1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
3
|
Rahmaninezhad SA, Houshmand M, Sadighi A, Ahmari K, Kamireddi D, Street RM, Farnam YA, Schauer CL, Najafi AR, Sales CM. Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284. J Biosci Bioeng 2024; 138:63-72. [PMID: 38614831 DOI: 10.1016/j.jbiosc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Among different microbial-induced calcium carbonate precipitation (MICCP) mechanisms utilized for biomineralization, ureolysis leads to the greatest yields of calcium carbonate. Unfortunately, it is reported that urea-induced growth inhibition can delay urea hydrolysis but it is not clear how this affects MICCP kinetics. This study investigated the impact of urea addition on the MICCP performance of Lysinibacillus sphaericus MB284 not previously grown on urea (thereafter named bio-agents), compared with those previously cultured in urea-rich media (20 g/L) (hereafter named bio-agents+ or bio-agents-plus). While it was discovered that initial urea concentrations exceeding 3 g/L temporarily hindered cell growth and MICCP reactions for bio-agents, employing bio-agents+ accelerated the initiation of bacterial growth by 33% and led to a 1.46-fold increase in the initial yield of calcium carbonate in media containing 20 g/L of urea. The improved tolerance of bio-agents+ to urea is attributed to the presence of pre-produced endogenous urease, which serves to reduce the initial urea concentration, alleviate growth inhibition, and expedite biomineralization. Notably, elevating the initial concentration of bio-agents+ from OD600 of 0.01 to 1, housing a higher content of endogenous urease, accelerated the initiation of MICCP reactions and boosted the ultimate yield of biomineralization by 2.6 times while the media was supplemented with 20 g/L of urea. These results elucidate the advantages of employing bio-agents+ with higher initial cell concentrations to successfully mitigate the temporary inhibitory effects of urea on biomineralization kinetics, offering a promising strategy for accelerating the production of calcium carbonate for applications like bio self-healing of concrete.
Collapse
Affiliation(s)
- Seyed Ali Rahmaninezhad
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Mohammad Houshmand
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Amirreza Sadighi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Kiana Ahmari
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Divya Kamireddi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Reva M Street
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Yaghoob Amir Farnam
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Caroline L Schauer
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Ahmad Raeisi Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Christopher M Sales
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Zeng J, Xie C, Huang Z, Cho CH, Chan H, Li Q, Ashktorab H, Smoot DT, Wong SH, Yu J, Gong W, Liang C, Xu H, Chen H, Liu X, Wu JCY, Ip M, Gin T, Zhang L, Chan MTV, Hu W, Wu WKK. LOX-1 acts as an N 6-methyladenosine-regulated receptor for Helicobacter pylori by binding to the bacterial catalase. Nat Commun 2024; 15:669. [PMID: 38253620 PMCID: PMC10803311 DOI: 10.1038/s41467-024-44860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.
Collapse
Affiliation(s)
- Judeng Zeng
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Chuan Xie
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Ziheng Huang
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hung Chan
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Qing Li
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC, USA
- Cancer Center, Howard University, Washington, DC, USA
- Howard University Hospital, Howard University, Washington, DC, USA
| | - Duane T Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jun Yu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Cong Liang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Institute for Microbial Ecology, School of Medicine, Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Huarong Chen
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Justin C Y Wu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Margaret Ip
- CUHK Shenzhen Research Institute, Shenzhen, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Lin Zhang
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| | - William K K Wu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
6
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Reyes VE. Helicobacter pylori Immune Response in Children Versus Adults. MEDICAL RESEARCH ARCHIVES 2022; 10:3370. [PMID: 37936946 PMCID: PMC10629867 DOI: 10.18103/mra.v10i12.3370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
H. pylori is perhaps the most prevalent human pathogen worldwide and infects almost half of the world's population. Despite the decreasing prevalence of infection overall, it is significant in developing countries. Most infections are acquired in childhood and persist for a lifetime unless treated. Children are often asymptomatic and often develop a tolerogenic immune response that includes T regulatory cells and their products, immunosuppressive cytokines, such as interleukin (IL)-10, and transforming growth factor-β (TGF-β). This contrasts to the gastric immune response seen in H. pylori-infected adults, where the response is mainly inflammatory, with predominant Th1 and Th17 cells, as well as, inflammatory cytokines, such as TNF-α, IFN-γ, IL-1, IL-6, IL-8, and IL-17. Therefore, compared to adults, infected children generally have limited gastric inflammation and peptic ulcer disease. H. pylori surreptitiously subverts immune defenses to persist in the human gastric mucosa for decades. The chronic infection might result in clinically significant diseases in adults, such as peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This review compares the infection in children and adults and highlights the H. pylori virulence mechanisms responsible for the pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Victor E. Reyes
- Department of Pediatrics, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555-0372 USA
| |
Collapse
|
8
|
Li W, Fishman A, Achal V. Whole cell evaluation and the enzymatic kinetic study of urease from ureolytic bacteria affected by potentially toxic elements. Microbiol Res 2022; 265:127208. [PMID: 36162147 DOI: 10.1016/j.micres.2022.127208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Microbially induced carbonate precipitation (MICP) is a biomineralization process that has various applications in environmental pollution remediation and restoration of a range of building materials. In this study, a ureolytic bacterium, Lysinibacillus sp. GY3, isolated from an E-waste site, was found as a promising catalyst for remediation of heavy metals via the MICP process. This bacterial isolate produced significant amounts of urease and showed a great persistence in immobilization of potentially toxic elements. A reference ureolytic strain, Bacillus megaterium VS1, was selected in order to compare the efficiency of Lysinibacillus sp. GY3. Study on urease localization indicated 80 % more urease activity secreted extracellularly as for Lysinibacillus sp. GY3 compared to B. megaterium VS1. From the investigation on effects of metals on both intra- and extra-cellular urease, it was clear that Lysinibacillus sp. GY3 produced the most stable urease under conditions of metal pressure, especially retaining more than 70 % activity in the presence of 1 g/L Pb2+ and Zn2+. These results suggest that this isolated microorganism could be promisingly introduced in the MICP process to stabilize complex heavy metal pollutions, with reference to the regulating ability under harsh conditions to stabilize urease activity. This species is so important both for its biological features and environmental impacts. In addition, the present study will bring new insight in the field of metal remediation coupled with enzyme engineered biotechnology.
