1
|
Kucinskaite-Kodze I, Simanavicius M, Dapkunas J, Pleckaityte M, Zvirbliene A. Mapping of Recognition Sites of Monoclonal Antibodies Responsible for the Inhibition of Pneumolysin Functional Activity. Biomolecules 2020; 10:biom10071009. [PMID: 32650398 PMCID: PMC7408604 DOI: 10.3390/biom10071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenicity of many bacteria, including Streptococcus pneumoniae, depends on pore-forming toxins (PFTs) that cause host cell lysis by forming large pores in cholesterol-containing cell membranes. Therefore, PFTs-neutralising antibodies may provide useful tools for reducing S. pneumoniae pathogenic effects. This study aimed at the development and characterisation of monoclonal antibodies (MAbs) with neutralising activity to S. pneumoniae PFT pneumolysin (PLY). Five out of 10 produced MAbs were able to neutralise the cytolytic activity of PLY on a lung epithelial cell line. Epitope mapping with a series of recombinant overlapping PLY fragments revealed that neutralising MAbs are directed against PLY loops L1 and L3 within domain 4. The epitopes of MAbs 3A9, 6E5 and 12F11 located at L1 loop (aa 454–471) were crucial for PLY binding to the immobilised cholesterol. In contrast, the MAb 12D10 recognising L3 (aa 403–423) and the MAb 3F3 against the conformational epitope did not interfere with PLY-cholesterol interaction. Due to conformation-dependent binding, the approach to use overlapping peptides for fine epitope mapping of the neutralising MAbs was unsuccessful. Therefore, the epitopes recognised by the MAbs were analysed using computational methods. This study provides new data on PLY sites involved in functional activity.
Collapse
|
2
|
Yin Y, Yao H, Doijad S, Kong S, Shen Y, Cai X, Tan W, Wang Y, Feng Y, Ling Z, Wang G, Hu Y, Lian K, Sun X, Liu Y, Wang C, Jiao K, Liu G, Song R, Chen X, Pan Z, Loessner MJ, Chakraborty T, Jiao X. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. Nat Commun 2019; 10:4283. [PMID: 31570766 PMCID: PMC6768887 DOI: 10.1038/s41467-019-12072-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes (Lm) is a highly heterogeneous species and currently comprises of 4 evolutionarily distinct lineages. Here, we characterize isolates from severe ovine listeriosis outbreaks that represent a hybrid sub-lineage of the major lineage II (HSL-II) and serotype 4h. HSL-II isolates are highly virulent and exhibit higher organ colonization capacities than well-characterized hypervirulent strains of Lm in an orogastric mouse infection model. The isolates harbour both the Lm Pathogenicity Island (LIPI)-1 and a truncated LIPI-2 locus, encoding sphingomyelinase (SmcL), a virulence factor required for invasion and bacterial translocation from the gut, and other non-contiguous chromosomal segments from another pathogenic species, L. ivanovii. HSL-II isolates exhibit a unique wall teichoic acid (WTA) structure essential for resistance to antimicrobial peptides, bacterial invasion and virulence. The discovery of isolates harbouring pan-species virulence genes of the genus Listeria warrants global efforts to identify further hypervirulent lineages of Lm.
Collapse
Affiliation(s)
- Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Swapnil Doijad
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, 35394, Germany
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Campus Gießen, Justus-Liebig University, Gießen, 35394, Germany
| | - Suwei Kong
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yang Shen
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Xuexue Cai
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Weijun Tan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yuting Wang
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Youwei Feng
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Zhiting Ling
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Wang
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yachen Hu
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Kai Lian
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Xinyu Sun
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Yuliang Liu
- China Animal Disease Control Center, No.17 Tiangui Street, Daxing District, 102618, Beijing, China
| | - Chuanbin Wang
- China Animal Disease Control Center, No.17 Tiangui Street, Daxing District, 102618, Beijing, China
| | - Kuhua Jiao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Guoping Liu
- Xuyi Center for Animal Disease Control and Prevention, Xuyi City, Jiangsu Province, China
| | - Ruilong Song
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | - Martin J Loessner
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Trinad Chakraborty
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, 35394, Germany.
- German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Campus Gießen, Justus-Liebig University, Gießen, 35394, Germany.
