1
|
Vaid RK, Thakur Z, Anand T, Kumar S, Tripathi BN. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS One 2021; 16:e0255612. [PMID: 34411120 PMCID: PMC8375982 DOI: 10.1371/journal.pone.0255612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.
Collapse
Affiliation(s)
- Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Sanjay Kumar
- Bacteriology Laboratory, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | | |
Collapse
|
2
|
Boisen N, Østerlund MT, Joensen KG, Santiago AE, Mandomando I, Cravioto A, Chattaway MA, Gonyar LA, Overballe-Petersen S, Stine OC, Rasko DA, Scheutz F, Nataro JP. Redefining enteroaggregative Escherichia coli (EAEC): Genomic characterization of epidemiological EAEC strains. PLoS Negl Trop Dis 2020; 14:e0008613. [PMID: 32898134 PMCID: PMC7500659 DOI: 10.1371/journal.pntd.0008613] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/18/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Although enteroaggregative E. coli (EAEC) has been implicated as a common cause of diarrhea in multiple settings, neither its essential genomic nature nor its role as an enteric pathogen are fully understood. The current definition of this pathotype requires demonstration of cellular adherence; a working molecular definition encompasses E. coli which do not harbor the heat-stable or heat-labile toxins of enterotoxigenic E. coli (ETEC) and harbor the genes aaiC, aggR, and/or aatA. In an effort to improve the definition of this pathotype, we report the most definitive characterization of the pan-genome of EAEC to date, applying comparative genomics and functional characterization on a collection of 97 EAEC strains isolated in the course of a multicenter case-control diarrhea study (Global Enteric Multi-Center Study, GEMS). Genomic analysis revealed that the EAEC strains mapped to all phylogenomic groups of E. coli. Circa 70% of strains harbored one of the five described AAF variants; there were no additional AAF variants identified, and strains that lacked an identifiable AAF generally did not have an otherwise complete AggR regulon. An exception was strains that harbored an ETEC colonization factor (CF) CS22, like AAF a member of the chaperone-usher family of adhesins, but not phylogenetically related to the AAF family. Of all genes scored, sepA yielded the strongest association with diarrhea (P = 0.002) followed by the increased serum survival gene, iss (p = 0.026), and the outer membrane protease gene ompT (p = 0.046). Notably, the EAEC genomes harbored several genes characteristically associated with other E. coli pathotypes. Our data suggest that a molecular definition of EAEC could comprise E. coli strains harboring AggR and a complete AAF(I-V) or CS22 gene cluster. Further, it is possible that strains meeting this definition could be both enteric bacteria and urinary/systemic pathogens.
Collapse
Affiliation(s)
- Nadia Boisen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Mark T. Østerlund
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Katrine G. Joensen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Araceli E. Santiago
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Alejandro Cravioto
- Universidad Nacional Autónoma de México, Faculty of Medicine, Mexico City, Mexico
| | - Marie A. Chattaway
- Public Health England, Gastrointestinal Bacteria Reference Unit (GBRU), Colindale, United Kingdom
| | - Laura A. Gonyar
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| | | | - O. Colin Stine
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, Maryland, United States of America
| | - David A. Rasko
- University of Maryland School of Medicine, Institute for Genome Sciences, Department of Microbiology and Immunology, Baltimore, Maryland, United States of America
| | - Flemming Scheutz
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - James P. Nataro
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| |
Collapse
|
3
|
Khalid A, Lubián AF, Ma L, Lin RCY, Iredell JR. Characterizing the role of porin mutations in susceptibility of beta lactamase producing Klebsiella pneumoniae isolates to ceftaroline and ceftaroline-avibactam. Int J Infect Dis 2020; 93:252-257. [PMID: 32061861 DOI: 10.1016/j.ijid.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Evaluate the role of porins in the susceptibility of Klebsiella pneumoniae to ceftaroline and ceftaroline-avibactam. METHODS Susceptibility to ceftaroline and ceftaroline-avibactam was tested by broth microdilution method in Klebsiella pneumoniae isolates (n = 65), including isogenic mutants (n = 30) and clinical isolates (n = 35), with different outer membrane porin defects in the presence or absence of beta lactamases. RESULTS Ceftaroline exhibited excellent activity against all the isogenic porin mutants with a MIC range of 0.125-0.25 μg/ml. Ceftaroline showed limited activity in the presence of extended spectrum β-lactamase enzymes in isogenic mutant constructs as expected but regained effectiveness in combination with avibactam against these isolates except those carrying metallo-carbapenemase (IMP-4) with an MIC range of 0.25->32 μg/ml. Ceftaroline-avibactam was able to inhibit 86% of the clinical isolates (n = 35) of Klebsiella pneumoniae carrying porin defects and multiple beta lactamases with only four isolates showing raised MICs against the combination (MIC range 0.125-4 μg/ml). One clinical isolate with IMP-4 carbapenemase had an MIC value of >32 μg/ml. CONCLUSION Outer membrane porins play a key role in the transport of ceftaroline inKlebsiella pneumoniae but it remains effective in isolates with altered permeability due to common porin mutations. The addition of avibactam substantially enhances the potency of ceftaroline providing an effective remedy to the problem of omnipresent beta lactamases in these bacteria.
