1
|
Arjmandi D, Graeili Z, Mohammadi P, Arshadi M, Jafari Tadi M, Ardekani A, Naeimi R, Abbasi F, Marhoommirzabak E, Mahjour S, Sartip B, Prasa H, Fallah Omrani V, Rostami A. Chlamydia pneumonia infection and risk of multiple sclerosis: A meta-analysis. Mult Scler Relat Disord 2023; 77:104862. [PMID: 37442074 DOI: 10.1016/j.msard.2023.104862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The role of infectious agents, including Chlamydia pneumoniae (Cpn), in the development of multiple sclerosis (MS), is still a matter of major contention. OBJECTIVE This meta-analysis study aimed to assess the actual involvement of Cpn in MS development. METHODS We undertook a search of international scientific databases to identify eligible studies. We used a random-effects meta-analysis model (REM) to generate the pooled odds ratio (OR) and 95% confidence intervals (CIs). Heterogeneity was calculated using the I2 statistic. Sensitivity and subgroup analyses were applied to assess the effects of study characteristics and socio-demographic variables on the pooled OR. RESULTS We identified 37 studies comprising 51 datasets that satisfied the inclusion criteria. Considering diagnostic methods for Cpn, 26 and 25 datasets used PCR- and serological-based methods, respectively. In PCR-based datasets, REM showed a significant positive association between Cpn infection and the development of MS (OR, 5.29; 95% CI, 3.12-8.97), while a non-significant positive association was achieved in serological-based datasets (OR, 1.34; 95% CI, 0.88-2.03). In subgroup analyses on PCR-based datasets, results were significant for both CSF (OR, 5.70) and serum (OR, 4.84) samples; both healthy (OR, 16.11) and hospital-based (OR, 2.88) controls; and both moderate (OR, 5.14) and high (OR, 5.48) quality studies. In serological-based datasets, only those that used CSF samples yielded significant results (OR, 3.41). CONCLUSIONS Our findings verify the significant positive relationship between Cpn infection and MS. We advocate prospective cohort studies with lifelong follow-ups and also experimental studies to better understand the role of Cpn in MS development.
Collapse
Affiliation(s)
- Delaram Arjmandi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Graeili
- Department of Biostatistics and Epidemiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Parisa Mohammadi
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Arshadi
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL 60607, USA
| | - Ali Ardekani
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Naeimi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farzaneh Abbasi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elika Marhoommirzabak
- Department of Neurology, University of Visayas, Gullas College of Medicine, Cebu city, 600 Cebu, Philippines
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Behnam Sartip
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hamid Prasa
- Department of Neurology, University of Visayas, Gullas College of Medicine, Cebu city, 600 Cebu, Philippines
| | - Vahid Fallah Omrani
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Zhao X, Miao G, Zhang L, Zhang Y, Zhao H, Xu Z, Wang B, Zhang L. Chlamydia pneumoniae Infection Induces Vascular Smooth Muscle Cell Migration and Atherosclerosis Through Mitochondrial Reactive Oxygen Species-Mediated JunB-Fra-1 Activation. Front Cell Dev Biol 2022; 10:879023. [PMID: 35493076 PMCID: PMC9039263 DOI: 10.3389/fcell.2022.879023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Infection is closely related to atherosclerosis, which is a major pathological basis for cardiovascular diseases. Vascular smooth muscle cell (VSMC) migration is an important trigger in development of atherosclerosis that is associated with Chlamydia pneumoniae (C. pneumoniae) infection. However, the mechanism of VSMC migration remains unclear, and whether antioxidant could be a therapeutic target for C. pneumoniae infection-induced atherosclerosis also remains unknown. The results showed that C. pneumoniae infection mainly impaired mitochondrial function and increased the level of mitochondrial reactive oxygen species (mtROS). The expressions of protein JunB, Fra-1 and Matrix metalloproteinase 2 (MMP) evidently increased after C. pneumoniae infection, and the interaction between JunB and Fra-1 was also enhanced. After scavenging mtROS by antioxidant Mito-TEMPO, the increasing expressions of JunB, Fra-1, MMP2 and the capacity of VSMC migration induced by C. pneumoniae infection were all inhibited. In comparison with infected ApoE-/- mice, the level of ROS in atherosclerotic lesion in ApoE-/-TLR2-/- mice with C. pneumoniae infection decreased. Knocking out TLR2 suppressed the expressions of JunB, Fra-1 and MMP2 in VSMCs and the formation of atherosclerotic lesion after C. pneumoniae infection. Furthermore, after using small interfering RNA to inhibit the expression of TLR2, the level of mtROS and the expressions of JunB, Fra-1 and MMP2 apparently decreased. Taken together, C. pneumoniae infection may promote VSMC migration and atherosclerosis development by increasing the level of mtROS through TLR2 to activate the JunB-Fra-1/MMP2 signaling pathway. The data provide the first evidence that antioxidant could reduce C. pneumoniae infection-induced VSMC migration and atherosclerosis.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuke Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Chlamydia pneumoniae Interferes with Macrophage Differentiation and Cell Cycle Regulation to Promote Its Replication. Cell Microbiol 2022. [DOI: 10.1155/2022/9854449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydia pneumoniae is a ubiquitous intracellular bacterium which infects humans via the respiratory route. The tendency of C. pneumoniae to persist in monocytes and macrophages is well known, but the underlying host-chlamydial interactions remain elusive. In this work, we have described changes in macrophage intracellular signaling pathways induced by C. pneumoniae infection. Label-free quantitative proteome analysis and pathway analysis tools were used to identify changes in human THP-1-derived macrophages upon C. pneumoniae CV6 infection. At 48-h postinfection, pathways associated to nuclear factor κB (NF-κB) regulation were stressed, while negative regulation on cell cycle control was prominent at both 48 h and 72 h. Upregulation of S100A8 and S100A9 calcium binding proteins, osteopontin, and purine nucleoside hydrolase, laccase domain containing protein 1 (LACC1) underlined the proinflammatory consequences of the infection, while elevated NF-κB2 levels in infected macrophages indicates interaction with the noncanonical NF-κB pathway. Infection-induced alteration of cell cycle control was obvious by the downregulation of mini chromosome maintenance (MCM) proteins MCM2-7, and the significance of host cell cycle regulation for C. pneumoniae replication was demonstrated by the ability of a cyclin-dependent kinase (CDK) 4/6 inhibitor Palbociclib to promote C. pneumoniae replication and infectious progeny production. The infection was found to suppress retinoblastoma expression in the macrophages in both protein and mRNA levels, and this change was reverted by treatment with a histone deacetylase inhibitor. The epigenetic suppression of retinoblastoma, along with upregulation of S100A8 and S100A9, indicate host cell changes associated with myeloid-derived suppressor cell (MDSC) phenotype.
Collapse
|
4
|
Miao G, Zhao X, Wang B, Zhang L, Wang G, Zheng N, Liu J, Xu Z, Zhang L. TLR2/CXCR4 coassociation facilitatesChlamydia pneumoniaeinfection-induced atherosclerosis. Am J Physiol Heart Circ Physiol 2020; 318:H1420-H1435. [DOI: 10.1152/ajpheart.00011.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 2 (TLR2) and C-X-C motif chemokine receptor 4 (CXCR4) have both been shown to be involved in atherosclerosis. We demonstrate for the first time the presence of TLR2/CXCR4 coassociation during C. pneumoniae infection-induced atherosclerosis. Amazingly, blocking of both TLR2 and CXCR4 significantly retards and even almost reverses this infection-induced atherosclerosis. Our work reveals new mechanisms about C. pneumoniae infection-induced atherosclerosis and identifies potential new therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ningbo Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Talepoor AG, Fouladseresht H, Khosropanah S, Doroudchi M. Immune-Inflammation in Atherosclerosis: A New Twist in an Old Tale. Endocr Metab Immune Disord Drug Targets 2020; 20:525-545. [DOI: 10.2174/1871530319666191016095725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Background and Objective:Atherosclerosis, a chronic and progressive inflammatory disease, is triggered by the activation of endothelial cells followed by infiltration of innate and adaptive immune cells including monocytes and T cells in arterial walls. Major populations of T cells found in human atherosclerotic lesions are antigen-specific activated CD4+ effectors and/or memory T cells from Th1, Th17, Th2 and Treg subsets. In this review, we will discuss the significance of T cell orchestrated immune inflammation in the development and progression of atherosclerosis.Discussion:Pathogen/oxidative stress/lipid induced primary endothelial wound cannot develop to a full-blown atherosclerotic lesion in the absence of chronically induced inflammation. While the primary inflammatory response might be viewed as a lone innate response, the persistence of such a profound response over time must be (and is) associated with diverse local and systemic T cell responses. The interplay between T cells and innate cells contributes to a phenomenon called immuneinflammation and has an impact on the progression and outcome of the lesion. In recent years immuneinflammation, an old term, has had a comeback in connecting the puzzle pieces of chronic inflammatory diseases.Conclusion:Taking one-step back and looking from afar at the players of immune-inflammation may help us provide a broader perspective of these complicated interactions. This may lead to the identification of new drug targets and the development of new therapies as well as preventative measures.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Chlamydia and Lipids Engage a Common Signaling Pathway That Promotes Atherogenesis. J Am Coll Cardiol 2019; 71:1553-1570. [PMID: 29622163 DOI: 10.1016/j.jacc.2018.01.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recent studies indicate that Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) signaling promote the development of high fat diet-induced atherosclerosis in hypercholesterolemic mice. OBJECTIVES The authors investigated the role of TLR4/MyD88 signaling in hematopoietic and stromal cells in the development and infection-mediated acceleration of atherosclerosis. METHODS The authors generated bone marrow chimeras between wild-type and Tlr4-/- mice, as well as wild-type and Myd88-/- mice. All mice were on the Apoe-/- background and fed high fat diet. The authors infected the chimeric mice with C. pneumoniae (CP) and fed them high fat diet. RESULTS Aortic sinus plaques and lipid content were significantly reduced in Apoe-/- mice that received Tlr4-/-or Myd88-/- bone marrow compared with control animals despite similar cholesterol levels. Similarly, Tlr4 or Myd88 deficiency in stromal cells also led to a reduction in the lesion area and lipid in aortic sinus plaques. MyD88 expression only in CD11c+ dendritic cells (myeloid cells) in cells was sufficient in otherwise MyD88-deficient mice to induce CP infection-mediated acceleration of atherosclerosis, underlining the key role of MyD88 in CD11c+ dendritic cells (myeloid cells). Whereas CP infection markedly accelerated atherosclerosis in TLR4- or MyD88-positive chimeras, CP infection had a minimal effect on atherosclerosis in TLR4- or MyD88-deficient mice (either in the hematopoietic or stromal cell compartments). CONCLUSIONS The authors show that both CP infection and metabolic stress associated with dyslipidemia use the same innate immune response pathway, utilizing TLR4/MyD88 signaling, with similar relative contributions in bone marrow-derived hematopoietic cells and in stromal cells. Further studies are required to understand this intricate and complex cross talk among innate and adaptive immune systems in various conditions to more effectively design dendritic cell-mediated atheroprotective vaccines and other therapeutic strategies.
