1
|
Nugraha DK, Nishida T, Tamaki Y, Hiramatsu Y, Yamaguchi H, Horiguchi Y. Survival of Bordetella bronchiseptica in Acanthamoeba castellanii. Microbiol Spectr 2023; 11:e0048723. [PMID: 36971600 PMCID: PMC10100856 DOI: 10.1128/spectrum.00487-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The respiratory pathogenic bacterium Bordetella bronchiseptica can persistently survive in terrestrial and aquatic environments, providing a source of infection. However, the environmental lifestyle of the bacterium is poorly understood. In this study, expecting repeated encounters of the bacteria with environmental protists, we explored the interaction between B. bronchiseptica and a representative environmental amoeba, Acanthamoeba castellanii, and found that the bacteria resisted amoeba digestion and entered contractile vacuoles (CVs), which are intracellular compartments involved in osmoregulation, to escape amoeba cells. In prolonged coculture, A. castellanii supported the proliferation of B. bronchiseptica. The avirulent Bvg- phase, but not the virulent Bvg+ phase, of the bacteria was advantageous for survival in the amoebae. We further demonstrate that two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted for predation by A. castellanii. These results are evidence that the BvgAS two-component system, the master regulator for Bvg phase conversion, plays an indispensable role in the survival of B. bronchiseptica in amoebae. IMPORTANCE The pathogenic bacterium Bordetella bronchiseptica, which causes respiratory diseases in various mammals, exhibits distinct Bvg+ and Bvg- phenotypes. The former represents the virulent phase, in which the bacteria express a set of virulence factors, while the role of the latter in the bacterial life cycle remains to be understood. In this study, we demonstrate that B. bronchiseptica in the Bvg- phase, but not the Bvg+ phase, survives and proliferates in coculture with Acanthamoeba castellanii, an environmental amoeba. Two Bvg+ phase-specific virulence factors, filamentous hemagglutinin and fimbriae, were targeted by A. castellanii predation. B. bronchiseptica turns into the Bvg- phase at temperatures in which the bacteria normally encounter these amoebae. These findings demonstrate that the Bvg- phase of B. bronchiseptica is advantageous for survival outside mammalian hosts and that the bacteria can utilize protists as transient hosts in natural environments.
Collapse
Affiliation(s)
- Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuki Tamaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Zeddeman A, van Schuppen E, Kok KE, van Gent M, Heuvelman KJ, Bart MJ, van der Heide HGJ, Gillard J, Simonetti E, Eleveld MJ, van Opzeeland FJH, van Selm S, de Groot R, de Jonge MI, Mooi FR, Diavatopoulos DA. Effect of FHA and Prn on Bordetella pertussis colonization of mice is dependent on vaccine type and anatomical site. PLoS One 2020; 15:e0237394. [PMID: 32822419 PMCID: PMC7446907 DOI: 10.1371/journal.pone.0237394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/25/2020] [Indexed: 01/05/2023] Open
Abstract
Bordetella pertussis vaccine escape mutants that lack expression of the pertussis antigen pertactin (Prn) have emerged in vaccinated populations in the last 10–20 years. Additionally, clinical isolates lacking another acellular pertussis (aP) vaccine component, filamentous hemagglutinin (FHA), have been found sporadically. Here, we show that both whole-cell pertussis (wP) and aP vaccines induced protection in the lungs of mice, but that the wP vaccine was more effective in nasal clearance. Importantly, bacterial populations isolated from the lungs shifted to an FHA-negative phenotype due to frameshift mutations in the fhaB gene. Loss of FHA expression was strongly selected for in Prn-deficient strains in the lungs following aP but not wP vaccination. The combined loss of Prn and FHA led to complete abrogation of bacterial surface binding by aP-induced serum antibodies. This study demonstrates vaccine- and anatomical site-dependent adaptation of B. pertussis and has major implications for the design of improved pertussis vaccines.
Collapse
Affiliation(s)
- Anne Zeddeman
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Evi van Schuppen
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Kristianne E. Kok
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein van Gent
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees J. Heuvelman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marieke J. Bart
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G. J. van der Heide
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Elles Simonetti
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Fred J. H. van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Saskia van Selm
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Frits R. Mooi
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Dimitri A. Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2018; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
5
|
Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin Microbiol Rev 2016; 29:449-86. [PMID: 27029594 PMCID: PMC4861987 DOI: 10.1128/cmr.00083-15] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pertussis is a severe respiratory infection caused by Bordetella pertussis, and in 2008, pertussis was associated with an estimated 16 million cases and 195,000 deaths globally. Sizeable outbreaks of pertussis have been reported over the past 5 years, and disease reemergence has been the focus of international attention to develop a deeper understanding of pathogen virulence and genetic evolution of B. pertussis strains. During the past 20 years, the scientific community has recognized pertussis among adults as well as infants and children. Increased recognition that older children and adolescents are at risk for disease and may transmit B. pertussis to younger siblings has underscored the need to better understand the role of innate, humoral, and cell-mediated immunity, including the role of waning immunity. Although recognition of adult pertussis has increased in tandem with a better understanding of B. pertussis pathogenesis, pertussis in neonates and adults can manifest with atypical clinical presentations. Such disease patterns make pertussis recognition difficult and lead to delays in treatment. Ongoing research using newer tools for molecular analysis holds promise for improved understanding of pertussis epidemiology, bacterial pathogenesis, bioinformatics, and immunology. Together, these advances provide a foundation for the development of new-generation diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abdulbaset M Salim
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marcus J Zervos
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System and Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Heinz-Josef Schmitt
- Medical and Scientific Affairs, Pfizer Vaccines, Paris, France Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Bowden KE, Weigand MR, Peng Y, Cassiday PK, Sammons S, Knipe K, Rowe LA, Loparev V, Sheth M, Weening K, Tondella ML, Williams MM. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics. mSphere 2016; 1:e00036-16. [PMID: 27303739 PMCID: PMC4888882 DOI: 10.1128/msphere.00036-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.
Collapse
Affiliation(s)
- Katherine E. Bowden
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael R. Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Pamela K. Cassiday
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott Sammons
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lori A. Rowe
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vladimir Loparev
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Keeley Weening
- Vermont Department of Health Laboratory, Burlington, Vermont, USA
| | - M. Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Bacterial Metabolism in the Host Environment: Pathogen Growth and Nutrient Assimilation in the Mammalian Upper Respiratory Tract. Microbiol Spectr 2016; 3. [PMID: 26185081 DOI: 10.1128/microbiolspec.mbp-0007-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogens evolve in specific host niches and microenvironments that provide the physical and nutritional requirements conducive to their growth. In addition to using the host as a source of food, bacterial pathogens must avoid the immune response to their presence. The mammalian upper respiratory tract is a site that is exposed to the external environment, and is readily colonized by bacteria that live as resident flora or as pathogens. These bacteria can remain localized, descend to the lower respiratory tract, or traverse the epithelium to disseminate throughout the body. By virtue of their successful colonization of the respiratory epithelium, these bacteria obtain the nutrients needed for growth, either directly from host resources or from other microbes. This chapter describes the upper respiratory tract environment, including its tissue and mucosal structure, prokaryotic biota, and biochemical composition that would support microbial life. Neisseria meningitidis and the Bordetella species are discussed as examples of bacteria that have no known external reservoirs but have evolved to obligately colonize the mammalian upper respiratory tract.