Collapse
Affiliation(s)
- Ali Khalid
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, NSW, Australia; School of Medicine, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Alicia Fajardo Lubián
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, NSW, Australia; School of Medicine, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Li Ma
- Westmead Biobank, The Westmead Institute for Medical Research, NSW, Australia
| | - Ruby C Y Lin
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, NSW, Australia; School of Medicine, Sydney Medical School, The University of Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, NSW, Australia; School of Medicine, Sydney Medical School, The University of Sydney, NSW, Australia; Westmead Hospital, Western Sydney Local Health District (WSLHD), Sydney, Australia.
| |
Collapse
|
4
|
Fajardo-Lubián A, Ben Zakour NL, Agyekum A, Qi Q, Iredell JR. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog 2019; 15:e1007218. [PMID: 30875398 PMCID: PMC6436753 DOI: 10.1371/journal.ppat.1007218] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 03/27/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
As human population density and antibiotic exposure increase, specialised bacterial subtypes have begun to emerge. Arising among species that are common commensals and infrequent pathogens, antibiotic-resistant 'high-risk clones' have evolved to better survive in the modern human. Here, we show that the major matrix porin (OmpK35) of Klebsiella pneumoniae is not required in the mammalian host for colonisation, pathogenesis, nor for antibiotic resistance, and that it is commonly absent in pathogenic isolates. This is found in association with, but apparently independent of, a highly specific change in the co-regulated partner porin, the osmoporin (OmpK36), which provides enhanced antibiotic resistance without significant loss of fitness in the mammalian host. These features are common in well-described 'high-risk clones' of K. pneumoniae, as well as in unrelated members of this species and similar adaptations are found in other members of the Enterobacteriaceae that share this lifestyle. Available sequence data indicate evolutionary convergence, with implications for the spread of lethal antibiotic-resistant pathogens in humans.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubián
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
- * E-mail: (AFL); (JRI)
| | - Nouri L. Ben Zakour
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Alex Agyekum
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Qin Qi
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
- * E-mail: (AFL); (JRI)
| |
Collapse
|
5
|
Yang Y, Yu C, Ding K, Zhang C, Liao C, Jia Y, Li J, Cheng X. Role of the sseK1 gene in the pathogenicity of Salmonella enterica serovar enteritidis in vitro and in vivo. Microb Pathog 2018; 117:270-275. [PMID: 29458091 DOI: 10.1016/j.micpath.2018.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Salmonella enteritidis is a common food-borne pathogen associated with consumption of contaminated poultry meat and eggs, which frequently causes gastroenteritis in humans. Salmonella secreted effector K1 (SseK1), as a translocated and secreted protein has been identified to be essential for the virulence of Salmonella typhimurium in host cells. However, the role of the sseK1 gene in the pathogenicity of S. enteritidis remain unclear. In this study, a sseK1 deletion mutant of S. enteritidis was constructed and its biological characteristics were examined. It was found that the sseK1 deletion mutant did not affect the growth, adherence and invasion of Salmonella enteritidis when compared to the wild-type S. enteritidis. However, the mutant showed decreased formation of biofilm and significantly reduced intracellular survival of bacteria in activated mouse peritoneal macrophages, as well as showed reduced pathogenicity to a murine model by increasing the lethal dose 50% (LD50) value and decreasing the proliferation ratio of bacteria in vivo. Taken together, this study determined an important role for SseK1 in the pathogenicity of S. enteritidis in vitro and in vivo.