Collapse
|
7
|
Almeida NCC, Queiroz MAF, Lima SS, Brasil Costa I, Ayin Fossa MA, Vallinoto ACR, Ishak MDOG, Ishak R. Association of Chlamydia trachomatis, C. pneumoniae, and IL-6 and IL-8 Gene Alterations With Heart Diseases. Front Immunol 2019; 10:87. [PMID: 30804931 PMCID: PMC6370681 DOI: 10.3389/fimmu.2019.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/11/2019] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a progressive disease characterized by chronic inflammation of the arterial walls, associated with genetic and infectious factors. The present study investigated the involvement of Chlamydia trachomatis and Chlamydia pneumoniae infections and immunological markers (C-reactive protein, CRP, TNF-α, IL-6, IL-8, and IL-10) in the process of atherosclerosis. The evaluation included 159 patients for surgical revascularization (CAD) and 71 patients for surgical heart valve disease (HVD) at three hospitals in Belém, Brazil. The control group (CG) comprised 300 healthy individuals. Blood samples collected before surgery were used for antibodies detection (enzyme immunoassay), CRP (immunoturbidimetry) and IL-6 levels (enzyme immunoassay). Tissue fragments (atheroma plaque, heart valve and ascending aorta) were collected during surgery and subjected to qPCR for detection of bacterial DNA. Promoter region polymorphisms of each marker and relative quantification of TNF-α, IL-8, and IL-10 gene expression were performed. Demography and social information were similar to the general population involved with both diseases. Antibody prevalence to C. trachomatis was 30.6, 20.3, and 36.7% (in the CAD, HVD, and CG, respectively) and to C. pneumoniae was 83.6, 84.5, and 80.3% (in the CAD, HVD, and CG, respectively). C. trachomatis cryptic plasmid DNA was detected in 7.4% of the samples. Frequency of IL6−174G>C polymorphism was higher in CAD and HVD than in CG regardless of previous exposure to Chlamydia. Previous C. trachomatis infection showed involvement in HVD and CAD. Significant association between disease and previous C. pneumoniae infection was found only among HVD. GG genotype of IL6−174G>C is apparently a risk factor for heart disease, whereas AT genotype of IL8−251A>T was mainly involved in valvulopathies, including patients with prior exposure to C. pneumoniae.
Collapse
Affiliation(s)
| | | | - Sandra Souza Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | | | | - Ricardo Ishak
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
8
|
Gomez LM, Anton L, Srinivas SK, Elovitz MA, Parry S. Low-Dose Aspirin May Prevent Trophoblast Dysfunction in Women With Chlamydia Pneumoniae Infection. Reprod Sci 2018; 26:1449-1459. [PMID: 30572799 DOI: 10.1177/1933719118820468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Previously, we demonstrated that live Chlamydia pneumoniae (Cp) impaired extravillous trophoblast (EVT) viability and invasion and that Cp DNA was detected in placentas from cases with preeclampsia. We sought to elucidate whether (1) inactive forms of Cp also affect EVT function; (2) potential therapeutic interventions protect against the effects of Cp; and (3) anti-Cp antibodies are associated with preeclampsia. METHODS Human first-trimester EVTs were infected with ultraviolet light-inactivated Cp. Subgroups of EVTs were pretreated with low-dose acetyl-salicylic acid (ASA), dexamethasone, heparin, and indomethacin. We conducted functional assays after infection with inactivated Cp and measured interleukin 8 (IL8), C-reactive protein (CRP), heat shock protein 60 (HSP60), and tumor necrosis factor-α (TNFα) in culture media. We measured anti-Cp IgG serum levels from women who developed preeclampsia (N = 105) and controls (N = 121). RESULTS Inactivated Cp reduced EVT invasion when compared to noninfected cells (P < .00001) without adversely affecting cell viability. Increased levels of IL8, CRP, HSP60, and TNFα were detected in EVTs infected with inactivated Cp compared to noninfected cells (P < .0001). Only pretreatment with low-dose ASA prevented reduced EVT invasion and decreased release of inflammatory mediators (P < .01). Elevated anti-Cp IgG antibodies were more prevalent in serum from cases with preeclampsia compared to controls (67/105 vs 53/121; adjusted P = .013); elevated IgG correlated significantly with elevated serum CRP and elevated soluble fms-like tyrosine kinase-1-placental growth factor ratio. CONCLUSION Inactivated Cp induces decreased EVT invasion and a proinflammatory response; these effects were abrogated by pretreatment with low-dose ASA. Our results suggest an association between Cp infection, trophoblast dysfunction, and preeclampsia.
Collapse
Affiliation(s)
- Luis M Gomez
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, INOVA Health System, Falls Church, VA, USA
| | - Lauren Anton
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Shindu K Srinivas
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Parry
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Influence of different delivery modes on the clinical characteristics of Chlamydia trachomatis pneumonia. Eur J Pediatr 2018; 177:1255-1260. [PMID: 29850935 DOI: 10.1007/s00431-018-3147-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 10/14/2022]
Abstract
UNLABELLED We analyzed the effects of delivery methods on Chlamydia trachomatis pneumonia in infants. Three hundred forty-four children hospitalized with Chlamydia trachomatis pneumonia were enrolled. They were divided into the vaginal delivery group and the cesarean delivery group. We compared and analyzed their age of onset, peripheral blood white blood cell count, liver enzymes, chlamydia trachomatis titers, and chest radiograph scores. Seventy-eight (22.7%) were delivered by a cesarean, and 266 (77.3%) were delivered vaginally. There were no statistically significant differences between groups when compared by sex and age (P > 0.05). Copy numbers and white blood cell counts in the peripheral blood of children with Chlamydia trachomatis in respiratory secretions of the vaginal delivery group were significantly higher than those of the cesarean delivery group (P < 0.05). The alanine aminotransferase and aspartate aminotransferase levels between groups were not statistically significant. Comparisons of admission chest radiography scores, discharge radiography scores, and score differences showed no statistical differences (P > 0.05). CONCLUSION Infants delivered by cesarean comprise approximately one-fifth of those affected. The Chlamydia trachomatis titers and peripheral blood leukocyte counts of the vaginal delivery group were higher than those of the cesarean delivery group. Age of onset, liver enzymes, pulmonary inflammation, and pneumonia absorption were not different between groups. What is Known: • Chlamydia trachomatis is an important pathogen that causes lower respiratory tract infections in infants. • C. trachomatis is primarily transmitted to infants through the infected mother, resulting in Chlamydia trachomatis pneumonia subsequently. What is New: • Vaginal delivery and cesarean delivery can result in Chlamydia trachomatis pneumonia transmission; however, cesarean delivery accounts for ~ 20% of cases. • C. trachomatis volume in the respiratory tract and the number of peripheral blood leukocytes in infants delivered vaginally were higher than those in infants delivered by cesarean.