Collapse
|
8
|
Guevara C, Zhang C, Gaddy JA, Iqbal J, Guerra J, Greenberg DP, Decker MD, Carbonetti N, Starner TD, McCray PB, Mooi FR, Gómez-Duarte OG. Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis (Lond) 2015; 48:177-88. [PMID: 26492208 PMCID: PMC5278880 DOI: 10.3109/23744235.2015.1100323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B. pertussis. The objectives of this work were to evaluate B. pertussis infection in highly differentiated human airway cells in vitro and to show the role of B. pertussis fimbriae in cell adherence. METHODS Primary human airway epithelial (PHAE) cells from human bronchi and a human bronchial epithelial (HBE) cell line were grown in vitro under air-liquid interface conditions. RESULTS PHAE and HBE cells infected with B. pertussis wild-type strain revealed bacterial adherence to the apical surface of cells, bacteria-induced cytoskeleton changes, and cell detachment. Mutations in the major fimbrial subunits Fim2/3 or in the minor fimbrial adhesin subunit FimD affected B. pertussis adherence to predominantly HBE cells. This cell model recapitulates the morphologic features of the human airway infected by B. pertussis and confirms the role of fimbriae in B. pertussis adherence. Furthermore, HBE cells show that fimbrial subunits, and specifically FimD adhesin, are critical in B. pertussis adherence to airway cells. CONCLUSIONS The relevance of this model to study host-parasite interaction in pertussis lies in the striking physiologic and morphologic similarity between the PHAE and HBE cells and the human airway ciliated and goblet cells in vivo. These cells can proliferate in vitro, differentiate, and express the same genetic profile as human respiratory cells in vivo.
Collapse
Affiliation(s)
- Claudia Guevara
- a Division of Pediatric Infectious Diseases , Vanderbilt University School of Medicine
| | - Chengxian Zhang
- a Division of Pediatric Infectious Diseases , Vanderbilt University School of Medicine
| | - Jennifer A Gaddy
- b Tennessee Valley Healthcare Systems , Department of Veterans Affairs
- c Division of Infectious Diseases , Vanderbilt University School of Medicine , Nashville , TN
| | - Junaid Iqbal
- a Division of Pediatric Infectious Diseases , Vanderbilt University School of Medicine
| | - Julio Guerra
- a Division of Pediatric Infectious Diseases , Vanderbilt University School of Medicine
| | - David P Greenberg
- d Department of Pediatrics , University of Pittsburgh School of Medicine , Pittsburgh , PA
- e Scientific and Medical Affairs , Sanofi Pasteur , Swiftwater , PA
| | - Michael D Decker
- e Scientific and Medical Affairs , Sanofi Pasteur , Swiftwater , PA
- f Department of Health Policy , Vanderbilt University School of Medicine , Nashville , TN
| | - Nicholas Carbonetti
- g Department of Biological and Biomedical Sciences, Department of Microbiology and Immunology , University of Maryland School of Medicine , Baltimore , MD
| | - Timothy D Starner
- h Stead Family Department of Pediatrics , University of Iowa Carver College of Medicine , Iowa City , IA
| | - Paul B McCray
- h Stead Family Department of Pediatrics , University of Iowa Carver College of Medicine , Iowa City , IA
| | - Frits R Mooi
- i National Institute for Public Health and the Environment, Center for Infectious Diseases Control , Bilthoven , The Netherlands
| | - Oscar G Gómez-Duarte
- a Division of Pediatric Infectious Diseases , Vanderbilt University School of Medicine
| |
Collapse
|
9
|
Scheller EV, Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis 2015; 73:ftv079. [PMID: 26416077 DOI: 10.1093/femspd/ftv079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines.
Collapse
Affiliation(s)
- Erich V Scheller
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
10
|
Villarino Romero R, Osicka R, Sebo P. Filamentous hemagglutinin of Bordetella pertussis: a key adhesin with immunomodulatory properties? Future Microbiol 2015; 9:1339-60. [PMID: 25517899 DOI: 10.2217/fmb.14.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The filamentous hemagglutinin of pathogenic Bordetellae is a prototype of a large two-partner-system-secreted and β-structure-rich bacterial adhesin. It exhibits several binding activities that may facilitate bacterial adherence to airway mucosa and host phagocytes in the initial phases of infection. Despite three decades of research on filamentous hemagglutinin, there remain many questions on its structure-function relationships, integrin interactions and possible immunomodulatory signaling capacity. Here we review the state of knowledge on this important virulence factor and acellular pertussis vaccine component. Specific emphasis is placed on outstanding questions that are yet to be answered.
Collapse
Affiliation(s)
- Rodrigo Villarino Romero
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | | | | |
Collapse
|
11
|
Abstract
Bordetella pertussis produces two serologically distinct fimbriae, Fim2 and Fim3. Expression of these antigens is governed by the BvgA/S system and by the length of a poly(C) tract in the promoter of each gene. Fim2 and Fim3 are important antigens for whole cell pertussis vaccines as clinical trials have shown an association of anti-fimbriae antibody-mediated agglutination and protection. The current five component acellular pertussis vaccine contains co-purified Fim2/3 and provided good efficacy in clinical trials with the anti-Fim antibody response correlating with protection when pre and post exposure antibody levels were analysed. The predominant serotype of B. pertussis isolates has changed over time in most countries but it is not understood whether this is vaccine-driven or whether serotype is linked to the prevailing predominant genotype. Recent studies have shown that both Fim2 and Fim3 are expressed during infection and that Fim2 is more immunogenic than Fim3 in the acellular vaccine.
Collapse
|
12
|
Abstract
Pertussis, also known as whooping cough, has recently re-emerged as a major public health threat despite high levels of vaccination against the aetiological agent Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into B. pertussis virulence-factor function. We also discuss the changing epidemiology of pertussis and the challenges facing vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.
Collapse
|
13
|
Godfroid F, Denoël P, Poolman J. Are vaccination programs and isolate polymorphism linked to pertussis re-emergence? Expert Rev Vaccines 2014; 4:757-78. [PMID: 16221076 DOI: 10.1586/14760584.4.5.757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whooping cough remains an endemic disease, and the re-emergence of pertussis in older children and adolescents has been reported in several countries, despite high vaccine coverage. Polymorphism of Bordetella pertussis has been observed over time, and some characteristics of pertussis isolates have gradually diverged from the vaccine strains. The present review summarizes the current knowledge on B. pertussis variability in countries with different vaccination programs and discusses its potential impact on the recently observed increased incidence of whooping cough. No direct association between B. pertussis isolate variability and vaccination programs has been observed to date, except for shifts from fimbriae Fim2 to Fim3. More likely explanations for the re-emergence of pertussis include the change in the epidemiology and transmission patterns of pertussis in highly vaccinated populations, and a shift of disease from young children to adolescents and adults due to waning protective immunity.
