1
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Genetics, Toxicity, and Distribution of Enterohemorrhagic Escherichia coli Hemolysin. Toxins (Basel) 2019; 11:toxins11090502. [PMID: 31470552 PMCID: PMC6784236 DOI: 10.3390/toxins11090502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
The ability to produce enterohemolysin is regarded as a potential virulence factor for enterohemorrhagic Escherichia coli (EHEC) and is frequently associated with severe human diseases such as hemorrhagic colitis (HC) and the hemolytic uremic syndrome (HUS). The responsible toxin, which has also been termed EHEC-hemolysin (EHEC-Hly, syn. Ehx), belongs to the Repeats in Toxin (RTX)-family of pore-forming cytolysins and is characterized by the formation of incomplete turbid lysis zones on blood agar plates containing defibrinated sheep erythrocytes. Besides the expression of Shiga toxins (Stx) and the locus of enterocyte effacement (LEE), EHEC-Hly is a commonly used marker for the detection of potential pathogenic E. coli strains, although its exact role in pathogenesis is not completely understood. Based on the current knowledge of EHEC-Hly, this review describes the influence of various regulator proteins, explains the different mechanisms leading to damage of target cells, discusses the diagnostic role, and gives an insight of the prevalence and genetic evolution of the toxin.
Collapse
|
3
|
Osickova A, Balashova N, Masin J, Sulc M, Roderova J, Wald T, Brown AC, Koufos E, Chang EH, Giannakakis A, Lally ET, Osicka R. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg Microbes Infect 2018; 7:178. [PMID: 30405113 PMCID: PMC6221878 DOI: 10.1038/s41426-018-0179-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiri Masin
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Roderova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Tomas Wald
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Department of Cell and Molecular Biology at Karolinska Institutet, Stockholm, Sweden
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.
| |
Collapse
|
4
|
Brown AC, Boesze-Battaglia K, Balashova NV, Mas Gómez N, Speicher K, Tang HY, Duszyk ME, Lally ET. Membrane localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS One 2018; 13:e0205871. [PMID: 30335797 PMCID: PMC6193665 DOI: 10.1371/journal.pone.0205871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane.
Collapse
Affiliation(s)
- Angela C. Brown
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nataliya V. Balashova
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nestor Mas Gómez
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kaye Speicher
- Wistar Institute, Philadelphia, PA, United States of America
| | - Hsin-Yao Tang
- Wistar Institute, Philadelphia, PA, United States of America
| | - Margaret E. Duszyk
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Edward T. Lally
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Vázquez RF, Daza Millone MA, Pavinatto FJ, Herlax VS, Bakás LS, Oliveira ON, Vela ME, Maté SM. Interaction of acylated and unacylated forms of E. coli alpha-hemolysin with lipid monolayers: a PM-IRRAS study. Colloids Surf B Biointerfaces 2017; 158:76-83. [PMID: 28683345 DOI: 10.1016/j.colsurfb.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
Uropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions. Polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) experiments were performed at the air-water interface, and lipid monolayers mimicking the outer leaflet of red-blood-cell membranes were used as model systems for the study of protein-membrane interaction. According to surface-pressure measurements, incorporation of the acylated protein into the lipid films was faster than that of the nonacylated form. PM-IRRAS measurements revealed that the adsorption of the proteins to the lipid monolayers induced disorder in the lipid acyl chains and also changed the elastic properties of the films independently of protein acylation. No significant difference was observed between HlyA and ProHlyA in the interaction with the model lipid monolayers; but when these proteins became adsorbed on a bare air-water interface, they adopted different secondary structures. The assumption of the correct protein conformation at a hydrophobic-hydrophilic interface could constitute a critical condition for biologic activity.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - María A Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Felippe J Pavinatto
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo, SP, Brazil
| | - Vanesa S Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Laura S Bakás
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas. Universidad Nacional de La Plata. 47 y 115, 1900, La Plata, Argentina
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo, SP, Brazil
| | - María E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
6
|
Vázquez RF, Maté SM, Bakás LS, Muñoz-Garay C, Herlax VS. Relationship between intracellular calcium and morphologic changes in rabbit erythrocytes: Effects of the acylated and unacylated forms of E. coli alpha-hemolysin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1944-53. [PMID: 27206406 DOI: 10.1016/j.bbamem.2016.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/15/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina
| | - Laura S Bakás
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Mexico
| | - Vanesa S Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
7
|
Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:538-45. [PMID: 26299820 DOI: 10.1016/j.bbamem.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Hemolysin from uropathogenic Escherichia coli (UPEC) is a hemolytic and cytotoxic protein active against a broad range of species and cell types. Expression of hemolysin correlates with severity of infection, as up to 78% of UPEC isolates from pyelonephritis cases express hemolysin. Despite decades of research on hemolysin activity, the mechanism of intoxication and the function of hemolysin in UPEC infection remain elusive. Early in vitro research established the role of hemolysin as a lytic protein at high doses. It is hypothesized that hemolysin is secreted at sublytic doses in vivo and recent research has focused on understanding the more subtle effects of hemolysin both in vitro and in elegant infection models in vivo, including inoculation by micropuncture of individual kidney nephrons. As the field continues to evolve, comparisons of hemolysin function in isolates from a range of UTI infections will be important for delineating the role of this toxin. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Rodney A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Bárcena-Uribarri I, Benz R, Winterhalter M, Zakharian E, Balashova N. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1536-44. [PMID: 25858109 DOI: 10.1016/j.bbamem.2015.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
Pediatric septic arthritis in patients under age of four is frequently caused by the oral Gram-negative bacterium Kingella kingae. This organism may be responsible for a severe form of infective endocarditis in otherwise healthy children and adults. A major virulence factor of K. kingae is RtxA, a toxin that belongs to the RTX (Repeats-in-ToXin) group of secreted pore forming toxins. To understand the RtxA effects on host cell membranes, the toxin activity was studied using planar lipid bilayers. K. kingae strain PYKK081 and its isogenic RtxA-deficient strain, KKNB100, were tested for their ability to form pores in artificial membranes of asolectin/n-decane. RtxA, purified from PYKK081, was able to rapidly form pores with an apparent diameter of 1.9nm as measured by the partition of nonelectrolytes in the pores. The RtxA channels are cation-selective and showed strong voltage-dependent gating. In contrast to supernatants of PYKK081, those of KKNB100 did not show any pore forming activity. We concluded that RtxA toxin is the only secreted protein from K. kingae forming large channels in host cell membranes where it induces cation flux leading to programmed cell death. Furthermore, our findings suggested that the planar lipid bilayer technique can effectively be used to test possible inhibitors of RTX toxin activity and to investigate the mechanism of the toxin binding to the membrane.
