1
|
Reiling L, Persson KEM, McCallum FJ, Gicheru N, Kinyanjui SM, Chitnis CE, Fowkes FJI, Marsh K, Beeson JG. Plasmodium falciparum reticulocyte-binding homologues are targets of human inhibitory antibodies and play a role in immune evasion. Front Immunol 2025; 16:1532451. [PMID: 40201183 PMCID: PMC11975925 DOI: 10.3389/fimmu.2025.1532451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Antibodies targeting the blood-stage of Plasmodium falciparum play a critical role in naturally acquired immunity to malaria by limiting blood-stage parasitemia. One mode of action of antibodies is the direct inhibition of merozoite invasion of erythrocytes through targeting invasion ligands. However, evasion of inhibitory antibodies may be mediated in P. falciparum by switching between various ligand-mediated merozoite invasion pathways. Here, we investigated the potential roles of invasion ligands PfRH1, PfRH2a and PfRH2b in immune evasion through phenotypic variation, and their importance as targets of human invasion-inhibitory antibodies. Methods Serum samples from malaria-exposed children and adults in Kenya were examined for their ability to inhibit P. falciparum invasion, using parasites with disrupted pfrh1, pfrh2a or pfrh2b genes. Results and Discussion The loss of PfRH1 and PfRH2b substantially impacted on susceptibility to inhibitory antibodies, suggesting that variation in the use of these ligands contributes to immune evasion. The effect was less prominent with loss of PfRH2a. Differential inhibition of the knockout and parental lines points to PfRH1 and PfRH2b as targets of acquired growth inhibitory antibodies whereas PfRH2a appeared to be a minor target. There was limited relatedness of the inhibitory responses between different isolates or compared to parasites with deletions of erythrocyte-binding antigens. This further suggests that there is a substantial amount of antigenic diversity in invasion pathways to facilitate immune evasion. These findings provide evidence that PfRH1 and PfRH2b are significant targets of inhibitory antibodies and variation in their expression may facilitate immune evasion. Targeting of multiple invasion ligands in vaccine design is likely to be required to achieve potent inhibitory antibodies and protective efficacy against malaria.
Collapse
Affiliation(s)
- Linda Reiling
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - Fiona J. McCallum
- Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, QLD, Australia
| | - Nimmo Gicheru
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chetan E. Chitnis
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Freya J. I. Fowkes
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Kevin Marsh
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - James G. Beeson
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
- School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, Dzikowski R, Granot Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep 2022; 23:e53641. [PMID: 35417070 PMCID: PMC9171683 DOI: 10.15252/embr.202153641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Simantov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
3
|
Mansourou A, Joos C, Niass O, Diouf B, Tall A, Perraut R, Niang M, Toure-Balde A. Improvement of the antibody-dependent respiratory burst assay for assessing protective immune responses to malaria. Open Biol 2022; 12:210288. [PMID: 35291880 PMCID: PMC8924748 DOI: 10.1098/rsob.210288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The antibody-dependent respiratory burst (ADRB) assay is a sensitive isoluminol-based chemiluminescence (CL) functional assay designed to assess the capacity of opsonizing antibodies against merozoites to induce neutrophil respiratory burst. ADRB was shown to measure protective immunity against malaria in endemic areas, but the assay needed further improvement to ensure better sensitivity and reproducibility. Here, we adjusted parameters such as the freezing-thawing procedure of merozoites, merozoites's concentration and the buffer solution's pH, and we used the improved assay to measure ADRB activity of 207 sera from 97 and 110 individuals living, respectively, in Dielmo and Ndiop villages with differing malaria endemicity. The improvement led to increased CL intensity and assay sensitivity, and a higher reproducibility. In both areas, ADRB activity correlated with malaria endemicity and individual's age discriminated groups with and without clinical malaria episodes, and significantly correlated with in vivo clinical protection from Plasmodium falciparum malaria. Our results demonstrate that the improved ADRB assay can be valuably used to assess acquired immunity during monitoring by control programmes and/or clinical trials.
Collapse
Affiliation(s)
| | - Charlotte Joos
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Oumy Niass
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Babacar Diouf
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Adama Tall
- Unité Epidémiologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Ronald Perraut
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Makhtar Niang
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | | |
Collapse
|
4
|
Leitner WW, Haraway M, Pierson T, Bergmann-Leitner ES. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines (Basel) 2020; 8:E264. [PMID: 32486320 PMCID: PMC7350021 DOI: 10.3390/vaccines8020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for immune correlates of protection continues to slow vaccine development. To date, only vaccine-induced antibodies have been confirmed as direct immune correlates of protection against a plethora of pathogens. Vaccine immunologists, however, have learned through extensive characterizations of humoral responses that the quantitative assessment of antibody responses alone often fails to correlate with protective immunity or vaccine efficacy. Despite these limitations, the simple measurement of post-vaccination antibody titers remains the most widely used approaches for vaccine evaluation. Developing and performing functional assays to assess the biological activity of pathogen-specific responses continues to gain momentum; integrating serological assessments with functional data will ultimately result in the identification of mechanisms that contribute to protective immunity and will guide vaccine development. One of these functional readouts is phagocytosis of antigenic material tagged by immune molecules such as antibodies and/or complement components. This review summarizes our current understanding of how phagocytosis contributes to immune defense against pathogens, the pathways involved, and defense mechanisms that pathogens have evolved to deal with the threat of phagocytic removal and destruction of pathogens.
Collapse
Affiliation(s)
- Wolfgang W. Leitner
- Basic Immunology Branch, Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Megan Haraway
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Tony Pierson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Elke S. Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| |
Collapse
|
5
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
6
|
Douglas AD, Baldeviano GC, Jin J, Miura K, Diouf A, Zenonos ZA, Ventocilla JA, Silk SE, Marshall JM, Alanine DGW, Wang C, Edwards NJ, Leiva KP, Gomez-Puerta LA, Lucas CM, Wright GJ, Long CA, Royal JM, Draper SJ. A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates. Nat Commun 2019; 10:1953. [PMID: 31028254 PMCID: PMC6486575 DOI: 10.1038/s41467-019-09894-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection.
Collapse
Affiliation(s)
- Alexander D Douglas
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - G Christian Baldeviano
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Jing Jin
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Zenon A Zenonos
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Julio A Ventocilla
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Sarah E Silk
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jennifer M Marshall
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Daniel G W Alanine
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Chuan Wang
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nick J Edwards
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Karina P Leiva
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Luis A Gomez-Puerta
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Carmen M Lucas
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Joseph M Royal
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
7
|
Hill DL, Schofield L, Wilson DW. IgG opsonization of merozoites: multiple immune mechanisms for malaria vaccine development. Int J Parasitol 2017; 47:585-595. [PMID: 28668325 DOI: 10.1016/j.ijpara.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Global eradication of the human-infecting malaria parasite Plasmodium falciparum, the major cause of malaria mortality, is unlikely to be achieved without an effective vaccine. However, our limited understanding of how protective immune responses target malaria parasites in humans, and how to best elicit these immune responses through vaccination, has hampered vaccine development. The red blood cell invading stage of the parasite lifecycle (merozoite) displays antigens that are attractive vaccine candidates as they are accessible to antibodies and raise high antibody titres in naturally immune individuals. The number of merozoite antigens that elicit an immune response, and their structural and functional diversity, has led to a large number of lead antigens being pursued as vaccine candidates. Despite being seemingly spoilt for choice in terms of vaccine candidates, there is still a lack of consensus on exactly how merozoite antibodies reduce parasitemia and malaria disease. In this review we describe the various immune mechanisms that can result from IgG opsonization of merozoites, and highlight recent developments that support a role for these functional antibodies in naturally acquired and vaccine-induced immunity.