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
3
|
Omersa N, Podobnik M, Anderluh G. Inhibition of Pore-Forming Proteins. Toxins (Basel) 2019; 11:E545. [PMID: 31546810 PMCID: PMC6784129 DOI: 10.3390/toxins11090545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Perforation of cellular membranes by pore-forming proteins can affect cell physiology, tissue integrity, or immune response. Since many pore-forming proteins are toxins or highly potent virulence factors, they represent an attractive target for the development of molecules that neutralize their actions with high efficacy. There has been an assortment of inhibitors developed to specifically obstruct the activity of pore-forming proteins, in addition to vaccination and antibiotics that serve as a plausible treatment for the majority of diseases caused by bacterial infections. Here we review a wide range of potential inhibitors that can specifically and effectively block the activity of pore-forming proteins, from small molecules to more specific macromolecular systems, such as synthetic nanoparticles, antibodies, antibody mimetics, polyvalent inhibitors, and dominant negative mutants. We discuss their mechanism of inhibition, as well as advantages and disadvantages.
Collapse
Affiliation(s)
- Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Prediction of B-Cell Epitopes in Listeriolysin O, a Cholesterol Dependent Cytolysin Secreted by Listeria monocytogenes. Adv Bioinformatics 2014; 2014:871676. [PMID: 24523732 PMCID: PMC3909977 DOI: 10.1155/2014/871676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a gram-positive, foodborne bacterium responsible for disease in humans and animals. Listeriolysin O (LLO) is a required virulence factor for the pathogenic effects of L. monocytogenes. Bioinformatics revealed conserved putative epitopes of LLO that could be used to develop monoclonal antibodies against LLO. Continuous and discontinuous epitopes were located by using four different B-cell prediction algorithms. Three-dimensional molecular models were generated to more precisely characterize the predicted antigenicity of LLO. Domain 4 was predicted to contain five of eleven continuous epitopes. A large portion of domain 4 was also predicted to comprise discontinuous immunogenic epitopes. Domain 4 of LLO may serve as an immunogen for eliciting monoclonal antibodies that can be used to study the pathogenesis of L. monocytogenes as well as develop an inexpensive assay.
Collapse
|
5
|
Mini-review: novel therapeutic strategies to blunt actions of pneumolysin in the lungs. Toxins (Basel) 2013; 5:1244-60. [PMID: 23860351 PMCID: PMC3737495 DOI: 10.3390/toxins5071244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/11/2023] Open
Abstract
Severe pneumonia is the main single cause of death worldwide in children under five years of age. The main etiological agent of pneumonia is the G+ bacterium Streptococcus pneumoniae, which accounts for up to 45% of all cases. Intriguingly, patients can still die days after commencing antibiotic treatment due to the development of permeability edema, although the pathogen was successfully cleared from their lungs. This condition is characterized by a dramatically impaired alveolar epithelial-capillary barrier function and a dysfunction of the sodium transporters required for edema reabsorption, including the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed sodium potassium pump (Na+-K+-ATPase). The main agent inducing this edema formation is the virulence factor pneumolysin, a cholesterol-binding pore-forming toxin, released in the alveolar compartment of the lungs when pneumococci are being lysed by antibiotic treatment or upon autolysis. Sub-lytic concentrations of pneumolysin can cause endothelial barrier dysfunction and can impair ENaC-mediated sodium uptake in type II alveolar epithelial cells. These events significantly contribute to the formation of permeability edema, for which currently no standard therapy is available. This review focuses on discussing some recent developments in the search for the novel therapeutic agents able to improve lung function despite the presence of pore-forming toxins. Such treatments could reduce the potentially lethal complications occurring after antibiotic treatment of patients with severe pneumonia.