Collapse
Affiliation(s)
- Weila Li
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Varenyam Achal
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China; Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
9
|
Hailemariam S, Zhao S, He Y, Wang J. Urea transport and hydrolysis in the rumen: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:989-996. [PMID: 34738029 PMCID: PMC8529027 DOI: 10.1016/j.aninu.2021.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Inefficient dietary nitrogen (N) conversion to microbial proteins, and the subsequent use by ruminants, is a major research focus across different fields. Excess bacterial ammonia (NH3) produced due to degradation or hydrolyses of N containing compounds, such as urea, leads to an inefficiency in a host's ability to utilize nitrogen. Urea is a non-protein N containing compound used by ruminants as an ammonia source, obtained from feed and endogenous sources. It is hydrolyzed by ureases from rumen bacteria to produce NH3 which is used for microbial protein synthesis. However, lack of information exists regarding urea hydrolysis in ruminal bacteria, and how urea gets to hydrolysis sites. Therefore, this review describes research on sites of urea hydrolysis, urea transport routes towards these sites, the role and structure of urea transporters in rumen epithelium and bacteria, the composition of ruminal ureolytic bacteria, mechanisms behind urea hydrolysis by bacterial ureases, and factors influencing urea hydrolysis. This review explores the current knowledge on the structure and physiological role of urea transport and ureolytic bacteria, for the regulation of urea hydrolysis and recycling in ruminants. Lastly, underlying mechanisms of urea transportation in rumen bacteria and their physiological importance are currently unknown, and therefore future research should be directed to this subject.
Collapse
Affiliation(s)
- Samson Hailemariam
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Dilla University, College of Agriculture and Natural Resource, Dilla P. O. Box 419, Ethiopia
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components. Curr Microbiol 2020; 77:3831-3841. [PMID: 33079206 PMCID: PMC7677277 DOI: 10.1007/s00284-020-02243-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli–host interaction often miming the same mechanism used by pathogens.
Collapse
|
11
|
Vinod V, Pushkaran AC, Kumar A, Mohan CG, Biswas R. Interaction mechanism of Mycobacterium tuberculosis GroEL2 protein with macrophage Lectin-like, oxidized low-density lipoprotein receptor-1: An integrated computational and experimental study. Biochim Biophys Acta Gen Subj 2020; 1865:129758. [PMID: 33031906 DOI: 10.1016/j.bbagen.2020.129758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacterial surface proteins act as potential adhesins or invasins. The GroEL is a signal peptide-free surface expressed protein that aids adhesion in Escherichia coli by binding to LOX-1 receptor of the host cells. Mycobacterium tuberculosis (Mtb) expresses GroEL2 protein, having high level sequence identity with E. coli GroEL. This study investigates the interaction mechanism of GroEL2 protein of Mtb with LOX-1 of macrophages using integrated computational and experimental approach. METHODS Mtb GroEL2 protein was purified as histidine tagged protein using Ni-NTA chromatography. Confocal and scanning electron microscopies were used to study the uptake of GroEL2 coated fluorescent latex beads through the LOX-1 receptor in RAW264.7 macrophage cell line. Docking studies were performed to understand the interaction between the GroEL2 and LOX-1 proteins. Polyinosinic acid (PIA) was used as a LOX-1 inhibitor in both in silico and in vitro experiments. RESULTS GroEL2 protein coating enhances uptake of latex beads into macrophages through LOX-1 receptor. LOX-1 inhibitor PIA decreased the uptake of GroEL2 coated latex beads. GroEL2 interacts with the key ligand binding regions of the LOX-1 receptor, such as the basic spine and the saddle hydrophobic patch. PIA molecule destabilized the LOX-1-GroEL2 docked complex. CONCLUSION Surface associated GroEL2 protein of Mtb is a potential ligand for macrophage LOX-1 receptor. Interaction between GroEL2 and LOX-1 receptor may be utilized by Mtb to gain its intracellular access. GENERAL SIGNIFICANCE Surface associated GroEL2 of Mtb may bind to the macrophage LOX-1 receptor, enabling the internalization of the bacteria and progression of the infection.
Collapse
Affiliation(s)
- Vivek Vinod
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anju Choorakottayil Pushkaran
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Chethampadi Gopi Mohan
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India..
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India..
| |
Collapse
|
12
|
Fiori-Duarte AT, Rodrigues RP, Kitagawa RR, Kawano DF. Insights into the Design of Inhibitors of the Urease Enzyme - A Major Target for the Treatment of Helicobacter pylori Infections. Curr Med Chem 2020; 27:3967-3982. [PMID: 30827224 DOI: 10.2174/0929867326666190301143549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Expressed by a variety of plants, fungi and bacteria, the urease enzyme is directly associated with the virulence factor of many bacteria, including Helicobacter pylori, a gram-negative bacterium related to several gastrointestinal diseases and responsible for one of the most frequent bacterial infections throughout the world. The Helicobacter pylori Urease (HPU) is a nickel-dependent metalloenzyme expressed in response to the environmental stress caused by the acidic pH of the stomach. The enzyme promotes the increase of gastric pH through acid neutralization by the products of urea hydrolysis, then critically contributing to the colonization and pathogenesis of the microorganism. At the same time, standard treatments for Helicobacter pylori infections have limitations such as the increasing bacterial resistance to the antibiotics used in the clinical practice. As a strategy for the development of novel treatments, urease inhibitors have proved to be promising, with a wide range of chemical compounds, including natural, synthetic and semisynthetic products to be researched and potentially developed as new drugs. In this context, this review highlights the advances in the field of HPU inhibition, presenting and discussing the basis for the research of new molecules aiming at the identification of more efficient therapeutic entities.
Collapse
Affiliation(s)
- Ana Thereza Fiori-Duarte
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Candido Portinari 200, 13083-871 Campinas, SP, Brazil
| | - Ricardo Pereira Rodrigues
- Department of Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espírito Santo - UFES, Av. Marechal Campos 1468, 29047-105 Vitoria, ES, Brazil
| | - Rodrigo Rezende Kitagawa
- Department of Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espírito Santo - UFES, Av. Marechal Campos 1468, 29047-105 Vitoria, ES, Brazil
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Candido Portinari 200, 13083-871 Campinas, SP, Brazil.,Institute of Chemistry, University of Campinas - UNICAMP, Rua Josué de Castro s/n, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
13
|
Functional Properties of Helicobacter pylori VacA Toxin m1 and m2 Variants. Infect Immun 2020; 88:IAI.00032-20. [PMID: 32284370 DOI: 10.1128/iai.00032-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).