Collapse
Affiliation(s)
- Fabrice Godfroid
- DAP Bacterial Vaccine Preclinical Immunology, Research & Development, GlaxoSmithKline Biologicals, Rue de l'Institut 89, 1330 Rixensart, Belgium.
| | | | | |
Collapse
|
14
|
Miyaji Y, Otsuka N, Toyoizumi-Ajisaka H, Shibayama K, Kamachi K. Genetic analysis of Bordetella pertussis isolates from the 2008-2010 pertussis epidemic in Japan. PLoS One 2013; 8:e77165. [PMID: 24124606 PMCID: PMC3790747 DOI: 10.1371/journal.pone.0077165] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023] Open
Abstract
A large pertussis epidemic occurred between 2008 and 2010 in Japan. To investigate epidemic strains, we analyzed 33 Bordetella pertussis isolates from the epidemic period by sequencing virulence-associated genes (fim3, ptxP, ptxA, and prn) and performing multilocus variable-number tandem repeat analysis (MLVA), and compared these results with those of 101 isolates from non-epidemic, earlier and later time periods. DNA sequencing of the fim3 allele revealed that the frequency of fim3B was 4.3%, 12.8%, 30.3%, and 5.1% within isolates in 2002–2004, 2005–2007, 2008–2010, and 2011–2012, respectively. The isolation rate of the fim3B strain therefore temporarily increased during the epidemic period 2008–2010. In contrast, the frequencies of the virulence-associated allelic variants, ptxP3, ptxA1, and prn2, increased with time during overall study period, indicating that these variants were not directly involved in the occurrence of the 2008–2010 epidemic. MLVA genotyping in combination with analysis of allele types showed that the prevalence of an MT27d strain temporarily increased in the epidemic period, and that this strain carried virulence-associated allelic variants (fim3B, ptxP3, ptxA1, and prn2) also identified in recent epidemic strains of Australia, Europe, and the US. Phenotypic analyses revealed that the serotype Fim3 strain was predominant (≥87%) during all the periods studied, and that the frequency of adhesion pertactin (Prn) non-expressing B. pertussis decreased by half in the epidemic period. All MT27d strains expressed Prn and Fim3 proteins, suggesting that B. pertussis MT27d strains expressing Prn and Fim3B have the potential to cause large epidemics worldwide.
Collapse
Affiliation(s)
- Yusuke Miyaji
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Pertussis vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
16
|
Decker KB, James TD, Stibitz S, Hinton DM. The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. MICROBIOLOGY-SGM 2012; 158:1665-1676. [PMID: 22628479 DOI: 10.1099/mic.0.058941-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bordetella pertussis causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of B. pertussis pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the B. pertussis response regulator BvgA in the context of what is known about bacterial RNA polymerase and various modes of transcription activation. At most virulence gene promoters, multiple dimers of phosphorylated BvgA (BvgA~P) bind upstream of the core promoter sequence, using a combination of high- and low-affinity sites that fill through cooperativity. Activation by BvgA~P is typically mediated by a novel form of class I/II mechanisms, but two virulence genes, fim2 and fim3, which encode serologically distinct fimbrial subunits, are regulated using a previously unrecognized RNA polymerase/activator architecture. In addition, the fim genes undergo phase variation because of an extended cytosine (C) tract within the promoter sequences that is subject to slipped-strand mispairing during replication. These sophisticated systems of regulation demonstrate one aspect whereby B. pertussis, which is highly clonal and lacks the extensive genetic diversity observed in many other bacterial pathogens, has been highly successful as an obligate human pathogen.
Collapse
Affiliation(s)
- Kimberly B Decker
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Serra DO, Conover MS, Arnal L, Sloan GP, Rodriguez ME, Yantorno OM, Deora R. FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One 2011; 6:e28811. [PMID: 22216115 PMCID: PMC3245231 DOI: 10.1371/journal.pone.0028811] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/15/2011] [Indexed: 01/17/2023] Open
Abstract
Bordetella spp. form biofilms in the mouse nasopharynx, thereby providing a potential mechanism for establishing chronic infections in humans and animals. Filamentous hemagglutinin (FHA) is a major virulence factor of B. pertussis, the causative agent of the highly transmissible and infectious disease, pertussis. In this study, we dissected the role of FHA in the distinct biofilm developmental stages of B. pertussis on abiotic substrates and in the respiratory tract by employing a murine model of respiratory biofilms. Our results show that the lack of FHA reduced attachment and decreased accumulation of biofilm biomass on artificial surfaces. FHA contributes to biofilm development by promoting the formation of microcolonies. Absence of FHA from B. pertussis or antibody-mediated blockade of surface-associated FHA impaired the attachment of bacteria to the biofilm community. Exogenous addition of FHA resulted in a dose-dependent inhibitory effect on bacterial association with the biofilms. Furthermore, we show that FHA is important for the structural integrity of biofilms formed on the mouse nose and trachea. Together, these results strongly support the hypothesis that FHA promotes the formation and maintenance of biofilms by mediating cell-substrate and inter-bacterial adhesions. These discoveries highlight FHA as a key factor in establishing structured biofilm communities in the respiratory tract.
Collapse
Affiliation(s)
- Diego O. Serra
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-CCT-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matt S. Conover
- Program in Molecular Genetics, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Laura Arnal
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-CCT-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gina Parise Sloan
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - María E. Rodriguez
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-CCT-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo M. Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-CCT-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (RD); (OMY)
| | - Rajendar Deora
- Program in Molecular Genetics, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail: (RD); (OMY)
| |
Collapse
|
18
|
de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR. Pertussis: a matter of immune modulation. FEMS Microbiol Rev 2011; 35:441-74. [DOI: 10.1111/j.1574-6976.2010.00257.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
The Bordetella avium BAV1965-1962 fimbrial locus is regulated by temperature and produces fimbriae involved in adherence to turkey tracheal tissue. Infect Immun 2011; 79:2423-9. [PMID: 21464081 DOI: 10.1128/iai.01169-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica cause respiratory tract disease in mammals, whereas Bordetella avium causes respiratory tract disease in avian hosts. While there are striking similarities between the diseases caused by the mammalian- and avian-adapted bordetellae, differences at the genetic level may account for their different host tropisms. Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multisubunit structures (fimbriae) that play a role in virulence. Fimbriae of the mammalian bordetellae mediate attachment to the host respiratory epithelium. They are assembled by a single chaperone/usher system encoded by the fimbrial biogenesis operon fimA-D. B. avium contains a homologous fimbrial operon (BAV1965-1962), and we report here the functionality of this locus. Reverse transcription (RT)-PCR and quantitative PCR analyses demonstrated that transcription of the locus is regulated by temperature. By immuno-transmission electron microscopy (TEM), BAV1965-containing fimbriae were observed on bacteria grown at 37°C but not those grown at 22°C. A mutant in which BAV1965-1962 was deleted displayed significantly lower levels of adherence to turkey tracheal rings than the wild type. Thus, the BAV1965-1962 fimbrial locus is functional, its expression is regulated in response to temperature, and it produces fimbriae involved in adherence to host respiratory tract tissue.
Collapse
|
20
|
Octavia S, Maharjan RP, Sintchenko V, Stevenson G, Reeves PR, Gilbert GL, Lan R. Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. Mol Biol Evol 2010; 28:707-15. [PMID: 20833694 DOI: 10.1093/molbev/msq245] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite high vaccine coverage, pertussis incidence has increased substantially in recent years in many countries. A significant factor that may be contributing to this increase is adaptation to the vaccine by Bordetella pertussis, the causative agent of pertussis. In this study, we first assessed the genetic diversity of B. pertussis by microarray-based comparative genome sequencing of 10 isolates representing diverse genotypes and different years of isolation. We discovered 171 single nucleotide polymorphisms (SNPs) in a total of 1.4 Mb genome analyzed. The frequency of base changes was estimated as one per 32 kb per isolate, confirming that B. pertussis is one of the least variable bacterial pathogens. We then analyzed an international collection of 316 B. pertussis isolates using a subset of 65 of the SNPs and identified 42 distinct SNP profiles (SPs). Phylogenetic analysis grouped the SPs into six clusters. The majority of recent isolates belonged to clusters I-IV and were descendants of a single prevaccine lineage. Cluster I appeared to be a major clone with a worldwide distribution. Typing of genes encoding acellular vaccine (ACV) antigens, ptxA, prn, fhaB, fim2, and fim3 revealed the emergence and increasing incidence of non-ACV alleles occurring in clusters I and IV, which may have been driven by ACV immune selection. Our findings suggest that B. pertussis, despite its high population homogeneity, is evolving in response to vaccination pressure with recent expansion of clones carrying variants of genes encoding ACV antigens.