Collapse
|
6
|
Targeted amino acid substitutions impair streptolysin O toxicity and group A Streptococcus virulence. mBio 2013; 4:e00387-12. [PMID: 23300245 PMCID: PMC3546560 DOI: 10.1128/mbio.00387-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptolysin O is a potent pore-forming toxin produced by group A Streptococcus. The aims of the present study were to dissect the relative contributions of different structural domains of the protein to hemolytic activity, to obtain a detoxified form of streptolysin O amenable to human vaccine formulation, and to investigate the role of streptolysin O-specific antibodies in protection against group A Streptococcus infection. On the basis of in silico structural predictions, we introduced two amino acid substitutions, one in the proline-rich domain 1 and the other in the conserved undecapeptide loop in domain 4. The resulting streptolysin O derivative showed no toxicity, was highly impaired in binding to eukaryotic cells, and was unable to form organized oligomeric structures on the cell surface. However, it was fully capable of conferring consistent protection in a murine model of group A Streptococcus infection. When we engineered a streptococcal strain to express the double-mutated streptolysin O, a drastic reduction in virulence as well as a diminished capacity to kill immune cells recruited at the infection site was observed. Furthermore, when mice immunized with the toxoid were challenged with the wild-type and mutant strains, protection only against the wild-type strain, not against the strain expressing the double-mutated streptolysin O, was obtained. We conclude that protection occurs by antibody-mediated neutralization of active toxin. We present a novel example of structural design of a vaccine antigen optimized for human vaccine use. Having previously demonstrated that immunization of mice with streptolysin O elicits a protective immune response against infection with group A Streptococcus strains of different serotypes, we developed in this study a double-mutated nontoxic derivative that represents a novel tool for the development of protective vaccine formulations against this important human pathogen. Furthermore, the innovative construction of an isogenic strain expressing a functionally inactive toxin and its use in infection and opsonophagocytosis experiments allowed us to investigate the mechanism by which streptolysin O mediates protection against group A Streptococcus. Finally, the ability of this toxin to directly attack and kill host immune cells during infection was studied in an air pouch model, which allowed parallel quantification of cellular recruitment, vitality, and cytokine release at the infection site.
Collapse
|
7
|
Novel bacterial artificial chromosome vector pUvBBAC for use in studies of the functional genomics of Listeria spp. Appl Environ Microbiol 2008; 74:1892-901. [PMID: 18223114 DOI: 10.1128/aem.00415-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors are important tools for microbial genome research. We constructed a novel BAC vector, pUvBBAC, for replication in both gram-negative and gram-positive bacterial hosts. The pUvBBAC vector was used to generate a BAC library for the facultative intracellular pathogen Listeria monocytogenes EGD-e. The library had insert sizes ranging from 68 to 178 kb. We identified two recombinant BACs from the L. monocytogenes pUvBBAC library that each contained the entire virulence gene cluster (vgc) of L. monocytogenes and transferred them to a nonpathogenic Listeria innocua strain. Recombinant L. innocua strains harboring pUvBBAC+vgc1 and pUvBBAC+vgc2 produced the vgc-specific listeriolysin (LLO) and actin assembly protein ActA and represent the first reported cloning of the vgc locus in its entirety. The use of the novel broad-host-range BAC vector pUvBBAC extends the versatility of this technology and provides a powerful platform for detailed functional genomics of gram-positive bacteria as well as its use in explorative functional metagenomics.
Collapse
|
8
|
Föller M, Shumilina E, Lam R, Mohamed W, Kasinathan R, Huber S, Chakraborty T, Lang F. Induction of suicidal erythrocyte death by listeriolysin from Listeria monocytogenes. Cell Physiol Biochem 2007; 20:1051-60. [PMID: 17975307 DOI: 10.1159/000110715] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Listeriolysin, the secreted cytolysin of the facultative intracellular bacterium Listeria monocytogenes, is its major virulence factor. Previously, non-lytic concentrations of listeriolysin were shown to induce Ca2+-permeable nonselective cation channels in human embryonic kidney cells. In erythrocytes, Ca2+ entry is followed by activation of K+ channels resulting in K+-exit as well as by membrane scrambling resulting in phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. Phosphatidylserine exposure is a key event of eryptosis, the suicidal death of erythrocytes. The