Collapse
|
14
|
Liu Q, Li X, Zhang Y, Song Z, Li R, Ruan H, Huang X. Orally-administered outer-membrane vesicles from Helicobacter pylori reduce H. pylori infection via Th2-biased immune responses in mice. Pathog Dis 2020; 77:5567182. [PMID: 31504509 DOI: 10.1093/femspd/ftz050] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/07/2019] [Indexed: 01/12/2023] Open
Abstract
As the trend of antibiotic resistance has increased, prevention and treatment of Helicobacter pylori infection have been challenged by the fact that no vaccines preventing H. pylori infection are available. Scientists continue to make sustained efforts to find better vaccine formulations and adjuvants to eradicate this chronic infection. In this study, we systemically analyzed the protein composition and potential vaccine function of outer-membrane vesicles (OMVs) derived from gerbil-adapted H. pylori strain 7.13. In total, we identified 169 proteins in H. pylori OMVs and found that outer-membrane, periplasmic and extracellular proteins (48.9% of the total proteins) were enriched. Furthermore, we evaluated the immune protective response of H. pylori OMVs in a C57BL/6 mouse model, and mice were orally immunized with OMVs or the H. pylori whole cell vaccine (WCV) alone, with or without cholera toxin (CT) as an adjuvant. The data demonstrated that oral immunization with OMVs can elicit a strong humoral and significantly higher mucosal immune response than the group immunized with the WCV plus the CT adjuvant. Moreover, our results also confirmed that OMVs predominantly induced T helper 2 (Th2)-biased immune responses that can significantly reduce bacterial loads after challenging with the H. pylori Sydney Strain 1 (SS1). In summary, OMVs as new antigen candidates in vaccine design would be of great value in controlling H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Xiuzhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Yingxuan Zhang
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Zifan Song
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Ruizhen Li
- The First Clinical Medical College, Nanchang University, Nanchang, China, 330006
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China, 330006
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China, 330006
| |
Collapse
|
15
|
Valenzuela-Valderrama M, Cerda-Opazo P, Backert S, González MF, Carrasco-Véliz N, Jorquera-Cordero C, Wehinger S, Canales J, Bravo D, Quest AFG. The Helicobacter pylori Urease Virulence Factor Is Required for the Induction of Hypoxia-Induced Factor-1α in Gastric Cells. Cancers (Basel) 2019; 11:cancers11060799. [PMID: 31185594 PMCID: PMC6627347 DOI: 10.3390/cancers11060799] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Helicobacter pylori infection increases the risk of gastric cancer and induction of hypoxia-induced factor (HIF), which is frequently associated with the development and progression of several types of cancer. We recently showed that H. pylori activation of the PI3K-AKT-mTOR pathway in gastric cells increased HIF-1α expression. Here, we identified the H. pylori virulence factor responsible for HIF-1α induction. A mutant of the H. pylori 84-183 strain was identified with reduced ability to induce HIF-1α. Coomassie blue staining of extracts from these bacteria separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed poor expression of urease subunits that correlated with reduced urease activity. This finding was confirmed in the 26695 strain, where urease mutants were unable to induce HIF-1α expression. Of note, HIF-1α induction was also observed in the presence of the urease inhibitor acetohydroxamic acid at concentrations (of 20 mM) that abrogated urease activity in bacterial culture supernatants, suggesting that enzymatic activity of the urease is not required for HIF-1α induction. Finally, the pre-incubation of the human gastric adenocarcinoma cell line AGS with blocking antibodies against Toll-like receptor-2 (TLR2), but not TLR4, prevented HIF-1α induction. In summary, these results reveal a hitherto unexpected role for the urease protein in HIF-1α induction via TLR2 activation following H. pylori infection of gastric cells.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Paulina Cerda-Opazo
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Steffen Backert
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Nicolás Carrasco-Véliz
- Laboratorio de Microbiología Celular, Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
| | - Carla Jorquera-Cordero
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Sergio Wehinger
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| | - Jimena Canales
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Denisse Bravo
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
- Laboratorio de Microbiología Oral, Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Andrew F G Quest
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| |
Collapse
|
16
|
Mony TJ, Kwon HS, Won MK, Kang YM, Lee SH, Kim SY, Baek DY, Elahi F. Anti-urease immunoglobulin (IgY) from egg yolk prevents Helicobacter pylori infection in a mouse model. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1617251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Hyuck-Se Kwon
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Mi-Kyoung Won
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Yeon-Mi Kang
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Su-Hee Lee
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Su-Yeun Kim
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Doo-Yeon Baek
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| | - Fazle Elahi
- Research Institute, ADBiotech CO., LTD, Chuncheon, Gangwon, South Korea
| |
Collapse
|
17
|
Caston RR, Loh JT, Voss BJ, McDonald WH, Scholz MB, McClain MS, Cover TL. Effect of environmental salt concentration on the Helicobacter pylori exoproteome. J Proteomics 2019; 202:103374. [PMID: 31063819 DOI: 10.1016/j.jprot.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection and a high salt diet are each risk factors for gastric cancer. In this study, we tested the hypothesis that environmental salt concentration influences the composition of the H. pylori exoproteome. H. pylori was cultured in media containing varying concentrations of sodium chloride, and aliquots were fractionated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified proteins that were selectively released into the extracellular space, and we identified selectively released proteins that were differentially abundant in culture supernatants, depending on the environmental salt concentration. We also used RNA-seq analysis to identify genes that were differentially expressed in response to environmental salt concentration. The salt-responsive proteins identified by proteomic analysis and salt-responsive genes identified by RNA-seq analysis were mostly non-concordant, but the secreted toxin VacA was salt-responsive in both analyses. Western blot analysis confirmed that VacA levels in the culture supernatant were increased in response to high salt conditions, and quantitative RT-qPCR experiments confirmed that vacA transcription was upregulated in response to high salt conditions. These results indicate that environmental salt concentration influences the composition of the H. pylori exoproteome, which could contribute to the increased risk of gastric cancer associated with a high salt diet. SIGNIFICANCE: Helicobacter pylori-induced alterations in the gastric mucosa have been attributed, at least in part, to the actions of secreted H. pylori proteins. In this study, we show that H. pylori growth in high salt concentrations leads to increased levels of a secreted VacA toxin. Salt-induced alterations in the composition of the H. pylori exoproteome is relevant to the increased risk of gastric cancer associated with consumption of a high salt diet.