Collapse
|
10
|
Dahal U, Sharma D, Dahal K. An Unsettled Debate About the Potential Role of Infection in Pathogenesis of Atherosclerosis. J Clin Med Res 2017; 9:547-554. [PMID: 28611853 PMCID: PMC5458650 DOI: 10.14740/jocmr3032w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
Association of infection with atherosclerosis is by no means new. Several sero-epidemiological and pathologic studies as well as animal models have shown a link between infection and atherosclerosis. Exciting discoveries in recent times related to role of inter-individual genetic variation in modulating inflammatory response to infection have reignited the enthusiasm in proving a causal link between infection and atherosclerosis. The purpose of this article was to review and analyze the available evidence linking infection with atherosclerosis.
Collapse
Affiliation(s)
- Udip Dahal
- Department of Medicine, University of Utah, 50 N Medical Drive, Salt Lake City, UT, USA
| | - Dikshya Sharma
- Department of Internal Medicine, Staten Island University Hospital, 475 Seaview Avenue, Staten Island, NY, USA
| | - Kumud Dahal
- Department of Infectious Disease, University of Illinois College of Medicine at Peoria, 1 Illinoi Drive, Peoria, IL, USA
| |
Collapse
|
11
|
Fehr AGJ, Ruetten M, Seth-Smith HMB, Nufer L, Voegtlin A, Lehner A, Greub G, Crosier PS, Neuhauss SCF, Vaughan L. A Zebrafish Model for Chlamydia Infection with the Obligate Intracellular Pathogen Waddlia chondrophila. Front Microbiol 2016; 7:1829. [PMID: 27917158 PMCID: PMC5114312 DOI: 10.3389/fmicb.2016.01829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/01/2016] [Indexed: 01/22/2023] Open
Abstract
Obligate intracellular chlamydial bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum are important pathogens of terrestrial and marine vertebrates, yet many features of their pathogenesis and host specificity are still unknown. This is particularly true for families such as the Waddliacea which, in addition to epithelia, cellular targets for nearly all Chlamydia, can infect and replicate in macrophages, an important arm of the innate immune system or in their free-living amoebal counterparts. An ideal pathogen model system should include both host and pathogen, which led us to develop the first larval zebrafish model for chlamydial infections with Waddlia chondrophila. By varying the means and sites of application, epithelial cells of the swim bladder, endothelial cells of the vasculature and phagocytosing cells of the innate immune system became preferred targets for infection in zebrafish larvae. Through the use of transgenic zebrafish, we could observe recruitment of neutrophils to the infection site and demonstrate for the first time that W. chondrophila is taken up and replicates in these phagocytic cells and not only in macrophages. Furthermore, we present evidence that myeloid differentiation factor 88 (MyD88) mediated signaling plays a role in the innate immune reaction to W. chondrophila, eventually by Toll-like receptor (TLRs) recognition. Infected larvae with depleted levels of MyD88 showed a higher infection load and a lower survival rate compared to control fish. This work presents a new and potentially powerful non-mammalian experimental model to study the pathology of chlamydial virulence in vivo and opens up new possibilities for investigation of other members of the PVC superphylum.
Collapse
Affiliation(s)
- Alexander G J Fehr
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| | - Maja Ruetten
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| | - Helena M B Seth-Smith
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of ZurichZurich, Switzerland; Functional Genomics Center Zurich, Molecular and Life Sciences, University of ZurichZurich, Switzerland
| | - Lisbeth Nufer
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| | - Andrea Voegtlin
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Zurich Zurich, Switzerland
| | - Angelika Lehner
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zurich, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland Auckland, New Zealand
| | | | - Lloyd Vaughan
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| |
Collapse
|
12
|
Zuck M, Sherrid A, Suchland R, Ellis T, Hybiske K. Conservation of extrusion as an exit mechanism for Chlamydia. Pathog Dis 2016; 74:ftw093. [PMID: 27620201 PMCID: PMC5985487 DOI: 10.1093/femspd/ftw093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/29/2016] [Accepted: 09/06/2016] [Indexed: 11/14/2022] Open
Abstract
Chlamydiae exit via membrane-encased extrusion or through lysis of the host cell. Extrusions are novel, pathogen-containing structures that confer infectious advantages to Chlamydia, and are hypothesized to promote cell-to-cell spread, dissemination to distant tissues and facilitate immune evasion. The extrusion phenomenon has been characterized for several Chlamydia trachomatis serovars, but a thorough investigation of extrusion for additional clinically relevant C. trachomatis strains and Chlamydia species has yet to be performed. The key parameters investigated in this study were: (i) the conservation of extrusion across the Chlamydia genus, (ii) the functional requirement for candidate Chlamydia genes in extrusion formation i.e. IncA and CT228 and (iii) extrusion-mediated uptake, and consequent survival of Chlamydia inside macrophages. Inclusion morphology was characterized by live fluorescence microscopy, using an inverted GFP strategy, at early and mid-stages of infection. Enriched extrusions were used to infect bone marrow-derived macrophages, and bacterial viability was measured following macrophage engulfment. Our results demonstrate that extrusion is highly conserved across chlamydiae, including ocular, STD and LGV biovars and divergent Chlamydia species. Consequently, this exit mechanism for Chlamydia may fulfill common advantages important for pathogenesis.
Collapse
Affiliation(s)
- Meghan Zuck
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA Program in Infectious Diseases, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley Sherrid
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert Suchland
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tisha Ellis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 2016; 590:3887-3904. [PMID: 27509029 DOI: 10.1002/1873-3468.12353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Jonas Coopmeiners
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University-Hospital Schleswig-Holstein/Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| |
Collapse
|
14
|
Bagos PG, Nikolopoulos G, Ioannidis A. Chlamydia pneumoniae infection and the risk of multiple sclerosis: a meta-analysis. Mult Scler 2016; 12:397-411. [PMID: 16900753 DOI: 10.1191/1352458506ms1291oa] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We conducted a meta-analysis of studies comparing the presence of Chlamydia pneumoniae (Cpn) between multiple sclerosis (MS) patients and other neurological diseases patients or healthy controls. We identified 26 studies with 1332 MS patients and 1464 controls. Using random-effects methods, MS patients were found more likely to have detectable levels of Cpn DNA (OR = 3.216; 95% CI: 1.204, 8.585) in their cerebrospinal fluid, and intrathecally synthesized immunoglobulins (OR = 3.842; 95% CI: 1.317, 11.212), compared to other patients with neurological diseases. There is no evidence for increased levels of serum immunoglobulins (OR = 1.068; 95% CI: 0.745, 1.530), even though this result is confounded by the presence of studies using normal subjects as controls. Similarly, there is no evidence for association of immunoglobulins against Cpn in the cerebrospinal fluid (OR = 3.815; 95% CI: 0.715, 20.369). Up to 59.7% of the between-studies variability could be explained by the inappropriate matching of cases and controls for gender. In random-effects meta-regressions, adjusting for the confounding effect of gender differences results in stronger and statistically significant associations of MS with detectable levels of Cpn DNA, intrathecally synthesized immunoglobulins and immunoglobulins in the cerebrospinal fluid. Even though the presence of Cpn is clearly more likely in MS patients, these findings are insufficient to establish an etiologic relation.
Collapse
Affiliation(s)
- P G Bagos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece.
| | | | | |
Collapse
|
15
|
Herweg JA, Rudel T. Interaction of Chlamydiae with human macrophages. FEBS J 2015; 283:608-18. [PMID: 26613554 DOI: 10.1111/febs.13609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
Abstract
The phylum Chlamydiae contains several members that are well-known human pathogens, like Chlamydia trachomatis and C. pneumoniae. Establishing a chronic bacterial infection requires the active evasion of the host immune response. A major arm of the innate immune defence is constituted by macrophages, which fight infections by removing bacteria and triggering an adaptive immune response. However, some pathogenic Chlamydia infect and survive in macrophages at least for a certain period of time. Therefore, macrophages can serve as vehicles for the dissemination of bacterial infections from the primary infection site via the urogenital or respiratory tract to distant sites in the body. The capacity to infect macrophages seems to depend on the chlamydial strain and the source of macrophages. In vitro infections of macrophages with C. trachomatis, C. psittaci and C. pneumoniae reveal low efficiency of infection and progeny formation, as well as failure to develop mature inclusions. In contrast, the emerging pathogen, Simkania negevensis, actively replicates in macrophages. Here we summarize the current knowledge of the intracellular and molecular key mechanisms of C. trachomatis, C. pneumoniae and S. negevensis infections in human macrophages.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Biocenter, Department of Microbiology, University of Würzburg, Germany
| | - Thomas Rudel
- Biocenter, Department of Microbiology, University of Würzburg, Germany
| |
Collapse
|
16
|
Lim C, Hammond CJ, Hingley ST, Balin BJ. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer's disease. J Neuroinflammation 2014; 11:217. [PMID: 25540075 PMCID: PMC4295513 DOI: 10.1186/s12974-014-0217-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/07/2014] [Indexed: 11/24/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder in which infection with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular respiratory pathogen that may enter the central nervous system (CNS) following infection and trafficking of monocytes through the blood-brain barrier. Following this entry, these cells may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD brain, which have been thought to contribute to AD neurodegeneration. The objectives of this work were: (i) to determine if Cpn infection influences monocyte gene transcript expression at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are produced and secreted from these cells over 24 to 120 hours post-infection. Methods Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity microarray with 84 genes organized into 5 functional categories: inflammatory response, host defense against bacteria, antibacterial humoral response, septic shock, and cytokines, chemokines and their receptors. Statistical analysis of the results was performed using the Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical analysis with ANOVA. Results When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater expression, and no gene expression was found to be down-regulated. Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection. Conclusions Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 human monocytes promotes an innate immune response and suggests a potential role in the initiation of inflammation in sporadic/late-onset Alzheimer’s disease.