Collapse
Affiliation(s)
| | - Roland Benz
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Eleonora Zakharian
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Benz R, Maier E, Bauer S, Ludwig A. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One 2014; 9:e112248. [PMID: 25463653 PMCID: PMC4251834 DOI: 10.1371/journal.pone.0112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.
Collapse
Affiliation(s)
- Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail:
| | - Elke Maier
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Susanne Bauer
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Albrecht Ludwig
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 2014; 304:521-9. [DOI: 10.1016/j.ijmm.2014.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
|
11
|
Brown AC, Balashova NV, Epand RM, Epand RF, Bragin A, Kachlany SC, Walters MJ, Du Y, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J Biol Chem 2013; 288:23607-21. [PMID: 23792963 DOI: 10.1074/jbc.m113.486654] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its β2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells lacking either LFA-1 or cholesterol. Here, the interaction of LtxA with cholesterol was measured using surface plasmon resonance and differential scanning calorimetry. The binding of LtxA to phospholipid bilayers increased by 4 orders of magnitude in the presence of 40% cholesterol relative to the absence of cholesterol. The affinity was specific to cholesterol and required an intact secondary structure. LtxA contains two cholesterol recognition/amino acid consensus (CRAC) sites; CRAC(336) ((333)LEEYSKR(339)) is highly conserved among RTX toxins, whereas CRAC(503) ((501)VDYLK(505)) is unique to LtxA. A peptide corresponding to CRAC(336) inhibited the ability of LtxA to kill Jurkat (Jn.9) cells. Although peptides corresponding to both CRAC(336) and CRAC(503) bind cholesterol, only CRAC(336) competitively inhibited LtxA binding to this sterol. A panel of full-length LtxA CRAC mutants demonstrated that an intact CRAC(336) site was essential for LtxA cytotoxicity. The conservation of CRAC(336) among RTX toxins suggests that this mechanism may be conserved among RTX toxins.
Collapse
Affiliation(s)
- Angela C Brown
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dhakal BK, Mulvey MA. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 2012; 11:58-69. [PMID: 22264513 DOI: 10.1016/j.chom.2011.12.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/05/2011] [Accepted: 12/02/2011] [Indexed: 12/28/2022]
Abstract
Uropathogenic Escherichia coli (UPEC), which are the leading cause of both acute and chronic urinary tract infections, often secrete a labile pore-forming toxin known as α-hemolysin (HlyA). We show that stable insertion of HlyA into epithelial cell and macrophage membranes triggers degradation of the cytoskeletal scaffolding protein paxillin and other host regulatory proteins, as well as components of the proinflammatory NFκB signaling cascade. Proteolysis of these factors requires host serine proteases, and paxillin degradation specifically involves the serine protease mesotrypsin. The induced activation of mesotrypsin by HlyA is preceded by redistribution of mesotrypsin precursors from the cytosol into foci along microtubules and within nuclei. HlyA intoxication also stimulated caspase activation, which occurred independently of effects on host serine proteases. HlyA-induced proteolysis of host proteins likely allows UPEC to not only modulate epithelial cell functions, but also disable macrophages and suppress inflammatory responses.
Collapse
Affiliation(s)
- Bijaya K Dhakal
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah 84112-0565, USA
| | | |
Collapse
|
13
|
Lavigne JP, Vergunst AC, Goret L, Sotto A, Combescure C, Blanco J, O'Callaghan D, Nicolas-Chanoine MH. Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLoS One 2012; 7:e34294. [PMID: 22457832 PMCID: PMC3311635 DOI: 10.1371/journal.pone.0034294] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA). Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate), comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC). In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity) with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR Médecine, Université Montpellier 1, Nîmes, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hsu FY, Chou LF, Hor LI, Chang HY. A human single-chain variable fragment targeting to Vibrio vulnificus RtxA toxin. J Microbiol Methods 2011; 84:94-100. [DOI: 10.1016/j.mimet.2010.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/18/2010] [Accepted: 11/02/2010] [Indexed: 11/29/2022]
|
16
|
Tabatabai LB, Zimmerli MK, Zehr ES, Briggs RE, Tatum FM. Ornithobacterium rhinotracheale North American Field Isolates Express a Hemolysin-Like Protein. Avian Dis 2010; 54:994-1001. [DOI: 10.1637/9070-091409-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Use of zebrafish to probe the divergent virulence potentials and toxin requirements of extraintestinal pathogenic Escherichia coli. PLoS Pathog 2009; 5:e1000697. [PMID: 20019794 PMCID: PMC2785880 DOI: 10.1371/journal.ppat.1000697] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/17/2009] [Indexed: 11/25/2022] Open
Abstract
Extraintestinal pathogenic E. coli (ExPEC) cause an array of diseases, including sepsis, neonatal meningitis, and urinary tract infections. Many putative virulence factors that might modulate ExPEC pathogenesis have been identified through sequencing efforts, epidemiology, and gene expression profiling, but few of these genes have been assigned clearly defined functional roles during infection. Using zebrafish embryos as surrogate hosts, we have developed a model system with the ability to resolve diverse virulence phenotypes and niche-specific restrictions among closely related ExPEC isolates during either localized or systemic infections. In side-by-side comparisons of prototypic ExPEC isolates, we observed an unexpectedly high degree of phenotypic diversity that is not readily apparent using more traditional animal hosts. In particular, the capacity of different ExPEC isolates to persist and multiply within the zebrafish host and cause disease was shown to be variably dependent upon two secreted toxins, α-hemolysin and cytotoxic necrotizing factor. Both of these toxins appear to function primarily in the neutralization of phagocytes, which are recruited in high numbers to sites of infection where they act as an essential host defense against ExPEC as well as less virulent E. coli strains. These results establish zebrafish as a valuable tool for the elucidation and functional analysis of both ExPEC virulence factors and host defense mechanisms. Escherichia coli can exist among the normal intestinal microbiota without causing any overt problems for the human host. However, humans as well as other animals can often acquire less-mild mannered variants of E. coli strains known as extraintestinal pathogenic E. coli (ExPEC) that can colonize sites outside of the intestinal tract and cause a range of serious illnesses, including sepsis, meningitis, and urinary tract infections. Despite many advances over the years using cell culture and rodent infection models, the spectrum of genes that control the ability of different ExPEC strains to colonize and grow within specific host niches and cause disease remain, for the most part, elusive. Here, we report the development of a new model system that uses zebrafish as surrogate hosts for ExPEC and related isolates. Using zebrafish to model both localized and systemic infections, we found that closely related ExPEC isolates display an unexpected array of virulence characteristics and toxin requirements that are not readily apparent from genomic information alone. This model system is amenable to high-throughput genetic and pharmacological screens and should prove useful in the development of more efficacious therapeutics.