present study utilized patch-clamp technique, Fluo3-fluorescence, and annexin V-binding in FACS analysis to determine the effect of listeriolysin on cell membrane conductance, cytosolic free Ca2+ concentration, and phosphatidylserine exposure, respectively. Within 30 minutes, exposure of human peripheral blood erythrocytes to low concentrations of listeriolysin (which were non-hemolytic for the majority of cells) induced a Ca2+-permeable cation conductance in the erythrocyte cell membrane, increased cytosolic Ca2+ concentration, and triggered annexin V-binding. Increase of extracellular K+ concentration blunted, but did not prevent, listeriolysin-induced annexin V-binding. In conclusion, listeriolysin triggers suicidal death of erythrocytes, an effect at least partially due to depletion of intracellular K+. Listeriolysin induced suicidal erythrocyte death could well contribute to the pathophysiology of L. monocytogenes infection.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gekara NO, Jacobs T, Chakraborty T, Weiss S. The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 2006; 7:1345-56. [PMID: 16098221 DOI: 10.1111/j.1462-5822.2005.00561.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pore-forming toxin listeriolysin O (LLO) is the main virulence factor of Listeria monocytogenes. LLO is known to act as a pseudo cytokine/chemokine, which induces a broad spectrum of host responses that ultimately influences the outcome of listeriosis. In the present study we demonstrate that LLO is a potent aggregator of lipid rafts. LLO was found to aggregate the raft associated molecules GM1, the GPI-anchored proteins CD14 and CD16 as well as the tyrosine kinase Lyn. Abrogation of the cytolytic activity of LLO by cholesterol pretreatment was found not to interfere with LLO's ability to aggregate rafts or trigger tyrosine phosphorylation in cells. However, a monoclonal antibody that blocks the oligomerization of LLO was found to inhibit rafts' aggregation as well as the induction of tyrosine phosphorylation. This implies that rafts aggregation by LLO which is independent of cytolytic activity, is due to the oligomerization of its membrane bound toxin monomers. Thus, LLO most likely induces signalling through the coaggregation of rafts' associated receptors, kinases and adaptors.
Collapse
Affiliation(s)
- Nelson O Gekara
- Molecular Immunology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
10
|
Tang X, Orlicky S, Liu Q, Willems A, Sicheri F, Tyers M. Genome-wide surveys for phosphorylation-dependent substrates of SCF ubiquitin ligases. Methods Enzymol 2005; 399:433-58. [PMID: 16338374 DOI: 10.1016/s0076-6879(05)99030-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SCF (Skp1-Cullin-F-box) family of ubiquitin ligases target numerous substrates for ubiquitin-dependent proteolysis, including cell cycle regulators, transcription factors, and signal transducers. Substrates are recruited to an invariant core SCF complex through one of a large family of substrate-specific adapter subunits called F-box proteins, each of which binds multiple specific substrates, often in a phosphorylation-dependent manner. The identification of substrates for SCF complexes has proven difficult, especially given the requirement of often complex phosphorylation events for substrate recognition. The archetype for such interactions is the binding of the yeast F-box protein Cdc4 to its various substrates by means of multiple motifs that weakly match an optimal consensus called the Cdc4 phosphodegron (CPD), which is phosphorylated by cyclin-dependent kinases (CDKs) and possibly other kinases. Provided phosphodegron recognition motifs and/or the targeting kinases for SCF substrates are delineated, it is possible to use genome-wide methods to identify new substrates. Here we describe two methods for the systematic retrieval of SCF substrates based on membrane arrays of synthetic phosphopeptides and on genome-wide kinase substrate profiles. In the first approach, which identifies substrates with strong matches to the CPD, a search of the predicted yeast proteome with the optimal CPD motif identified approximately 1100 matches. A phosphopeptide membrane array corresponding to each of these sequences is then probed with recombinant Cdc4, thereby identifying potential substrates. In the second approach, which identifies substrates that lack strong CPD motifs, a genome-wide set of recombinant CDK substrates is phosphorylated and directly assayed for binding to Cdc4. The proteins corresponding to these hits from each approach can then be subjected to the more stringent criteria of phosphorylation-dependent binding to Cdc4, ubiquitination by SCF(Cdc4)in vitro, and Cdc4-dependent protein instability in vivo. Both methods have identified novel substrates of Cdc4 and may, in principle, be used to identify numerous new substrates of other SCF and SCF-like complexes from yeast to humans.