Collapse
Affiliation(s)
- Charles Lim
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| | - Christine J Hammond
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| | - Brian J Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
17
|
Buchacher T, Wiesinger-Mayr H, Vierlinger K, Rüger BM, Stanek G, Fischer MB, Weber V. Human blood monocytes support persistence, but not replication of the intracellular pathogen C. pneumoniae. BMC Immunol 2014; 15:60. [PMID: 25488836 PMCID: PMC4268907 DOI: 10.1186/s12865-014-0060-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Background Intracellular pathogens have devised various mechanisms to subvert the host immune response in order to survive and replicate in host cells. Here, we studied the infection of human blood monocytes with the intracellular pathogen C. pneumoniae and the effect on cytokine and chemokine profiles in comparison to stimulation with LPS. Results Monocytes purified from peripheral blood mononuclear cells by negative depletion were infected with C. pneumoniae. While immunofluorescence confirmed the presence of chlamydial lipopolysaccharide (LPS) in the cytoplasm of infected monocytes, real-time PCR did not provide evidence for replication of the intracellular pathogen. Complementary to PCR, C. pneumoniae infection was confirmed by an oligonucleotide DNA microarray for the detection of intracellular pathogens. Raman microspectroscopy revealed different molecular fingerprints for infected and non-infected monocytes, which were mainly due to changes in lipid and fatty acid content. Stimulation of monocytes with C. pneumoniae or with LPS induced similar profiles of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, but higher levels of IL-1β, IL-12p40 and IL-12p70 for C. pneumoniae which were statistically significant. C. pneumoniae also induced release of the chemokines MCP-1, MIP-1α and MIP-1β, and CXCL-8, which correlated with TNF-α secretion. Conclusion Infection of human blood monocytes with intracellular pathogens triggers altered cytokine and chemokine pattern as compared to stimulation with extracellular ligands such as LPS. Complementing conventional methods, an oligonucleotide DNA microarray for the detection of intracellular pathogens as well as Raman microspectroscopy provide useful tools to trace monocyte infection. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0060-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanja Buchacher
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria.
| | | | | | - Beate M Rüger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria.
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria.
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria. .,Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria.
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria. .,Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria.
| |
Collapse
|
18
|
Marangoni A, Bergamini C, Fato R, Cavallini C, Donati M, Nardini P, Foschi C, Cevenini R. Infection of human monocytes by Chlamydia pneumoniae and Chlamydia trachomatis: an in vitro comparative study. BMC Res Notes 2014; 7:230. [PMID: 24721461 PMCID: PMC3984436 DOI: 10.1186/1756-0500-7-230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Background An increasing number of studies suggest that chlamydiae can infect immune cells. The altered immune cell function could contribute to the progression of several chronic inflammatory diseases. The aim of this study was to comparatively evaluate Chlamydia pneumoniae (CP) and Chlamydia trachomatis (CT) interactions with in vitro infected human blood monocytes. Results Fresh isolated monocytes were infected with viable CP and CT elementary bodies and infectivity was evaluated by recultivating disrupted monocytes in permissive epithelial cells. The production of reactive oxygen and nitrogen species was studied in the presence of specific fluorescent probes. Moreover, TNF-α, INF-α, INF-β and INF-γ gene expression was determined. CT clearance from monocytes was complete at any time points after infection, while CP was able to survive up to 48 hours after infection. When NADPH oxydase or nitric oxide synthase inhibitors were used, CT infectivity in monocytes was restored, even if at low level, and CT recovery’s rate was comparable to CP one. CT-infected monocytes produced significantly higher levels of reactive species compared with CP-infected monocytes, at very early time points after infection. In the same meanwhile, TNF-α and INF-γ gene expression was significantly increased in CT-infected monocytes. Conclusions Our data confirm that CP, but not CT, is able to survive in infected monocytes up to 48 hours post-infection. The delay in reactive species and cytokines production by CP-infected monocytes seems to be crucial for CP survival.
Collapse
Affiliation(s)
- Antonella Marangoni
- Microbiology, DIMES, University of Bologna, S,Orsola Hospital, via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Lisa M. Gargano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322; ,
| | - James M. Hughes
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322; ,
| |
Collapse
|
20
|
Zhang J, Wang H, Zhang L, Zhang T, Wang B, Li X, Wei J, Zhang L. Chlamydia pneumoniae infection induces vascular smooth muscle cell migration via Rac1 activation. J Med Microbiol 2013; 63:155-161. [PMID: 24248991 DOI: 10.1099/jmm.0.065359-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chlamydia pneumoniae infection has been shown to be associated with the development of atherosclerosis by promoting the migration of vascular smooth muscle cells (VSMCs). However, how C. pneumoniae infection induces VSMC migration is not fully understood. A primary role of Ras-related C3 botulinum toxin substrate 1 (Rac1) is to generate a protrusive force at the leading edge that contributes to cell migration. Whether Rac1 activation plays a role in C. pneumoniae infection-induced VSMC migration is not well defined. In the present study, we therefore examined Rac1 activation in C. pneumoniae-infected rat primary VSMCs and the role of Rac1 activation in C. pneumoniae infection-induced VSMC migration. Glutathione S-transferase pull-down assay results showed that Rac1 was activated in C. pneumoniae-infected rat primary VSMCs. A Rac1 inhibitor, NSC23766 (50 µM,) suppressed Rac1 activation stimulated by C. pneumoniae infection, and thereby inhibited C. pneumoniae infection-induced VSMC migration. In addition, C. pneumoniae infection-induced Rac1 activation in the VSMCs was blocked by LY294002 (25 µM), an inhibitor of phosphatidylinositol 3-kinase (PI3K). Taken together, these data suggest that C. pneumoniae infection promotes VSMC migration, possibly through activating Rac1 via PI3K.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Haiwei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Lijun Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Tengteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Beibei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Junyan Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Lijun Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| |
Collapse
|
21
|
Jin Q, Huang F, Sun S, Zhou Y, Xu X, Xi W. An improved method on isolation and serial passage of Chlamydia pneumoniae from human peripheral blood mononuclear cells. J Clin Lab Anal 2013; 27:471-6. [PMID: 24218129 PMCID: PMC6807342 DOI: 10.1002/jcla.21629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Conventional method for Chlamydia pneumoniae (Cpn) isolation and propagation is technically challenging and time-consuming. Here, we developed a method to improve the isolation and passage of Cpn collected from human peripheral blood mononuclear cells (PBMCs). METHODS PBMCs positive with Cpn antigen (Cpn-Ag) were isolated, then centrifuged and cultured with Hep-2 cells after being broken. Cells were broken again and put into new Hep-2 cells to finish totally four passages with isolated and imported Cpn. Microimmunofluorescence method was used to detect Cpn. Inclusion forming unit (IFU) number was counted for each passage. Polymerase chain reaction (PCR) method was used to detect Cpn DNA. Efficiency of different centrifugation modes was compared. RESULTS Hep-2 cells of the first and second passages were strong positive with Cpn-Ag, the third passage was positive, and the fourth negative. Degeneration appeared in the fourth passage for isolated Cpn and third passage for imported strain. Centrifugation mode of 1,000 rpm for 2 h was the most efficient for Cpn propagation and passage. CONCLUSION This simplified method achieved efficient isolation, propagation, and passage of Cpn from PBMCs, and isolated strain was superior to imported strain on propagating ability.
