, Menning M, Wenger J, Adam AC, Zigrino P, Kremmer E, Kufer TA. NLRP10 enhances Shigella-induced pro-inflammatory responses. Cell Microbiol 2012; 14:1568-83. [PMID: 22672233 DOI: 10.1111/j.1462-5822.2012.01822.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/26/2012] [Indexed: 01/01/2023]
Abstract
Members of the NLR family evolved as intracellular sensors for bacterial and viral infection. However, our knowledge on the implication of most of the human NLR proteins in innate immune responses still remains fragmentary. Here we characterized the role of human NLRP10 in bacterial infection. Our data revealed that NLRP10 is a cytoplasmic localized protein that positively contributes to innate immune responses induced by the invasive bacterial pathogen Shigella flexneri. SiRNA-mediated knock-down studies showed that NLRP10 contributes to pro-inflammatory cytokine release triggered by Shigella in epithelial cells and primary dermal fibroblasts, by influencing p38 and NF-κB activation. This effect is dependent on the ATPase activity of NLRP10 and its PYD domain. Mechanistically, NLRP10 interacts with NOD1, a NLR that is pivotally involved in sensing of invasive microbes, and both proteins are recruited to the bacterial entry point at the plasma membrane. Moreover, NLRP10 physically interacts with downstream components of the NOD1 signalling pathway, such as RIP2, TAK1 and NEMO. Taken together, our data revealed a novel role of NLRP10 in innate immune responses towards bacterial infection and suggest that NLRP10 functions as a scaffold for the formation of the NOD1-Nodosome.
Collapse
Affiliation(s)
- Katja Lautz
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hierarchies of host factor dynamics at the entry site of Shigella flexneri during host cell invasion. Infect Immun 2012; 80:2548-57. [PMID: 22526677 DOI: 10.1128/iai.06391-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, the causative agent of bacillary dysentery, induces massive cytoskeletal rearrangement, resulting in its entry into nonphagocytic epithelial cells. The bacterium-engulfing membrane ruffles are formed by polymerizing actin, a process activated through injected bacterial effectors that target host small GTPases and tyrosine kinases. Once inside the host cell, S. flexneri escapes from the endocytic vacuole within minutes to move intra- and intercellularly. We quantified the fluorescence signals from fluorescently tagged host factors that are recruited to the site of pathogen entry and vacuolar escape. Quantitative time lapse fluorescence imaging revealed simultaneous recruitment of polymerizing actin, small GTPases of the Rho family, and tyrosine kinases. In contrast, we found that actin surrounding the vacuole containing bacteria dispersed first from the disassembling membranes, whereas other host factors remained colocalized with the membrane remnants. Furthermore, we found that the disassembly of the membrane remnants took place rapidly, within minutes after bacterial release into the cytoplasm. Superresolution visualization of galectin 3 through photoactivated localization microscopy characterized these remnants as small, specular, patchy structures between 30 and 300 nm in diameter. Using our experimental setup to track the time course of infection, we identified the S. flexneri effector IpgB1 as an accelerator of the infection pace, specifically targeting the entry step, but not vacuolar progression or escape. Together, our studies show that bacterial entry into host cells follows precise kinetics and that this time course can be targeted by the pathogen.
Collapse
|
38
|
The extreme C terminus of Shigella flexneri IpaB is required for regulation of type III secretion, needle tip composition, and binding. Infect Immun 2010; 78:1682-91. [PMID: 20086081 DOI: 10.1128/iai.00645-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type III secretion systems (T3SSs) are widely distributed virulence determinants of Gram-negative bacteria. They translocate bacterial proteins into host cells to manipulate them during infection. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region, and a hollow needle protruding from the bacterial surface. The distal tip of mature, quiescent needles is composed of IpaD, which is topped by IpaB. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which other virulence effector proteins may be translocated. IpaB is required for regulation of secretion and may be the host cell sensor. However, its mode of needle association is unknown. Here, we show that deletion of 3 or 9 residues at the C terminus of IpaB leads to fast constitutive secretion of late effectors, as observed in a DeltaipaB strain. Like the DeltaipaB mutant, mutants with C-terminal mutations also display hyperadhesion. However, unlike the DeltaipaB mutant, they are still invasive and able to lyse the internalization vacuole with nearly wild-type efficiency. Finally, the mutant proteins show decreased association with needles and increased recruitment of IpaC. Taken together, these data support the notion that the state of the tip complex regulates secretion. We propose a model where the quiescent needle tip has an "off" conformation that turns "on" upon host cell contact. Our mutants may adopt a partially "on" conformation that activates secretion and is capable of recruiting some IpaC to insert pores into host cell membranes and allow invasion.