Collapse
Affiliation(s)
- Xiaojing Tang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, USA
| | | | | | | | | | | |
Collapse
|
11
|
Krusch S, Domann E, Frings M, Zelmer A, Diener M, Chakraborty T, Weiss S. Listeria monocytogenes mediated CFTR transgene transfer to mammalian cells. J Gene Med 2002; 4:655-67. [PMID: 12439857 DOI: 10.1002/jgm.313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Several approaches for gene therapy of cystic fibrosis using viral and non-viral vectors are currently being undertaken. Nevertheless, the present data suggest that vectors currently being used will either have to be further modified or, alternatively, novel vector systems need to be developed. Recently, bacteria have been proven as suitable vehicles for DNA transfer to a wide variety of eukaryotic cells. In this study, we assessed the ability of the facultative intracellular pathogen Listeria monocytogenes to deliver a cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR) to CHO-K1 cells, since these cells have been extensively used for heterologous CFTR expression. METHODS An established in vitro gene transfer system based on antibiotic-mediated lysis of intracellular L. monocytogenes was exploited to transfer eukaryotic expression plasmids. Transient as well as stable CFTR transgene expression was analyzed by microscopical and biochemical methods; functionality was tested by whole-cell patch-clamp recordings. RESULTS L. monocytogenes mediated gene transfer to CHO-K1 cells was facilitated by an improved transfection protocol. In addition, the use of the isogenic mutant L. monocytogenes hlyW491A, engineered to produce a hemolysin variant with low toxigenic activity, greatly enhanced the efficiency of gene transfer. This strain allowed the transfer of functional CFTR to CHO-K1 cells. CONCLUSIONS This is the first demonstration of L. monoyctogenes mediated CFTR transgene transfer. The successful in vitro transfer suggests that L. monocytogenes might be a potential vector for cystic fibrosis gene therapy or alternative applications and deserves further investigation in vitro as well as in vivo.
Collapse
Affiliation(s)
- Stefan Krusch
- Division of Cell Biology and Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kohda C, Kawamura I, Baba H, Nomura T, Ito Y, Kimoto T, Watanabe I, Mitsuyama M. Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infect Immun 2002; 70:1334-41. [PMID: 11854218 PMCID: PMC127785 DOI: 10.1128/iai.70.3.1334-1341.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeriolysin O (LLO), a cholesterol-binding cytolysin of Listeria monocytogenes, exhibits cytokine-inducing and cytolytic activities. Because the cytolytic activity was abolished by cholesterol treatment but the cytokine-inducing activity was not, these activities appeared to be linked to different domains of the LLO molecule. In this study, we constructed recombinant full-length LLO (rLLO529) and various truncated derivatives and examined their cytolytic, cholesterol-binding, and gamma interferon (IFN-gamma)-inducing activities. rLLO529 exhibited both IFN-gamma-inducing and cytolytic activities. Four truncated rLLOs possessing different C termini, which did not exert either cytolytic or cholesterol-binding activity, stimulated IFN-gamma production in normal spleen cells. However, a truncated rLLO corresponding to domain 4 (rLLO416-529) did not exhibit IFN-gamma-inducing activity, whereas it did bind to immobilized cholesterol. In addition, though the hemolysis induced by rLLO529 was inhibited by rLLO416-529, such inhibition was not detected upon rLLO529-induced IFN-gamma production. These data indicated that domain 4 was responsible for binding of LLO to membrane cholesterol followed by oligomerization and pore formation by the entire LLO molecule. In contrast, the other part of LLO, corresponding to domain 1-3, was essential for IFN-gamma-inducing activity. These findings implied a novel aspect of the function of LLO as a bacterial modulin.
Collapse
Affiliation(s)
- Chikara Kohda
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501,USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Several species of both pathogenic and non-pathogenic grampositive bacteria within the genera Streptococcus, Clostridium and Bacillus secrete cytolytic proteins that belong to a single, highly homologous family. The most widely known members of this family are streptolysin O, listeriolysin, perfringolysin, and pneumolysin. These toxins specifically require membrane cholesterol but, apparently, do not depend on any other specific cell surface receptor, so that they are able to lyse the cytoplasmic membranes of virtually any animal cell. Upon binding as monomers, they oligomerize to form large pores with up to 30 nm internal diameter. These are the largest pores known, permitting permeation not only of ions and small metabolites but also of macromolecules. The latter property renders these toxins useful tools in cell biology. While several of these cytolysins have been shown to be determinants of bacterial pathogenicity, their biological roles may vary, as do the lifestyles of the bacteria secreting them. A unique function is surely fulfilled by listeriolysin O, which helps the intracellular pathogen Listeria monocytogenes escape from phagolysosomes and then spread to adjacent host cells.