Collapse
|
18
|
Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene 2009; 443:42-7. [PMID: 19450669 DOI: 10.1016/j.gene.2009.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 11/21/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a human pathogen that produces the RTX toxin (repeats in toxin), leukotoxin (LtxA). Based on other RTX toxin systems, the product of ltxC, the first gene of the ltx operon, is predicted to be involved in fatty acid modification of LtxA. To determine the function of ltxC in A. actinomycetemcomitans, we generated an ltxC mutation in the highly leukotoxic strain JP2N using random mutagenesis. The toxin from the ltxC mutant (LtxA(ltxC)) was expressed and secreted into the cell culture supernatant but could not lyse human leukocytes or erythrocytes. Mass spectrometric analysis of LtxA(ltxC) and LtxA from strain JP2N (LtxA(wt)) revealed two peptides that differed and this data suggests that two internal lysine residues of LtxA from the wild-type strain are modified. In blocking experiments, pre-treatment of cells with LtxA(ltxC) was unable to prevent LtxA(wt) from killing cells. Furthermore, in contrast to LtxA(wt), LtxA(ltxC) did not cause an increase in intracellular calcium levels in human leukocytes. Taken together, our data show that ltxC is required for full activity and modification of LtxA in A. actinomycetemcomitans and that modification is important for initial binding of toxin to host cells, as defined by an increase in intracellular calcium levels.
Collapse
|
19
|
Identification and characterization of hemolysin-like proteins similar to RTX toxin in Pasteurella pneumotropica. J Bacteriol 2009; 191:3698-705. [PMID: 19363112 DOI: 10.1128/jb.01527-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteurella pneumotropica is an opportunistic pathogen that causes lethal pneumonia in immunodeficient rodents. The virulence factors of this bacterium remain unknown. In this study, we identified the genes encoding two RTX toxins, designated as pnxI and pnxII, from the genomic DNA of P. pneumotropica ATCC 35149 and characterized with respect to hemolysis. The pnxI operon was organized according to the manner in which the genes encoded the structural RTX toxin (pnxIA), the type I secretion systems (pnxIB and pnxID), and the unknown orf. The pnxII gene was involved only with the pnxIIA that coded for a structural RTX toxin. Both the structural RTX toxins of deduced PnxIA and PnxIIA were involved in seven of the RTX repeat and repeat-like sequences. By quantitative PCR analysis of the structural RTX toxin-encoding genes in P. pneumotropica ATCC 35149, the gene expression of pnxIA was found to have increased from the early log phase, while that of pnxIIA increased from the late log to the early stationary phase. As expressed in Escherichia coli, both the recombinant proteins of PnxIA and PnxIIA showed weak hemolytic activity in both sheep and murine erythrocytes. On the basis of the results of the Southern blotting analysis, the pnxIA gene was detected in 82% of the isolates, while the pnxIIA gene was detected in 39%. These results indicate that the products of both pnxIA and pnxIIA were putative associations of virulence factors in the rodent pathogen P. pneumotropica.
Collapse
|
20
|
Aldick T, Bielaszewska M, Uhlin BE, Humpf HU, Wai SN, Karch H. Vesicular stabilization and activity augmentation of enterohaemorrhagicEscherichia colihaemolysin. Mol Microbiol 2009; 71:1496-508. [DOI: 10.1111/j.1365-2958.2009.06618.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Balashova NV, Diaz R, Balashov SV, Crosby JA, Kachlany SC. Regulation of Aggregatibacter (Actinobacillus) actinomycetemcomitans leukotoxin secretion by iron. J Bacteriol 2006; 188:8658-61. [PMID: 17041062 PMCID: PMC1698250 DOI: 10.1128/jb.01253-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative oral and systemic pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans produces a leukotoxin (LtxA) that is a member of the RTX (repeats in toxin) family of secreted bacterial toxins. We have recently shown that LtxA has the ability to lyse erythrocytes, which results in a beta-hemolytic phenotype on Columbia blood agar. To determine if LtxA is regulated by iron, we examined beta-hemolysis under iron-rich and iron-limiting conditions. Beta-hemolysis was suppressed in the presence of FeCl3. In contrast, strong beta-hemolysis occurred in the presence of the iron chelator deferoxamine. We found that secretion of LtxA was completely inhibited by free iron, but expression of ltxA was not regulated by iron. Free chromium, cobalt, and magnesium did not affect LtxA secretion. Other LtxA-associated genes were not regulated by iron. Thus, iron appears to play an important role in the regulation of LtxA secretion in A. actinomycetemcomitans in a manner independent of gene regulation.
Collapse
Affiliation(s)
- Nataliya V Balashova
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
22
|
Cerny HE, Rogers DG, Gray JT, Smith DR, Hinkley S. Effects of Moraxella (Branhamella) ovis culture filtrates on bovine erythrocytes, peripheral mononuclear cells, and corneal epithelial cells. J Clin Microbiol 2006; 44:772-6. [PMID: 16517853 PMCID: PMC1393100 DOI: 10.1128/jcm.44.3.772-776.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bovine keratoconjunctivitis (IBK) is a highly contagious ocular disease that affects cattle of all ages and that occurs worldwide. Piliated hemolytic Moraxella bovis is recognized as the etiologic agent of IBK. According to data from the Nebraska Veterinary Diagnostic Laboratory System, however, Moraxella (Branhamella) ovis has been isolated with increasing frequency from cattle affected with IBK. The objective of this study was, therefore, to examine M. ovis field isolates for the presence of the putative virulence factors of M. bovis. Culture filtrates from selected M. ovis field isolates demonstrated hemolytic activity on bovine erythrocytes and cytotoxic activity on bovine peripheral blood mononuclear cells and corneal epithelial cells. The hemolytic activity of the culture filtrates was attenuated after heat treatment. Polyclonal antibodies raised against the M. bovis hemolysin-cytotoxin also recognized a protein of approximately 98 kDa in a Western blot assay. These data indicate that the M. ovis field isolates examined produce one or more heat-labile exotoxins and may suggest that M. ovis plays a role in the pathogenesis of IBK.