Collapse
Affiliation(s)
- Danika L Hill
- Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom; The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Louis Schofield
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Burnet Institute, 85 Commercial Road, Melbourne 3004, Victoria, Australia.
| |
Collapse
|
8
|
Boyle MJ, Reiling L, Osier FH, Fowkes FJI. Recent insights into humoral immunity targeting Plasmodium falciparum and Plasmodium vivax malaria. Int J Parasitol 2016; 47:99-104. [PMID: 27451359 DOI: 10.1016/j.ijpara.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
Recent efforts in malaria control have led to marked reductions in malaria incidence. However, new strategies are needed to sustain malaria elimination and eradication and achieve the World Health Organization goal of a malaria-free world. The development of highly effective vaccines would contribute to this goal and would be facilitated by a comprehensive understanding of humoral immune responses targeting Plasmodium falciparum and Plasmodium vivax malaria. New tools are required to facilitate the identification of vaccine candidates and the development of vaccines that induce functional and protective immunity. Here we discuss recent published findings, and unpublished work presented at the 2016 Molecular Approaches to Malaria conference, that highlight advancements in understanding humoral immune responses in the context of vaccine development. Highlights include the increased application of 'omics' and 'Big data' platforms to identify vaccine candidates, and the identification of novel functions of antibody responses that mediate protection. The application of these strategies and a global approach will increase the likelihood of rapid development of highly efficacious vaccines.
Collapse
Affiliation(s)
- Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Menzies School of Medical Research, Darwin, Northern Territory 0810, Australia.
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Faith H Osier
- KEMRI Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
9
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Joos C, Varela ML, Mbengue B, Mansourou A, Marrama L, Sokhna C, Tall A, Trape JF, Touré A, Mercereau-Puijalon O, Perraut R. Antibodies to Plasmodium falciparum merozoite surface protein-1p19 malaria vaccine candidate induce antibody-dependent respiratory burst in human neutrophils. Malar J 2015; 14:409. [PMID: 26471813 PMCID: PMC4608189 DOI: 10.1186/s12936-015-0935-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Identification of plasmodial antigens targeted by protective immune mechanisms is important for malaria vaccine development. Among functional assays, the neutrophil antibody-dependent respiratory burst (ADRB) induced by opsonized Plasmodium falciparum merozoites has been correlated with acquired immunity to clinical malaria in endemic areas, but the target merozoite antigens are unknown. Here, the contribution of antibodies to the conserved C-terminal domain of the P. falciparum merozoite surface protein-1 (PfMSP1p19) in mediating ADRB was investigated in sera from individuals living in two Senegalese villages with differing malaria endemicity. Methods Anti-PfMSP1p19 antibody levels in sera from 233 villagers were investigated and the involvement of anti-PfMSP1p19 antibodies in ADRB was explored in a subset of samples using (1) isogenic P. falciparum parasite clones expressing P. falciparum or Plasmodium chabaudi MSP1p19; (2) PfMSP1p19-coated plaque ADRB; and, (3) ADRB triggering using sera depleted from PfMSP1p19 antibodies by absorption onto the baculovirus recombinant antigen. Results ADRB activity correlated with anti-PfMSP1p19 IgG levels (P < 10−3). A substantial contribution of PfMSP1p19 antibody responses to ADRB was confirmed (P < 10−4) in an age-adjusted linear regression model. PfMSP1p19 antibodies accounted for 33.1 % (range 7–54 %) and 33.2 % (range 0–70 %) of ADRB activity evaluated using isogenic merozoites (P < 10−3) and depleted sera (P = 0.0017), respectively. Coating of PfMSP1p19 on plates induced strong ADRB in anti-PfMSP1p19-positive sera. Conclusion These data show that naturally acquired P. falciparum MSP1p19 antibodies are potent inducers of neutrophil ADRB and support the development of PfMSP1p19-based malaria vaccine using ADRB assay as a functional surrogate for protection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0935-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal. .,Unité d'Immunologie Moléculaire des Parasites, Institut Pasteur, Paris, France.
| | | | - Babacar Mbengue
- Unité d'Immunogénétique/UCAD, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Laurence Marrama
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement (IRD), URMITE, Dakar, Senegal.
| | - Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Aissatou Touré
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
11
|
Kapelski S, Klockenbring T, Fischer R, Barth S, Fendel R. Assessment of the neutrophilic antibody-dependent respiratory burst (ADRB) response to Plasmodium falciparum. J Leukoc Biol 2014; 96:1131-42. [PMID: 25118179 DOI: 10.1189/jlb.4a0614-283rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Semi-immunity against Pf malaria is based on a combination of cellular and humoral immune responses. PMNs and IgGs are considered important components of this process, but the underlying mechanisms are unclear. We investigated the neutrophilic ADRB by analyzing the production of ROS in response to Pf antigen-specific IgGs bound to solid-phase immobilized antigens (sADRB) or whole merozoites (mADRB). We found that the PMN stimulations in each assay were based on different underlying mechanisms, demonstrating the importance of the assay set-up for the evaluation of antibody-triggered PMN responses. In the sADRB assay, ROS were produced externally, and by specific blocking of CD32(a)/FcγRII(a), the immediate neutrophilic response was abolished, whereas the removal of CD16(b)/FcγRIII(b) had no substantial effect. The key role of CD32(a) was confirmed using CD16(b)-deficient PMNs, in which similar changes of neutrophilic ADRB profiles were recorded after treatment. In the mADRB assay, ROS were produced almost exclusively within the cell, suggesting that the underlying mechanism was phagocytosis. This was confirmed using an additional phagocytosis assay, in which PMNs specifically ingested merozoites opsonized with Ghanaian plasma IgGs, seven times more often than merozoites opsonized with European plasma IgGs (P<0.001). Our data show that assay set-ups used to evaluate the responses of PMNs and perhaps other effector cells must be chosen carefully to evaluate the appropriate cellular responses. Our robust, stable, and well-characterized methods could therefore be useful in malaria vaccine studies to analyze the antimalarial effector function of antibodies.
Collapse
Affiliation(s)
- Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Pharmaceutical Product Development, Aachen, Germany; Rheinisch-Westfälische Technische Hochschule Aachen University, Institute for Molecular Biotechnology, Aachen, Germany; and
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Pharmaceutical Product Development, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Pharmaceutical Product Development, Aachen, Germany; Rheinisch-Westfälische Technische Hochschule Aachen University, Institute for Molecular Biotechnology, Aachen, Germany; and
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Pharmaceutical Product Development, Aachen, Germany; Institute for Applied Medical Engineering at Rheinisch-Westfälische Technische Hochschule Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Pharmaceutical Product Development, Aachen, Germany; Rheinisch-Westfälische Technische Hochschule Aachen University, Institute for Molecular Biotechnology, Aachen, Germany; and
| |
Collapse
|
12
|
Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJI, Cross N, Langer C, Takeo S, Uboldi AD, Thompson JK, Gilson PR, Coppel RL, Siba PM, King CL, Torii M, Chitnis CE, Narum DL, Mueller I, Crabb BS, Cowman AF, Tsuboi T, Beeson JG. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. THE JOURNAL OF IMMUNOLOGY 2013; 191:795-809. [PMID: 23776179 DOI: 10.4049/jimmunol.1300778] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of effective malaria vaccines and immune biomarkers of malaria is a high priority for malaria control and elimination. Ags expressed by merozoites of Plasmodium falciparum are likely to be important targets of human immunity and are promising vaccine candidates, but very few Ags have been studied. We developed an approach to assess Ab responses to a comprehensive repertoire of merozoite proteins and investigate whether they are targets of protective Abs. We expressed 91 recombinant proteins, located on the merozoite surface or within invasion organelles, and screened them for quality and reactivity to human Abs. Subsequently, Abs to 46 proteins were studied in a longitudinal cohort of 206 Papua New Guinean children to define Ab acquisition and associations with protective immunity. Ab responses were higher among older children and those with active parasitemia. High-level Ab responses to rhoptry and microneme proteins that function in erythrocyte invasion were identified as being most strongly associated with protective immunity compared with other Ags. Additionally, Abs to new or understudied Ags were more strongly associated with protection than were Abs to current vaccine candidates that have progressed to phase 1 or 2 vaccine trials. Combinations of Ab responses were identified that were more strongly associated with protective immunity than responses to their single-Ag components. This study identifies Ags that are likely to be key targets of protective human immunity and facilitates the prioritization of Ags for further evaluation as vaccine candidates and/or for use as biomarkers of immunity in malaria surveillance and control.