Collapse
Affiliation(s)
- Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bradley J Voss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew B Scholz
- Vanderbilt Technologies for Advanced Genetics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
18
|
Qureshi N, Li P, Gu Q. Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Appl Microbiol Biotechnol 2019; 103:1573-1588. [PMID: 30610283 DOI: 10.1007/s00253-018-09580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a highly prevalent human pathogen responsible for chronic inflammation of the gastric tissues, gastroduodenal ulcers, and cancer. The treatment includes a pair of antibiotics with a proton pump inhibitor PPI. Despite the presence of different treatments, the infection rate is still increasing both in developed and developing states. The challenge of treatment failure is greatly due to the resistance of H. pylori to antibiotics and its side effects. Probiotics potential to cure H. pylori infection is well-documented. Probiotics combined with conventional treatment regime appear to have great potential in eradicating H. pylori infection, therefore, provide an excellent alternative approach to manage H. pylori load and its threatening disease outcome. Notably, anti-H. pylori activity of probiotics is strain specific,therefore establishing standard guidelines regarding the dose and formulation of individual strain is inevitable. This review is focused on probiotic's antagonism against H. pylori summarizing their three main potential aspects: their efficiency (i) as an alternative to H. pylori eradication treatment, (ii) as an adjunct to H. pylori eradication treatment and (iii) as a vaccine delivery vehicle.
Collapse
Affiliation(s)
- Nuzhat Qureshi
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
19
|
Bethke J, Yáñez AJ, Avendaño-Herrera R. Comparative Genomic Analysis of Two Chilean Renibacterium salmoninarum Isolates and the Type Strain ATCC 33209T. Genome Biol Evol 2018; 10:1816-1822. [PMID: 29982426 PMCID: PMC6057502 DOI: 10.1093/gbe/evy138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Renibacterium salmoninarum, a slow-growing facultative intracellular pathogen belonging to the high C + G content Actinobacteria phylum, is the causative agent of bacterial kidney disease, a progressive granulomatous infection affecting salmonids worldwide. This Gram-positive bacterium has existed in the Chilean salmonid industry for >30 years, but little or no information is available regarding the virulence mechanisms and genomic characteristics of Chilean isolates. In this study, the genomes of two Chilean isolates (H-2 and DJ2R) were sequenced, and a search was conducted for genes and proteins involved in virulence and pathogenicity, and we compare with the type strain ATCC 33209 T genome. The genome sizes of H-2 and DJ2R are 3,155,332 bp and 3,155,228 bp, respectively. They genomes presented six ribosomal RNA, 46 transcription RNA, and 25 noncodingRNA, and both had the same 56.27% G + C content described for the type strain ATCC 33209 T. A total of 3,522 and 3,527 coding sequences were found for H-2 and DJ2R, respectively. Meanwhile, the ATCC 33209 T type strain had 3,519 coding sequences. The in silico genome analysis revealed a genes related to tricarboxylic acid cycle, glycolysis, iron transport and others metabolic pathway. Also, the data indicated that R salmoninarum may have a variety of possible virulence-factor and antibiotic-resistance strategies. Interestingly, many of genes had high identities with Mycobacterium species, a known pathogenic Actinobacteria bacterium. In summary, this study provides the first insights into and initial steps towards understanding the molecular basis of antibiotic resistance, virulence mechanisms and host/environment adaptation in two Chilean R. salmoninarum isolates that contain proteins of which were similar to those of Mycobacterium. Furthermore, important information is presented that could facilitate the development of preventive and treatment measures against R. salmoninarum in Chile and worldwide.
Collapse
Affiliation(s)
- Jorn Bethke
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Alejandro J Yáñez
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
20
|
Pepe S, Pinatel E, Fiore E, Puccio S, Peano C, Brignoli T, Vannini A, Danielli A, Scarlato V, Roncarati D. The Helicobacter pylori Heat-Shock Repressor HspR: Definition of Its Direct Regulon and Characterization of the Cooperative DNA-Binding Mechanism on Its Own Promoter. Front Microbiol 2018; 9:1887. [PMID: 30154784 PMCID: PMC6102357 DOI: 10.3389/fmicb.2018.01887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogens to perceive environmental conditions and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universal cellular response, allows cells to adapt to hostile environmental conditions and to survive during stress. In the major human pathogen Helicobacter pylori the expression of chaperone-encoding operons is under control of two auto-regulated transcriptional repressors, HrcA and HspR, with the latter acting as the master regulator of the regulatory circuit. To further characterize the HspR regulon in H. pylori, we used global transcriptome analysis (RNA-sequencing) in combination with Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-sequencing) of HspR genomic binding sites. Intriguingly, these analyses showed that HspR is involved in the regulation of different crucial cellular functions through a limited number of genomic binding sites. Moreover, we further characterized HspR-DNA interactions through hydroxyl-radical footprinting assays. This analysis in combination with a nucleotide sequence alignment of HspR binding sites, revealed a peculiar pattern of DNA protection and highlighted sequence conservation with the HAIR motif (an HspR-associated inverted repeat of Streptomyces spp.). Site-directed mutagenesis demonstrated that the HAIR motif is fundamental for HspR binding and that additional nucleotide determinants flanking the HAIR motif are required for complete binding of HspR to its operator sequence spanning over 70 bp of DNA. This finding is compatible with a model in which possibly a dimer of HspR recognizes the HAIR motif overlapping its promoter for binding and in turn cooperatively recruits two additional dimers on both sides of the HAIR motif.
Collapse
Affiliation(s)
- Simona Pepe
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Elisabetta Fiore
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Simone Puccio
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy.,Institute of Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Tarcisio Brignoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol 2018; 200:JB.00124-18. [PMID: 29866802 DOI: 10.1128/jb.00124-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.