Collapse
|
39
|
Angioi A, Zanetti S, Sanna A, Delogu G, Fadda G. Adhesiveness of Bacillus subtilis Strains to Epithelial Cells Cultured in vitro. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609509141385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A. Angioi
- Instituto di Microbiologia e Virologia, Università degli Studi di Sassari, Viale San Pietro 431b, 07100, Sassari, Italy
| | - S. Zanetti
- Instituto di Microbiologia e Virologia, Università degli Studi di Sassari, Viale San Pietro 431b, 07100, Sassari, Italy
| | - A. Sanna
- Instituto di Microbiologia e Virologia, Università degli Studi di Sassari, Viale San Pietro 431b, 07100, Sassari, Italy
| | - G. Delogu
- Instituto di Microbiologia e Virologia, Università degli Studi di Sassari, Viale San Pietro 431b, 07100, Sassari, Italy
| | - G. Fadda
- Instituto di Microbiologia e Virologia, Università degli Studi di Sassari, Viale San Pietro 431b, 07100, Sassari, Italy
| |
Collapse
|
40
|
Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ, Van Nhieu GT. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 2009; 5:e1000271. [PMID: 19165331 PMCID: PMC2621354 DOI: 10.1371/journal.ppat.1000271] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 12/15/2008] [Indexed: 01/04/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC) component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion. Type III secretion systems (T3SS) are present in a wide range of Gram-negative bacteria that are pathogenic to humans, animals, and plants. These molecular devices allow the injection of bacterial virulence factors into host cells to manipulate various cellular functions. T3SSs share similar functional features. Noticeably, host cell contact triggers the secretion of two T3SS substrates that insert into host cell membranes to form a so-called “translocator” required for the injection of T3SS effectors. Shigella, an enteroinvasive pathogen responsible for bacillary dysentery, uses a T3SS to transiently reorganize the actin cytoskeleton and to induce its internalization into epithelial cells. Some Shigella-injected T3SS effectors participate in cytoskeletal reorganization, but none of these effectors are totally necessary or sufficient to induce bacterial invasion. We show here that in addition to its role in the injection of bacterial effectors, the translocator component IpaC also induces the recruitment of Src and actin polymerization driving the formation of localized membrane ruffling. Our findings suggest that major signaling through T3S translocator components occurs during the initial steps of bacterial interaction with host cell membranes. Compounds that prevent membrane insertion of the Shigella T3S translocator would likely constitute ideal candidates for antimicrobial agents.
Collapse
Affiliation(s)
- Joëlle Mounier
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Michel R. Popoff
- Unité de Recherche et d'Expertise Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jost Enninga
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Margaret C. Frame
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Guy Tran Van Nhieu
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
41
|
Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J Bacteriol 2008; 191:563-70. [PMID: 18996990 DOI: 10.1128/jb.01004-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.
Collapse
|
42
|
Polotsky Y, Dragunsky E, Khavkin T. Morphologic Evaluation of the Pathogenesis of Bacterial Enteric Infections - Part II. Crit Rev Microbiol 2008. [DOI: 10.3109/10408419409114554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Schulze JO, Quedenau C, Roske Y, Adam T, Schüler H, Behlke J, Turnbull AP, Sievert V, Scheich C, Mueller U, Heinemann U, Büssow K. Structural and functional characterization of human Iba proteins. FEBS J 2008; 275:4627-40. [DOI: 10.1111/j.1742-4658.2008.06605.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
Trypanosoma cruzi is the protozoan parasite that causes Chagas' disease, a highly prevalent vector-borne disease in Latin America. Chagas' disease is a major public health problem in endemic regions with an estimated 18 million people are infected with T. cruzi and another 100 million at risk (http://www.who.int/ctd/chagas/disease.htm). During its life cycle, T. cruzi alternates between triatomine insect vectors and mammalian hosts. While feeding on host's blood, infected triatomines release in their feces highly motile and infective metacyclic trypomastigotes that may initiate infection. Metacyclic trypomastigotes promptly invade host cells (including gastric mucosa) and once free in the cytoplasm, differentiate into amastigotes that replicate by binary fission. Just before disruption of the parasite-laden cell, amastigotes differentiate back into trypomastigotes which are then released into the tissue spaces and access the circulation. Circulating trypomastigotes that disseminate the infection in the mammalian host may be taken up by feeding triatomines and may also transform, extracellularly, into amastigote-like forms. Unlike their intracellular counterparts, these amastigote-like forms, henceforth called amastigotes, are capable of infecting host cells. Studies in which the mechanisms of amastigote invasion of host cells have been compared to metacyclic trypomastigote entry have revealed interesting differences regarding the involvement of the target cell actin microfilament system.