Collapse
Affiliation(s)
- Qian Jin
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Feihua Huang
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Shuming Sun
- Department of Respiratory MedicineJinshan HospitalFudan UniversityShanghaiChina
| | - Ying Zhou
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Xianrong Xu
- Department of Respiratory MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Weixing Xi
- Department of Clinical LaboratoryTongde Hospital of Zhejiang ProvinceHangzhou, ZhejiangChina
| |
Collapse
|
22
|
Laek B, Szklo M, McClelland RL, Ding J, Tsai M, Bluemke DA, Tracy R, Matsushita K. The prospective association of Chlamydia pneumoniae and four other pathogens with development of coronary artery calcium: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 2013; 230:268-74. [PMID: 24075755 PMCID: PMC3815605 DOI: 10.1016/j.atherosclerosis.2013.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Previous basic and cross-sectional studies obtained conflicting results regarding the association of pathogens with coronary artery calcium (CAC). The aim of this study is to prospectively evaluate this association in a population-based cohort. METHODS We examined 5744 individuals aged 45-84 years at baseline (2000-02) who underwent repeated CAC assessment on average 2.4 years later (a half at visit 2 [2002-04] and the other half at visit 3 [2004-05]). CAC incidence was defined as newly detectable CAC at follow-up (475 cases of 2942 participants). CAC progression was defined as annualized change in CAC Agatston score ≥10 units/year if baseline CAC score >0 to <100 or ≥10%/year if baseline score ≥ 100 (1537 cases of 2802 participants). Seropositivity was assessed in the entire cohort for Chlamydia pneumoniae and in a random sample (n = 873) for Helicobacter pylori, cytomegalovirus, herpes simplex virus, and hepatitis A virus. RESULTS Seropositivity to C. pneumoniae was not significantly associated with CAC incidence (odds ratio [OR] 1.11 [95% CI, 0.88-1.39], P = 0.371) or progression (1.14 [0.96-1.36], P = 0.135) even in unadjusted models. When CAC incidence and progression were combined, we observed significant association with C. pneumoniae seropositivity before adjustment (OR 1.17 [1.03-1.33], P = 0.016) but not in a model adjusting for traditional risk factors (1.04 [0.90-1.19], P = 0.611). The results were consistent across subgroups according to age, sex, and race/ethnicity. None of five pathogens or their accrual was associated with CAC incidence and progression in the subsample. CONCLUSION Our prospective study does not support the pathophysiological involvement of these pathogens in CAC development.
Collapse
Affiliation(s)
- Babray Laek
- Department of Epidemiology, Johns Hopkins University, 615 North Wolfe Street, Room W6009, Baltimore, MD 21205, USA, , ,
- Department of Erasmus University Medical Center, Dr. Molewaterplein 60, 3015 GJ, Rotterdam, The Netherlands
| | - Moyses Szklo
- Department of Epidemiology, Johns Hopkins University, 615 North Wolfe Street, Room W6009, Baltimore, MD 21205, USA, , ,
| | - Robyn L. McClelland
- Department of Biostatistics, University of Washington, 6200 NE 74th Street, Building 29, Suite 310, Seattle, WA 98115-8160, USA
| | - Jingzhong Ding
- A4Sticht Center on Aging, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Michael Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Box 609, Minneapolis, MN 55455, USA
| | - David A. Bluemke
- Radiology and Imaging Sciences, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Russell Tracy
- Department of Pathology, University of Vermont, Burlington, 208 South Park Drive, Suite 2, Colchester, VT 05446, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins University, 615 North Wolfe Street, Room W6009, Baltimore, MD 21205, USA, , ,
| |
Collapse
|
23
|
Evani SJ, Dallo SF, Murthy AK, Ramasubramanian AK. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes. Cell Mol Bioeng 2013; 6:326-334. [PMID: 24505240 DOI: 10.1007/s12195-013-0291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae-infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae-infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm2 for 1 h on C. pneumoniae-infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.
Collapse
Affiliation(s)
- Shankar J Evani
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Shatha F Dallo
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ashlesh K Murthy
- Departments of Pathology and Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
24
|
Atherosclerosis Induced by Chlamydophila pneumoniae: A Controversial Theory. Interdiscip Perspect Infect Dis 2013; 2013:941392. [PMID: 23956742 PMCID: PMC3730386 DOI: 10.1155/2013/941392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 02/02/2023] Open
Abstract
More than a century ago, inflammation and infection were considered to have atherogenic effects. The old idea that coronary heart disease (CHD) possibly has an infectious etiology has only reemerged in recent years. Atherosclerosis is the main pathological process involved in CHD and is, logically, the first place to look for infectious etiology. The process of atherosclerosis itself provides the first hints of potential infectious cause. Smooth muscle proliferation, with subsequent intimal thickening, luminal narrowing, and endothelial degeneration, constitutes the natural history of atherosclerosis, being with the severity and speed of these changes. Both viral and bacterial pathogens have been proposed to be associated with the inflammatory changes found in atherosclerosis. Recently, Chlamydophila pneumoniae (C. pneumoniae) has been implicated as a possible etiologic agent of coronary artery disease and atherosclerosis. New evidence which supports a role for C. pneumoniae in the pathogenesis of atherosclerosis has emerged. C. pneumoniae has been detected in atherosclerotic arteries by several techniques, and the organism has been isolated from both coronary and carotid atheromas. Recent animal models have suggested that C. pneumoniae is capable of inducing atherosclerosis in both rabbit and mouse models of atherosclerosis. Furthermore, human clinical treatment studies which examined the use of antichlamydial macrolide antibiotics in patients with coronary atherosclerosis have been carried out. The causal relationship has not yet been proven, but ongoing large intervention trials and research on pathogenetic mechanisms may lead to the use of antimicrobial agents in the treatment of CHD in the future.
Collapse
|
25
|
Pedicino D, Giglio AF, Galiffa VA, Cialdella P, Trotta F, Graziani F, Liuzzo G. Infections, immunity and atherosclerosis: Pathogenic mechanisms and unsolved questions. Int J Cardiol 2013; 166:572-83. [DOI: 10.1016/j.ijcard.2012.05.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/02/2012] [Accepted: 05/27/2012] [Indexed: 01/19/2023]
|
26
|
Iriz E, Cirak MY, Zor MH, Engin D, Oktar L, Unal Y. Differential identification of atypical pneumonia pathogens in aorta and internal mammary artery related to ankle brachial index and walking distance. J Surg Res 2013; 183:537-41. [PMID: 23535111 DOI: 10.1016/j.jss.2013.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND We studied the existence of agents in aorta biopsies, such as Chlamydia pneumoniae, cytomegalovirus, and Mycoplasma pneumoniae, that are thought to have a role in atherosclerosis etiopathogenesis role, and their association with peripheral artery disease. MATERIALS AND METHODS We examined aorta wall and internal mammarian artery (IMA) biopsies taken from two different places in 63 patients in whom coronary artery bypass was performed. In these biopsies, we evaluated the deoxyribonuclease (DNA) of these microorganisms using polymerase chain reaction. From the same patients, we recorded the ankle brachial index, road walking distance information, lipid profile, C-reactive proteins, blood parameters such as fibrinogen, and the patient's operation data. RESULTS In the nine aorta biopsies taken from 63 patients, we isolated C pneumoniae DNA. In IMA biopsies taken from the same patients, we detected no microorganism DNA (P < 0.001). In the same aorta biopsies, we found no cytomegalovirus or M pneumoniae DNA. We examined 12 patients using an index value of 0.9 in the ankle brachial index evaluation; eight had C pneumoniae in the aorta biopsies (P < 0.001). CONCLUSIONS We found a significant relationship between C pneumoniae DNA and the existence of peripheral artery disease. In the development of atherosclerosis with C pneumoniae, there may be a determinant pathogen in both the aorta and the peripheral arteries. The nonexistence of C pneumoniae DNA in the IMA biopsies may indicate infectious agents because of the predominant endothelial functions in this artery, and thus its resistance to atherosclerosis.
Collapse
Affiliation(s)
- Erkan Iriz
- Department of Cardiovascular Surgery, School of Medicine, Gazi University, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Mei CL, He P, Cheng B, Liu W, Wang YF, Wan JJ. Chlamydia pneumoniae
induces macrophage-derived foam cell formation via PPAR α and PPAR γ-dependent pathways. Cell Biol Int 2013; 33:301-8. [DOI: 10.1016/j.cellbi.2008.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/24/2008] [Accepted: 12/05/2008] [Indexed: 01/04/2023]
|
28
|
Carter JD, Gerard HC, Whittum-Hudson JA, Hudson AP. The molecular basis for disease phenotype in chronic Chlamydia-induced arthritis. ACTA ACUST UNITED AC 2012; 7:627-640. [PMID: 23440251 DOI: 10.2217/ijr.12.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genital Chlamydia trachomatis infections can elicit an inflammatory arthritis in some individuals, and recent surprising studies have demonstrated that only ocular (trachoma) strains, not genital strains, of the organism are present in the synovial tissues of patients with the disease. This observation suggests an explanation for the small proportion of genitally-infected patients who develop Chlamydia-induced arthritis. Other recent studies have begun to identify the specific chlamydial gene products that elicit the synovial inflammatory response during both active and quiescent disease, although much more study will be required to complete the understanding of that complex process of host-pathogen interaction. Several newly developed experimental methods and approaches for study of the process will enable identification of new therapeutic targets, and possibly strategies for prevention of the disease altogether.