Collapse
|
22
|
Zhang R, Qiao D, Peng X, Duan G, Shi Q, Zhang L, Wang C, Liang W, Chen S, Fan Q. A novel food‐grade lactococcal expression system and its use for secretion and delivery of an oral vaccine antigen. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2018; 93:1655-1660. [DOI: 10.1002/jctb.5536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/25/2017] [Indexed: 07/03/2024]
Abstract
AbstractBACKGROUNDFood‐grade bacterial expression systems are relatively rare, and increasing evidence indicates that subcellular location of antigens in bacterial vector vaccines may markedly affect the immune efficacy.RESULTSThis study developed a novel food‐grade secretory expression system for heterologous protein production and oral vaccine delivery. Furthermore, by using the expression system, an engineered L. lactis strain secreting H. pylori UreB was constructed, and used to vaccinate SPF BALB/c mice. As results, the UreB expressed in L. lactis was detected in both cell lysates and culture supernatant of the engineered strain, constituting roughly 50% of the culture supernatant proteins, and recognized by mouse anti‐H. pylori sera. Oral vaccination with the engineered L. lactis produced a significantly elevated anti‐UreB serum antibody level in mice (P < 0.05).CONCLUSIONThese data show a novel food‐grade L. lactis secretory expression system, which may have distinct potential impact on edible and medicinal protein production and oral vaccine development. Moreover, this is the first report on secretory expression of a H. pylori antigen via using a food‐grade lactococcal expression system, and the engineered strain secreting UreB can be a hopeful H. pylori vaccine candidate. © 2017 Society of Chemical Industry
Collapse
Affiliation(s)
- Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Dan Qiao
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Qingfeng Shi
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Linghan Zhang
- Department of Clinical Medicine Zhengzhou University Zhengzhou China
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Wenjuan Liang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| |
Collapse
|
23
|
Peng X, Zhang R, Duan G, Wang C, Sun N, Zhang L, Chen S, Fan Q, Xi Y. Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci Rep 2018; 8:6435. [PMID: 29691472 PMCID: PMC5915382 DOI: 10.1038/s41598-018-24879-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori neutrophil-activating protein A subunit (NapA) has been identified as a virulence factor, a protective antigen and a potent immunomodulator. NapA shows unique application potentials for anti-H. pylori vaccines and treatment strategies of certain allergic diseases and carcinomas. However, appropriate production and utilization modes of NapA still remain uncertain to date. This work has established a novel efficient production and utilization mode of NapA by using L. lactis as an expression host and delivery vector, and demonstrated immune protective efficacy and immune modulatory activity of the engineered L. lactis by oral vaccination of mice. It was observed for the first time that H. pylori NapA promotes both polarized Th17 and Th1 responses, which may greatly affect the clinical application of NapA. This report offers a promising anti-H. pylori oral vaccine candidate and a potent mucosal immune modulatory agent. Meanwhile, it uncovers a way to produce and deliver the oral vaccine and immunomodulator by fermentation of food like milk, which might have striking effects on control of H. pylori infection, gastrointestinal cancers, and Th2 bias allergic diseases, including many food allergies.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Nan Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Linghan Zhang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanlin Xi
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Jing ZW, Luo M, Jia YY, Li C, Zhou SY, Mei QB, Zhang BL. Anti-Helicobacterpylori effectiveness and targeted delivery performance of amoxicillin-UCCs-2/TPP nanoparticles based on ureido-modified chitosan derivative. Int J Biol Macromol 2018; 115:367-374. [PMID: 29660462 DOI: 10.1016/j.ijbiomac.2018.04.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
The amoxicillin-UCCs-2/TPP nanoparticles constructed with ureido-modified chitosan derivative UCCs-2 and sodium tripolyphosphate (TPP) played an important role to deliver drug to achieve more efficacious and specific eradication of Helicobacterpylori (H. pylori) in vitro. In this study, the anti-H. pylori effectiveness in vivo and uptake mechanism was investigated in details, including the effect of temperature, pH values and the addition of competitive substrate urea on uptake. Compared with unmodified nanoparticles, a more efficacious and specific anti-H. pylori activities were obtained in vivo by using this biological chitosan derivative UCCs-2. Histological staining and immunological analysis verified that the amoxicillin-UCCs-2/TPP nanoparticles could diminish the proinflammatory cytokines levels and alleviate the inflammatory damages caused by H. pylori infection. The uredio-modified nanoparticles also have favorable gastric retention property, which is beneficial for the oral drug delivery to targeted eradicate H. pylori infection in stomach. These findings suggest that this targeted drug delivery system may serve for specific treatment of H. pylori infection both in vitro and in vivo, which can also be used as promising nanocarriers for other therapeutic reagents to target H. pylori.
Collapse
Affiliation(s)
- Zi-Wei Jing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Luo
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Yang Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
25
|
Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability. Sci Rep 2017; 7:17522. [PMID: 29235503 PMCID: PMC5727486 DOI: 10.1038/s41598-017-17583-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37-41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.
Collapse
|
26
|
Fujita M, Nakashima K, Achal V, Kawasaki S. Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Hutton ML, D'Costa K, Rossiter AE, Wang L, Turner L, Steer DL, Masters SL, Croker BA, Kaparakis-Liaskos M, Ferrero RL. A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Front Cell Infect Microbiol 2017; 7:219. [PMID: 28634572 PMCID: PMC5460342 DOI: 10.3389/fcimb.2017.00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as "lipid rafts." Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248) with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01). HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05), and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05). Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.
Collapse
Affiliation(s)
- Melanie L. Hutton
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Amanda E. Rossiter
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Lin Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Lorinda Turner
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - David L. Steer
- Monash Biomedical Proteomics Facility, Monash UniversityMelbourne, VIC, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - Ben A. Croker
- Inflammation Division, The Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
28
|
Sun Y, Zhu DQ, Zhang QX, Pang XH, Sun SR, Liu F, Li AL, Meng XC. The Expression of GroEL Protein Amplified fromBifidobacterium animalissubsp.lactisKLDS 2.0603 and its Role in Competitive Adhesion to Caco-2. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2016.1244769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
30
|
Richter C, Mukherjee O, Ermert D, Singh B, Su YC, Agarwal V, Blom AM, Riesbeck K. Moonlighting of Helicobacter pylori catalase protects against complement-mediated killing by utilising the host molecule vitronectin. Sci Rep 2016; 6:24391. [PMID: 27087644 PMCID: PMC4834553 DOI: 10.1038/srep24391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is an important human pathogen and a common cause of peptic ulcers and gastric cancer. Despite H. pylori provoking strong innate and adaptive immune responses, the bacterium is able to successfully establish long-term infections. Vitronectin (Vn), a component of both the extracellular matrix and plasma, is involved in many physiological processes, including regulation of the complement system. The aim of this study was to define a receptor in H. pylori that binds Vn and determine the significance of the interaction for virulence. Surprisingly, by using proteomics, we found that the hydrogen peroxide-neutralizing enzyme catalase KatA is a major Vn-binding protein. Deletion of the katA gene in three different strains resulted in impaired binding of Vn. Recombinant KatA was generated and shown to bind with high affinity to a region between heparin-binding domain 2 and 3 of Vn that differs from previously characterised bacterial binding sites on the molecule. In terms of function, KatA protected H. pylori from complement-mediated killing in a Vn-dependent manner. Taken together, the virulence factor KatA is a Vn-binding protein that moonlights on the surface of H. pylori to promote bacterial evasion of host innate immunity.