Collapse
Affiliation(s)
- Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Conover MS, Sloan GP, Love CF, Sukumar N, Deora R. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol 2010; 77:1439-55. [PMID: 20633227 DOI: 10.1111/j.1365-2958.2010.07297.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many respiratory pathogens establish persistent infection or a carrier state in the human nasopharynx without overt disease symptoms but the presence of these in the lungs usually results in disease. Although the anatomy and microenvironments between nasopharynx and lungs are different, a virulence factor with an organ-specific function in the colonization of the nasopharynx is unknown. In contrast to the severity of pertussis and mortality in non-vaccinated young children, Bordetella pertussis results in milder and prolonged cough in vaccinated adolescents and adults. Individuals harbouring bacteria in the nasopharynx serve as reservoirs for intrafamilial and nosocomial transmission. We show that the Bps polysaccharide of B. pertussis is critical for initial colonization of the mouse nose and the trachea but not of the lungs. Our data reveal a biofilm lifestyle for B. pertussis in the nose and the requirement of Bps in this developmental process. Bps functions as an adhesin by promoting adherence of B. pertussis and Escherichia coli to human nasal but not to human lung epithelia. Patient serum specifically recognized Bps suggesting its expression during natural human infections. We describe the first bacterial factor that exhibits a differential role in colonization and adherence between the nasopharynx and the lungs.
Collapse
Affiliation(s)
- Matt S Conover
- Program in Molecular Genetics, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
22
|
Mooi FR. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. INFECTION GENETICS AND EVOLUTION 2009; 10:36-49. [PMID: 19879977 DOI: 10.1016/j.meegid.2009.10.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/11/2009] [Accepted: 10/20/2009] [Indexed: 01/08/2023]
Abstract
Before childhood vaccination was introduced in the 1950s, pertussis or whooping cough was a major cause of infant death worldwide. Widespread vaccination of children was successful in significantly reducing morbidity and mortality. However, despite vaccination, pertussis has persisted and, in the 1990s, resurged in a number of countries with highly vaccinated populations. Indeed, pertussis has become the most prevalent vaccine-preventable disease in developed countries with estimated infection frequencies of 1-6%. Recently vaccinated children are well protected against pertussis disease and its increase is mainly seen in adolescents and adults in which disease symptoms are often mild. The etiologic agent of pertussis, Bordetella pertussis, is extremely monomorphic and its ability to persist in the face of intensive vaccination is intriguing. Numerous studies have shown that B. pertussis populations changed after the introduction of vaccination suggesting adaptation. These adaptations did not involve the acquisition of novel genes but small genetic changes, mainly SNPs, and occurred in successive steps in a period of 40 years. The earliest adaptations resulted in antigenic divergence with vaccine strains. More recently, strains emerged with increased pertussis toxin (Ptx) production. Here I argue that the resurgence of pertussis is the compound effect of pathogen adaptation and waning immunity. I propose that the removal by vaccination of naïve infants as the major source for transmission was the crucial event which has driven the changes in B. pertussis populations. This has selected for strains which are more efficiently transmitted by primed hosts in which immunity has waned. The adaptation of B. pertussis to primed hosts involved delaying an effective immune response by antigenic divergence with vaccine strains and by increasing immune suppression through higher levels of Ptx production. Higher levels of Ptx may also benefit transmission by enhancing clinical symptoms. The study of B. pertussis populations has not only increased our understanding of pathogen evolution, but also suggests way to improve pertussis vaccines, underlining the public health significance of population-based studies of pathogens.
Collapse
Affiliation(s)
- Frits R Mooi
- Lab for Infectious Diseases and Screening, Netherlands Centre for Infectious Diseases Control, Natl Institute for Public Health and the Environment, RIVM, PO Box 1, 3720 BA Bilthoven, Netherlands.
| |
Collapse
|
23
|
Maharjan RP, Gu C, Reeves PR, Sintchenko V, Gilbert GL, Lan R. Genome-wide analysis of single nucleotide polymorphisms in Bordetella pertussis using comparative genomic sequencing. Res Microbiol 2008; 159:602-8. [PMID: 18790049 DOI: 10.1016/j.resmic.2008.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 07/25/2008] [Accepted: 08/08/2008] [Indexed: 11/30/2022]
Abstract
Bordetella pertussis is known to be a genotypically homogeneous pathogen but the extent of homogeneity at the genomic level is unknown. A currently circulating B. pertussis isolate from Australia was compared with the genome-sequenced Tohama I strain isolated in Japan in the 1950s from a distantly related lineage. Microarray-based comparative genome sequencing (CGS) was used to detect single nucleotide polymorphisms (SNPs) in a total of 1.4 Mb of the 4.09 Mb genome, including 1012 coding-regions, 217 pseudogenes and 268 intergenic regions. The CGS analysis, followed by validation using real-time PCR and DNA sequencing, identified 70 SNPs and five 1-3 bp indels, giving an overall frequency of base changes of 1 per 20 kb. Thirty-two of the 56 SNPs in coding regions were non-synonymous, including five located in virulence-associated genes. The data also allowed us to compare genomic diversity with other "clonal" human pathogens such as Mycobacterium tuberculosis and Yersinia pestis, showing that B. pertussis may be one of the least variable pathogenic bacterial species.
Collapse
Affiliation(s)
- Ram P Maharjan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Pertussis vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
25
|
Scibelli A, Roperto S, Manna L, Pavone LM, Tafuri S, Della Morte R, Staiano N. Engagement of integrins as a cellular route of invasion by bacterial pathogens. Vet J 2007; 173:482-91. [PMID: 16546423 DOI: 10.1016/j.tvjl.2006.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Integrins are heterodimeric receptors that mediate important cell functions, including cell adhesion, migration and tissue organisation. These transmembrane receptors regulate the direct association of cells with each other and with extracellular matrix proteins. However, by binding their ligands, integrins provide a transmembrane link for the bidirectional transmission of mechanical forces and biochemical signals across the plasma membrane. Interestingly, several of this family of receptors are exploited by pathogens to establish contact with the host cells. Hence, microbes subvert normal eukaryotic cell processes to create a specialised niche which allows their survival. This review highlights the fundamental role of integrins in bacterial pathogenesis.
Collapse
Affiliation(s)
- Antonio Scibelli
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 2006; 188:6002-15. [PMID: 16885469 PMCID: PMC1540077 DOI: 10.1128/jb.01927-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.
Collapse
Affiliation(s)
- Mohammed Sebaihia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326-82. [PMID: 15831828 PMCID: PMC1082800 DOI: 10.1128/cmr.18.2.326-382.2005] [Citation(s) in RCA: 810] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella respiratory infections are common in people (B. pertussis) and in animals (B. bronchiseptica). During the last two decades, much has been learned about the virulence determinants, pathogenesis, and immunity of Bordetella. Clinically, the full spectrum of disease due to B. pertussis infection is now understood, and infections in adolescents and adults are recognized as the reservoir for cyclic outbreaks of disease. DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussis. Future studies should seek to determine the cause of the unique cough which is associated with Bordetella respiratory infections. It is also hoped that data gathered from molecular Bordetella research will lead to a new generation of DTaP vaccines which provide greater efficacy than is provided by today's vaccines.