Collapse
Affiliation(s)
- Jack S Richards
- Department of Immunology, Burnet Institute, Melbourne 3001, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria. PLoS One 2012; 7:e45253. [PMID: 23028883 PMCID: PMC3447948 DOI: 10.1371/journal.pone.0045253] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4) is important for invasion of human erythrocytes and may therefore be a target of protective immunity. Methods IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG). Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. Results Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. Conclusions Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.
Collapse
|
14
|
Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, Joshi H. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar J 2012; 11:29. [PMID: 22289302 PMCID: PMC3342920 DOI: 10.1186/1475-2875-11-29] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted.
Collapse
Affiliation(s)
- Dolie D Laishram
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Digestive vacuoles of Plasmodium falciparum are selectively phagocytosed by and impair killing function of polymorphonuclear leukocytes. Blood 2011; 118:4946-56. [DOI: 10.1182/blood-2011-05-353920] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractSequestration of parasitized erythrocytes and dysregulation of the coagulation and complement system are hallmarks of severe Plasmodium falciparum malaria. A link between these events emerged through the discovery that the parasite digestive vacuole (DV), which is released together with infective merozoites into the bloodstream, dually activates the intrinsic clotting and alternative complement pathway. Complement attack occurs exclusively on the membrane of the DVs, and the question followed whether DVs might be marked for uptake by polymorphonuclear granulocytes (PMNs). We report that DVs are indeed rapidly phagocytosed by PMNs after schizont rupture in active human serum. Uptake of malaria pigment requires an intact DV membrane and does not occur when the pigment is extracted from the organelle. Merozoites are not opsonized and escape phagocytosis in nonimmune serum. Antimalarial Abs mediate some uptake of the parasites, but to an extent that is not sufficient to markedly reduce reinvasion rates. Phagocytosis of DVs induces a vigorous respiratory burst that drives the cells into a state of functional exhaustion, blunting the production of reactive oxygen species (ROS) and microbicidal activity upon challenge with bacterial pathogens. Systemic overloading of PMNs with DVs may contribute to the enhanced susceptibility of patients with severe malaria toward invasive bacterial infections.
Collapse
|
16
|
Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood 2011; 118:1923-33. [PMID: 21685372 DOI: 10.1182/blood-2011-03-341305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum adhesin PfRh4 binds to complement receptor type-1 (CR1) on human erythrocytes and mediates a glycophorin-independent invasion pathway. CR1 is a complement regulator and immune-adherence receptor on erythrocytes required for shuttling of C3b/C4b-opsonized particles to liver and spleen for phagocytosis. Using recombinant CR1 constructs, we mapped the recognition site for PfRh4 to complement control protein modules 1 to 3 (CCP1-3) at the membrane-distal amino terminus of CR1. This region of CR1 binds to C4b and C3b and accelerates decay of both classic pathway and alternative pathway C3 and C5 convertases. CCP1-3 competed for PfRh4 binding to erythroid CR1 and inhibited the PfRh4-CR1 invasion pathways across a wide range of P falciparum strains. PfRh4 did not bind significantly to other CR1 constructs, including CCP15-17, which is 85% identical to CCP1-3. PfRh4 binding to CR1 did not affect its C3b/C4b binding capability, and we show evidence for a ternary complex between CCP1-3, C4b, and PfRh4. PfRh4 binding specifically inhibited CR1's convertase decay-accelerating activity, whereas there was no effect on factor H-mediated decay-accelerating activity. These results increase our understanding of the functional implications of CR1 engagement with PfRh4 and highlight the interplay between complement regulation and infection.
Collapse
|
17
|
Reiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, Michon P, Tavul L, Siba PM, Cowman AF, Mueller I, Beeson JG. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. THE JOURNAL OF IMMUNOLOGY 2010; 185:6157-67. [PMID: 20962255 DOI: 10.4049/jimmunol.1001555] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs targeting blood-stage Ags of Plasmodium falciparum are important in acquired immunity to malaria, but major targets remain unclear. The P. falciparum reticulocyte-binding homologs (PfRh) are key ligands used by merozoites during invasion of erythrocytes. PfRh2a and PfRh2b are functionally important members of this family and may be targets of protective immunity, but their potential role in human immunity has not been examined. We expressed eight recombinant proteins covering the entire PfRh2 common region, as well as PfRh2a- and PfRh2b-specific regions. Abs were measured among a cohort of 206 Papua New Guinean children who were followed prospectively for 6 mo for reinfection and malaria. At baseline, Abs were associated with increasing age and active infection. High levels of IgG to all PfRh2 protein constructs were strongly associated with protection from symptomatic malaria and high-density parasitemia. The predominant IgG subclasses were IgG1 and IgG3, with little IgG2 and IgG4 detected. To further understand the significance of PfRh2 as an immune target, we analyzed PfRh2 sequences and found that polymorphisms are concentrated in an N-terminal region of the protein and seem to be under diversifying selection, suggesting immune pressure. Cluster analysis arranged the sequences into two main groups, suggesting that many of the haplotypes identified may be antigenically similar. These findings provide evidence suggesting that PfRh2 is an important target of protective immunity in humans and that Abs act by controlling blood-stage parasitemia and support its potential for vaccine development.
Collapse
Affiliation(s)
- Linda Reiling
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Elevated levels of IL-10 and G-CSF associated with asymptomatic malaria in pregnant women. Infect Dis Obstet Gynecol 2010; 2010. [PMID: 20706538 PMCID: PMC2913525 DOI: 10.1155/2010/317430] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/08/2010] [Indexed: 11/21/2022] Open
Abstract
In sub-Saharan Africa, approximately 30 million pregnant women are at risk of contracting malaria annually. Nearly 36% of healthy pregnant women receiving routine antenatal care tested positive for Plasmodium falciparum HRP-II antigen in Ghana. We tested the hypothesis that asymptomatic HRP II positive pregnant women expressed a unique Th1 and Th2 phenotype that differs from healthy controls. Plasma from healthy (n = 15) and asymptomatic (n = 25) pregnant women were evaluated for 27 biomarkers (IL-1b, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL- 17, Eotaxin, bFGF-2, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-bb, RANTES, TNF, and VEGF) associated with Th1 and Th2 cytokine homeostasis. IL-10 and G-CSF levels were elevated in the asymptomatic group when compared with the healthy group (P = .031 and .041, resp.). The median ratios of IL-1β:5, IL-1β:10, IL-1β:G-CSF, IL-1β:Eotaxin, IL-12:G-CSF, IL-15:10, IL-17:G-CSF, IL-17:Eotaxin, TNF:IL-4, TNF:IL-5, and TNF:G-CSF were significantly different among the two groups. Thus, asymptomatic malaria carriage may be linked to circulating levels of IL-10 and G-CSF.