Collapse
Affiliation(s)
- Corinna Richter
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Oindrilla Mukherjee
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - David Ermert
- Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Vaibhav Agarwal
- Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Anna M. Blom
- Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| |
Collapse
|
31
|
Koch KN, Müller A. Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens. Gut Microbes 2016; 6:382-7. [PMID: 26727421 PMCID: PMC4826104 DOI: 10.1080/19490976.2015.1105427] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori is both a normal constituent of the human gastric microbiota as well as a pathogen tightly associated with severe gastric disorders. The ability of H. pylori to activate the inflammasome and caspase-1 in antigen-presenting and other cells, and the resulting processing and release of caspase-1-dependent cytokines, impacts both the immunomodulatory and pathogenic activities of H. pylori. This article summarizes recent insights by us and others on the bacterial and host prerequisites of inflammasome activation. H. pylori predominantly activates the NLRP3 inflammasome through a process that requires TLR2-dependent licensing. We identified the urease enzyme, a colonization determinant known to be required for acid adaptation, as critically required for activation of the TLR2/NLRP3/caspase-1 axis. The phenotypes of urease mutants, as well as mouse strains defective for TLR2 or NLRP3, are discussed with respect to their ability to support persistent colonization, immune tolerance and immunity to H. pylori.
Collapse
Affiliation(s)
- Katrin N Koch
- Institute of Molecular Cancer Research; University of Zurich; Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research; University of Zurich; Zurich, Switzerland,Correspondence to: Anne Müller;
| |
Collapse
|
32
|
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A. Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. J Proteomics 2016; 131:140-148. [DOI: 10.1016/j.jprot.2015.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 01/08/2023]
|
33
|
|
34
|
Shaikh RU, Dawane AA, Pawar RP, Gond DS, Meshram RJ, Gacche RN. Inhibition of Helicobacter pylori
and Its Associate Urease by Labdane Diterpenoids Isolated from Andrographis paniculata. Phytother Res 2015; 30:412-7. [DOI: 10.1002/ptr.5542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Rafik U. Shaikh
- Department of Botany; Poona College; Camp Pune 411 001 MS India
| | - Ashwini A. Dawane
- School of Life Sciences; Swami Ramanand Teerth Marathwada University; Nanded 431 606 MS India
| | - Rajendra P. Pawar
- Department of Chemistry; Deogiri College; Aurangabad 431 005 MS India
| | - Dhananjay S. Gond
- Department of Microbiology; Savitribai Phule Pune University; Pune 411 007 MS India
| | - Rohan J. Meshram
- School of Life Sciences; Swami Ramanand Teerth Marathwada University; Nanded 431 606 MS India
| | - Rajesh N. Gacche
- School of Life Sciences; Swami Ramanand Teerth Marathwada University; Nanded 431 606 MS India
| |
Collapse
|
35
|
Growth phase-dependent composition of the Helicobacter pylori exoproteome. J Proteomics 2015; 130:94-107. [PMID: 26363098 DOI: 10.1016/j.jprot.2015.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori colonizes the human stomach and is associated with an increased risk of gastric cancer and peptic ulcer disease. Analysis of H. pylori protein secretion is complicated by the occurrence of bacterial autolysis. In this study, we analyzed the exoproteome of H. pylori at multiple phases of bacterial growth and identified 74 proteins that are selectively released into the extracellular space. These include proteins known to cause alterations in host cells, antigenic proteins, and additional proteins that have not yet been studied in any detail. The composition of the H. pylori exoproteome is dependent on the phase of bacterial growth. For example, the proportional abundance of the vacuolating toxin VacA in culture supernatant is higher during late growth phases than early growth phases, whereas the proportional abundance of many other proteins is higher during early growth phases. We detected marked variation in the subcellular localization of putative secreted proteins within soluble and membrane fractions derived from intact bacteria. By providing a comprehensive view of the H. pylori exoproteome, these results provide new insights into the array of secreted H. pylori proteins that may cause alterations in the gastric environment.
Collapse
|
36
|
De Falco M, Lucariello A, Iaquinto S, Esposito V, Guerra G, De Luca A. Molecular Mechanisms of Helicobacter pylori Pathogenesis. J Cell Physiol 2015; 230:1702-7. [PMID: 25639461 DOI: 10.1002/jcp.24933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infects 50% of mankind. The vast majority of H. pylori infection occurs in the developing countries where up to 80% of the middle-aged adults may be infected. Bacterial infection causes an inflammatory response that proceeds through a series of intermediated stages of precancerous lesions (gastritis, atrophy, intestinal metaplasia, and dysplasia). Among infected individuals, approximately 10% develops severe gastric lesions such as peptic ulcer disease, 1-3% progresses to gastric cancer (GC) with a low 5-year survival rate, and 0.1% develops mucosa-associated lymphoid tissue (MALT). GC is one of the most common cancer and the third leading cause of cancer-related deaths worldwide. In this review, we have summarized the most recent papers about molecular mechanisms of H. pylori pathogenesis. The main important steps of H. pylori infection such as adhesion, entry in epithelial gastric cells, activation of intracellular pathways until epigenetic modifications have been described.
Collapse
Affiliation(s)
- Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Bloes DA, Kretschmer D, Peschel A. Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors. Nat Rev Microbiol 2014; 13:95-104. [PMID: 25534805 DOI: 10.1038/nrmicro3390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate immune system recognizes conserved microorganism-associated molecular patterns (MAMPs), some of which are sensed by G protein-coupled receptors (GPCRs), and this leads to chemotactic leukocyte influx. Recent studies have indicated that these processes are crucial for host defence and rely on a larger set of chemotactic MAMPs and corresponding GPCRs than was previously thought. Agonists, such as bacterial formyl peptides, enterococcal pheromone peptides, staphylococcal peptide toxins, bacterial fermentation products and the Helicobacter pylori peptide HP(2-20), stimulate specific GPCRs. The importance of leukocyte chemotaxis in host defence is highlighted by the fact that some bacterial pathogens produce chemotaxis inhibitors. How the various chemoattractants, receptors and antagonists shape antibacterial host defence represents an important topic for future research.