Collapse
|
23
|
Balsalobre C, Silván JM, Berglund S, Mizunoe Y, Uhlin BE, Wai SN. Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 2006; 59:99-112. [PMID: 16359321 DOI: 10.1111/j.1365-2958.2005.04938.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-haemolysin is an important virulence factor commonly expressed by extraintestinal pathogenic Escherichia coli. The secretion of the alpha-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form. Surprisingly, we found that a fraction of this type I secreted protein is located within outer membrane vesicles (OMVs) that are released by the bacteria. The alpha-haemolysin appeared very tightly associated with the OMVs as judged by dissociation assays and proteinase susceptibility tests. The alpha-haemolysin in OMVs was cytotoxically active and caused lysis of red blood cells. The OMVs containing the alpha-haemolysin were distinct from the OMVs not containing alpha-haemolysin, showing a lower density. Furthermore, they differed in protein composition and one component of the type I secretion system, the TolC protein, was found in the lower density vesicles. Studies of natural isolates of E. coli demonstrated that the localization of alpha-haemolysin in OMVs is a common feature among haemolytic strains. We propose an alternative pathway for the transport of the type I secreted alpha-haemolysin from the bacteria to the host cells during bacterial infections.
Collapse
Affiliation(s)
- Carlos Balsalobre
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The Escherichia coli hemolysin, earlier referred to as the hemolysin, is the best-characterized repeats in toxin (RTX) secreted by a type I exoprotein secretion system. The E. coli hemolysin is a significant virulence factor in murine models of peritonitis and ascending urinary tract infection, which suggests it is likely to be an important cytotoxin in human, extraintestinal E. coli diseases. Among E. coli or Salmonella strains there are no known examples of strict RTX leukotoxins in which lytic activity is limited to white blood cells. The general gene organization of the Vibrio cholerae RTX locus is similar to that seen with either of the E. coli hly and ehx loci with C, B, and D RTX homologs, clearly indicating it is a member of the RTX family. The hemolysin occurs less frequently in cystitis strains and only rarely among normal fecal strains. Among the extraintestinal E. coli isolates, the hlyCABDgenes were among the first virulence factors localized to unique, tRNA-associated segments of E. coli chromosomes. The hemolysin genes were eventually linked to P-type pilin and cytotoxic necrotizing factor-1 genes. Recent progress with its study has slowed down because of the difficulty in deriving the physical structure of the hemolysin protein or other RTX toxins and establishing its precise cytotoxic mechanism and role in pathogenesis of extraintestinal E. coli disease. Genomic sequencing has revealed that there are additional RTX-like genes found among many different pathogens; perhaps new efforts to discover their functions will aid progress in the RTX toxin field.
Collapse
Affiliation(s)
- Rodney A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Valeva A, Walev I, Kemmer H, Weis S, Siegel I, Boukhallouk F, Wassenaar TM, Chavakis T, Bhakdi S. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem 2005; 280:36657-63. [PMID: 16131494 DOI: 10.1074/jbc.m507690200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of a single cysteine substitution mutant, S177C, allowed Escherichia coli hemolysin (HlyA) to be radioactively labeled with tritiated N-ethylmaleimide without affecting biological activity. It thus became possible to study the binding characteristics of HlyA as well as of toxin mutants in which one or both acylation sites were deleted. All toxins bound to erythrocytes and granulocytes in a nonsaturable manner. Only wild-type toxin and the lytic monoacylated mutant stimulated production of superoxide anions in granulocytes. An oxidative burst coincided with elevation of intracellular Ca(2+), which was likely because of passive influx of Ca(2+) through the toxin pores. Competition experiments showed that binding to the cells was receptor-independent, and preloading of cells with a nonlytic HlyA mutant did not abrogate the respiratory burst provoked by a subsequent application of wild-type HlyA. In contrast to a previous report, expression or activation of the beta(2) integrin lymphocyte function-associated antigen-1 did not affect binding of HlyA. We conclude that HlyA binds nonspecifically to target cells and a receptor is involved neither in causing hemolysis nor in triggering cellular reactions.
Collapse
Affiliation(s)
- Angela Valeva
- Institute of Medical Microbiology and Hygiene, University of Mainz, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cortajarena AL, Goni FM, Ostolaza H. A receptor-binding region in Escherichia coli alpha-haemolysin. J Biol Chem 2003; 278:19159-63. [PMID: 12582172 DOI: 10.1074/jbc.m208552200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli alpha-hemolysin (HlyA) is a 107-kDa protein toxin with a wide range of mammalian target cells. Previous work has shown that glycophorin is a specific receptor for HlyA in red blood cells (Cortajarena, A. L., Goñi, F. M., and Ostolaza, H. (2001) J. Biol. Chem. 276, 12513-12519). The present study was aimed at identifying the glycophorin-binding region in the toxin. Data in the literature pointed to a short amino acid sequence near the C terminus as a putative receptor-binding domain. Previous sequence analyses of several homologous toxins that belong, like HlyA, to the so-called RTX toxin family revealed a conserved region that corresponded to residues 914-936 of HlyA. We therefore prepared a deletion mutant lacking these residues (HlyA Delta 914-936) and found that its hemolytic activity was decreased by 10,000-fold with respect to the wild type. This deletion mutant was virtually unable to bind human and horse red blood cells or to bind pure glycophorin in an affinity column. The peptide Trp914-Arg936 had no lytic activity of its own, but it could bind glycophorin reconstituted in lipid vesicles. Moreover, the peptide Trp914-Arg936 protected red blood cells from hemolysis induced by wild type HlyA. It was concluded that amino acid residues 914-936 constitute a major receptor-binding region in alpha-hemolysin.
Collapse
Affiliation(s)
- Aitziber L Cortajarena
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Euskal Herriko Unibertsitatea and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
27
|
Kachlany SC, Fine DH, Figurski DH. Purification of secreted leukotoxin (LtxA) from Actinobacillus actinomycetemcomitans. Protein Expr Purif 2002; 25:465-71. [PMID: 12182827 DOI: 10.1016/s1046-5928(02)00037-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RTX (repeats in toxin) family of toxins is important in the pathogenesis of many Gram-negative bacteria. The oral and systemic human pathogen Actinobacillus actinomycetemcomitans produces a member of this family known as leukotoxin (LtxA). Previously, we found that LtxA is secreted into culture supernatants of A. actinomycetemcomitans and that this protein is abundant and relatively pure. Here, we report a large-scale method for the isolation and purification of LtxA from culture supernatants of A. actinomycetemcomitans strain JP2. The purification scheme involves ammonium sulfate precipitation of culture supernatants, dialysis, and ultrafiltration to concentrate LtxA to approximately 10mg/ml. We found that LtxA remained soluble in buffer that contained at least 250mM NaCl. Purified LtxA was >98% pure and the final preparations were active against HL-60 cells. The entire purification protocol can be completed within 2 days. The ability to readily obtain a large amount of purified leukotoxin should accelerate investigations into the structure and biology of this important virulence factor.