Collapse
Affiliation(s)
- John D Carter
- Department of Medicine/Division of Rheumatology, University of South Florida College of Medicine, Tampa, FL, USA
| | | | | | | |
Collapse
|
29
|
Zhang L, Li X, Zhang L, Wang B, Zhang T, Ye J. Chlamydophila (Chlamydia) pneumoniae infection promotes vascular smooth muscle cell adhesion and migration through IQ domain GTPase-activating protein 1. Microb Pathog 2012; 53:207-13. [PMID: 22835851 DOI: 10.1016/j.micpath.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 01/16/2023]
Abstract
The mechanisms for Chlamydophila (Chlamydia) pneumoniae (C. pneumoniae) infection-induced atherosclerosis are still unclear. Cell adhesion has important roles in vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis. However, it is still unknown whether IQ domain GTPase-activating protein 1 (IQGAP1) plays pivotal roles in C. pneumoniae infection-induced the adhesion and migration of rat primary VSMCs. Accordingly, in this study, we demonstrated that rat primary VSMC adhesion (P < 0.001) and migration (P < 0.01) measured by cell adhesion assay and Transwell assay, respectively, were significantly enhanced after C. pneumoniae infection. Reverse transcription-polymerase chain reaction analysis revealed that the mRNA expression levels of IQGAP1 in the infected rat primary VSMCs were found to increase gradually to reach a peak and then decrease gradually to a level similar to the control. We further showed that the increases in rat primary VSMC adhesion to Matrigel (P < 0.001) and migration (P < 0.01) caused by C. pneumoniae infection were markedly inhibited after IQGAP1 knockdown by a pool of four short hairpin RNAs. Taken together, our results suggest that C. pneumoniae infection may promote the adhesion and migration of VSMCs possibly by upregulating the IQGAP1 expression.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| | | | | | | | | | | |
Collapse
|
30
|
Hirai I, Ebara M, Nakanishi S, Yamamoto C, Sasaki T, Ikuta K, Yamamoto Y. Jurkat cell proliferation is suppressed by Chlamydia (Chlamydophila) pneumoniae infection accompanied with attenuation of phosphorylation at Thr389 of host cellular p70S6K. Immunobiology 2012; 218:527-32. [PMID: 22795649 DOI: 10.1016/j.imbio.2012.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 01/02/2023]
Abstract
Chlamydia (Chlamydophila) pneumoniae infects T lymphocytes and multiplies within them. Our previous studies have indicated that C. pneumoniae infection suppresses proliferation of peripheral blood mononuclear cells stimulated with Staphylococcus-enterotoxin B; however, the mechanism of suppression was unclear. In this study, we explored the molecular mechanism involved in C. pneumoniae infection by using human acute T cell leukemia cell line, Jurkat E6-1. Proliferation of Jurkat cells was suppressed in an m.o.i.-dependent manner by C. pneumoniae infection. The suppression by the infection was particularly evident during the initial 24h of the infection, and down modulation of cyclin D3 protein levels were observed at the same time period by immunoblot analysis. The suppression of the Jurkat cell proliferation and the down modulation of cyclin D3 protein level were only induced by viable C. pneumoniae infection, not by exposure to UV-killed or heat-killed C. pneumoniae. Phosphorylations at Thr308 and Ser473 of AKT were induced by C. pneumoniae infection; however, phosphorylation at Thr389 of the downstream kinase, p70S6K was inhibited by unidentified mechanism associated with C. pneumoniae infection. Taking into account that G1 arrest of the C. pneumoniae infected Jurkat cells were not observed and that p70S6K is one of the most important regulators of protein synthesis, it was suggested that the suppression of Jurkat cell proliferation by C. pneumoniae was at least in part mediated by down modulation of protein synthesis through attenuation of Thr389 phosphorylation of p70S6K.
Collapse
Affiliation(s)
- Itaru Hirai
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Distinct intensity of host-pathogen interactions in Chlamydia psittaci- and Chlamydia abortus-infected chicken embryos. Infect Immun 2012; 80:2976-88. [PMID: 22689815 DOI: 10.1128/iai.00437-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Factors and mechanisms determining the differences in virulence and host specificity between the zoonotic agents Chlamydia psittaci and Chlamydia abortus are still largely unknown. In the present study, two strains were compared for their invasiveness, virulence, and capability of eliciting an immune response in chicken embryos. On breeding day 10, embryonated chicken eggs were inoculated with 5 × 10(4) inclusion-forming units. As shown by immunohistochemistry and quantitative real-time PCR, C. psittaci displayed a significantly better capability of disseminating in the chorioallantoic membrane (CAM) and internal organs than C. abortus. The higher infectious potential of C. psittaci in birds was underlined by significantly higher mRNA expression rates of essential chlamydial genes, such as incA, groEL (in CAM, liver, and spleen), cpaf, and ftsW (in CAM). Although the immune responses to both pathogens were similar, C. psittaci elicited higher macrophage numbers and a stronger expression of a subset of immune-related proteins. The data imply that invasiveness of Chlamydia spp. and propagation in the host are not solely dependent on the level of host immune response but, even to a greater extent, on the expression of bacterial factors related to virulence. The fact that C. psittaci has coped far better than C. abortus with the avian embryo's response by upregulating essential genes may be a key to understanding the mechanisms underlying host adaptation and etiopathology.
Collapse
|
32
|
Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 2012; 28:411-37. [PMID: 22578141 DOI: 10.1146/annurev-cellbio-092910-153958] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Hector Alex Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
33
|
Park Y, Pham TX, Lee J. Lipopolysaccharide represses the expression of ATP-binding cassette transporter G1 and scavenger receptor class B, type I in murine macrophages. Inflamm Res 2012; 61:465-72. [PMID: 22240665 DOI: 10.1007/s00011-011-0433-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/16/2011] [Accepted: 12/29/2011] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the regulation of cholesterol transporters, including ATP-binding cassette transporter A1 (ABCA1), ABCG1 and scavenger receptor class B, type I (SR-BI), by inflammatory stimuli in macrophages. MATERIALS AND TREATMENTS: RAW 264.7 macrophages and mouse peritoneal macrophages were treated with inflammatory stimuli with or without rosiglitazone, a peroxisome proliferator activated receptor γ (PPARγ) agonist, or T0901317, a liver X receptor (LXR) agonist. METHODS Real-time PCR and Western blotting for cholesterol transporters as well as cellular cholesterol efflux to high-density lipoprotein 2 (HDL(2)) were determined. RESULTS In RAW 264.7 macrophages, lipopolysaccharide (LPS) significantly reduced ABCG1 and PPARγ as well as cholesterol efflux to HDL(2). Rosiglitazone and T0901317 induced ABCA1 and ABCG1 several-fold, but LPS reduced only ABCG1. ABCG1 and SR-BI proteins, but not ABCA1, were decreased by LPS. In mouse peritoneal macrophages, LPS, tumor necrosis factor α and interleukin-1β decreased ABCG1, SR-BI, LXRα and PPARγ mRNA. The agonists increased ABC transporter expression but LPS reduced mRNA of T0901317-induced ABCA1 as well as basal and agonists-induced ABCG1. SR-BI protein was increased by rosiglitazone but LPS decreased the levels. CONCLUSION The data suggest that inflammatory insults repress ABCG1 and SR-BI expression partly dependent on PPARγ with a minimal effect on ABCA1 expression.
Collapse
Affiliation(s)
- Youngki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
34
|
Deniset JF, Hedley TE, Dibrov E, Pierce GN. Chlamydophila pneumoniae infection induces alterations in vascular contractile responses. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1264-1272. [PMID: 22214836 DOI: 10.1016/j.ajpath.2011.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 10/11/2011] [Accepted: 11/11/2011] [Indexed: 11/29/2022]
Abstract
Chlamydophila pneumoniae infection has been associated in previous studies with coronary artery disease. The live bacterium has been detected within atherosclerotic plaques and can induce the structural remodeling of the vessel wall. However, the direct effects of infection on the contractile characteristics of the arteries remain unknown. Left anterior descending coronary arteries isolated from porcine hearts were dissected and placed in culture medium for 72 hours before infection with C. pneumoniae. Contractile responses to high molar KCl and u46619 levels and relaxation responses to bradykinin and sodium nitroprusside were assessed at days 5 and 10 postinfection. C. pneumoniae induced decreases in both KCl- and u46619-induced contractile responses at both time points. The altered contractile responses coincided with a down-regulation of L-type Ca(2+) channels at both time points and inositol 1,4,5-triphosphate receptor (IP3R) levels at day 10 postinfection. Infection also induced attenuation of the endothelial-dependent relaxation response to bradykinin at day 10 postinfection. A decrease in endothelial nitric oxide synthase expression levels was noted at day 10 postinfection. Furthermore, an increase in superoxide production combined with an increase in p22phox expression levels was also observed at this time point. These findings indicate that C. pneumoniae infection can directly alter the vascular contractile responses in porcine coronary arteries, providing additional evidence for the role of C. pneumoniae infection in cardiovascular disease.