Collapse
Affiliation(s)
- Yadong Yang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chuan Yu
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Ke Ding
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chunjie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.
| | - Chengshui Liao
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Jing Li
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, Henan, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| |
Collapse
|
6
|
Abstract
The interaction betweenSalmonella and its host is complex and dynamic: the host mounts an immune defense against the pathogen, which in turn acts to reduce, evade, or exploit these responses to successfully colonize the host. Although the exact mechanisms mediating protective immunity are poorly understood, it is known that T cells are a critical component of immunity to Salmonella infection, and a robust T-cell response is required for both clearance of primary infection and resistance to subsequent challenge. B-cell functions, including but not limited to antibody production, are also required for generation of protective immunity. Additionally, interactions among host cells are essential. For example, antigen-presenting cells (including B cells) express cytokines that participate in CD4+ T cell activation and differentiation. Differentiated CD4+ T cells secrete cytokines that have both autocrine and paracrine functions, including recruitment and activation of phagocytes, and stimulation of B cell isotype class switching and affinity maturation. Multiple bacterium-directed mechanisms, including altered antigen expression and bioavailability and interference with antigen-presenting cell activation and function, combine to modify Salmonella's "pathogenic signature" in order to minimize its susceptibility to host immune surveillance. Therefore, a more complete understanding of adaptive immune responses may provide insights into pathogenic bacterial functions. Continued identification of adaptive immune targets will guide rational vaccine development, provide insights into host functions required to resist Salmonella infection, and correspondingly provide valuable reagents for defining the critical pathogenic capabilities of Salmonella that contribute to their success in causing acute and chronic infections.
Collapse
|
7
|
Process optimization for increased yield of surface-expressed protein in Escherichia coli. Bioprocess Biosyst Eng 2014; 37:1685-93. [DOI: 10.1007/s00449-014-1141-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
|
8
|
Pang Y, Zhang Y, Wang H, Jin J, Piao J, Piao J, Liu Q, Li W. Reduction of Salmonella enteritidis number after infections by immunization of liposome-associated recombinant SefA. Avian Dis 2013; 57:627-33. [PMID: 24283128 DOI: 10.1637/10427-101812-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to generate Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) fimbriae, SEF14, the sefA gene, which encodes the main subunit of the SEF14 fimbrial protein, was amplified from Salmonella Enteritidis by polymerase chain reaction (PCR) and subcloned into a prokaryotic expression vector pET-28a(+) to yield pET-28a(+)-sefA. The recombinant SefA (rSefA) protein was highly expressed and purified by nickel-affinity chromatography. Liposome-associated rSefA was prepared for oral immunization to seek protective efficacy for intestinal infection with Salmonella Enteritidis. The titers of the IgG and IgA in the intestinal mucus were 1:256 and 1:512, respectively. Moreover, the titers of IgG and IgA in the sera were 1:256 and 1:128, respectively. Two weeks after the booster immunization, the chickens were challenged orally with 2 x 10(6) colony-forming units (CFUs) of live Salmonella Enteritidis, and fecal samples were examined for bacterial excretion from the intestinal tract. Significantly less fecal excretion of bacteria was observed in immunized chickens for 4 wk after challenge. The numbers of bacteria in the intestinal contents (cecum and rectum) were also significantly reduced in immunized chickens, in contrast with the unimmunized controls. Oral immunization with liposome-associated rSefA therefore elicits both systemic and mucosal antibody responses and results in reduced bacterial colonization in the intestinal tract and reduced excretion of Salmonella Enteritidis in the feces.
Collapse
Affiliation(s)
- Yue Pang
- Institute of Immunology, College of Life Science and Technology, Dalian University, 10-Xuefu Avenue, Dalian Economical and Technological Development Zone, Liaoning 116622, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
RegR virulence regulon of rabbit-specific enteropathogenic Escherichia coli strain E22. Infect Immun 2013; 81:1078-89. [PMID: 23340312 DOI: 10.1128/iai.01325-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.