Collapse
|
45
|
Slagowski NL, Kramer RW, Morrison MF, LaBaer J, Lesser CF. A functional genomic yeast screen to identify pathogenic bacterial proteins. PLoS Pathog 2008; 4:e9. [PMID: 18208325 PMCID: PMC2211553 DOI: 10.1371/journal.ppat.0040009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to culture. Many bacterial pathogens promote infection and ultimately cause disease, in part, through the actions of proteins that the bacteria directly inject into host cells. These proteins subvert host cell processes to favor survival of the pathogen. The identification of such proteins can be limited since many of the injected proteins lack homology with other virulence proteins and pathogens that no longer express the proteins are often unimpaired in conventional assays of pathogenesis. Many of these proteins target cellular processes conserved from mammals to yeast, and overexpression of these proteins in yeast results in growth inhibition. We have established a high throughput growth assay amenable to systematically screening open reading frames from bacterial pathogens for those that inhibit yeast growth. We observe that yeast growth inhibition is a sensitive and specific indicator of proteins that are injected into host cells. Expression of about half of the injected bacterial proteins but almost none of the bacteria-confined proteins results in yeast growth inhibition. Since this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to grow in the laboratory.
Collapse
Affiliation(s)
- Naomi L Slagowski
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Roger W Kramer
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Monica F Morrison
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Joshua LaBaer
- Harvard Institute of Proteomics, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Cammie F Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Differential regulation by magnesium of the two MsbB paralogs of Shigella flexneri. J Bacteriol 2008; 190:3526-37. [PMID: 18359815 DOI: 10.1128/jb.00151-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Shigella flexneri, a gram-negative enteric pathogen, is unusual in that it contains two nonredundant paralogous genes that encode the myristoyl transferase MsbB (LpxM) that catalyzes the final step in the synthesis of the lipid A moiety of lipopolysaccharide. MsbB1 is encoded on the chromosome, and MsbB2 is encoded on the large virulence plasmid present in all pathogenic shigellae. We demonstrate that myristoyl transferase activity due to MsbB2 is detected in limited magnesium medium, but not in replete magnesium medium, whereas that due to MsbB1 is detected under both conditions. MsbB2 increases overall hexa-acylation of lipid A under limited magnesium conditions. Regulation of MsbB2 by magnesium occurs at the level of transcription and is dependent on the conserved magnesium-inducible PhoPQ two-component regulatory pathway. Direct hexanucleotide repeats within the promoter upstream of msbB2 were identified as a putative PhoP binding site, and mutations within the repeats led to diminished PhoP-dependent expression of a transcriptional fusion of lacZ to this promoter. Thus, the virulence plasmid-encoded paralog of msbB is induced under limited magnesium in a PhoPQ-dependent manner. PhoPQ regulates the response of many Enterobacteriaceae to environmental signals, which include modifications of lipid A that confer increased resistance of the organism to stressful environments and antimicrobial peptides. The findings reported here are the first example of gene duplication in which one paralog has selectively acquired the mechanism for differential regulation by PhoPQ. Our findings provide molecular insight into the mechanisms by which each of the two MsbB proteins of S. flexneri likely contributes to pathogenesis.
Collapse
|
47
|
Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 2008; 27:447-57. [PMID: 18188151 DOI: 10.1038/sj.emboj.7601976] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/04/2007] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S) systems are largely used by pathogenic gram-negative bacteria to inject multiple effectors into eukaryotic cells. Upon cell contact, these bacterial microinjection devices insert two T3S substrates into host cell membranes, forming a so-called 'translocon' that is required for targeting of type III effectors in the cell cytosol. Here, we show that secretion of the translocon component IpaC of invasive Shigella occurs at the level of one bacterial pole during cell invasion. Using IpaC fusions with green fluorescent protein variants (IpaCi), we show that the IpaC cytoplasmic pool localizes at an old or new bacterial pole, where secretion occurs upon T3S activation. Deletions in ipaC identified domains implicated in polar localization. Only polar IpaCi derivatives inhibited T3S, while IpaCi fusions with diffuse cytoplasmic localization had no detectable effect on T3S. Moreover, the deletions that abolished polar localization led to secretion defects when introduced in ipaC. These results indicate that cytoplasmic polar localization directs secretion of IpaC at the pole of Shigella, and may represent a mandatory step for T3S.