Collapse
Affiliation(s)
- Dominik Alexander Bloes
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Dorothee Kretschmer
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
38
|
Matongo F, Nwodo UU. In vitro Assessment of Helicobacter pylori Ureases Inhibition by Honey Fractions. Arch Med Res 2014; 45:540-6. [DOI: 10.1016/j.arcmed.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
|
39
|
Valenzuela M, Cáceres A, Almarza O, Bravo D, Soto S, Cerda O, Toledo H. Characterization of the arginine decarboxylase gene (ORF HP0422, speA) involved in acid tolerance in Helicobacter pylori. Helicobacter 2014; 19:182-93. [PMID: 24628778 DOI: 10.1111/hel.12115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Helicobacter pylori is a motile microaerophilic bacterium that colonizes the human stomach. H. pylori infection triggers gastric diseases, such as gastritis, peptic ulcer and gastric cancer. Stomach represents a barrier for microorganism colonization, particularly because of its high hydrochloric acid concentration. The main mechanism developed by H. pylori to maintain intracellular pH homeostasis in this environment is the urease activity. However, urease negative strains can be also isolated from clinical samples, suggesting that H. pylori presents other components involved in acid resistance. OBJECTIVE Here, we present some evidence that the arginine decarboxylase gene (speA) in H. pylori could be involved in an acid adaptation mechanism similar to the one in Enterobacteriaceae, which is dependent on the presence of arginine. METHODS Indeed, speA mRNA and protein expression are acutely induced by acid stress. RESULTS Moreover, we showed that H. pylori uses arginine in an acid response mechanism required for its growth in acid conditions. CONCLUSION Altogether, these results provide novel information regarding the H. pylori physiology and acid response mechanism.
Collapse
Affiliation(s)
- Manuel Valenzuela
- Faculty of Medicine, Department of Molecular and Cellular Biology, Laboratory of Molecular Microbiology, ICBM, University of Chile, Santiago, Chile; Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Analysis of surface-exposed outer membrane proteins in Helicobacter pylori. J Bacteriol 2014; 196:2455-71. [PMID: 24769695 DOI: 10.1128/jb.01768-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.
Collapse
|
41
|
Smiley R, Bailey J, Sethuraman M, Posecion N, Showkat Ali M. Comparative proteomics analysis of sarcosine insoluble outer membrane proteins from clarithromycin resistant and sensitive strains of Helicobacter pylori. J Microbiol 2013; 51:612-8. [PMID: 24173641 DOI: 10.1007/s12275-013-3029-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori causes disease manifestations in humans including chronic gastric and peptic ulcers, gastric cancer, and lymphoid tissue lymphoma. Increasing rates of H. pylori clarithromycin resistance has led to higher rates of disease development. Because antibiotic resistance involves modifications of outer membrane proteins (OMP) in other Gram-negative bacteria, this study focuses on identification of H. pylori OMP's using comparative proteomic analyses of clarithromycin-susceptible and -resistant H. pylori strains. Comparative proteomics analyses of isolated sarcosine-insoluble OMP fractions from clarithromycin-susceptible and -resistant H. pylori strains were performed by 1) one dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis protein separation and 2) in-gel digestion of the isolated proteins and mass spectrometry analysis by Matrix Assisted Laser Desorption Ionization-tandem mass spectrometry. Iron-regulated membrane protein, UreaseB, EF-Tu, and putative OMP were down-regulated; HopT (BabB) transmembrane protein, HofC, and OMP31 were up-regulated in clarithromycin-resistant H. pylori. Western blotting and real time PCR, respectively, validated UreaseB subunit and EF-Tu changes at the protein level, and mRNA expression of HofC and HopT. This limited proteomic study provides evidence that alteration of the outer membrane proteins' profile may be a novel mechanism involved in clarithromycin resistance in H. pylori.
Collapse
Affiliation(s)
- Rebecca Smiley
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 Piedras Street, El Paso, TX, 79920-5001, USA
| | | | | | | | | |
Collapse
|
42
|
Sutton P, Chionh YT. Why can't we make an effective vaccine against Helicobacter pylori? Expert Rev Vaccines 2013; 12:433-41. [PMID: 23560923 DOI: 10.1586/erv.13.20] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a major human pathogen that colonizes the stomach and is the lead etiological agent for several pathologies. An effective vaccine against these bacteria would be invaluable for protecting against gastric adenocarcinoma. However, the development of such a vaccine has stalled and the field has progressed little in the last decade. In this review, the authors provide an opinion on key problems that are preventing the development of a H. pylori vaccine. Primarily, this involves the inability to produce a completely protective immune response. The knock-on effects of this include a loss of industry investment. Overcoming these problems will likely involve defeating the immune-evasion defenses of H. pylori, in particular the mechanism(s) by which it evades antibody-mediated attack.
Collapse
Affiliation(s)
- Philip Sutton
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia.
| | | |
Collapse
|
43
|
González-López MA, Velázquez-Guadarrama N, Romero-Espejel ME, Olivares-Trejo JDJ. Helicobacter pylori secretes the chaperonin GroEL (HSP60), which binds iron. FEBS Lett 2013; 587:1823-8. [PMID: 23684642 DOI: 10.1016/j.febslet.2013.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/06/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is a bacterium that can use multiple iron sources. However, it is unknown whether this bacterium secretes molecules such as siderophores or haemophores to scavenge iron. Here, we report the first secreted iron-binding protein of H. pylori, which we purified by haem-affinity chromatography. Mass spectrometry analysis revealed its identity as chaperonin (HpGroEL). When we compared HpGroEL with EcGroEL from Escherichia coli, they were homologous, showing 60% similarity. Additionally, purified cytoplasmic HpGroEL could also bind iron. Perhaps H. pylori secretes HpGroEL to maintain the appropriate folding of extracellular proteins and to bind iron.