Collapse
|
10
|
Braun SD, Ziegler A, Methner U, Slickers P, Keiling S, Monecke S, Ehricht R. Fast DNA serotyping and antimicrobial resistance gene determination of salmonella enterica with an oligonucleotide microarray-based assay. PLoS One 2012; 7:e46489. [PMID: 23056321 PMCID: PMC3464306 DOI: 10.1371/journal.pone.0046489] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/04/2012] [Indexed: 01/21/2023] Open
Abstract
Salmonellosis caused by Salmonella (S.) belongs to the most prevalent food-borne zoonotic diseases throughout the world. Therefore, serotype identification for all culture-confirmed cases of Salmonella infection is important for epidemiological purposes. As a standard, the traditional culture method (ISO 6579:2002) is used to identify Salmonella. Classical serotyping takes 4–5 days to be completed, it is labor-intensive, expensive and more than 250 non-standardized sera are necessary to characterize more than 2,500 Salmonella serovars currently known. These technical difficulties could be overcome with modern molecular methods. We developed a microarray based serogenotyping assay for the most prevalent Salmonella serovars in Europe and North America. The current assay version could theoretically discriminate 28 O-antigens and 86 H-antigens. Additionally, we included 77 targets analyzing antimicrobial resistance genes. The Salmonella assay was evaluated with a set of 168 reference strains representing 132 serovars previously serotyped by conventional agglutination through various reference centers. 117 of 132 (81%) tested serovars showed an unique microarray pattern. 15 of 132 serovars generated a pattern which was shared by multiple serovars (e.g., S. ser. Enteritidis and S. ser. Nitra). These shared patterns mainly resulted from the high similarity of the genotypes of serogroup A and D1. Using patterns of the known reference strains, a database was build which represents the basis of a new PatternMatch software that can serotype unknown Salmonella isolates automatically. After assay verification, the Salmonella serogenotyping assay was used to identify a field panel of 105 Salmonella isolates. All were identified as Salmonella and 93 of 105 isolates (88.6%) were typed in full concordance with conventional serotyping. This microarray based assay is a powerful tool for serogenotyping.
Collapse
|
11
|
Pang Y, Wang H, Li Z, Piao J, Piao J, Chi Y, Jin J, Liu Q, Li W. Immune response to liposome-associated recombinant SEF21 following oral immunization in chickens. Avian Dis 2012; 56:347-53. [PMID: 22856192 DOI: 10.1637/9928-091011-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to generate Salmonella enterica serovar Enteritidis fimbriae antigens (rSEF21), the intact region encoding SEF21 was amplified from Salmonella Enteritidis by PCR and subcloned into a prokaryotic expression vector pET-28a(+) to yield pET-28a(+)-SEF21. The rSEF21 protein was highly expressed and purified by nickel affinity chromatography. Liposomeassociated rSEF21 was prepared for oral immunization to seek protective efficacy for intestinal infection with Salmonella Enteritidis. Evidence of IgA and IgG responses were found in the intestinal tracts and in the sera of a group of chickens immunized. Two weeks after the booster immunization, the chickens were challenged orally with 2 x 10(6) colony-forming units of live Salmonella Enteritidis, and fecal samples were examined for bacterial excretion from the intestinal tract. Significantly less fecal excretion of bacteria was observed in immunized chickens for 4 wk after challenge. The numbers of bacteria in the intestinal contents (cecum and rectum) were also significantly lower in immunized chickens than in unimmunized controls. Therefore, oral immunization with liposome-associated rSEF21 elicits both systemic and mucosal antibody responses, leading to a reduction in bacterial colonization in the intestinal tract and excretion of Salmonella Enteritidis in the feces.