Collapse
|
19
|
Joos C, Marrama L, Polson HEJ, Corre S, Diatta AM, Diouf B, Trape JF, Tall A, Longacre S, Perraut R. Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. PLoS One 2010; 5:e9871. [PMID: 20360847 PMCID: PMC2845614 DOI: 10.1371/journal.pone.0009871] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/12/2010] [Indexed: 11/18/2022] Open
Abstract
Background Effective vaccines to combat malaria are urgently needed, but have proved elusive in the absence of validated correlates of natural immunity. Repeated blood stage infections induce antibodies considered to be the main arbiters of protection from pathology, but their essential functions have remained speculative. Methodology/Principal Findings This study evaluated antibody dependent respiratory burst (ADRB) activity in polymorphonuclear neutrophils (PMN) induced by Plasmodium falciparum merozoites and antibodies in the sera of two different African endemic populations, and investigated its association with naturally acquired clinical protection. Respiratory bursts by freshly isolated PMN were quantified by chemiluminescence readout in the presence of isoluminol, which preferentially detects extra-cellular reactive oxygen species (ROS). Using a standardized, high throughput protocol, 230 sera were analyzed from individuals of all age groups living in meso- (Ndiop) or holo-endemic (Dielmo) Senegalese villages, and enrolled in a cross-sectional prospective study with intensive follow-up. Statistical significance was determined using non-parametric tests and Poisson regression models. The most important finding was that PMN ADRB activity was correlated with acquired clinical protection from malaria in both high and low transmission areas (P = 0.006 and 0.036 respectively). Strikingly, individuals in Dielmo with dichotomized high ADRB indexes were seventeen fold less susceptible to malaria attacks (P = 0.006). Complementary results showed that ADRB activity was (i) dependent on intact merozoites and IgG opsonins, but not parasitized erythrocytes, or complement, (ii) correlated with merozoite specific cytophilic IgG1 and IgG3 antibody titers (P<0.001 for both), and (iii) stronger in antisera from a holo-endemic compared to a meso-endemic site (P = 0.002), and reduced in asymptomatic carriers (P<0.001). Conclusions/Significance This work presents the first clearly demonstrated functional antibody immune correlate of clinical protection from Plasmodium falciparum malaria, and begs the question regarding the importance of ADRB by PMN for immune protection against malaria in vivo.
Collapse
Affiliation(s)
- Charlotte Joos
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal
- Institut Pasteur, CNRS, URA 1961, Laboratoire de Vaccinologie Parasitaire, Paris, France
| | - Laurence Marrama
- Institut Pasteur de Dakar, Unité d'Epidémiologie, Dakar, Sénégal
| | - Hannah E. J. Polson
- Institut Pasteur, CNRS, URA 1961, Laboratoire de Vaccinologie Parasitaire, Paris, France
| | - Sandra Corre
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal
| | | | - Babacar Diouf
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal
| | | | - Adama Tall
- Institut Pasteur de Dakar, Unité d'Epidémiologie, Dakar, Sénégal
| | - Shirley Longacre
- Institut Pasteur, CNRS, URA 1961, Laboratoire de Vaccinologie Parasitaire, Paris, France
- * E-mail:
| | - Ronald Perraut
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal
| |
Collapse
|
20
|
Abstract
The complexity and number of antigens (Ags) seen during an immune response has hampered the development of malaria vaccines. Antibodies (Abs) play an important role in immunity to malaria and their passive administration is effective at controlling the disease. Abs represent approximately 25% of all proteins undergoing clinical trials, and these 'smart biologicals' have undergone a major revival with the realization that Abs lie at the interface between innate and adaptive immunity. At least 18 Abs have FDA approval for clinical use and approximately 150 are in clinical trials, the majority for the treatment of cancer, allograft rejection or autoimmune disease. Despite these triumphs none are in development for malaria, principally because they are perceived as being too expensive for a disease mainly afflicting poor and marginalized populations. Although unlikely, at least in the foreseeable future, that Ab-based prophylaxis will be made available to the millions of people at risk from malaria, they may be incorporated into current vaccine approaches, since Abs act as correlates of protection in studies aimed at defining the best Ags to include in vaccines. Abs may also form the basis for novel vaccination strategies by targeting Ags to appropriate antigen presenting cells. Therefore, to develop the most efficacious vaccines it will be necessary to fully understand which Abs and Fc-receptors (FcRs) are best engaged for a positive outcome.
Collapse
Affiliation(s)
- R J Pleass
- Institute of Genetics, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
21
|
Inhibition of erythrocyte invasion and Plasmodium falciparum merozoite surface protein 1 processing by human immunoglobulin G1 (IgG1) and IgG3 antibodies. Infect Immun 2009; 77:5659-67. [PMID: 19805526 DOI: 10.1128/iai.00167-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific antibodies (Abs) to the 19-kDa carboxy-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP1(19)) play an important role in protective immunity to malaria. Mouse monoclonal Abs (MAbs) 12.10 and 12.8 recognizing MSP1(19) can inhibit red cell invasion by interfering with MSP1 processing on the merozoite surface. We show here that this ability is dependent on the intact Ab since Fab and F(ab')(2) fragments derived from MAb 12.10, although capable of binding MSP1 with high affinity and competing with the intact antibody for binding to MSP1, were unable to inhibit erythrocyte invasion or MSP1 processing. The DNA sequences of the variable (V) regions of both MAbs 12.8 and 12.10 were obtained, and partial amino acid sequences of the same regions were confirmed by mass spectrometry. Human chimeric Abs constructed by using these sequences, which combine the original mouse V regions with human gamma1 and gamma3 constant regions, retain the ability to bind to both parasites and recombinant MSP1(19), and both chimeric human immunoglobulin G1s (IgG1s) were at least as good at inhibiting erythrocyte invasion as the parental murine MAbs 12.8 and 12.10. Furthermore, the human chimeric Abs of the IgG1 class (but not the corresponding human IgG3), induced significant NADPH-mediated oxidative bursts and degranulation from human neutrophils. These chimeric human Abs will enable investigators to examine the role of human Fcgamma receptors in immunity to malaria using a transgenic parasite and mouse model and may prove useful in humans for neutralizing parasites as an adjunct to antimalarial drug therapy.
Collapse
|
22
|
McIntosh RS, Shi J, Jennings RM, Chappel JC, de Koning-Ward TF, Smith T, Green J, van Egmond M, Leusen JHW, Lazarou M, van de Winkel J, Jones TS, Crabb BS, Holder AA, Pleass RJ. The importance of human FcgammaRI in mediating protection to malaria. PLoS Pathog 2007; 3:e72. [PMID: 17511516 PMCID: PMC1868954 DOI: 10.1371/journal.ppat.0030072] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022] Open
Abstract
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria. Malaria rivals HIV and tuberculosis as the world's most deadly infection killing a child every 30 seconds. Antibodies and their receptors (Fc-receptors) have been shown to be vital for the development of protective immunity, and as such they act as correlates of protection in studies aimed at defining the best antigens to incorporate into current vaccines. Understanding antibody types and Fc-receptors that optimally induce immunity is therefore vital to developing the best vaccines. Surrogate markers of antibody efficacy currently rely on in vitro assays that are laborious and difficult to reproduce. It remains unclear if such in vitro assays are predictive of functional immunity in humans due to the lack of suitable animal models permissive for Plasmodium falciparum. Here, we create a transgenic in vivo mouse model that has significant advantage over the use of new world primates, the only other model for human malaria. We demonstrate that this model defines an Fc-dependent mechanism of parasite destruction that cannot be assessed in current in vitro assays. The model provides both a test for therapeutic antibody efficacy prior to clinical trials in humans and an important tool in malaria vaccine development.