Collapse
Affiliation(s)
- Seema Mattoo
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1752, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- Andrew Preston
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
29
|
David S, van Furth R, Mooi FR. Efficacies of whole cell and acellular pertussis vaccines against Bordetella parapertussis in a mouse model. Vaccine 2004; 22:1892-8. [PMID: 15121300 DOI: 10.1016/j.vaccine.2003.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Revised: 08/11/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
Pertussis vaccine development has mainly focused on Bordetella pertussis, and consequently these vaccines contain B. pertussis antigens only. However, the related species Bordetella parapertussis can also cause pertussis, although symptoms associated with the disease are generally considered to be milder. Recent field studies have shown that in some outbreaks B. parapertussis can prevail. Using a mouse model we compared the efficacy against B. parapertussis of two commercially available acellular vaccines and two whole cell vaccines, used in The Netherlands and Finland, respectively. The efficacies of the two whole cell vaccines against B. parapertussis were similar, but much lower compared to the efficacy against B. pertussis. Although, the acellular vaccines conferred some protection against B. parapertussis early in infection, the values were not significant. Later in infection, a highly significant enhancement of colonisation by B. parapertussis was observed in mice vaccinated with acellular vaccines. The whole cell vaccines protected significantly better than the acellular vaccines against B. parapertussis. The possible consequences of a switch from whole cell to acellular vaccines was discussed in the light of our findings.
Collapse
Affiliation(s)
- Silke David
- Research Laboratory for Infectious Diseases, National Institute Of Public Health and the Environment, P.O. Box 1, 3720 Bilthoven, The Netherlands
| | | | | |
Collapse
|
30
|
Vandebriel RJ, Hellwig SMM, Vermeulen JP, Hoekman JHG, Dormans JAMA, Roholl PJM, Mooi FR. Association of Bordetella pertussis with host immune cells in the mouse lung. Microb Pathog 2003; 35:19-29. [PMID: 12860455 DOI: 10.1016/s0882-4010(03)00087-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse models are frequently used to study immunity and pathogenesis to Bordetella pertussis infection. To improve the understanding of the mouse infection model, the influx of host cells and B. pertussis localisation in the lungs were evaluated. Furthermore, the roles of filamentous hemagglutinin (FHA) and fimbriae (Fim) in these processes were determined. B. pertussis infection stimulated the recruitment of polymorphonuclear granulocytes (PMN), alveolar macrophages, and lymphocytes. As determined by double immunofluorescence staining, 2 hr after infection most B. pertussis were free in the alveolar space, some were attached to alveolar epithelia, and some were associated with and phagocytosed by PMN. After 3 days, most bacteria were associated with and phagocytosed by macrophages, some by PMN. B. pertussis was shown not to be ingested by epithelial cells or associated with interstitial macrophages. B. pertussis mutants lacking expression of FHA or Fim were associated with and phagocytosed by the same cell types as parental bacteria. The Fim mutant, however, induced a more severe inflammation, and was cleared faster from the lungs compared to the parental strain and the FHA mutant. These results suggest that Fim does not affect bacterial localisation in the mouse lung, but does influence host immune mechanisms. Possibly, Fim may exert an anti-inflammatory function and thereby inhibit killing by macrophages.
Collapse
Affiliation(s)
- Rob J Vandebriel
- Laboratory for Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Spears PA, Temple LM, Miyamoto DM, Maskell DJ, Orndorff PE. Unexpected similarities between Bordetella avium and other pathogenic Bordetellae. Infect Immun 2003; 71:2591-7. [PMID: 12704133 PMCID: PMC153266 DOI: 10.1128/iai.71.5.2591-2597.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella avium causes an upper respiratory tract disease (bordetellosis) in avian species. Commercially raised turkeys are particularly susceptible. Like other pathogenic members of the genus Bordetella (B. pertussis and B. bronchiseptica) that infect mammals, B. avium binds preferentially to ciliated tracheal epithelial cells and produces similar signs of disease. These similarities prompted us to study bordetellosis in turkeys as a possible nonmammalian model for whooping cough, the exclusively human childhood disease caused by B. pertussis. One impediment to accepting such a host-pathogen model as relevant to the human situation is evidence suggesting that B. avium does not express a number of the factors known to be associated with virulence in the other two Bordetella species. Nevertheless, with signature-tagged mutagenesis, four avirulent mutants that had lesions in genes orthologous to those associated with virulence in B. pertussis and B. bronchiseptica (bvgS, fhaB, fhaC, and fimC) were identified. None of the four B. avium genes had been previously identified as encoding factors associated with virulence, and three of the insertions (in fhaB, bvgS, and fimC) were in genes or gene clusters inferred as being absent or incomplete in B. avium, based upon the lack of DNA sequence similarities in hybridization studies and/or the lack of immunological cross-reactivity of the putative products. We further found that the genotypic arrangements of most of the B. avium orthologues were very similar in all three Bordetella species. In vitro tests, including hemagglutination, tracheal ring binding, and serum sensitivity, helped further define the phenotypes conferred by the mutations. Our findings strengthen the connection between the causative agents and the pathogenesis of bordetellosis in all hosts and may help explain the striking similarities of the histopathologic characteristics of this upper airway disease in avian and mammalian species.
Collapse
Affiliation(s)
- Patricia A Spears
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | |
Collapse
|
32
|
Menozzi FD, Pethe K, Bifani P, Soncin F, Brennan MJ, Locht C. Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol Microbiol 2002; 43:1379-86. [PMID: 11971262 DOI: 10.1046/j.1365-2958.2002.02841.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Present in the extracellular matrix and membranes of virtually all animal cells, proteoglycans (PGs) are among the first host macromolecules encountered by infectious agents. Because of their wide distribution and direct accessibility, it is not surprising that pathogenic bacteria have evolved mechanisms to exploit PGs for their own purposes, including mediating attachment to target cells. This is achieved through the expression of adhesins that recognize glycosaminoglycans (GAGs) linked to the core protein of PGs. Some pathogens, such as Bordetella pertussis and Chlamydia trachomatis, may express more than one GAG-binding adhesin. Bacterial interactions with PGs may also facilitate cell invasion or systemic dissemination, as observed for Neisseria gonorrhoeae and Mycobacterium tuberculosis respectively. More-over, pathogenic bacteria can use PGs to enhance their virulence via a shedding of PGs that leads to there lease of effectors that weaken the host defences. The exploitation of PGs by pathogenic bacteria is thus a multifaceted mechanistic process directly related to the potential virulence of a number of microorganisms.
Collapse
|
33
|
Abstract
Bordetella pertussis exploits extracellular and intracellular niches in the respiratory tract and a variety of immune evasion strategies to prolong its survival in the host. This article reviews evidence of complementary roles for cellular and humoral immunity in protection. It discusses the effector mechanisms of bacterial elimination, the strategies employed by the bacteria to subvert protective immune responses and the immunological basis for systemic and neurological responses to infection and vaccination.