Collapse
Affiliation(s)
- Yue Pang
- Institute of Immunology, College of Life Science and Technology, Dalian University, 10-Xuefu Avenue, Dalian Economical and Technological Development Zone, Liaoning 116622, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Virulence and metabolic characteristics of Salmonella enterica serovar enteritidis strains with different sefD variants in hens. Appl Environ Microbiol 2012; 78:6405-12. [PMID: 22729535 DOI: 10.1128/aem.00852-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of a few Salmonella enterica serotypes that has SEF14 fimbriae encoded by the sef operon, which consists of 4 cotranscribed genes, sefABCD, regulated by sefR. A parental strain was used to construct a sefD mutant and its complement, and all 3 strains were compared for gene expression, metabolic properties, and virulence characteristics in hens. Transcription of sefD by wild type was suppressed at 42°C and absent for the mutant under conditions where the complemented mutant had 10(3) times higher transcription. Growth of the complemented mutant was restricted in comparison to that of the mutant and wild type. Hens infected with the wild type and mutant showed decreased blood calcium and egg production, but infection with the complemented mutant did not. Thus, the absence of sefD correlated with increased metabolic capacity and enhanced virulence of the pathogen. These results suggest that any contribution that sefD makes to egg contamination is either unknown or would be limited to early transmission from the environment to the host. Absence of sefD, either through mutation or by suppression of transcription at the body temperature of the host, may contribute to the virulence of Salmonella enterica by facilitating growth on a wide range of metabolites.
Collapse
|
13
|
Abstract
Salmonella Typhimurium has been reported to contaminate egg production across the world, but where Salmonella Enteritidis is endemic it is this latter serovar that dominates egg-borne salmonellosis. However, Salmonella Typhimurium is a major food-borne pathogen so it is important to understand how it can impact the microbiological safety of eggs and what serovar-specific control strategies may be appropriate in the future as control over Salmonella Enteritidis continues to improve. To that end, the present review examines the published literature on Salmonella Typhimurium in laying hens and eggs, with particular reference to comparative studies examining different serovars. Experimentally Salmonella Enteritidis is more often isolated from egg contents and seems to adhere better to reproductive tract mucosa, whilst Salmonella Typhimurium appears to provoke a more intense tissue pathology and immune response, and flock infections are more transient. However, it is observed in many cases that the present body of evidence does not identify clear differences between specific behaviours of the serovars Typhimurium and Enteritidis, whether in laying hens, in their eggs, or in the laying environment. It is concluded that further long-term experimental and natural infection studies are needed in order to generate a clearer picture.
Collapse
Affiliation(s)
- A D Wales
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | | |
Collapse
|
14
|
Knöbl T, Rocha LT, Menão MC, Igayara CA, Paixão R, Moreno AM. Salmonella Yoruba infection in white-tufted-ear marmoset (Callithrix jacchus). PESQUISA VETERINÁRIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000800013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to describe a fatal salmonellosis case in a non-human female primate (Callithrix jacchus), found in the illegal pet trade in Brazil. The marmoset was sent to the quarantine section of the Guarulhos City Zoo and died in the sequence of an episode of profuse diarrhea. Necropsy findings included mucous enteritis, and liver enlargement and necrosis. Feces and liver fragments were collected for bacteriological tests, which indicated the presence of Salmonella sp.; it was subsequently characterized as pertaining to the Yoruba serotype. The susceptibility profile demonstrated resistance to tetracycline only. The strain was positive for genes that encoded the virulence factors investigated (invA, sefC, pefA and spvC). The results indicated the risk of introduction of Salmonella pathogenic serotypes in primates in captivity.
Collapse
|
15
|
Comprehensive analysis of Salmonella sequence polymorphisms and development of a LDR-UA assay for the detection and characterization of selected serotypes. Appl Microbiol Biotechnol 2011; 91:189-210. [PMID: 21611799 DOI: 10.1007/s00253-011-3308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 01/20/2023]
Abstract
Salmonella is a major cause of food-borne disease, and Salmonella enterica subspecies I includes the most clinically relevant serotypes. Salmonella serotype determination is important for the disease etiology assessment and contamination source tracking. This task will be facilitated by the disclosure of Salmonella serotype sequence polymorphisms, here annotated in seven genes (sefA, safA, safC, bigA, invA, fimA, and phsB) from 139 S. enterica strains, of which 109 belonging to 44 serotypes of subsp. I. One hundred nineteen polymorphic sites were scored and associated to single serotypes or to serotype groups belonging to S. enterica subsp. I. A diagnostic tool was constructed based on the Ligation Detection Reaction-Universal Array (LDR-UA) for the detection of polymorphic sites uniquely associated to serotypes of primary interest (Salmonella Hadar, Salmonella Infantis, Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Gallinarum, Salmonella Virchow, and Salmonella Paratyphi B). The implementation of promiscuous probes allowed the diagnosis of ten further serotypes that could be associated to a unique hybridization pattern. Finally, the sensitivity and applicability of the tool was tested on target DNA dilutions and with controlled meat contamination, allowing the detection of one Salmonella CFU in 25 g of meat.