Collapse
Affiliation(s)
- Richard S McIntosh
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Jianguo Shi
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Richard M Jennings
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Jonathan C Chappel
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
- Medical Research Council Technology, London, United Kingdom
| | | | - Tim Smith
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Judith Green
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU Medical Centre, Amsterdam, Netherlands
| | - Jeanette H. W Leusen
- Immunotherapy Laboratory, Department of Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Maria Lazarou
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Jan van de Winkel
- Immunotherapy Laboratory, Department of Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
- Genmab, Utrecht, Netherlands
| | - Tarran S Jones
- Medical Research Council Technology, London, United Kingdom
| | - Brendan S Crabb
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anthony A Holder
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
- * To whom correspondence should be addressed. E-mail: (AAH); (RJP)
| | - Richard J Pleass
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
- * To whom correspondence should be addressed. E-mail: (AAH); (RJP)
| |
Collapse
|
23
|
Das P, Grewal JS, Mahajan B, Chauhan VS. Comparison of cellular and humoral responses to recombinant protein and synthetic peptides of exon2 region of Plasmodium falciparum erythrocyte membrane protein1 (PfEMP1) among malaria patients from an endemic region. Parasitol Int 2007; 56:51-9. [PMID: 17258500 DOI: 10.1016/j.parint.2006.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/16/2006] [Accepted: 11/25/2006] [Indexed: 10/23/2022]
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the surface of parasitized red blood cells (PRBCs) mediate adhesion of PRBCs to host vascular endothelial receptors and is considered responsible for pathogenesis of severe P. falciparum malaria. The present study was undertaken to measure cellular immune responses and serum antibody responses against recombinant exon2 protein, the most conserved region of PfEMP1, and its synthetic peptides. T cell recognizing this domain could provide universal help to B cells in recognizing variant epitopes located in the extracellular region of PfEMP1. Human peripheral blood mononuclear cells from malaria-exposed immune adults (IA), malaria patients with varying severity, and malaria unexposed healthy donors were stimulated with recombinant exon2 protein and six synthetic peptides from its sequence to estimate the proliferative, IFN-gamma, and IL-4 responses. Antibody responses against these synthetic peptides and exon2 protein were also studied. Positive proliferative, IFN-gamma, and IL-4 responses in IA group each were 60% with recombinant exon2 protein and 27-47% with different synthetic peptides. Antibody recognition was observed in 67% with exon2 and between 40 and 53% with different peptides. In malaria patients, frequency and magnitude of proliferative response, IL-4 concentration, and antibody recognition were far less than immune adults but IFN-gamma response was almost similar. Proportion of positive responders and the magnitude of response to synthetic peptides were low. Also, there was no consistency in response of different peptides towards proliferative, cytokine, and antibody responses in IA and malaria patient groups except for peptide 1. We presume peptide 1 is a potential vaccine candidate and different cocktails containing peptide 1 are being evaluated for their T cell immunogenicity.
Collapse
Affiliation(s)
- Padmalaya Das
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, P. Box No. 10504, New Delhi - 110067, India
| | | | | | | |
Collapse
|
24
|
Abstract
Abs (antibodies) are complex glycoproteins that play a crucial role in protective immunity to malaria, but their effectiveness in mediating resistance can be enhanced by genetically engineered modifications that improve on nature. These Abs also aid investigation of immune mechanisms operating to control the disease and are valuable tools in developing neutralization assays for vaccine design. This review explores how this might be achieved.
Collapse
Affiliation(s)
- Jianguo Shi
- Institute of Genetics, School of Biology, University of Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
25
|
Kumaratilake LM, Ferrante A. Unravelling the cytokine network in malaria: reply. ACTA ACUST UNITED AC 2005; 9:56-7. [PMID: 15463706 DOI: 10.1016/0169-4758(93)90034-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Ferrante A, Rzepczyk CM. Atypical IgG subclass antibody responses to Plasmodium falciparum asexual stage antigens. ACTA ACUST UNITED AC 2005; 13:145-8. [PMID: 15275101 DOI: 10.1016/s0169-4758(97)89812-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of Plasmodium falciparum to induce long-term immunity in the absence of continual restimulation has often been questioned. Recently it has been shown that, while a high proportion of individuals living in areas of high malaria endemicity have antibodies to merozoite surface antigen 2 (MSA2; MSP2) of P. falciparum, these antibodies are primarily of the IgG3 subclass. In this article, Antonio Ferrante and Christine Rzepczyk discuss how such atypical antibody responses may in part explain why immunity to malaria has been widely perceived to be short-lived.
Collapse
Affiliation(s)
- A Ferrante
- Department of Immunopathology. The Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | | |
Collapse
|
27
|
Ellis TN, Beaman BL. Interferon-gamma activation of polymorphonuclear neutrophil function. Immunology 2004; 112:2-12. [PMID: 15096178 PMCID: PMC1782470 DOI: 10.1111/j.1365-2567.2004.01849.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/16/2004] [Indexed: 11/29/2022] Open
Abstract
As current research illuminates the dynamic interplay between the innate and acquired immune responses, the interaction and communication between these two arms has yet to be fully investigated. Polymorphonuclear neutrophils (PMNs) and interferon-gamma (IFN-gamma) are known critical components of innate and acquired immunity, respectively. However, recent studies have demonstrated that these two components are not entirely isolated. Treatment of PMNs with IFN-gamma elicits a variety of responses depending on stimuli and environmental conditions. These responses include increased oxidative burst, differential gene expression, and induction of antigen presentation. Many of these functions have been overlooked in PMNs, which have long been classified as terminal phagocytic cells incapable of protein synthesis. As this review reports, the old definition of the PMN is in need of an update, as these cells have demonstrated their ability to mediate the transition between the innate and acquired immune responses.
Collapse
Affiliation(s)
- Terri N Ellis
- Department of Medical Microbiology and Immunology, University of California School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Pleass RJ, Ogun SA, McGuinness DH, van de Winkel JGJ, Holder AA, Woof JM. Novel antimalarial antibodies highlight the importance of the antibody Fc region in mediating protection. Blood 2003; 102:4424-30. [PMID: 12855589 DOI: 10.1182/blood-2003-02-0583] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parasite drug resistance and difficulties in developing effective vaccines have precipitated the search for alternative therapies for malaria. The success of passive immunization suggests that immunoglobulin (Ig)-based therapies are effective. To further explore the mechanism(s) by which antibody mediates its protective effect, we generated human chimeric IgG1 and IgA1 and a single-chain diabody specific for the C-terminal 19-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP119), a major target of protective immune responses. These novel human reagents triggered in vitro phagocytosis of merozoites but, unlike their parental mouse IgG2b, failed to protect against parasite challenge in vivo. Therefore, the Fc region appears critical for mediating protection in vivo, at least for this MSP119 epitope. Such antibodies may serve as prototype therapeutic agents, and as useful tools in the development of in vitro neutralization assays with Plasmodium parasites.