Collapse
Affiliation(s)
- Scott C Kachlany
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, NY 10032, USA.
| | | | | |
Collapse
|
28
|
|
29
|
Hyland C, Vuillard L, Hughes C, Koronakis V. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J Bacteriol 2001; 183:5364-70. [PMID: 11514521 PMCID: PMC95420 DOI: 10.1128/jb.183.18.5364-5370.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 1,024-amino-acid acylated hemolysin of Escherichia coli subverts host cell functions and causes cell lysis. Both activities require insertion of the toxin into target mammalian cell membranes. To identify directly the principal toxin sequences dictating membrane binding and insertion, we assayed the lipid bilayer interaction of native protoxin, stably active toxin, and recombinant peptides. Binding was assessed by flotation of protein-liposome mixtures through density gradients, and insertion was assessed by labeling with a photoactivatable probe incorporated into the target lipid bilayer. Both the active acylated hemolysin and the inactive unacylated protoxin were able to bind and also insert. Ca(2+) binding, which is required for toxin activity, did not influence the in vitro interaction with liposomes. Three overlapping large peptides were expressed separately. A C-terminal peptide including residues 601 to 1024 did not interact in either assay. An internal peptide spanning residues 496 to 831, including the two acylation sites, bound to phospholipid vesicles and showed a low level of insertion-dependent labeling. In vitro acylation had no effect on the bilayer interaction of either this peptide or the full-length protoxin. An N-terminal peptide comprising residues 1 to 520 also bound to phospholipid vesicles and showed strong insertion-dependent labeling, ca. 5- to 25-fold that of the internal peptide. Generation of five smaller peptides from the N-terminal region identified the principal determinant of lipid insertion as the hydrophobic sequence encompassing residues 177 to 411, which is conserved among hemolysin-related toxins.
Collapse
Affiliation(s)
- C Hyland
- Cambridge University Department of Pathology, Cambridge, CB2 1QP, United Kingdom
| | | | | | | |
Collapse
|
30
|
Welch RA. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 2001; 257:85-111. [PMID: 11417123 DOI: 10.1007/978-3-642-56508-3_5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
It can be agreed that RTX toxins contribute to the pathogenesis of different diseases by causing dysfunction of the general cellular reactions of the immune response. The suggestion that RTX toxins induce cytokine production in nonimmune cells that would ultimately cause tissue damage is an expansion of their role in disease pathogenesis (Uhlen et al. 2000). Investigators in the RTX toxin field may not agree with me, but precise and satisfactory answers to the following questions are not yet available. How do RTX toxins mechanistically damage a cell? Do RTX toxins have receptors in the classic sense, in which there is a reversible ligand and receptor complex? What is responsible for the common Ca2+ ion influx in affected cells? The recent observation that an RTX toxin stimulates host-cell-mediated Ca2+ ion oscillation in part challenges the long held concept that these toxins damage cells by the direct formation of pores. Are the Ca2+ ion fluxes truly the noxious cellular insult? What is the final molecular structure of RTX toxins at the time they cause cellular death? How does the common requirement for acyl modification among RTX toxins fit into the toxin structure and mechanism of cellular killing, particularly when mixtures of unusual fatty acids are used by some toxins? There are a number of outstanding laboratories throughout the world that are seeking answers to these questions. We can reasonably expect that during the next decade research on the structure and function of RTX toxins will lead to new chemotherapeutic targets and reagents for basic cell biology and biotechnology.
Collapse
Affiliation(s)
- R A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| |
Collapse
|
31
|
Venter AP, Twelker S, Oresnik IJ, Hynes MF. Analysis of the genetic region encoding a novel rhizobiocin from Rhizobium leguminosarum bv. viciae strain 306. Can J Microbiol 2001; 47:495-502. [PMID: 11467725 DOI: 10.1139/w01-043] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cross-testing of a number of strains of Rhizobium leguminosarum for bacteriocin production revealed that strain 306 produced at least two distinct bacteriocins. Further analysis involving plasmid transfer to Agrobacterium and other hosts demonstrated that there were bacteriocin determinants on plasmids pRle306b and pRle306c, as well as a third bacteriocin. The bacteriocin encoded by pRle306b was indistinguishable from the bacteriocin encoded by strain 248, whereas the bacteriocin encoded by plasmid pRle306c had a distinctive spectrum of activity against susceptible strains, as well as different physical properties from other bacteriocins that we have studied in our lab. Two mutants altered in production of the pRle306c bacteriocin were generated by transposon Tn5 mutagenesis, and the DNA flanking the transposon inserts in these mutants was cloned and characterized. DNA sequence analysis suggested that the pRle306c bacteriocin was a large protein belonging to the RTX family, and that a type I secretion system involving an ABC type transporter was required for export of the bacteriocin. A mutant unable to produce this bacteriocin was unaltered in its competitive properties, both in broth and in nodulation assays, suggesting that the bacteriocin may not play a major role in determining the ecological success of this strain.
Collapse
Affiliation(s)
- A P Venter
- Department of Biological Sciences, University of Calgary, AB, Canada
| | | | | | | |
Collapse
|
32
|
Cortajarena AL, Goñi FM, Ostolaza H. Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. J Biol Chem 2001; 276:12513-9. [PMID: 11134007 DOI: 10.1074/jbc.m006792200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli alpha-hemolysin (HlyA) can lyse both red blood cells (RBC) and liposomes. However, the cells are lysed at HlyA concentrations 1-2 orders of magnitude lower than liposomes (large unilamellar vesicles). Treatment of RBC with trypsin, but not with chymotrypsin, reduces the sensitivity of RBC toward HlyA to the level of the liposomes. Since glycophorin, one of the main proteins in the RBC surface, can be hydrolyzed by trypsin much more readily than by chymotrypsin, the possibility was tested of a specific binding of HlyA to glycophorin. With this purpose, a number of experiments were performed. (a) HlyA was preincubated with purified glycophorin, after which it was found to be inactive against both RBC and liposomes. (b) Treatment of RBC with an anti-glycophorin antibody protected the cells against HlyA lysis. (c) Immobilized HlyA was able to bind glycophorin present in a detergent lysate of RBC ghosts. (d) Incorporation of glycophorin into pure phosphatidylcholine liposomes increased notoriously the sensitivity of the vesicles toward HlyA. (e) Treatment of the glycophorin-containing liposomes with trypsin reverted the vesicles to their original low sensitivity. The above results are interpreted in terms of glycophorin acting as a receptor for HlyA in RBC. The binding constant of HlyA for glycophorin was estimated, in RBC at sublytic HlyA concentrations, to be 1.5 x 10(-9) m.