Collapse
Affiliation(s)
- K H Mills
- Infection and Immunity Group, Institute of Immunology, Department of Biology, National University of Ireland, Maynooth, Co., Kildare, Ireland.
| |
Collapse
|
34
|
Smith AM, Guzmán CA, Walker MJ. The virulence factors ofBordetella pertussis: a matter of control. FEMS Microbiol Rev 2001; 25:309-33. [PMID: 11348687 DOI: 10.1111/j.1574-6976.2001.tb00580.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a contagious childhood respiratory disease. Increasing public concern over the safety of whole-cell vaccines led to decreased immunisation rates and a subsequent increase in the incidence of the disease. Research into the development of safer, more efficacious, less reactogenic vaccine preparations was concentrated on the production and purification of detoxified B. pertussis virulence factors. These virulence factors include adhesins such as filamentous haemagglutinin, fimbriae and pertactin, which allow B. pertussis to bind to ciliated epithelial cells in the upper respiratory tract. Once attachment is initiated, toxins produced by the bacterium enable colonisation to proceed by interfering with host clearance mechanisms. B. pertussis co-ordinately regulates the expression of virulence factors via the Bordetella virulence gene (bvg) locus, which encodes a response regulator responsible for signal-mediated activation and repression. This strict regulation mechanism allows the bacterium to express different gene subsets in different environmental niches within the host, according to the stage of disease progression.
Collapse
Affiliation(s)
- A M Smith
- Department of Biological Sciences, University of Wollongong, Wollongong. N.S.W. 2522, Australia
| | | | | |
Collapse
|
35
|
Bock A, Gross R. The BvgAS two-component system of Bordetella spp.: a versatile modulator of virulence gene expression. Int J Med Microbiol 2001; 291:119-30. [PMID: 11437335 DOI: 10.1078/1438-4221-00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bordetella pertussis and the closely related species B. parapertussis and B. bronchiseptica colonize the respiratory tract and cause related diseases in man or mammalian species, respectively. Expression of virulence factors by these pathogens is coordinately regulated by the BvgAS two-component system according to changes in the growth conditions. Signal transduction by the BvgAS system is characterized by a complex His-Asp-His-Asp phosphorelay. This system controls the expression of two distinct subsets of genes either in a positive (vag genes) or in a negative (vrg genes) manner. Most of the known virulence factors such as several toxins and adhesins are encoded by vag genes, whereas the functions of most vrg genes and the biological significance of the vrg regulon are not yet clear. This review discusses the current knowledge about the molecular mechanisms of virulence regulation and their relevance for infection by these respiratory pathogens.
Collapse
Affiliation(s)
- A Bock
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, Germany
| | | |
Collapse
|
36
|
Abstract
Coevolution between bacteria and their plant or animal hosts determines characteristics of the interaction, the bacterial virulence genes involved, and the regulatory systems controlling expression of virulence genes. The long-standing association between Salmonellae and their animal hosts has resulted in the acquisition by Salmonella subspecies of a variety of virulence genes and the evolution of complex regulatory networks. The particular repertoire of virulence genes acquired by different Salmonella enterica subspecies and the regulatory systems that control them dictate subspecies-specific infection characteristics. Although the association between Vibrio cholerae and humans appears to be more recent, to reflect a simpler pathogenic strategy, and to involve fewer virulence genes than that of Salmonellae, complex virulence-regulatory networks have nonetheless evolved. In contrast, there is no evidence for acquisition of virulence genes by horizontal gene transfer in bordetellae, and their virulence regulon is less complex in overall structure than those of salmonellae and Vibrio cholerae. In Bordetellae, subspecies-specific differences in pathogenic strategy appear to result from differential gene expression within and across Bordetella subspecies.
Collapse
Affiliation(s)
- P A Cotter
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, California 90095-1747, USA.
| | | |
Collapse
|
37
|
Locht C, Antoine R, Jacob-Dubuisson F. Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr Opin Microbiol 2001; 4:82-9. [PMID: 11173039 DOI: 10.1016/s1369-5274(00)00169-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies, including those based on genomics, have demonstrated that besides toxins and adhesins, Bordetella pertussis uses many additional virulence determinants. Most of them are part of the BvgAS regulon, although some, in particular iron-uptake systems, are independent of BvgAS. They are regulated by iron, although in one case, the production of a siderophore receptor could be linked to the BvgAS regulon.
Collapse
Affiliation(s)
- C Locht
- INSERM U447, Institut Pasteur de Lille, 1 rue du Prof. Calmette, F-59019, Lille Cedex, France.
| | | | | |
Collapse
|
38
|
Spears PA, Temple LM, Orndorff PE. A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. Mol Microbiol 2000; 36:1425-35. [PMID: 10931292 PMCID: PMC3121563 DOI: 10.1046/j.1365-2958.2000.01963.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated two insertion mutants of Bordetella avium that exhibited a peculiar clumped-growth phenotype and found them to be attenuated in turkey tracheal colonization. The mutants contained transposon insertions in homologues of the wlbA and wlbL genes of Bordetella pertussis. The wlb genetic locus of B. pertussis has been previously described as containing 12 genes involved in lipopolysaccharide (LPS) biosynthesis. Polyacrylamide gel analysis of LPS from B. avium wlbA and wlbL insertion mutants confirmed an alteration in the LPS profile. Subsequent cloning and complementation of the wlbA and wlbL mutants in trans with a recombinant plasmid containing the homologous wlb locus from B. avium eliminated the clumped-growth phenotype and restored the LPS profile to that of wild-type B. avium. Also, a parental level of tracheal colonization was restored to both mutants by the recombinant plasmid. Interestingly, complementation of the wlbA and wlbL mutants with a recombinant plasmid containing the heterologous wlb locus from B. pertussis, B. bronchiseptica, or Bordetella parapertussis eliminated the clumped-growth phenotype and resulted in a change in the LPS profile, although not to that of wild-type B. avium. The mutants also acquired resistance to a newly identified B. avium-specific bacteriophage, Ba1. Complementation of both wlbA and wlbL mutants with the homologous wlb locus of B. avium, but not the heterologous B. pertussis locus, restored sensitivity to Ba1. Complementation of the wlbL mutant, but not the wlbA mutant, with the heterologous wlb locus of Bordetella bronchiseptica or B. parapertussis restored partial sensitivity to Ba1. Comparisons of the LPS profile and phage sensitivity of the mutants upon complementation by wlb loci from the heterologous species and by B. avium suggested that phage sensitivity required the presence of O-antigen. At the mechanistic level, both mutants showed a dramatic decrease in serum resistance and a decrease in binding to turkey tracheal rings in vitro. In the case of serum resistance, complementation of both mutants with the homologous wlb locus of B. avium restored serum resistance to wild-type levels. However, in the case of epithelial cell binding, only complementation of the wlbA mutant completely restored binding to wild-type levels (binding was only partially restored in the wlbL mutant). This is the first characterization of LPS mutants of B. avium at the genetic level and the first report of virulence changes by both in vivo and in vitro measurements.