Collapse
Affiliation(s)
- M Palmer
- Department of Medical Biochemistry and Genetics, Texas A&M University, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
14
|
Bosc C, Frank R, Denarier E, Ronjat M, Schweitzer A, Wehland J, Job D. Identification of novel bifunctional calmodulin-binding and microtubule-stabilizing motifs in STOP proteins. J Biol Chem 2001; 276:30904-13. [PMID: 11413126 DOI: 10.1074/jbc.m011614200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although microtubules are intrinsically labile tubulin assemblies, many cell types contain stable polymers, resisting depolymerizing conditions such as exposure to the cold or the drug nocodazole. This microtubule stabilization is largely due to polymer association with STOP proteins. There are several STOP variants, some with capacity to induce microtubule resistance to both the cold and nocodazole, others with microtubule cold stabilizing activity only. These microtubule-stabilizing effects of STOP proteins are inhibited by calmodulin and we now demonstrate that they are determined by two distinct kinds of repeated modular sequences (Mn and Mc), both containing a calmodulin-binding peptide, but displaying different microtubule stabilizing activities. Mn modules induce microtubule resistance to both the cold and nocodazole when expressed in cells. Mc modules, which correspond to the STOP central repeats, have microtubule cold stabilizing activity only. Mouse neuronal STOPs, which induce both cold and drug resistance in cellular microtubules, contain three Mn modules and four Mc modules. Compared with neuronal STOPs, the non-neuronal F-STOP lacks multiple Mn modules and this corresponds with an inability to induce nocodazole resistance. STOP modules represent novel bifunctional calmodulin-binding and microtubule-stabilizing sequences that may be essential for the generation of the different patterns of microtubule stabilization observed in cells.
Collapse
Affiliation(s)
- C Bosc
- Commissariat à l'Energie Atomique-Laboratoire du Cytosquelette, INSERM Unité 366, Département de Biologie Moléculaire et Structurale/Cytosquelette, Commissariat à l'Energie Atomique-Grenoble, F-38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Imaizumi K, Serizawa A, Hashimoto N, Kaidoh T, Takeuchi S. Analysis of the functional domains of Arcanobacterium pyogenes pyolysin using monoclonal antibodies. Vet Microbiol 2001; 81:235-42. [PMID: 11390107 DOI: 10.1016/s0378-1135(01)00342-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyolysin (PLO), secreted by Arcanobacterium pyogenes, is a novel member of the thiol-activated cytolysin (TACY) family of bacterial toxins. Four monoclonal antibodies (mAbs) to PLO were prepared for the analysis of functional domains of this toxin. Two (mAbs S and H) of these markedly inhibited the hemolytic activity of PLO, but the inhibiting activity of the other two antibodies (mAbs C and G) was weaker. Subsequently, nine truncated PLOs were derived from recombinant Escherichia coli by various deletions from the N-terminus. Strong hemolytic activity was recognized in truncates of PLO following the deletion of 30 or 55 amino acids, but not in the truncate with deletion of 74 residues. Truncated PLOs were used in immunoblotting experiments to locate the epitopes for the mAbs. The epitope for mAbs C and G lies within the undecapeptide region (amino acids 487-505) of the C-terminus of PLO, which seems to be the binding site to erythrocytes. In contrast, the epitopes for mAbs S and H, which showed strong neutralizing activity, were found to lie in the N-terminal regions of the PLO ranging from 55 to 73 and 123 to 166 amino acids, respectively. From these results, it seems that the N-terminal region of PLO, in particular, the region of amino acids 55-74 is important for hemolytic activity.