Collapse
|
16
|
Zhu CH, Wu J, Chen WW, Hassan HM, Zhu GQ. Difference and variation of the sef14 operon gene clusters in Salmonella pullorum. J Basic Microbiol 2011; 50 Suppl 1:S120-3. [PMID: 20806242 DOI: 10.1002/jobm.200900262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 04/07/2010] [Indexed: 11/10/2022]
Abstract
SEF14 fimbriae are only found in some strains of serogroup-D Salmonella such as S. enteritidis, suggesting that SEF14 fimbriae may affect serovar-specific virulence traits. In this study, we found that prevalence of sefA, sefD and sefR genes in S. dublin and S. enteritidis was 100%. In 18 isolates of S. pullorum, the prevalence of sefA gene was 100%, while the prevalence of sefD and sefR genes was 38.9% (7/18), and 11 strains isolated after 1980s did not contain any gene sefD or sefR. Interestingly, among the 7 strains of S. pullorum before 1980s, the sefD sequence has a missing base pair at position 196 and caused open reading frame (ORF) shift, resulting in a stop codon (TAG) at position 71 amino acid residual (Leu of TTA at position 214-216 shift into stop codon of TAG at position 215-217). Unlike S. pullorum, all S. enteritidis and S. dublin tested could express SEF14 fimbriae in vitro.
Collapse
Affiliation(s)
- C H Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | | | |
Collapse
|
17
|
Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 2010; 192:5767-77. [PMID: 20833811 DOI: 10.1128/jb.00624-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica, a common food-borne pathogen, differentially regulates the expression of multiple genes during the infection cycle. These genes encode systems related to motility, adhesion, invasion, and intestinal persistence. Key among them is a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). In addition to the SPI1 T3SS, other systems, including flagella and type 1 fimbriae, have been implicated in Salmonella pathogenesis. In this study, we investigated the dynamic expression of the flagellar, SPI1, and type 1 fimbrial genes. We demonstrate that these genes are expressed in a temporal hierarchy, beginning with the flagellar genes, followed by the SPI1 genes, and ending with the type 1 fimbrial genes. This hierarchy could mirror the roles of these three systems during the infection cycle. As multiple studies have shown that extensive regulatory cross talk exists between these three systems, we also tested how removing different regulatory links between them affects gene expression dynamics. These results indicate that cross talk is critical for regulating gene expression during transitional phases in the gene expression hierarchy. In addition, we identified a novel regulatory link between flagellar and type 1 fimbrial gene expression dynamics, where we found that the flagellar regulator, FliZ, represses type 1 fimbrial gene expression through the posttranscriptional regulation of FimZ. The significance of these results is that they provide the first systematic study of the effect of regulatory cross talk on the expression dynamics of flagellar, SPI1, and type 1 fimbrial genes.
Collapse
|
18
|
Jiang X, Espedido BA, Partridge SR, Thomas LC, Wang F, Iredell JR. Paradoxical effect of Klebsiella pneumoniae OmpK36 porin deficiency. Pathology 2009; 41:388-92. [PMID: 19404854 DOI: 10.1080/00313020902908854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To evaluate the effect of defined mutations in the major OmpK35 and OmpK36 porins in Klebsiella pneumoniae on the activity of two common plasmid-mediated AmpC enzymes. METHODS Naturally occurring conjugative plasmids containing bla(DHA-1) and bla(CMY-2) were obtained from K. pneumoniae isolates in western Sydney. These were moved into K. pneumoniae ATCC13883 and isogenic porin knockouts Kp885 (DeltaompK35) and Kp886 (DeltaompK36), created by homologous recombination of kanamycin resistance cartridges into the specified genes, and their antimicrobial susceptibilities compared. RESULTS beta-lactam resistance was greater in the presence of CMY-2-containing plasmids than DHA-1-containing plasmids, and higher in K. pneumoniae than Escherichia coli. Neither cefepime nor imipenem resistance was observed, and DHA-mediated cefotaxime and ticarcillin/clavulanate resistance was unexpectedly reduced from 8-24 (CTX) and >256 (TIM) mg/L in Kp13883 to 1-2 (CTX) and 32-48 mg/L (TIM) in the isogenic DeltaompK36 porin knockout Kp886. CONCLUSIONS AmpC plasmids in particular are an important cause of transmissible resistance to ticarcillin/clavulanate in K. pneumoniae, but probably not in E. coli. Single knockouts of OmpK35 and OmpK36 porins in K. pneumoniae do not significantly increase antibiotic resistance in K. pneumoniae, and a paradoxical lowering of resistance to CTX and TIM is seen with deletion of ompK36. This has potentially important clinical implications.