Collapse
Affiliation(s)
- P A Spears
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| | | | | |
Collapse
|
39
|
Mattoo S, Miller JF, Cotter PA. Role of Bordetella bronchiseptica fimbriae in tracheal colonization and development of a humoral immune response. Infect Immun 2000; 68:2024-33. [PMID: 10722598 PMCID: PMC97382 DOI: 10.1128/iai.68.4.2024-2033.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbriae are filamentous, cell surface structures which have been proposed to mediate attachment of Bordetella species to respiratory epithelium. Bordetella bronchiseptica has four known fimbrial genes: fim2, fim3, fimX, and fimA. While these genes are unlinked on the chromosome, their protein products are assembled and secreted by a single apparatus encoded by the fimBCD locus. The fimBCD locus is embedded within the fha operon, whose genes encode another putative adhesin, filamentous hemagglutinin (FHA). We have constructed a Fim(-) B. bronchiseptica strain, RB63, by introducing an in-frame deletion extending from fimB through fimD. Western blot analysis showed that RB63 is unable to synthesize fimbriae but is unaffected for FHA expression. Using this mutant, we assessed the role of fimbriae in pathogenesis in vitro and in vivo in natural animal hosts. Although RB63 was not significantly defective in its ability to adhere to various tissue culture cell lines, including human laryngeal HEp-2 cells, it was considerably altered in its ability to cause respiratory tract infections in rats. The number of DeltafimBCD bacteria recovered from the rat trachea at 10 days postinoculation was significantly decreased compared to that of wild-type B. bronchiseptica and was below the limit of detection at 30 and 60 days postinoculation. The number of bacteria recovered from the nasal cavity and larynx was not significantly different between RB63 and the wild-type strain at any time point. The ability of fimbriae to mediate initial attachment to tracheal tissue was tested in an intratracheal inoculation assay. Significantly fewer RB63 than wild-type bacteria were recovered from the tracheas at 24 h after intratracheal inoculation. These results demonstrate that fimbriae are involved in enhancing the ability of B. bronchiseptica to establish tracheal colonization and are essential for persistent colonization at this site. Interestingly, anti-Bordetella serum immunoglobulin M (IgM) levels were significantly lower in animals infected with RB63 than in animals infected with wild-type B. bronchiseptica at 10 days postinoculation. Even at 30 days postinoculation, RB63-infected animals had lower serum anti-Bordetella antibody titers in general. This disparity in antibody profiles suggests that fimbriae are also important for the induction of a humoral immune response.
Collapse
Affiliation(s)
- S Mattoo
- Department of Microbiology, UCLA School of Medicine, University of California, Los Angeles, California 90095-1747, USA
| | | | | |
Collapse
|
40
|
Weingart CL, Weiss AA. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect Immun 2000; 68:1735-9. [PMID: 10679000 PMCID: PMC97341 DOI: 10.1128/iai.68.3.1735-1739.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between human neutrophils and wild-type Bordetella pertussis or mutants expressing altered lipopolysaccharide or lacking virulence factors-pertussis toxin, adenylate cyclase toxin, dermonecrotic toxin, filamentous hemagglutinin (FHA), pertactin, or BrkA-was examined. In the absence of antibodies, the wild-type strain and the mutants, with the exception of mutants lacking FHA, attached efficiently to neutrophils. The addition of opsonizing antibodies caused a significant reduction (approximately 50%) in attachment of the wild-type strain and most of the mutants expressing FHA, suggesting that bacterium-mediated attachment is more efficient than Fc-mediated attachment. Phagocytosis was also examined. In the absence of antibodies, about 12% of the wild-type bacteria were phagocytosed. Opsonization caused a statistically significant reduction in phagocytosis (to 3%), possibly a consequence of reduced attachment. Phagocytosis of most of the mutants was similar to that of the wild type, with the exception of the mutants lacking adenylate cyclase toxin. About 70% of the adenylate cyclase toxin mutants were phagocytosed, but only in the presence of opsonizing antibody, suggesting that Fc receptor-mediated signaling may be needed for phagocytosis. These studies indicate that FHA mediates attachment of B. pertussis to neutrophils, but adenylate cyclase toxin blocks phagocytosis.
Collapse
Affiliation(s)
- C L Weingart
- Department of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
41
|
van den Berg BM, van Furth R, Hazenbos WL. Activation of complement receptor 3 on human monocytes by cross-linking of very-late antigen-5 is mediated via protein tyrosine kinases. Immunology 1999; 98:197-202. [PMID: 10540218 PMCID: PMC2326914 DOI: 10.1046/j.1365-2567.1999.00871.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis interacts with very-late antigen-5 (VLA-5) receptors on the human monocyte resulting in cross-linking of these receptors followed by activation of complement receptor 3 (CR3) and firm adhesion of B. pertussis to these monocytes. In the present study we investigated whether protein tyrosine kinases are involved in the activation of CR3 on monocytes, which was assessed by the binding of C3bi-coated erythrocytes (EC3bi). Pre-incubation of monocytes with tyrphostin-A47, a specific protein tyrosine kinase inhibitor, before adherence of the cells to an anti-VLA-5 monoclonal antibody-coated surface, or addition of tyrphostin-A47 within 10 min of the adherence to such surface, reduced the binding of EC3bi to monocytes significantly. Pre-incubation of monocytes with tyrphostin-A47 reduced the binding of B. pertussis to such monocytes as well. Inhibitors of protein kinase A and/or C had no effect on EC3bi binding to monocytes. Cross-linking of VLA-5 on monocytes resulted in tyrosine phosphorylation of several proteins. Together, these results indicate that protein tyrosine kinases are involved in the VLA-5-induced activation of CR3 on human monocytes.
Collapse
Affiliation(s)
- B M van den Berg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
42
|
Kerr JR. Cell adhesion molecules in the pathogenesis of and host defence against microbial infection. Mol Pathol 1999; 52:220-30. [PMID: 10694943 PMCID: PMC395703 DOI: 10.1136/mp.52.4.220] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Eukaryotic cell adhesion molecules (CAMs) are used by various cells and extracellular molecules in host defence against infection. They are involved in many processes including recognition by circulating phagocytes of a site of inflammation, transmigration through the endothelial barrier, diapedesis through basement membrane and extracellular matrix, and release of effector mechanisms at the infected site. CAMs involved in leucocyte-endothelial cell interaction include the selectins, integrins, and members of the immunoglobulin superfamily. However, CAMs are also used by various microorganisms (protozoa, fungi, bacteria, and viruses) during their pathogenesis. For example, bacteria that utilise CAMs include Mycobacterium tuberculosis, Listeria monocytogenes, Yersinia spp, enteropathogenic Escherichia coli, Shigella spp, Neisseria spp, Bordetella spp, and Borrelia burgdorferi. In addition, CAMs are involved in the pathogenetic effects of the RTX toxins of Pasteurella haemolytica, Actinobacillus actinomycetemcomitans, and the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes. A recurrent and topical theme of potential importance within the bacterial group is the intimate relation between CAMs, bacterial protein receptors, and type III secretion systems. For example, the IpaBCD protein complex is secreted by the type III system of Shigella flexneri and interacts with alpha 5 beta 1 integrin on the eukaryotic cell surface, followed by Rho mediated internalisation; this illustrates the relevance of cellular microbiology. CAMs might prove to be novel therapeutic targets. Comparative genomics has provided the knowledge of shared virulence determinants among diverse bacterial genera, and will continue to deepen our understanding of microbial pathogenesis, particularly in the context of the interaction of prokaryotic and eukaryotic molecules.