Collapse
Affiliation(s)
- A L Cortajarena
- Unidad de Biofisica (Consejo Superior de Investigaciones Cientificas-UPV/EHU), and Departamento de Bioquimica, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Aptdo. 644, Bilbao 48080, Spain
| | | | | |
Collapse
|
33
|
Schindel C, Zitzer A, Schulte B, Gerhards A, Stanley P, Hughes C, Koronakis V, Bhakdi S, Palmer M. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:800-8. [PMID: 11168421 DOI: 10.1046/j.1432-1327.2001.01937.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli hemolysin (HlyA) is a membrane-permeabilizing protein belonging to the family of RTX-toxins. Lytic activity depends on binding of Ca2(+) to the C-terminus of the molecule. The N-terminus of HlyA harbors hydrophobic sequences that are believed to constitute the membrane-inserting domain. In this study, 13 HlyA cysteine-replacement mutants were constructed and labeled with the polarity-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan). The fluorescence emission of the label was examined in soluble and membrane-bound toxin. Binding effected a major blue shift in the emission of six residues within the N-terminal hydrophobic domain, indicating insertion of this domain into the lipid bilayer. The emission shifts occurred both in the presence and absence of Ca2(+), suggesting that Ca2(+) is not required for the toxin to enter membranes. However, binding of Ca2(+) to HlyA in solution effected conformational changes in both the C-terminal and N-terminal domain that paralleled activation. Our data indicate that binding of Ca2(+) to the toxin in solution effects a conformational change that is relayed to the N-terminal domain, rendering it capable of adopting the structure of a functional pore upon membrane binding.
Collapse
Affiliation(s)
- C Schindel
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Billson FM, Harbour C, Michalski WP, Tennent JM, Egerton JR, Hodgson JL. Characterization of hemolysin of Moraxella bovis using a hemolysis-neutralizing monoclonal antibody. Infect Immun 2000; 68:3469-74. [PMID: 10816500 PMCID: PMC97627 DOI: 10.1128/iai.68.6.3469-3474.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A concentrated bacterial culture supernatant from the hemolytic Moraxella bovis strain UQV 148NF was used to immunize mice and generate monoclonal antibodies (MAbs). One, MAb G3/D7, neutralized the hemolytic activity of M. bovis and recognized a 94-kDa protein by Western blot analysis in hemolytic M. bovis strains representing each of the different fimbrial serogroups. Exposure of corneal epithelial cells to M. bovis concentrated culture supernatants demonstrated a role for an exotoxin in the pathogenesis of infectious bovine keratoconjunctivitis, while neutralization of hemolytic and cytotoxic activities by MAb G3/D7 implies that these activities are related or have common epitopes. The action of M. bovis hemolysin was further characterized in sheep erythrocyte preparations with a binding step and Ca(2+) required for lysis to proceed, similar to the RTX family of bacterial exotoxins. Neutralization of lytic activity in vitro is evidence for the presence of M. bovis antigens, which may be capable of protecting cattle from the development of infectious bovine keratoconjunctivitis.
Collapse
Affiliation(s)
- F M Billson
- Department of Veterinary Clinical Sciences, University of Sydney, Camden, New South Wales 2570, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Sun Y, Clinkenbeard KD, Cudd LA, Clarke CR, Clinkenbeard PA. Correlation of Pasteurella haemolytica leukotoxin binding with susceptibility to intoxication of lymphoid cells from various species. Infect Immun 1999; 67:6264-9. [PMID: 10569736 PMCID: PMC97028 DOI: 10.1128/iai.67.12.6264-6269.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pasteurella haemolytica, the causative agent of shipping fever pneumonia in cattle, produces a leukotoxin (LKT) which lyses ruminant leukocytes with high efficiency but is reputed to not affect leukocytes from nonruminant species. In this study, we tested the supposition that LKT binding correlates positively with susceptibility to intoxication of susceptible isolated bovine lymphocytes and lymphoma tissue culture cells (BL3 cells) and negatively with reputed nonsusceptible equine, porcine, and canine lymphocytes and human lymphoid tissue culture cells (Raji cells). Bovine lymphocytes and BL3 cells were highly susceptible to LKT intoxication, exhibiting both substantial increase in intracellular Ca(2+) concentration and marked leukolysis. Exposure of reputed LKT-nonsusceptible porcine lymphocytes and Raji cells to LKT caused a slightly increased intracellular Ca(2+) concentration but no leukolysis. No LKT effect was detected for equine and canine lymphocytes. LKT bound to lymphoid cells from all species tested. Intact 102-kDa LKT was recovered from exposed isolated lymphoid cell membranes. Pro-LKT acylation was not required for LKT binding to BL3 cells. LKT binding was rapid, with maximal binding occurring by 3 min, and was proportional to the LKT concentration in the range 0.04 to 4.0 microg/ml. For this LKT concentration range, BL3 cells bound more LKT than did porcine lymphocytes or Raji cells, suggesting that LKT binds to BL3 cells with higher affinity than to porcine lymphocytes or Raji cells. Above 4.0 microg/ml, LKT demonstrated saturable binding to BL3 cells. Neutralizing anti-LKT monoclonal antibody (MAb) MM601 diminished LKT binding to BL3 by 36% while decreasing leukolysis by 81%. In contrast, MM601 did not diminish LKT binding to Raji cells. Pretreatment of target cells with 120 microg of protease K per ml diminished LKT binding to BL3 cells by 75%, with only a 25% decrease in leukolysis. However, pretreatment with 150 microg of protease K per ml abolished the remaining 25% of LKT binding and 75% leukolysis. Therefore, P. haemolytica LKT binds rapidly to susceptible and to reputed nonsusceptible lymphoid cells. LKT binding resulting in species-specific leukolysis was characterized by high affinity, inhibition by MAb MM601, and relative resistance to protease K pretreatment of lymphoid cells. Two types of LKT binding to lymphoid cells are proposed. High-affinity binding leads to efficient leukolysis. In some lymphoid cells from reputed LKT-nonsusceptible species, low-affinity LKT binding may cause a low-efficiency increase in the intracellular Ca(2+) concentration without leading to leukolysis.