Collapse
Affiliation(s)
- Marco Antonio González-López
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Col Del Valle, México DF, Mexico
| | | | | | | |
Collapse
|
44
|
Putty K, Marcus SA, Mittl PRE, Bogadi LE, Hunter AM, Arur S, Berg DE, Sethu P, Kalia A. Robustness of Helicobacter pylori infection conferred by context-variable redundancy among cysteine-rich paralogs. PLoS One 2013; 8:e59560. [PMID: 23555707 PMCID: PMC3608669 DOI: 10.1371/journal.pone.0059560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/15/2013] [Indexed: 01/01/2023] Open
Abstract
Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sarah A. Marcus
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lindsey E. Bogadi
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Allison M. Hunter
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Swathi Arur
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Palaniappan Sethu
- Department of Biomedical Engineering, University of Louisville, Louisville, Kentucky, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- Molecular Genetic Technology Program, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
45
|
Wang J, Du XJ, Lu XN, Wang S. Immunoproteomic identification of immunogenic proteins in Cronobacter sakazakii strain BAA-894. Appl Microbiol Biotechnol 2013; 97:2077-91. [PMID: 23371297 DOI: 10.1007/s00253-013-4720-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022]
Abstract
Cronobacter spp. are emerging opportunistic pathogens. Cronobacter sakazakii is considered as the predominant species in all infections. So far, our understanding of the species' immunogens and potential virulence factors of Cronobacter spp. remains limited. In this study, an immunoproteomic approach was used to investigate soluble and insoluble proteins from the genome-sequenced strain C. sakazakii ATCC BAA-894. Proteins were separated using two-dimensional electrophoresis, detected by Western blotting with polyclonal antibodies of C. sakazakii BAA-894, and identified using tandem mass spectrometry (MALDI-MS and MALDI-MS/MS, MS/MSMS). A total of 11 immunoreactive proteins were initially identified in C. sakazakii BAA-894, including two outer membrane proteins, four periplasmic proteins, and five cytoplasmic proteins. In silico functional analysis of the 11 identified proteins indicated three proteins that were initially described as immunogens of pathogenic bacteria. For the remaining eight proteins, one protein was categorized as a potential virulence factor involved in protection against reactive oxygen species, and seven proteins were considered to play potential roles in adhesion, invasion, and biofilm formation. To our knowledge, this is the first time that immunogenic proteins of C. sakazakii BAA-894 have been identified as immunogens and potential virulence factors by an immunoproteomics approach. Future studies should investigate the roles of these proteins in bacterial pathogenesis and modulation of host immune responses during infection to identify their potential as molecular therapeutic targets.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | | | | | | |
Collapse
|
46
|
|
47
|
Stent A, Every AL, Sutton P. Helicobacter pylori defense against oxidative attack. Am J Physiol Gastrointest Liver Physiol 2012; 302:G579-87. [PMID: 22194421 DOI: 10.1152/ajpgi.00495.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a microaerophilic, gram-negative pathogen of the human stomach. Despite the chronic active gastritis that develops following colonization, H. pylori is able to persist unharmed in the stomach for decades. Much of the damage caused by gastric inflammation results from the accumulation of reactive oxygen/nitrogen species within the stomach environment, which can induce oxidative damage in a wide range of biological molecules. Without appropriate defenses, this oxidative damage would be able to rapidly kill nearby H. pylori, but the organism employs a range of measures, including antioxidant enzymes, biological repair systems, and inhibitors of oxidant generation, to counter the attack. Despite the variety of measures employed to defend against oxidative injury, these processes are intimately interdependent, and any deficiency within the antioxidant system is generally sufficient to cause substantial impairment of H. pylori viability and persistence. This review provides an overview of the development of oxidative stress during H. pylori gastritis and examines the methods the organism uses to survive the resultant damage.
Collapse
Affiliation(s)
- Andrew Stent
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
48
|
Ge R, Chen Z, Zhou Q. The actions of bismuth in the treatment of Helicobacter pylori infections: an update. Metallomics 2012; 4:239-43. [PMID: 22358069 DOI: 10.1039/c2mt00180b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations and gastric cancer. Bismuth-based triple or quadruple therapies have been commonly recommended for the treatment of H. pylori infections. Up to now, the molecular mechanisms by which bismuth inhibits the growth of H. pylori are far from clear. The present concise review intends to cover the most recent reports and discoveries in the field of the inhibitory mechanism of bismuth against H. pylori as well as the bacterial protective response to drug treatment, which will help us to further understand the molecular mechanisms underlying the actions of metal-based drugs and stimulate further development of effective anti-bacterial drugs.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | |
Collapse
|
49
|
Production of autoantibodies by murine B-1a cells stimulated with Helicobacter pylori urease through toll-like receptor 2 signaling. Infect Immun 2011; 79:4791-801. [PMID: 21947775 DOI: 10.1128/iai.05808-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Helicobacter pylori infection is associated with several autoimmune diseases, in which autoantibody-producing B cells must be activated. Among these B cells, CD5-positive B-1a cells from BALB/c mice were confirmed to secrete autoantibodies when cocultured with purified H. pylori urease in the absence of T cells. To determine the mechanisms for autoantibody production, CD5-positive B-1a cells were sorted from murine spleen cells and stimulated with either purified H. pylori urease or H. pylori coated onto plates (referred to hereafter as plate-coated H. pylori), and autoantibody production was measured by enzyme-linked immunosorbent assay (ELISA). Complete urease was not secreted from H. pylori but was visually expressed over the bacterium-like endotoxin. Urease-positive plated-coated H. pylori stimulated B-1a cells to produce autoantibodies, although urease-deficient isotype-matched H. pylori did not. Autoantibody secretion by B-1a cells was inhibited when bacteria were pretreated with anti-H. pylori urease-specific antibody having neutralizing ability against urease enzymatic activity but not with anti-H. pylori urease-specific antibody without neutralizing capacity. The B-1a cells externally express various Toll-like receptors (TLRs): TLR1, TLR2, TLR4, and TLR6. Among the TLRs, blocking of TLR2 on B-1a cells with a specific monoclonal antibody (MAb), T2.5, inhibited autoantibody secretion when B-1a cells were stimulated with plate-coated H. pylori or H. pylori urease. Moreover, B-1a cells from TLR2-knockout mice did not produce those autoantibodies. The present study provides evidence that functional urease expressed on the surface of H. pylori will directly stimulate B-1a cells via innate TLR2 to produce various autoantibodies and may induce autoimmune disorders.
Collapse
|
50
|
CbpA acts as a modulator of HspR repressor DNA binding activity in Helicobacter pylori. J Bacteriol 2011; 193:5629-36. [PMID: 21840971 DOI: 10.1128/jb.05295-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of pathogens to cope with disparate environmental stresses is a crucial feature for bacterial survival and for the establishment of a successful infection and colonization of the host; in this respect, chaperones and heat shock proteins (HSPs) play a fundamental role in host-pathogen interactions. In Helicobacter pylori, the expression of the major HSPs is tightly regulated through dedicated transcriptional repressors (named HspR and HrcA), as well as via a GroESL-dependent posttranscriptional feedback control acting positively on the DNA binding affinity of the HrcA regulator itself. In the present work we show that the CbpA chaperone also participates in the posttranscriptional feedback control of the H. pylori heat shock regulatory network. Our experiments suggest that CbpA specifically modulates HspR in vitro binding to DNA without affecting HrcA regulator activity. In particular, CbpA directly interacts with HspR, preventing the repressor from binding to its target operators. This interaction takes place only when HspR is not bound to DNA since CbpA is unable to affect HspR once the repressor is bound to its operator site. Accordingly, in vivo overexpression of CbpA compromises the response kinetics of the regulatory circuit, inducing a failure to restore HspR-dependent transcriptional repression after heat shock. The data presented in this work support a model in which CbpA acts as an important modulator of HspR regulation by fine-tuning the shutoff response of the regulatory circuit that governs HSP expression in H. pylori.
Collapse
|