Collapse
Affiliation(s)
- J R Kerr
- Medical Microbiology, Manchester Royal Infirmary, UK
| |
Collapse
|
43
|
van den Berg BM, Beekhuizen H, Willems RJ, Mooi FR, van Furth R. Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 1999; 67:1056-62. [PMID: 10024543 PMCID: PMC96429 DOI: 10.1128/iai.67.3.1056-1062.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During colonization of the respiratory tract by Bordetella pertussis, virulence factors contribute to adherence of the bacterium to the respiratory tract epithelium. In the present study, we examined the roles of the virulence factors filamentous hemagglutinin (FHA), fimbriae, pertactin (Prn), and pertussis toxin (PT) in the adherence of B. pertussis to cells of the human bronchial epithelial cell line NCI-H292 and of the laryngeal epithelial cell line HEp-2. Using B. pertussis mutant strains and purified FHA, fimbriae, Prn, and PT, we demonstrated that both fimbriae and FHA are involved in the adhesion of B. pertussis to laryngeal epithelial cells, whereas only FHA is involved in the adherence to bronchial epithelial cells. For PT and Prn, no role as adhesion factor was found. However, purified PT bound to both bronchial and laryngeal cells and as such reduced the adherence of B. pertussis to these cells. These data may imply that fimbriae play a role in infection of only the laryngeal mucosa, while FHA is the major factor in colonization of the entire respiratory tract.
Collapse
Affiliation(s)
- B M van den Berg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
van den Berg BM, Beekhuizen H, Mooi FR, van Furth R. Role of antibodies against Bordetella pertussis virulence factors in adherence of Bordetella pertussis and Bordetella parapertussis to human bronchial epithelial cells. Infect Immun 1999; 67:1050-5. [PMID: 10024542 PMCID: PMC96428 DOI: 10.1128/iai.67.3.1050-1055.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with whole-cell pertussis vaccines (WCV) containing heat-killed Bordetella pertussis cells and with acellular vaccines containing genetically or chemically detoxified pertussis toxin (PT) in combination with filamentous hemagglutinin (FHA), pertactin (Prn), or fimbriae confers protection in humans and animals against B. pertussis infection. In an earlier study we demonstrated that FHA is involved in the adherence of these bacteria to human bronchial epithelial cells. In the present study we investigated whether mouse antibodies directed against B. pertussis FHA, PTg, Prn, and fimbriae, or against two other surface molecules, lipopolysaccharide (LPS) and the 40-kDa outer membrane porin protein (OMP), that are not involved in bacterial adherence, were able to block adherence of B. pertussis and B. parapertussis to human bronchial epithelial cells. All antibodies studied inhibited the adherence of B. pertussis to these epithelial cells and were equally effective in this respect. Only antibodies against LPS and 40-kDa OMP affected the adherence of B. parapertussis to epithelial cells. We conclude that antibodies which recognize surface structures on B. pertussis or on B. parapertussis can inhibit adherence of the bacteria to bronchial epithelial cells, irrespective whether these structures play a role in adherence of the bacteria to these cells.
Collapse
Affiliation(s)
- B M van den Berg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF. Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 1998; 66:5921-9. [PMID: 9826374 PMCID: PMC108750 DOI: 10.1128/iai.66.12.5921-5929.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adherence to ciliated respiratory epithelial cells is considered a critical early step in Bordetella pathogenesis. For Bordetella pertussis, the etiologic agent of whooping cough, several factors have been shown to mediate adherence to cells and cell lines in vitro. These putative adhesins include filamentous hemagglutinin (FHA), fimbriae, pertactin, and pertussis toxin. Determining the precise roles of each of these factors in vivo, however, has been difficult, due in part to the lack of natural-host animal models for use with B. pertussis. Using the closely related species Bordetella bronchiseptica, and by constructing both deletion mutation and ectopic expression mutants, we have shown that FHA is both necessary and sufficient for mediating adherence to a rat lung epithelial (L2) cell line. Using a rat model of respiratory infection, we have shown that FHA is absolutely required, but not sufficient, for tracheal colonization in healthy, unanesthetized animals. FHA was not required for initial tracheal colonization in anesthetized animals, however, suggesting that its role in establishment may be dedicated to overcoming the clearance action of the mucociliary escalator.
Collapse
Affiliation(s)
- P A Cotter
- Department of Microbiology and Immunology, UCLA School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
van den Akker WM. The filamentous hemagglutinin of Bordetella parapertussis is the major adhesin in the phase-dependent interaction with NCI-H292 human lung epithelial cells. Biochem Biophys Res Commun 1998; 252:128-33. [PMID: 9813157 DOI: 10.1006/bbrc.1998.9610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bordetella parapertussis is a Gram-negative bacterium which colonizes the human respiratory tract and can cause whooping cough or pertussis. This pathogen is subject to phase variation and expresses a series of virulence factors exclusively in the Bvg+ phase. Here, it is demonstrated for the first time that only the Bvg+ phase of B. parapertussis adheres to and invades the human lung epithelial cell line NCI-H292. A B. parapertussis mutant defective in expression of the Bvg+-regulated filamentous hemagglutinin (FHA) showed reduced binding (77% reduction) to NCI-H292 cells, as did a FHA mutant of the related Bordetella pertussis (85% reduction). In contrast to B. pertussis, binding of B. parapertussis to NCI-H292 cells was not inhibited by heparin, suggesting differences in the FHA adhesin and its host-cell receptor between these two species. Thorough understanding of the mechanism of action of the B. parapertussis virulence factors, such as FHA, is of particular interest in the development of novel strategies of pertussis vaccination.
Collapse
Affiliation(s)
- W M van den Akker
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Spemannstrasse 34, Tübingen, D-72076, Germany
| |
Collapse
|
47
|
Geuijen CA, Willems RJ, Hoogerhout P, Puijk WC, Meloen RH, Mooi FR. Identification and characterization of heparin binding regions of the Fim2 subunit of Bordetella pertussis. Infect Immun 1998; 66:2256-63. [PMID: 9573115 PMCID: PMC108189 DOI: 10.1128/iai.66.5.2256-2263.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bordetella pertussis fimbriae bind to sulfated sugars such as heparin through the major subunit Fim2. The Fim2 subunit contains two regions, designated H1 and H2, which show sequence similarity with heparin binding regions of fibronectin, and the role of these regions in heparin binding was investigated with maltose binding protein (MBP)-Fim2 fusion proteins. Deletion derivatives of MBP-Fim2 showed that both regions are important for binding to heparin. The role of H2 in heparin binding was confirmed by site-directed mutagenesis in which basic amino acids were replaced by alanine. These studies revealed that Lys-186 and Lys-187 are important for heparin binding of MBP-Fim2, whereas Arg-179 is not required. Peptides derived from H1 and H2 (pepH1 and pepH2) also showed heparin binding activity. Using a series of peptides, in each of which a different basic amino acid was substituted for alanine, we demonstrated that the structural requirements for heparin binding differ significantly among pepH1 and pepH2 peptides. A Pepscan analysis of Fim2 revealed regions outside H1 and H2 which bind heparin and showed that not only basic amino acids but also tyrosines may be important for binding to sulfated sugars. A comparison of the heparin binding regions of Fim2 with homologous regions of Fim3 and FimX, two closely related but antigenically distinct fimbrial subunits, showed that basic amino acids and tyrosines are generally conserved. The major heparin binding regions identified in Fim2 are part of epitopes recognized by human antibodies, suggesting that the heparin binding regions are exposed at the fimbrial surface and are immunodominant. Since B. pertussis fimbriae show weak serological cross-reactivity, the differences in primary structure in the heparin binding regions of Fim2, Fim3, and FimX may affect antibody binding but not heparin binding, allowing the bacteria to evade antibody-mediated immunity by switching the fimbrial gene expressed.
Collapse
Affiliation(s)
- C A Geuijen
- Research Laboratory for Infectious Diseases, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | |
Collapse
|