Collapse
Affiliation(s)
- Y Sun
- Department of Anatomy, Pathology and Pharmacology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | |
Collapse
|
36
|
Gray MC, Ross W, Kim K, Hewlett EL. Characterization of binding of adenylate cyclase toxin to target cells by flow cytometry. Infect Immun 1999; 67:4393-9. [PMID: 10456879 PMCID: PMC96757 DOI: 10.1128/iai.67.9.4393-4399.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylate cyclase (AC) toxin from Bordetella pertussis intoxicates eukaryotic cells by increasing intracellular cyclic AMP (cAMP) levels. In addition, insertion of AC toxin into the plasma membrane causes efflux of intracellular K(+) and, in a related process, hemolysis of sheep erythrocytes. Although intoxication, K(+) efflux, and hemolysis have been thoroughly investigated, there is little information on the nature of the interaction of this toxin with intact target cells. Using flow cytometry, we observe that binding of AC toxin to sheep erythrocytes and Jurkat T lymphocytes is dependent on posttranslational acylation of the toxin. Extracellular calcium is also necessary, with a steep calcium concentration dependence similar to that required for intoxication and hemolysis. Binding of AC toxin is concentration dependent but unsaturable up to 50 micrograms/ml, suggesting that if there is a specific receptor molecule with which the toxin interacts, it is not limiting. Visualization of cells by fluorescence microscopy supports the data obtained by flow cytometry and reveals a peripheral pattern of toxin distribution. AC toxin binds to erythrocytes at both 0 and 37 degrees C; however, the total binding at 0 degrees C is less than that at 37 degrees C. In human erythrocytes, AC toxin does not cause an increase in K(+) efflux or hemolysis. While AC toxin exhibits reduced potency to increase cAMP in these cells than in sheep erythrocytes, there is only a modest reduction in the binding of the toxin as measured by flow cytometry. Further use of this technique will provide new approaches for dynamic and functional analysis of the early steps involved in intoxication, K(+) efflux, and hemolysis produced by AC toxin.
Collapse
Affiliation(s)
- M C Gray
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
37
|
Reingold J, Starr N, Maurer J, Lee MD. Identification of a new Escherichia coli She haemolysin homolog in avian E. coli. Vet Microbiol 1999; 66:125-34. [PMID: 10227474 DOI: 10.1016/s0378-1135(98)00310-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haemolysin is one type of virulence factor that assists in the pathogenesis of Escherichia coli. Currently, hemolytic activity in E. coli has been attributed to haemolysin genes found in either uropathogenic or enterohemorrhagic E. coli. Both haemolysins are classified as RTX toxins because they both have repeats in toxin domains and share similar operon organization, sequence homology, and mechanisms of action. Haemolytic avian E. coli isolates, however, lack either E. coli haemolysin gene. To investigate the avian E. coli haemolysin, a genomic library was made from an avian pathogenic E. coli. A haemolytic clone that was isolated was shown to contain homology with sheA, an E. coli K- 12 gene which causes haemolysis when present in high copy number. The cloned haemolysin gene, hlyE, lacked the conserved amino acid sequence and accessory genes common to all RTX toxins. DNA hybridizations and polymerase chain reaction amplifications showed that the nucleotide sequences homologous to hlyE were not present in a collection of three O157: H7 E. coli, five haemolytic canine uropathogenic E. coli, one haemolytic O26 E. coli, and three haemolytic avian pathogenic E. coli. Thus we have identified a new E. coli haemolysin distinct from the RTX haemolysins and have shown that some avian pathogenic E. coli possess a haemolysin with no apparent homology to hlyE or RTX haemolysins.
Collapse
Affiliation(s)
- J Reingold
- Department of Medical Microbiology, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
38
|
Braun M, Kuhnert P, Nicolet J, Burnens AP, Frey J. Cloning and characterization of two bistructural S-layer-RTX proteins from Campylobacter rectus. J Bacteriol 1999; 181:2501-6. [PMID: 10198015 PMCID: PMC93677 DOI: 10.1128/jb.181.8.2501-2506.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter rectus is an important periodontal pathogen in humans. A surface-layer (S-layer) protein and a cytotoxic activity have been characterized and are thought to be its major virulence factors. The cytotoxic activity was suggested to be due to a pore-forming protein toxin belonging to the RTX (repeats in the structural toxins) family. In the present work, two closely related genes, csxA and csxB (for C. rectus S-layer and RTX protein) were cloned from C. rectus and characterized. The Csx proteins appear to be bifunctional and possess two structurally different domains. The N-terminal part shows similarity with S-layer protein, especially SapA and SapB of C. fetus and Crs of C. rectus. The C-terminal part comprising most of CsxA and CsxB is a domain with 48 and 59 glycine-rich canonical nonapeptide repeats, respectively, arranged in three blocks. Purified recombinant Csx peptides bind Ca2+. These are characteristic traits of RTX toxin proteins. The S-layer and RTX domains of Csx are separated by a proline-rich stretch of 48 amino acids. All C. rectus isolates studied contained copies of either the csxA or csxB gene or both; csx genes were absent from all other Campylobacter and Helicobacter species examined. Serum of a patient with acute gingivitis showed a strong reaction to recombinant Csx protein on immunoblots.
Collapse
Affiliation(s)
- M Braun
- Institute for Veterinary Bacteriology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Cooling LL, Walker KE, Gille T, Koerner TA. Shiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid. Infect Immun 1998; 66:4355-66. [PMID: 9712788 PMCID: PMC108526 DOI: 10.1128/iai.66.9.4355-4366.1998] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
Hemolytic-uremic syndrome is a clinical syndrome characterized by acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia that often follows infection by Shiga toxin- or verotoxin-producing strains of Escherichia coli. Because thrombocytopenia and platelet activation are hallmark features of hemolytic-uremic syndrome, we examined the ability of Shiga toxin to bind platelets by flow cytometry and high-performance thin-layer chromatography (HPTLC) of isolated platelet glycosphingolipids. By HPTLC, Shiga toxin was shown to bind globotriaosylceramide (Gb3) and a minor platelet glycolipid with an Rf of 0.03, band 0.03. In a survey of 20 human tissues, band 0.03 was identified only in platelets. In individuals, band 0.03 was expressed by 20% of donors and was specifically associated with increased platelet Gb3 expression. Based on glycosidase digestion and epitope mapping, band 0.03 was hypothesized to represent a novel glycosphingolipid, IV3-beta-Galalpha1-4galactosylglobotetraosylceramide. Based on incidence, structure, and association with increased Gb3 expression, band 0.03 may represent the antithetical Luke blood group antigen. By flow cytometry, Shiga toxin bound human platelets, although the amount of Shiga toxin bound varied in donors. Differences in Shiga toxin binding to platelet membranes did not reflect differences in platelet Gb3 expression. In contrast, there was a loose association between Shiga toxin binding and decreasing forward scatter, suggesting that Shiga toxin and verotoxins bind more efficiently to smaller, older platelets. In summary, Shiga and Shiga-like toxins may bind platelets via specific glycosphingolipid receptors. Such binding may contribute to the thrombocytopenia, platelet activation, and microthrombus formation observed in hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- L L Cooling
- Department of Pathology, SUNY Health Science Center at Syracuse, Syracuse, New York, USA
| | | | | | | |
Collapse
|
40
|
Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 1998; 62:309-33. [PMID: 9618444 PMCID: PMC98917 DOI: 10.1128/mmbr.62.2.309-333.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pore-forming hemolysin (HlyA) of Escherichia coli represents a unique class of bacterial toxins that require a posttranslational modification for activity. The inactive protoxin pro-HlyA is activated intracellularly by amide linkage of fatty acids to two internal lysine residues 126 amino acids apart, directed by the cosynthesized HlyC protein with acyl carrier protein as the fatty acid donor. This action distinguishes HlyC from all bacterial acyltransferases such as the lipid A, lux-specific, and nodulation acyltransferases, and from eukaryotic transferases such as N-myristoyl transferases, prenyltransferases, and thioester palmitoyltransferases. Most lipids directly attached to proteins may be classed as N-terminal amide-linked and internal ester-linked acyl groups and C-terminal ether-linked isoprenoid groups. The acylation of HlyA and related toxins does not equate to these but does appear related to a small number of eukaryotic proteins that include inflammatory cytokines and mitogenic and cholinergic receptors. While the location and structure of lipid moieties on proteins vary, there are common effects on membrane affinity and/or protein-protein interactions. Despite being acylated at two residues, HlyA does not possess a "double-anchor" motif and does not have an electrostatic switch, although its dependence on calcium binding for activity suggests that the calcium-myristoyl switch may have relevance. The acyl chains on HlyA may provide anchorage points onto the surface of the host cell lipid bilayer. These could then enhance protein-protein interactions either between HlyA and components of a host signal transduction pathway to influence cytokine production or between HlyA monomers to bring about oligomerization during pore formation.