Collapse
Affiliation(s)
- Justin F Deniset
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas E Hedley
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
35
|
Prieto de Paula J, Franco Hidalgo S, Eiros Bouza J, Lourdes Ruiz Rebollo M. Hepatitis aguda por Chlamydophila pneumoniae. Rev Clin Esp 2011; 211:607-8. [DOI: 10.1016/j.rce.2011.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/14/2011] [Indexed: 11/28/2022]
|
36
|
Olivares-Zavaleta N, Carmody A, Messer R, Whitmire WM, Caldwell HD. Chlamydia pneumoniae inhibits activated human T lymphocyte proliferation by the induction of apoptotic and pyroptotic pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:7120-6. [PMID: 21543647 PMCID: PMC3402063 DOI: 10.4049/jimmunol.1100393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma. Persistent infection and immune avoidance are believed to play important roles in the pathophysiology of C. pneumoniae disease. We found that C. pneumoniae organisms inhibited activated but not nonactivated human T cell proliferation. Inhibition of proliferation was pathogen specific, heat sensitive, and multiplicity of infection dependent and required chlamydial entry but not de novo protein synthesis. Activated CD4(+) and CD8(+) T cells were equally sensitive to C. pneumoniae antiproliferative effectors. The C. pneumoniae antiproliferative effect was linked to T cell death associated with caspase 1, 8, 9, and IL-1β production, indicating that both apoptotic and pyroptotic cellular death pathways were activated after pathogen-T cell interactions. Collectively, these findings are consistent with the conclusion that C. pneumoniae could induce a local T cell immunosuppression and inflammatory response revealing a possible host-pathogen scenario that would support both persistence and inflammation.
Collapse
Affiliation(s)
- Norma Olivares-Zavaleta
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Aaron Carmody
- Flow Cytometry Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Ronald Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - William M. Whitmire
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Harlan D. Caldwell
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| |
Collapse
|
37
|
Rantala A, Lajunen T, Juvonen R, Paldanius M, Silvennoinen-Kassinen S, Peitso A, Vainio O, Leinonen M, Saikku P. Interleukin-6 −174 G/C Promoter Polymorphism is Associated with Persistence of Chlamydia pneumoniae Antibodies in Young Men. Scand J Immunol 2011; 74:95-9. [DOI: 10.1111/j.1365-3083.2011.02542.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Quantification and location of Chlamydia pneumoniae-specific antigen in the walls of abdominal aortic aneurysms. Ann Vasc Surg 2011; 25:256-63. [PMID: 21315234 DOI: 10.1016/j.avsg.2010.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 02/05/2023]
Abstract
BACKGROUND To evaluate the prevalence and quantity of Chlamydia pneumoniae-specific antigen in the three layers (intima, media, and adventitia) of abdominal aortic aneurysms (AAAs), so as to further investigate the pathogenesis of AAAs. METHODS Aortic walls were collected from 20 patients with AAA and 11 healthy organ donors. Immunohistochemistry was used to identify the C pneumoniae-specific antigen, and image analysis system was used to quantify and locate it. RESULTS The positive rate of C pneumoniae-specific antigen was higher in the AAA group than in the control group (100% vs. 54.54%, p = 0.003), positive intensity decreased from the tunica intima to the adventitia in the AAA group (16.32% ± 2.13%, 14.84% ± 1.80%, and 14.25% ± 1.67%, respectively, p = 0.003). In the control group, positive cells were mainly found in focal lesion areas. CONCLUSION We have demonstrated the presence and differentiation of C pneumoniae-specific antigen in the three layers of AAAs, which are in accordance with pathology, thus suggesting a pathogenic role of the antigen.
Collapse
|
39
|
Asquith KL, Horvat JC, Kaiko GE, Carey AJ, Beagley KW, Hansbro PM, Foster PS. Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts. PLoS Pathog 2011; 7:e1001339. [PMID: 21573182 PMCID: PMC3088704 DOI: 10.1371/journal.ppat.1001339] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/06/2011] [Indexed: 12/22/2022] Open
Abstract
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (-/-) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13-/- mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13-/- mice and depletion of CD4+ T cells did not affect infection in IL-13-/- mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.
Collapse
Affiliation(s)
- Kelly L. Asquith
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C. Horvat
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Gerard E. Kaiko
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Alison J. Carey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Kenneth W. Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| |
Collapse
|
40
|
Deniset JF, Pierce GN. Possibilities for therapeutic interventions in disrupting Chlamydophila pneumoniae involvement in atherosclerosis. Fundam Clin Pharmacol 2011; 24:607-17. [PMID: 20653790 DOI: 10.1111/j.1472-8206.2010.00863.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Strong sero-epidemiologic, pathologic, and experimental evidence suggests that Chlamydophila pneumoniae (Cpn) infection may play a causative role in the development of atherosclerosis. Cpn is an obligate intracellular gram-negative bacterium that is responsible for 10% of cases of community-acquired pneumonia. In addition to its presence in the respiratory tract, live Cpn has been found within atherosclerotic plaques. Experimental findings have established Cpn's ability to infect vascular cells and elicit important atherogenic responses. Furthermore, Cpn infection can promote atherosclerotic development in different animal models. To date however, large-scale antibiotic clinical trials have not been effective in preventing major cardiovascular events. It is becoming apparent that Cpn undergoes a persistent state of infection, which is refractory to current chlamydial antibiotics. New treatment strategies that are effective toward acute and persistent forms of Cpn infection are needed in order to effectively eradicate the bacterium within the vascular wall. Possible therapeutics targets include Cpn-specific proteins and machinery directly involved in their survival, replication and maintenance. Alternatively, selectively targeting host cell pathways and machinery required for Cpn's actions in vascular cells also represent potential treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
- Justin F Deniset
- Department of Physiology, Faculties of Medicine and Pharmacy, Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
41
|
Hayashi Y, Nakamura S, Matsuo J, Fukumoto T, Yoshida M, Takahashi K, Mizutani Y, Yao T, Yamaguchi H. Host range of obligate intracellular bacterium Parachlamydia acanthamoebae. Microbiol Immunol 2011; 54:707-13. [PMID: 21155362 DOI: 10.1111/j.1348-0421.2010.00265.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The obligate intracellular bacterium Parachlamydia acanthamoebae is a potential human pathogen, but the host range of the bacteria remains unknown. Hence, the growth of P. acanthamoebae Bn₉ in protozoa (Tetrahymena, Acanthamoeba, Dictyostelium) and mammalian cells (HEp-2, Vero, THP-1, PMA-stimulated THP-1, Jurkat) was assessed using an AIU assay which had been previously established by the current authors. P. acanthamoebae grew in Acanthamoeba but not in the other cell types. The growth was also confirmed using DAPI staining, FISH and TEM. These results indicate that the host range of P. acanthamoebae is limited.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- Department of Medical Laboratory Sciences, Hokkaido University Graduate School of Health Sciences, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bobryshev YV, Orekhov AN, Killingsworth MC, Lu J. Decreased Expression of Liver X Receptor-α in Macrophages Infected with Chlamydia pneumoniae in Human Atherosclerotic Arteries in situ. J Innate Immun 2011; 3:483-94. [DOI: 10.1159/000327522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
|
43
|
The association between serological markers for Chlamydophila pneumoniae and the development of abdominal aortic aneurysm. Ann Vasc Surg 2010; 25:322-6. [PMID: 21126854 DOI: 10.1016/j.avsg.2010.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND To investigate the association between serological markers for Chlamydophila pneumoniae (Cpn) and the development of abdominal aortic aneurysm (AAA) in a population-based case-control study. METHODS A screening for AAA among 65-75-year-old men and women was performed in a population with high prevalence of disease. Most of the subjects had undergone previous testing at the age of 60, including blood sampling. A total of 42 patients with AAA were compared with 100 age- and gender-matched controls with normal aortas. Cpn immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies present in plasma samples obtained at the time of screening (current) and in the past 5-15 (mean, 12) years (historical) were analyzed. Cpn antibody titers (<1/64, 1/64, 1/264, and 1/1024) were analyzed using the microimmunofluorescence technique. RESULTS No differences in current Cpn immunoglobulin A and IgG antibodies titers (p = 0.111 and 0.659), historical titers (p = 0.449 and 0.228), or titer change (delta) (p = 0.794 and 0.172) were observed between patients with AAA and controls. In all, 82% of the patients with AAA had a current Cpn IgG titer of 1/1024 as compared with the 70% of the control group. All 11 patients who had an aortic diameter of >40 mm reported having high current Cpn IgG titers. The fact that such a large proportion of the healthy population demonstrated an immune response against Cpn made it difficult to demonstrate possible effects of Cpn infection on AAA formation in a case-control study. CONCLUSION No significant associations were found between AAA detected by screening and Cpn antibody titer levels at the time of screening or during past screening at the age of 60.
Collapse
|
44
|
Impact of intimal pathogen burden in acute coronary syndromes—correlation with inflammation, thrombosis, and autoimmunity. Cardiovasc Pathol 2010; 19:e205-10. [PMID: 19914090 DOI: 10.1016/j.carpath.2009.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/09/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022] Open
|
45
|
Hirai I, Utsumi M, Yamaguchi H, Yamamoto Y. Chlamydia pneumoniae infection suppresses Staphylococcus enterotoxin B-induced proliferation associated with down-expression of CD25 in lymphocytes. Can J Microbiol 2010; 56:289-94. [PMID: 20453895 DOI: 10.1139/w10-018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chlamydia pneumoniae (Chlamydophila pneumoniae) infects lymphocytes and modulates their immune functions; this is critical in the development of chronic inflammatory diseases associated with this pathogen. Therefore, to clarify this immune modulation due to C. pneumoniae infection, the effect of this infection on the proliferation of human peripheral blood lymphocytes was examined. Lymphocytes were proliferated by stimulation with Staphylococcus aureus enterotoxin B, and the cell number was increased up to 3 times the unstimulated lymphocyte number. Further, induction of CD25 expression was observed in 55.8% of lymphocytes. Infection with C. pneumoniae suppressed the proliferation of almost half the lymphocytes induced by stimulation with S. aureus enterotoxin B, and CD25 induction was inhibited in 64.7% of lymphocytes. Inhibition of CD25 expression was observed in both infected and uninfected lymphocytes in culture. However, the expression of VLA4 was not affected by C. pneumoniae infection. Furthermore, inhibition was observed only by infection with viable C. pneumoniae and not by the heat-killed bacteria. These results suggest that C. pneumoniae affects lymphocyte function by inhibiting proliferation and CD25 expression in response to immunological stimulation, possibly via humoral mediator(s).