Collapse
Affiliation(s)
- Richard J Pleass
- School of Biology, University Park, Nottingham, NG7 2RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
29
|
Mohammed AO, Elghazali G, Mohammed HB, Elbashir MI, Xu S, Berzins K, Venge P. Human neutrophil lipocalin: a specific marker for neutrophil activation in severe Plasmodium falciparum malaria. Acta Trop 2003; 87:279-85. [PMID: 12826303 DOI: 10.1016/s0001-706x(03)00116-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have earlier indicated neutrophil activation in severe malaria by measuring myeloperoxidase (MPO) and lysozyme, leukocyte granule proteins secreted by neutrophils as well as by other blood cells (monocytes/macrophages). In this study we evaluated the plasma levels of human neutrophil lipocalin (HNL), a specific neutrophil granule protein, in relation to previously reported markers MPO and lysozyme, for clinical significance in indicating severe malaria. For this purpose, plasma samples were analyzed from 65 individuals with severe malaria, mild malaria or malaria negative, all living in the Gedarif area of Sudan. The plasma levels of HNL were significantly higher in the group of patients with severe malaria as compared with the other two groups. Plasma levels of HNL correlated significantly to those of MPO and lysozyme, as well as to body temperature, degree of parasitaemia and pulse rate. These results confirm our previous findings that neutrophils are activated in-patients with severe malaria and the level of HNL is a good marker in this context.
Collapse
Affiliation(s)
- Abdelrahim O Mohammed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Box 102 Khartoum, Sudan
| | | | | | | | | | | | | |
Collapse
|
30
|
Kushwaha A, Rao PP, Suresh RP, Chauhan VS. Immunogenicity of recombinant fragments of Plasmodium falciparum acidic basic repeat antigen produced in Escherichia coli. Parasite Immunol 2001; 23:435-44. [PMID: 11489167 DOI: 10.1046/j.1365-3024.2001.00390.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The acidic basic repeat antigen (ABRA) of Plasmodium falciparum is a potential vaccine candidate against erythrocytic stages of malaria. We report, for the first time, the immunological characteristics of recombinant ABRA constructs. The recombinant proteins representing different fragments of ABRA were expressed in Escherichia coli, either as fusions with maltose binding protein or as 6X histidine tagged molecules, and purified by affinity chromatography. Immunogenicity studies with these constructs in rabbits and mice indicated that the N-terminal region is the least immunogenic part of ABRA. T-cell proliferation experiments in mice immunized with these constructs revealed that the T-cell epitopes were localized in the middle portion of the protein. More importantly, the purified immunoglobulin G specific to middle and C-terminal fragments prevented parasite growth at levels approaching 80-90%. We found that these proteins were also recognized by sera from P. falciparum-infected patients from Rourkela, a malaria endemic zone of India. Our immunogenicity results suggest that potential of ABRA as a vaccine candidate antigen should be investigated further.
Collapse
Affiliation(s)
- A Kushwaha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
31
|
Kumaratilake LM, Ferrante A. Opsonization and phagocytosis of Plasmodium falciparum merozoites measured by flow cytometry. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:9-13. [PMID: 10618269 PMCID: PMC95814 DOI: 10.1128/cdli.7.1.9-13.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 09/16/1999] [Indexed: 11/20/2022]
Abstract
A flow cytometric phagocytosis assay was established to investigate the role of anti-merozoite antibody, complement, and cytokines on the phagocytosis of Plasmodium falciparum merozoites by human neutrophils. This assay involved allowing fluorescein isothiocyanate-labeled merozoites to interact with phagocytes and analysis of the cells on a FACScan with Lysis II software. To differentiate the proportion of neutrophil surface-bound merozoites from the merozoites ingested by neutrophils, the fluorescence of bound merozoites was quenched by adding trypan blue. The data showed that sera from malaria-immune individuals in the Solomon Islands and Papua New Guinea promoted merozoite engulfment by neutrophils. The cytokines tumor necrosis factor alpha, gamma interferon, granulocyte-macrophage colony-stimulating factor, and interleukin-1beta significantly increased the amount and the rate of merozoite phagocytosis by neutrophils. Optimum merozoite phagocytosis occurred when both cytokines and anti-malarial antibody were present.
Collapse
Affiliation(s)
- L M Kumaratilake
- Department of Immunopathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia.
| | | |
Collapse
|
32
|
Lougovskoi AA, Okoyeh NJ, Chauhan VS. Mice immunised with synthetic peptide from N-terminal conserved region of merozoite surface antigen-2 of human malaria parasite Plasmodium falciparum can control infection induced by Plasmodium yoelii yoelii 265BY strain. Vaccine 1999; 18:920-30. [PMID: 10580206 DOI: 10.1016/s0264-410x(99)00330-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic peptides representing conserved MSA-2 sequences are being considered as a possible component of a blood stage malaria vaccine. Antibody response towards the entire N-terminal conserved region of MSA-2 and its constituent B-epitope SNTFINNA following immunisation of BALB/c and C57BL/6 mice with different peptide constructs was assessed by ELISA and immunofluorescence antibody test (IFAT). Co-linear synthesis of SNTFINNA-epitope in tandem with the entire N-terminal conserved region peptide (P23) made this construct, namely P8.P23, to be highly immunogenic in both mouse strains, with the antibody response to the SNTFINNA epitope comparable to that following tetanus toxoid protein conjugate immunisation. The antibodies raised specifically recognised the schizont stages of Plasmodium falciparum and Plasmodium yoelii. There was no protection observed upon challenge of immunised BALB/c and C57BL/6 mice with the highly lethal Plasmodium yoelii nigeriensis strain. On the contrary, BALB/c mice immunised with P8.P23 construct were able to resist blood stage infection induced by Plasmodium yoelii yoelii 265BY parasites, while animals inoculated with P23 did not control infection. Affinity purified rabbit anti-SNTFINNA IgG showed more than 60% inhibition of merozoite invasion of fresh erythrocytes in in vitro P. falciparum culture. The low prevalence of antibody response to SNTFINNA-epitope, tested in a dot-blot assay, was observed in sera of 80 individuals living in malaria endemic area in a India; the phenomenon may point out the cryptic character of epitopes residing at the N-terminal conserved region of MSA-2.
Collapse
Affiliation(s)
- A A Lougovskoi
- International Centre for Genetic Engineering and Biotechnology, PO Box 10504, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | |
Collapse
|
33
|
Saul A, Lawrence G, Smillie A, Rzepczyk CM, Reed C, Taylor D, Anderson K, Stowers A, Kemp R, Allworth A, Anders RF, Brown GV, Pye D, Schoofs P, Irving DO, Dyer SL, Woodrow GC, Briggs WR, Reber R, Stürchler D. Human phase I vaccine trials of 3 recombinant asexual stage malaria antigens with Montanide ISA720 adjuvant. Vaccine 1999; 17:3145-59. [PMID: 10462251 DOI: 10.1016/s0264-410x(99)00175-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two phase I vaccine trials were conducted to test the immunogenicity and safety of a vaccine containing three recombinant malaria antigens from the asexual stage of Plasmodium falciparum. The three antigens are a fragment of MSP1 (190LCS.T3); MSP2 and a portion of RESA and were formulated in Montanide ISA720 adjuvant. These trials investigated the dose response of each antigen for eliciting both antibody and T-cell responses and the immunogenicity of a mixture of the antigens compared with the antigens injected separately. All three antigens elicited both antibody and T-cell responses. Strong T-cell responses were observed with 190LCS.T3 and RESA with stimulation indices exceeding 100 for peripheral blood leucocytes in some individuals. The antibody responses were generally weak. The human antibody responses observed with MSP2 in Montanide ISA720 were not significantly different from those obtained in an earlier trial which used MSP2 with alum as the adjuvant. No antigenic competition was observed: volunteers receiving a mixture of antigens had similar responses to those receiving the three antigens at separate sites. Tenderness and pain at the injection site were common over the first few days following immunization. In some volunteers, especially those receiving the highest doses tested, there was a delayed reaction at the injection site with pain and swelling occurring approximately 10 days after injection.