Collapse
Affiliation(s)
- K Imaizumi
- Faculty of Biotechnology, Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjyojima Matsuoka, 910-1195, Fukui, Japan
| | | | | | | | | |
Collapse
|
16
|
Hooper-McGrevy KE, Giguere S, Wilkie BN, Prescott JF. Evaluation of equine immunoglobulin specific for Rhodococcus equi virulence-associated proteins A and C for use in protecting foals against Rhodococcus equi-induced pneumonia. Am J Vet Res 2001; 62:1307-13. [PMID: 11497456 DOI: 10.2460/ajvr.2001.62.1307] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether purified equine immunoglobulin specific for Rhodococcus equi virulence-associated proteins A and C (VapA and VapC) can confer passive protection against R. equi-induced pneumonia in foals. ANIMALS Twenty-eight 3-week-old mixed-breed pony foals. PROCEDURE 7 foals received IV injections of equine hyperimmune plasma (HIP) against whole-cell R. equi, and 7 received purified equine immunoglobulin specific for VapA and VapC 1 day prior to intrabronchial infection with R. equi strain 103+. Eleven foals were not treated prior to infection, and 3 control foals were neither treated nor infected. Heart rate, respiratory rate, and rectal temperature were recorded twice daily, and serum fibrinogen concentration and WBC count were determined every other day following infection. Foals were euthanatized 14 days following infection, and lung lesions and concentration of R. equi in lungs were assessed. RESULTS The onset of clinical signs of pneumonia was significantly delayed in the HIP- and immunoglobulin-treated groups, compared with the untreated infected group. Moreover, pulmonary lesions were less severe in the treated groups, and significantly fewer R. equi organisms were cultured from the lungs of treated foals. CONCLUSIONS AND CLINICAL RELEVANCE Degree of protection against R. equi-induced pneumonia provided by purified immunoglobulin specific for VapA and VapC was similar to that provided by commercially available HIP. Results not only suggest that immunoglobulin is the primary component of HIP that confers protection against R. equi-induced pneumonia in foals but also indicate that antibodies against R. equi VapA and VapC are protective.
Collapse
Affiliation(s)
- K E Hooper-McGrevy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | | | |
Collapse
|
17
|
Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001; 14:584-640. [PMID: 11432815 PMCID: PMC88991 DOI: 10.1128/cmr.14.3.584-640.2001] [Citation(s) in RCA: 1513] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal individuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.
Collapse
Affiliation(s)
- J A Vázquez-Boland
- Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Billington SJ, Jost B, Songer J. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol Lett 2000. [DOI: 10.1111/j.1574-6968.2000.tb08895.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Jacobs T, Cima-Cabal MD, Darji A, Méndez FJ, Vázquez F, Jacobs AA, Shimada Y, Ohno-Iwashita Y, Weiss S, de los Toyos JR. The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding. FEBS Lett 1999; 459:463-6. [PMID: 10526185 DOI: 10.1016/s0014-5793(99)01297-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thiol-activated cytolysins share a conserved hydrophobic, Trp-rich undecapeptide that is suggested to be involved in membrane binding and intercalation. The neutralizing monoclonal antibody PLY-5 recognizes all members of this toxin family and peptide mapping assigned its epitope to the undecapeptide motif. This antibody inhibited binding of the toxins to host cell membranes and the epitope was no longer available for binding when a preformed toxin/membrane complex was tested. These results confirm the model of cytolysin binding suggested by structural data.
Collapse
Affiliation(s)
- T Jacobs
- Molecular Immunology, GBF National Center for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jacobs T, Darji A, Frahm N, Rohde M, Wehland J, Chakraborty T, Weiss S. Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 1998; 28:1081-9. [PMID: 9680200 DOI: 10.1046/j.1365-2958.1998.00858.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Listeriolysin O (LLO) binds to cholesterol-containing membranes in which it oligomerizes to form pores. Preincubation of the toxin with cholesterol is known to inhibit haemolysis, whereas the oxidized form of cholesterol has no inhibitory effect. Using immunoblot analyses and flow cytometry we demonstrate that preincubation with cholesterol does not influence binding of the listeriolysin-cholesterol complex to red blood cells, eukaryotic cells or artificial membranes. Lytic activity of membrane-bound LLO inactivated by cholesterol can be restored by enzymatic treatment with cholesterol oxidase. To determine the step at which cholesterol inhibits lytic activity, we looked for pore formation using electron microscopy. Pores formed by purified listeriolysin could be directly visualized using erythrocyte ghosts. This property was lost upon incubation of the toxin with cholesterol. Quantitative analysis strongly suggest that inhibition of lysis by cholesterol is not due to decreased binding of listeriolysin to target membranes, but rather to an interference with a subsequent step leading to polymerization of the toxin.
Collapse
Affiliation(s)
- T Jacobs
- Division of Cell Biology and Immunology, GBF, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The view that antibody-mediated protection is unimportant against intracellular pathogens is not supported by the literature. In fact, there is convincing evidence that antibody can protect against many important intracellular pathogens. The challenge now is to identify antigens that elicit protective antibodies, use them in vaccine design and understand how humoral and cellular immune mechanisms cooperate.