Collapse
Affiliation(s)
- P Stanley
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | |
Collapse
|
41
|
Karakelian D, Lear JD, Lally ET, Tanaka JC. Characterization of Actinobacillus actinomycetemcomitans leukotoxin pore formation in HL60 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:175-87. [PMID: 9573356 DOI: 10.1016/s0925-4439(98)00002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanism of cell death induced by Actinobacillus actinomycetemcomitans leukotoxin (LTX) has been investigated with flow cytometry and patch electrode recording using cultured HL60 cells. The kinetics of propidium iodide (PI) positive staining of HL60 cells was measured as a function of LTX concentration at 37 degreesC. Results showed a concentration-dependent decrease in the tk times. Cell kill was slow at <1 microg/ml LTX concentrations with fewer than 50% of the cells killed after 1 h; at 1 microg/ml, the tk times ranged from approximately 15 to 30 min. At higher concentrations, the tk times decreased rapidly. The rate of cell kill was appreciably slowed at 20 degreesC. HL60 whole cell currents were recorded with patch electrodes. Immediately following exposure to high concentrations of LTX, large currents were recorded suggesting that the membrane potential of these cells had collapsed due to the large conductance increases. At low toxin concentrations, rapid conductance fluctuations were seen suggestive of a limited number of toxin-mediated events. Cells exposed to low concentrations of LTX exhibited these conductance fluctuations for up to 1 h, whereas toxin-insensitive cells were unaffected by long exposures to high concentrations of toxin. Our results are consistent with LTX-induced pores in susceptible cells which overwhelm the ability of the cell to maintain osmotic homeostasis causing cell death.
Collapse
Affiliation(s)
- D Karakelian
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
42
|
Brown JF, Leite F, Czuprynski CJ. Binding of Pasteurella haemolytica leukotoxin to bovine leukocytes. Infect Immun 1997; 65:3719-24. [PMID: 9284143 PMCID: PMC175530 DOI: 10.1128/iai.65.9.3719-3724.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pasteurella haemolytica is the principal bacterial pathogen in the bovine respiratory disease complex. This organism produces an exotoxin (referred to as leukotoxin) during logarithmic-phase growth that is a potent leukocyte-modulating agent. At low concentrations, it activates neutrophils and mononuclear phagocytes to release inflammatory mediators, while at the same time making these cells destined to undergo apoptotic cell death. At higher concentrations, the toxin causes rapid swelling and loss of cell viability. In this study, we demonstrated that toxin binding can be directly evaluated by flow cytometry with biologically active biotinylated leukotoxin. Leukotoxin binding was blocked by the addition of a neutralizing anti-leukotoxin monoclonal antibody and was not detected when bovine leukocytes were incubated with culture filtrates from a mutant strain of P. haemolytica that does not produce biologically active leukotoxin. In addition, treatment of bovine leukocytes with protease K eliminated subsequent binding of leukotoxin, suggesting that there is a protein on the leukocyte surface that is either a leukotoxin binding site or is required for stabilization of leukotoxin binding. We did not detect binding of biotinylated leukotoxin to porcine or human leukocytes, which have been reported previously to be resistant to the lytic effects of the leukotoxin. These findings suggest that there may be a specific binding site for P. haemolytica leukotoxin on bovine but not on porcine or human leukocytes and that it might be involved in the activation and lytic activities of the leukotoxin.
Collapse
Affiliation(s)
- J F Brown
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
43
|
Moayeri M, Welch RA. Prelytic and lytic conformations of erythrocyte-associated Escherichia coli hemolysin. Infect Immun 1997; 65:2233-9. [PMID: 9169756 PMCID: PMC175308 DOI: 10.1128/iai.65.6.2233-2239.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Flow cytometry was developed as a method to assess the conformation of erythrocyte-bound Escherichia coli hemolysin polypeptide (HlyA). Topology of membrane-associated hemolysin (HlyA(E)) was investigated by testing surface accessibility of HlyA regions in lytic and nonlytic bound states, using a panel of 12 anti-HlyA monoclonal antibodies (MAbs). Hemolysin associates nonlytically with erythrocytes at 0 to 2 degrees C. To test the hypothesis that the nonlytic HlyA(E) conformation at 0 to 2 degrees C differs from the lytic conformation at 23 degrees C, MAb epitope reactivity profiles at the two temperatures were compared by flow cytometry. Four MAbs have distinctly increased reactivity at 0 to 2 degrees C compared to 23 degrees C. HlyA requires HlyC-dependent acylation at lysine residues 563 and 689 for lytic function. Toxin with cysteine substitution mutations at each lysine (HlyA(K563C) and HlyA(K689C)) as well as the nonacylated form of hemolysin made in a HlyC-deficient strain were examined by flow cytometry at 0 to 2 and 23 degrees C. The three mutants bind erythrocytes at wild-type toxin levels, but there are conformational changes reflected by altered MAb epitope accessibility for six of the MAbs. To test further the surface accessibility of regions in the vicinity of MAb-reactive epitopes, HlyA(E) was proteolytically treated prior to testing for MAb reactivity. Differences in protease susceptibility at 0 to 2 degrees and 23 degrees C for the reactivities of three of the MAbs further support the model of two distinct conformations of cell-associated toxin.
Collapse
Affiliation(s)
- M Moayeri
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|