Collapse
|
48
|
Abstract
Increased numbers of mucosa-associated Escherichia coli are observed in both major inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC). With the identification of mutations in the NOD2-encoding gene in patients with CD and given the intracellular location of NOD2, the presence of pathogenic invasive bacteria could be the link between innate immune response to invasive bacteria and the development of the inflammation. Adherent-invasive E. coli (AIEC) are isolated from ileal biopsies of 36.4% of patients with ileal involvement of CD. These pathogenic E. coli colonize the intestinal mucosa by adhering to intestinal epithelial cells and are also true invasive pathogens, able to invade intestinal epithelial cells and to replicate intracellularly. AIEC strains also survive and replicate extensively within macrophages without inducing host cell death, and their high replication rates induce the secretion of large amounts of tumor necrosis factor alpha (TNF-alpha). There is also evidence suggesting that AIEC is involved in the formation of granulomas. The presence of AIEC is restricted to CD patients. Mucosa-associated E. coli in patients with UC can adhere to intestinal epithelial cells and induce the secretion of IL-8, but there is no evidence that these E. coli strains are invasive.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Pathogénie Bactérienne Intestinale, Univ. Clermont 1, USC INRA 2018, Clermont-Ferrand, France
| | | |
Collapse
|
49
|
Kramer RW, Slagowski NL, Eze NA, Giddings KS, Morrison MF, Siggers KA, Starnbach MN, Lesser CF. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog 2007; 3:e21. [PMID: 17305427 PMCID: PMC1797620 DOI: 10.1371/journal.ppat.0030021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022] Open
Abstract
Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins. Many bacterial pathogens use specialized secretion systems to deliver effector proteins directly into host cells. The effector proteins mediate the subversion or inhibition of host cell processes to promote survival of the pathogens. Although these proteins are critical elements of pathogenesis, relatively few are well characterized. They often lack significant homology to proteins of known function, and they present special challenges, biological and practical, to study in vivo. For example, their functions often appear to be redundant or synergistic, and the organisms that produce them can be dangerous or difficult to culture, requiring special facilities. The yeast Saccharomyces cerevisiae has recently emerged as a model system to both identify and functionally characterize effector proteins. This work describes how genome-wide phenotypic screens and mRNA profiling of yeast expressing the Shigella effector OspF led to the discovery that OspF inhibits mitogen-activated protein kinase signaling in both yeast and mammalian cells. This inhibition of mitogen-activated protein kinase signaling is associated with attenuation of the host innate immune response. This study demonstrates how yeast functional genomic studies can contribute to the understanding of pathogenic effector proteins.
Collapse
Affiliation(s)
- Roger W Kramer
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Naomi L Slagowski
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Ngozi A Eze
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Kara S Giddings
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica F Morrison
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Keri A Siggers
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Michael N Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cammie F Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The identification of mutations in the nucleotide oligomerization domain 2-encoding gene in patients with Crohn's disease suggests a link between the innate immune response to invasive bacteria and the development of Crohn's disease. Herein, we review reports concerning the association of pathogenic Escherichia coli with the intestinal mucosa of Crohn's disease patients. RECENT FINDINGS Adherent-invasive E. coli were isolated from ileal biopsies of 36.4% of patients with ileal Crohn's disease. Adherent-invasive E. coli colonize the intestinal mucosa by adhering to intestinal epithelial cells. They are also true invasive pathogens, able to invade intestinal epithelial cells and to replicate intracellularly. Adherent-invasive E. coli strains replicate extensively into macrophages inducing the secretion of very large amounts of tumor necrosis factor-alpha. Similar pathogenic E. coli strains were recently associated with granulomatous colitis of Boxer dogs. Interestingly, high levels of E. coli outer membrane protein C antibodies are present in 37-55% of Crohn's disease patients and reactivity to outer membrane protein C is associated with increased severity of Crohn's disease. SUMMARY As the infection cycle of adherent-invasive E. coli could depend upon the ability of these pathogenic bacteria to colonize the gastrointestinal tract of genetically predisposed Crohn's disease patients, antibiotics which could eradicate the bacteria, or probiotics which could substitute them in the gastrointestinal tract, could be of therapeutic value in ileal Crohn's disease.
Collapse
Affiliation(s)
- Nicolas Barnich
- Univ Clermont 1, Pathogénie Bactérienne Intestinale, USC-INRA 2018 CBRV, Clermont-Ferrand, France
| | | |
Collapse
|