Collapse
Affiliation(s)
- Itaru Hirai
- Department of Bioinformatics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
46
|
Elkind MSV. Infectious burden: a new risk factor and treatment target for atherosclerosis. Infect Disord Drug Targets 2010; 10:84-90. [PMID: 20166973 PMCID: PMC2891124 DOI: 10.2174/187152610790963519] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/24/2009] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory process, and several common bacterial and viral infections have been hypothesized to contribute to the inflammation of the vascular wall that leads to atherosclerosis. More recently, investigators have found preliminary evidence that the aggregate burden of these chronic infections, rather than any single organism, may contribute to atherosclerosis and risk of clinical vascular events, including ischemic stroke. This aggregate burden of infections, which has been variably labeled "infectious burden" or "pathogen burden," may be associated with stroke through mechanisms independent of atherosclerosis, as well, including platelet aggregation and endothelial dysfunction. Host factors, moreover, may interact with infectious burden to modify the risk of disease associated with these infections. Currently there is no commonly accepted group of organisms or method of assessing infectious burden, and not all studies confirm an association of infection and stroke risk. Nonetheless, if infectious burden does play a role in atherosclerosis or stroke, it is plausible that preventive anti-infective treatment, such as vaccination, or antibiotics, would reduce the risk of incident or recurrent stroke. While influenza vaccination has been recommended to prevent recurrence among those with coronary disease, similar recommendations for stroke patients have not yet been made. Large scale randomized clinical trials of macrolide antibiotics for coronary patients, moreover, have been negative. Further studies are needed, however, to determine whether an association between infectious burden and stroke exists, and whether infectious burden may be a target for intervention.
Collapse
Affiliation(s)
- Mitchell S V Elkind
- Neurological Institute, 710 West 168th Street, Box 182, New York, NY 10032, USA.
| |
Collapse
|
47
|
Abstract
We set up a polarized cell culture model to study the pathogenicity of a common respiratory tract pathogen, Chlamydia pneumoniae. Immunofluorescence staining of ZO-1 (a tight junction protein) and Na(+)K(+) ATPase (a protein pump localized at the basolateral membrane in the polarized epithelial cells), as well as TER measurements, suggested that the filter-grown Calu-3 cells, but not the A549 cells, were polarized when grown on collagen-coated membranes. Both the flat and the filter-grown cultures were infected with C. pneumoniae. Infection in the polarized Calu-3 cultures produced more C. pneumoniae genome equivalents than infection in the flat cultures. However, this progeny was not as infective as that in the flat cultures. The maximum amount of C. pneumoniae was detected at 6 days postinfection in the filter-grown A549 cells, indicating a slower developmental cycle than that observed in the flat A549 cultures. The effect of cycloheximide on the growth of C. pneumoniae in the polarized cells was negligible. Furthermore, the infection in the polarized Calu-3 cells was resistant to doxycycline, and several cytokines were released mainly on the apical side of the polarized cells in response to C. pneumoniae infection. These findings indicate that the growth of chlamydiae was altered in the filter-grown epithelial culture system. The diminished production of infective progeny of C. pneumoniae, together with the resistance to doxycycline and polarized secretion of cytokines from the infected Calu-3 cells, suggests that this model is useful for examining epithelial cell responses to C. pneumoniae infection, and it might better resemble in vivo infection in respiratory epithelial cells.
Collapse
|
48
|
Johnson DL, Stone CB, Bulir DC, Coombes BK, Mahony JB. A novel inhibitor of Chlamydophila pneumoniae protein kinase D (PknD) inhibits phosphorylation of CdsD and suppresses bacterial replication. BMC Microbiol 2009; 9:218. [PMID: 19828035 PMCID: PMC2765968 DOI: 10.1186/1471-2180-9-218] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 10/14/2009] [Indexed: 01/02/2023] Open
Abstract
Background We have shown previously that Chlamydophila pneumoniae contains a dual-specific Ser/Thr protein kinase that phosphorylates CdsD, a structural component of the type III secretion apparatus. To further study the role of PknD in growth and development we sought to identify a PknD inhibitor to determine whether PknD activity is required for replication. Results Using an in vitro kinase assay we screened 80 known eukaryotic protein kinase inhibitors for activity against PknD and identified a 3'-pyridyl oxindole compound that inhibited PknD autophosphorylation and phosphorylation of CdsD. The PknD inhibitor significantly retarded the growth rate of C. pneumoniae as evidenced by the presence of very small inclusions with a reduced number of bacteria as seen by electron microscopy. These inclusions contained the normal replicative forms including elementary bodies (EB), intermediate bodies (IB) and reticulate bodies (RB), but lacked persistent bodies (PB), indicating that induction of persistence was not the cause of reduced chlamydial growth. Blind passage of C. pneumoniae grown in the presence of this PknD inhibitor for 72 or 84 hr failed to produce inclusions, suggesting this compound blocks an essential step in the production of infectious chlamydial EB. The compound was not toxic to HeLa cells, did not block activation of the MEK/ERK pathway required for chlamydial invasion and did not block intracellular replication of either Chlamydia trachomatis serovar D or Salmonella enterica sv. Typhimurium suggesting that the inhibitory effect of the compound is specific for C. pneumoniae. Conclusion We have identified a 3'-pyridyl oxindole compound that inhibits the in vitro kinase activity of C. pneumoniae PknD and inhibits the growth and production of infectious C. pneumoniae progeny in HeLa cells. Together, these results suggest that PknD may play a key role in the developmental cycle of C. pneumoniae.
Collapse
Affiliation(s)
- Dustin L Johnson
- MG DeGroote Institute for Infectious Disease Research and the Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada
| | | | | | | | | |
Collapse
|
49
|
Kern JM, Maass V, Maass M. Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview. Clin Microbiol Infect 2009; 15:36-41. [PMID: 19220338 DOI: 10.1111/j.1469-0691.2008.02631.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to its unique host cell-dependent development cycle, Chlamydia pneumoniae occupies an intracellular niche that enables the bacterium to survive and to multiply, secluded from both the extracellular and the cytoplasmic environments. Within its separate chlamydial inclusion, it is able to genetically switch between a replicative and a persisting non-replicative state, linking the pathogen to acute as well as chronic diseases. Although its role in acute respiratory infection has been established, a potential link between chronic vascular infection with C. pneumoniae and the development of atherosclerosis remains enigmatic, in particular because chronic chlamydial infection cannot be eradicated by antibiotics. C. pneumoniae has developed numerous mechanisms to establish an adequate growth milieu involving the type III secretion-mediated release of chlamydial effector proteins that interact with cellular structures and reprogram host cell regulatory pathways. This brief overview of these pathomechanisms focuses on chronic vascular infection.
Collapse
Affiliation(s)
- J M Kern
- Institute of Medical Microbiology, Hygiene and Infectious Diseases, University Hospital Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
50
|
cIAP-1 controls innate immunity to C. pneumoniae pulmonary infection. PLoS One 2009; 4:e6519. [PMID: 19657383 PMCID: PMC2716518 DOI: 10.1371/journal.pone.0006519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/08/2009] [Indexed: 01/14/2023] Open
Abstract
The resistance of epithelial cells infected with Chlamydophila pneumoniae for apoptosis has been attributed to the induced expression and increased stability of anti-apoptotic proteins called inhibitor of apoptosis proteins (IAPs). The significance of cellular inhibitor of apoptosis protein-1 (cIAP-1) in C. pneumoniae pulmonary infection and innate immune response was investigated in cIAP-1 knockout (KO) mice using a novel non-invasive intra-tracheal infection method. In contrast to wildtype, cIAP-1 knockout mice failed to clear the infection from their lungs. Wildtype mice responded to infection with a strong inflammatory response in the lung. In contrast, the recruitment of macrophages was reduced in cIAP-1 KO mice compared to wildtype mice. The concentration of Interferon gamma (IFN-γ) was increased whereas that of Tumor Necrosis Factor (TNF-α) was reduced in the lungs of infected cIAP-1 KO mice compared to infected wildtype mice. Ex vivo experiments on mouse peritoneal macrophages and splenocytes revealed that cIAP-1 is required for innate immune responses of these cells. Our findings thus suggest a new immunoregulatory role of cIAP-1 in the course of bacterial infection.
Collapse
|