Collapse
Affiliation(s)
- A Casadevall
- Dept of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Darji A, Chakraborty T, Wehland J, Weiss S. TAP-dependent major histocompatibility complex class I presentation of soluble proteins using listeriolysin. Eur J Immunol 1997; 27:1353-9. [PMID: 9209484 DOI: 10.1002/eji.1830270609] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunization of mice with mixtures of listeriolysin, a pore-forming hemolysin secreted by the pathogenic bacterium Listeria monocytogenes, together with soluble ovalbumin, nucleoprotein of influenza virus, or beta-galactosidase of Escherichia coli, resulted in strong cytotoxic CD8 T cell responses to each of the respective passenger proteins in vivo. Also, the concomitant addition of either protein with listeriolysin to target cells elicited efficient sensitization of these cells which could be attributed to the pore-forming activity of listeriolysin. This response was dependent upon a functional TAP transporter and was inhibitable by brefeldin A, indicating the transfer of the soluble proteins into the cytosol and the classical major histocompatibility (MHC) class I presentation pathway. The treatment of target cells with listeriolysin under our experimental conditions did not affect cell viability and the pores generated by listeriolysin treatment were repaired within 60 min. Introduction of soluble proteins into the MHC class I presentation pathway by listeriolysin provides a powerful system to study the cytotoxic response towards intracellular pathogens and would allow for rapid screening of potential antigens in vaccine formulations.
Collapse
Affiliation(s)
- A Darji
- Division of Cell Biology and Immunology, National Center for Biotechnology, Braunschweig, Germany.
| | | | | | | |
Collapse
|
23
|
Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 1997; 89:685-92. [PMID: 9182756 DOI: 10.1016/s0092-8674(00)80251-2] [Citation(s) in RCA: 360] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanisms by which proteins gain entry into membranes is a fundamental problem in biology. Here, we present the first crystal structure of a thiol-activated cytolysin, perfringolysin O, a member of a large family of toxins that kill eukaryotic cells by punching holes in their membranes. The molecule adopts an unusually elongated shape rich in beta sheet. We have used electron microscopy data to construct a detailed model of the membrane channel form of the toxin. The structures reveal a novel mechanism for membrane insertion. Surprisingly, the toxin receptor, cholesterol, appears to play multiple roles: targeting, promotion of oligomerization, triggering a membrane insertion competent form, and stabilizing the membrane pore.
Collapse
Affiliation(s)
- J Rossjohn
- The Ian Potter Foundation Protein Crystallography Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | |
Collapse
|
24
|
Abstract
Listeria monocytogenes is one of the leading foodborne pathogens and has been implicated in numerous outbreaks in the last 2 decades. Immunocompromised populations are usually the most susceptible to Listeria infections. Although the pathogenic mechanism is a complex process, significant progress has been made in unravelling the mechanism in recent years. It is now clear that numerous extracellular and cell-associated proteins, such as internalin, listeriolysin, actin polymerization protein, phospholipase, metalloprotease, and possibly p60 proteins, are essential for L. monocytogenes entry into mammalian cells, survival inside the phagosome, escape into the cytoplasm, and cell-to-cell spread. Other proteins may be responsible for growth and physiology or to maintain the structural integrity of the bacteria. Monoclonal and polyclonal antibodies have been developed against many of those antigens or their synthetic derivatives that have helped greatly to determine the structure and function of these antigens. The antibodies were also used for the diagnosis and detection, immunocytochemical staining, and serotyping of Listeria. Humoral immune response to live L. monocytogenes cells was examined in naturally or experimentally infected hosts. Studies revealed that only extracellular antigens induced the humoral response, whereas cell-associated antigens had apparently no response. It is speculated that during the occasional bacteremic phase, L. monocytogenes releases extracellular antigens that are then processed by the immune system for antibody production. As L. monocytogenes is an intracellular pathogen, the cell-associated antigens are not persistent in the blood circulation and thus fail to stimulate the humoral immune response.
Collapse
Affiliation(s)
- A K Bhunia
- Department of Food Science and Animal Industries, Alabama A&M University, Huntsville 35762, USA
| |
Collapse
|