Collapse
Affiliation(s)
- A Saul
- CRC for Vaccine Technology and Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li YQ, Hii CST, Costabile M, Goh D, Der CJ, Ferrante A. Regulation of Lymphotoxin Production by the p21 ras-raf-MEK-ERK Cascade in PHA/PMA-Stimulated Jurkat Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Although the production of lymphotoxin (LT) from activated Th1 lymphocytes has been reported extensively, the intracellular signaling mechanisms that regulate this T cell function remain totally undefined. We have examined whether the p21ras-raf-1-mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase (MEK)-ERK cascade plays a role in regulating the production of LT, because the activity of these signaling molecules is up-regulated in activated T lymphocytes. Transfection of Jurkat leukemic T cells with a dominant negative mutant of p21ras (ras17N or ras15A), raf-1 (raf 1–130), or ERK1 (Erk1-K71R) resulted in the suppression of the mitogen/phorbol ester-stimulated production/secretion of LT. This suppression was accompanied by a parallel inhibition of mitogen-stimulated ERK activation. The selective antagonist of MEK1 activation, PD98059, also attenuated the mitogen-stimulated or anti-CD3 Ab and phorbol ester-stimulated production of LT from Jurkat cells or peripheral blood T lymphocytes. This study provides, for the first time, direct evidence that the p21ras-raf-MEK-ERK cascade plays a vital role in regulating the production of LT.
Collapse
Affiliation(s)
- Yong Q. Li
- *Department of Immunopathology, Women’s and Children’s Hospital, North Adelaide, Australia; and
| | - Charles S. T. Hii
- *Department of Immunopathology, Women’s and Children’s Hospital, North Adelaide, Australia; and
| | - Maurizio Costabile
- *Department of Immunopathology, Women’s and Children’s Hospital, North Adelaide, Australia; and
| | - David Goh
- *Department of Immunopathology, Women’s and Children’s Hospital, North Adelaide, Australia; and
| | - Channing J. Der
- †Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Antonio Ferrante
- *Department of Immunopathology, Women’s and Children’s Hospital, North Adelaide, Australia; and
| |
Collapse
|
35
|
Fonjungo PN, Stüber D, McBride JS. Antigenicity of recombinant proteins derived from rhoptry-associated protein 1 of Plasmodium falciparum. Infect Immun 1998; 66:1037-44. [PMID: 9488393 PMCID: PMC108013 DOI: 10.1128/iai.66.3.1037-1044.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1997] [Accepted: 12/03/1997] [Indexed: 02/06/2023] Open
Abstract
Rhoptry-associated protein 1 (RAP1) of Plasmodium falciparum is a potential component of a malaria vaccine. We have expressed in Escherichia coli eight recombinant RAP1 proteins representing almost the entire sequence of the mature protein and assessed the antigenicity of the proteins by immunization of mice. Antisera to six of the recombinant proteins reacted specifically with parasite-derived RAP1 (PfRAP1), as determined by indirect immunofluorescence and by immunoblotting. These proteins were then used in enzyme-linked immunosorbent assays to evaluate human antibody responses to RAP1 during naturally transmitted infections in The Gambia. Immunoglobulin G (IgG) antibodies specifically reactive with the recombinant RAP1 proteins are directed mostly towards fragments containing the N-terminal sequences of mature PfRAP1. The most N-terminal segment (residues 23 to 175) contains only minor epitopes, while major epitopes are outside this region. Antibodies from malaria patients do not compete for a linear epitope recognized by an inhibitory anti-RAP1 monoclonal antibody. Analysis of IgG subclass distribution shows that human anti-RAP1 antibodies are predominantly IgG1.
Collapse
Affiliation(s)
- P N Fonjungo
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Scotland
| | | | | |
Collapse
|
36
|
Wenisch C, Spitzauer S, Florris-Linau K, Rumpold H, Vannaphan S, Parschalk B, Graninger W, Looareesuwan S. Complement activation in severe Plasmodium falciparum malaria. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1997; 85:166-71. [PMID: 9344699 DOI: 10.1006/clin.1997.4417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We determined indices of plasma complement activation (C3, C4, Bb, C4d, iC3b, and SC5b-9), levels of tumor necrosis factor (TNF) and interleukin-6, and the APACHE II score in 23 patients with complicated Plasmodium falciparum malaria. On admission, plasma concentrations of Bb, SC5b-9, and C4d were markedly increased compared to healthy control subjects (n = 24) (4.5 +/- 1.9 vs 1.5 +/- 0.6 mg/L; 1125.7 +/- 496.9 vs 183.2 +/- 76.5 microg/L; and 15.7 +/- 5.7 vs 7.2 +/- 1.4 mg/L, P < 0.01 for all). In contrast C3 and iC3b concentrations were decreased (631.4 +/- 247 vs 947.3 +/- 243.2 and 105 +/- 17.9 vs 151.3 +/- 14.5 mg/L; P < 0.01 for both). Plasma C4 concentrations in malaria were not different from normal controls. Plasma Bb, C3, and iC3b levels normalized on day 7 of treatment, whereas SC5b-9 and C4d levels remained elevated. A significant correlation between elevated TNF levels and Bb (r = 0.507) and SC5b-9 (r = 0.448, P < 0.01 for both) and a negative correlation between iC3b and SC5b-9 and TNF levels existed (r = -0.537 and r = -0.466, P < 0.01 for both). In addition, a significant correlation between C3 and iC3b (r = 0.689) and C4 and C4d (r = 0.737) existed. However, no relation between clinical disease severity and complement fragments existed. The results demonstrate that both the classical and the alternative pathways of the complement system are profoundly activated in complicated malaria.
Collapse
Affiliation(s)
- C Wenisch
- Internal Medicine I, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumaratilake LM, Ferrante A, Robinson BS, Jaeger T, Poulos A. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure. Infect Immun 1997; 65:4152-7. [PMID: 9317021 PMCID: PMC175597 DOI: 10.1128/iai.65.10.4152-4157.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species.
Collapse
Affiliation(s)
- L M Kumaratilake
- Department of Immunology, University of Adelaide, Women's and Children's Hospital, South Australia.
| | | | | | | | | |
Collapse
|
38
|
Lensen AH, Bolmer-Van de Vegte M, van Gemert GJ, Eling WM, Sauerwein RW. Leukocytes in a Plasmodium falciparum-infected blood meal reduce transmission of malaria to Anopheles mosquitoes. Infect Immun 1997; 65:3834-7. [PMID: 9284160 PMCID: PMC175547 DOI: 10.1128/iai.65.9.3834-3837.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mosquitoes are infected with Plasmodium falciparum by taking a blood meal from a gametocyte carrier. Since a mosquito takes a volume of 1 to 2 microl, a blood meal may contain 1 x 10(4) to 3 x 10(4) leukocytes (WBC). The majority of WBC are composed of neutrophils which may phagocytose and kill developing gametes inside the mosquito midgut. Phagocytosis was measured in vitro by a luminol-dependent chemiluminescence (CL) assay. In the presence of P. falciparum gametes, sera from areas of endemicity had an increased CL response compared to controls. In mosquito membrane feeding experiments some such sera showed a transmission reduction which was related to the presence of viable WBC. The results of this study suggest that phagocytosis of opsonized gametes inside the mosquito midgut occurs and can contribute to a reduction in the transmission of P. falciparum parasites.
Collapse
Affiliation(s)
- A H Lensen
- Department of Medical Microbiology, University Hospital Nijmegen, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Rzepczyk CM, Hale K, Woodroffe N, Bobogare A, Csurhes P, Ishii A, Ferrante A. Humoral immune responses of Solomon Islanders to the merozoite surface antigen 2 of Plasmodium falciparum show pronounced skewing towards antibodies of the immunoglobulin G3 subclass. Infect Immun 1997; 65:1098-100. [PMID: 9038322 PMCID: PMC175094 DOI: 10.1128/iai.65.3.1098-1100.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The immunoglobulin G (IgG) subclass distribution of antibodies to merozoite surface antigen 2 of Plasmodium falciparum in Solomon Islanders showed marked skewing towards the IgG3 subclass. This was not observed with crude P. falciparum schizont antigen. IgG3 responses may be short-lived and require repeated restimulation for their maintenance. This may be provided by persistent infection (premunition) or new infections.