Collapse
Affiliation(s)
- Xiuhong Jiang
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Mirmomeni MH, Sisakhtnezhad S, Sharifi A. Rapid detection of Salmonella enteritidis by PCR amplification of the SefA gene and it's cloning. Pak J Biol Sci 2008; 11:428-32. [PMID: 18817167 DOI: 10.3923/pjbs.2008.428.432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The emergence of Salmonella enteritidis as an important food-borne pathogenesis in humans, demands the development of novel detection and intervention strategies. It is generally accepted that fimbriae are an important factor in bacterial survival and persistence in the host. This study is directed towards the method of amplifying and cloning the SefA gene, which encode Salmonella enteritidis fimbrial protein. Strains used for these studies were S. enteritidis (E3), which were collected from Kermanshah region. Chromosomal DNA was extracted by boiling method and PCR reaction was performed and single band of 511 bp amplified by SefA-F and SefA-R primers. The resulting PCR product was inserted into the cloning vector (pTZ57R/T). In order to amplify the recombinant plasmid, E. coli DH5 alpha bacteria were transformed with SefA-pTZ57R/T. Recombinant clones were identified by blue/white selection and purified recombinant plasmids were indicated by an alkaline lysis procedure. Identity of the SefA-pTZ57R/T product was confirmed by RFLP and sequencing. Nucleotide and protein alignment with BLAST software showed that the sequence of the SefA gene derived from S. enteritidis (E3), which was cloned in the pTZ57R/T vector, was 99% identical to that of the Genbank (L11008). The sequence of the SefA gene from S. enteritidis (E3) differed only in two nucleotides and one amino acid. The cloned SefA gene from S. enteritidis (E3) was submitted to the NCBI Genbank (EF553334).
Collapse
Affiliation(s)
- M H Mirmomeni
- Cell and Molecular Unit, Department of Biology, Razi University, Kermanshah, Iran
| | | | | |
Collapse
|
20
|
Lopes VC, Velayudhan BT, Halvorson DA, Nagaraja KV. Preliminary evaluation of the use of the sefA fimbrial gene to elicit immune response against Salmonella enterica serotype Enteritidis in chickens. Avian Dis 2006; 50:185-90. [PMID: 16863065 DOI: 10.1637/7438-090905r.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the last 2 decades, the prevalence of Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) has dramatically increased worldwide, becoming the leading cause of food-borne illnesses and an important public health issue. Many studies have suggested the role of the SEF14 fimbrial protein in the adhesion of Salmonella Enteritidis to the host. In the present study, the sefA gene, which encodes the main subunit of the SEF14 fimbrial protein, was cloned into a temperature-sensitive expression vector and transformed into a nonpathogenic, avirulent strain of Escherichia coli. The recombinant strain was used as a vaccine to elicit specific immune response against the SefA protein of Salmonella Enteritidis in 1-day-old chickens. The recombinant strain was reisolated from the intestines of treated birds for up to 21 days posttreatment, demonstrating its ability to colonize the intestinal tracts of 1-day-old chickens. In addition, immunoglobulin A (IgA) against the SefA protein was detected in intestinal secretions from treated birds at 7 days posttreatment and in bile samples from 14 to 21 days posttreatment by enzyme-linked immunosorbent assay. Nontreated birds did not show any evidence of intestinal colonization by the recombinant strain or anti-SefA IgA response in their bile or intestinal secretions. Preliminary evaluation of the recombinant strain showed a potential use of this strain to elicit protection against Salmonella Enteritidis infection in chickens. Further experiments are needed to study the ability of the recombinant strain to protect birds against Salmonella Enteritidis colonization.