Collapse
Affiliation(s)
- C M Rzepczyk
- Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, Herston, Brisbane.
| | | | | | | | | | | | | |
Collapse
|
40
|
Brandonisio O, Panunzio M, Faliero SM, Ceci L, Fasanella A, Puccini V. Evaluation of polymorphonuclear cell and monocyte functions in Leishmania infantum-infected dogs. Vet Immunol Immunopathol 1996; 53:95-103. [PMID: 8941972 DOI: 10.1016/0165-2427(96)05562-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Leishmania infantum is the causative agent of canine leishmaniasis in the Mediterranean area. The aspects of the canine immune response which may explain the chronic severe disease in these animals have not been well investigated. Therefore, in this work we have evaluated the parasite killing ability by circulating polymorphonuclear (PMN) cells and monocytes in dogs with spontaneous leishmaniasis and in healthy dogs. Moreover, in order to analyse the mechanisms responsible for killing activity, we evaluated the oxidative burst of circulating PMN cells, in terms of O2- and H2O2 production. The killing ability of infected dog PMN cells and monocytes was significantly lower than in a group of healthy dogs and a group of infected dogs treated with meglumine antimoniate and without symptoms of leishmaniasis. Superoxide anion and hydrogen peroxide production by PMN cells was significantly lower in a group of Leishmania-infected dogs than in healthy dogs, suggesting that these mediators may be involved in the reduced killing activity of infected dogs.
Collapse
Affiliation(s)
- O Brandonisio
- Istituto di Microbiologia Medica, Policlinico, Bari, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The complement system is a first-line defence mechanism against parasites. All parasites causing deep infections and getting into contact with human plasma must, in one way or another, avoid the destructive effect of this powerful defence system. Several specific strategies of complement resistance of parasites have been reported, and this rather large spectrum of regulatory mechanisms covers the whole cascade of complement activation. Analysis of the known and elucidation of the yet unknown mechanisms will probably help in the development of new therapeutic and preventive approaches to control the different parasitic diseases. This paper will review the complement resistance mechanisms reported and their utilization by various parasites.
Collapse
|
42
|
Kumaratilake LM, Rathjen DA, Mack P, Widmer F, Prasertsiriroj V, Ferrante A. A synthetic tumor necrosis factor-alpha agonist peptide enhances human polymorphonuclear leukocyte-mediated killing of Plasmodium falciparum in vitro and suppresses Plasmodium chabaudi infection in mice. J Clin Invest 1995; 95:2315-23. [PMID: 7738194 PMCID: PMC295845 DOI: 10.1172/jci117923] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A peptide corresponding to residues 70-80 of the TNF-alpha polypeptide was synthesized and shown to enhance human PMN-mediated killing of Plasmodium falciparum in vitro and reduced the Plasmodium chabaudi parasitemia in mice. Studies of the mechanism of action showed that the peptide, TNF(70-80), stimulated and primed PMN for an increased respiratory burst and release of granule constituents in response to a second agonist. The PMN-stimulatory activity of the peptide was inhibited by mAbs against the p55 and p75 TNF receptors and a TNF-neutralizing mAb. Analysis of PMN receptor expression showed that CR3 (CD18/CD11b) and Fc gamma RIII were upregulated by TNF(70-80), which was consistent with the peptide's ability to enhance parasite killing by PMN. The peptide, unlike TNF, did not increase the expression of adhesion molecules on endothelial cells and failed to promote binding of P. falciparum-infected erythrocytes to endothelial cells. TNF(70-80) also inhibited the TNF-induced increase in adhesion of P. falciparum-infected erythrocytes to endothelial cells. The results demonstrate that the host-protective effects of TNF can be retained while toxic effects are eliminated using a selected, characterized subunit of the cytokine.
Collapse
Affiliation(s)
- L M Kumaratilake
- Department of Immunology, University of Adelaide, Women's and Children's Hospital, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Evidence for a role for macrophages/monocytes is largely based on in vitro not in vivo observations. Products of activated macrophages particularly tumor necrosis factor-alpha (TNF alpha) are implicated in the killing of parasites. Access of cytokines and other factors might be through intracellular channels in the infected red blood cell. The cytotoxic elements in 'crisis' serum are uncertain but may include TNF, gamma-interferon (IFN gamma), and lipid peroxidases. TNF alpha in excess, contributes to pathology. TNF, acting as a pyrogen and raising body temperature, may moderate parasite density by killing late asexual stages. Nitric oxide and other nitrogen intermediates, products of activated macrophages and a number of other cell types, have been demonstrated both in vitro and in vivo to have a protective role. Phagocytosis of infected erythrocytes and merozoites, enhanced by the presence of immune serum in some systems, has been reported. Killing of parasites by neutrophils is enhanced by immune serum and cytokines TNF alpha, IFN gamma and lymphotoxin. A role for natural killer cells has been suggested. Evidence for antibody-dependent cellular cytotoxicity (ADCC) is controversial. Antibody-dependent cellular inhibitory activity (ADCI) (blood monocytes plus immune IgG) has been described for P. falciparum. Evidence for an important role for complement is conflicting; an involvement in the protective activity of phagocytic cells is reported. Antibody isotypes have been relatively little studied. In murine systems IgG2a may have a role early in the protective immune response followed by IgG1. In P. falciparum ADCI activity is mediated by IgG1 and IgG3, two cytophilic isotypes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Phillips
- Department of Zoology, University of Glasgow, Scotland, UK
| |
Collapse
|
44
|
Kumaratilake LM, Ferrante A. T-cell cytokines in malaria: their role in the regulation of neutrophil- and macrophage-mediated killing of Plasmodium falciparum asexual blood forms. RESEARCH IN IMMUNOLOGY 1994; 145:423-9. [PMID: 7899707 DOI: 10.1016/s0923-2494(94)80172-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- L M Kumaratilake
- Department of Immunology, Women's and Children's Hospital, Adelaide, South Australia
| | | |
Collapse
|
45
|
Abstract
Those developmental stages of malaria parasites that infect erythrocytes are responsible for the severe morbidity and mortality associated with this disease. The nature and specificity of the slowly acquired immunity seen in endemic populations remain to be defined, but significant progress has been made recently in identifying specific blood-stage proteins, characterizing immune responses to them, and exploring the dynamics of non-specific host responses to infection.
Collapse
Affiliation(s)
- C A Long
- Department of Microbiology and Immunology, Hahnemann University, Philadelphia, Pennsylvania 19102-1192
| |
Collapse
|
46
|
Abstract
The susceptibility of complement-deficient individuals to various severe infections, and studies of the effector mechanisms involved in the destruction of infectious agents, demonstrate the importance of complement in providing an effective host defense system. It is also becoming increasingly apparent that complement not only plays a role in 'natural' defenses against infection and in enhancing the antibody-mediated effector mechanisms, but also influences adaptive immune responses directly.
Collapse
Affiliation(s)
- S Tomlinson
- Department of Pathology, New York University Medical Center, New York 10016
| |
Collapse
|
47
|
Semnani MJ, Kabbur MB, Jain NC. Activation of bovine neutrophil functions by interferon-gamma, tumour necrosis factor-alpha, and interleukin-1 alpha. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf00368110] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|