Collapse
Affiliation(s)
- Vanessa C Lopes
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul 55108, USA
| | | | | | | |
Collapse
|
21
|
van Asten AJAM, van Dijk JE. Distribution of "classic" virulence factors among Salmonella spp. ACTA ACUST UNITED AC 2006; 44:251-9. [PMID: 15907446 DOI: 10.1016/j.femsim.2005.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/27/2005] [Accepted: 02/02/2005] [Indexed: 11/16/2022]
Abstract
Whether an infection with Salmonella spp. leads to a disease largely depends on the virulence of the strain and the constitution of the host. The virulence of the strain is determined by so-called virulence factors. Whereas a number of virulence factors of Salmonella have been identified only recently, others have been studied for decades. These latter virulence factors i.e., virulence-plasmids, toxins, fimbriae and flagella are therefore referred to as "classic" virulence factors. Here we present an overview on the distribution of (genes coding for) these virulence factors among Salmonella spp. The pathogenicity islands of Salmonella are also reviewed, all be it briefly, since they contain a major part of the virulence genes.
Collapse
Affiliation(s)
- Alphons J A M van Asten
- Department of Pathobiology, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, P.O. Box 80.158, 3508TD, Utrecht, The Netherlands.
| | | |
Collapse
|
22
|
Ochoa-Repáraz J, García B, Solano C, Lasa I, Irache JM, Gamazo C. Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine 2005; 23:1491-501. [PMID: 15670885 DOI: 10.1016/j.vaccine.2004.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 09/07/2004] [Indexed: 11/19/2022]
Abstract
We evaluated the efficacy of surface components enriched hot saline extracts (HE) from parental and two isogenic rough mutant strains of Salmonella Enteritidis as subcellular vaccine candidates. By a randomized mutagenesis approach from a clinical isolate of S. Enteritidis there were selected two rough mutants defective in LPS synthesis (R1 and R2 mutants). The mutations mapped to the wcaI gene and gmd gene, respectively, of the O-antigen gene cluster involved in O-antigen synthesis. BALB/c mice received intraperitoneally one single dose of 30 microg of HE from parental and mutant strains, and the protection against a lethal infection with S. Enteritidis was determined. In contrast to the wild type extract, immunization with rough extracts did not induce any distress symptoms in the mice. HE extract from wild type and R1 strains induced the highest immunogenic response with respect IFN-gamma eliciting splenic cells, in contrast with HE-R2. These results correlated with the obtained levels of protection. Thus, at day 63 post-infection, HE from parental strain rendered an 80% level of protection; HE-R1 conferred a 60% level of protection, whereas HE-R2 did not protect the mice. Any of the antigenic extracts elicited systemic IgG1 and IgG2a responses, although these antibodies did not, however, correlate with protection. These results put forward the importance of cellular immune response mediated by IFN-gamma in protection against salmonellosis. The significantly different protective capacity between HE extracts from both rough mutants suggest that other factors independent of the O-chain, like outer membrane proteins and fimbrial antigens, may be involved in protection. In summary, the HE is a good candidate acellular extract for evaluation of its protective ability against salmonellosis following vaccination in poultry.
Collapse
|
23
|
Cogan TA, Jørgensen F, Lappin-Scott HM, Benson CE, Woodward MJ, Humphrey TJ. Flagella and curli fimbriae are important for the growth of Salmonella enterica serovars in hen eggs. Microbiology (Reading) 2004; 150:1063-1071. [PMID: 15073315 DOI: 10.1099/mic.0.26791-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is unable to multiply in the albumen of fresh eggs and must gain access to the yolk contents in order to multiply to a high level (>106 c.f.u. per ml egg contents). As human Salmonella infections resulting from the consumption of infected eggs more frequently involve serovar Enteritidis phage type (PT) 4 than other serovars or PTs, a number of isolates of various S. enterica serovars were examined for their ability to multiply to a high level in eggs over a period of 8 days storage at 20 °C. Their behaviour was compared to that of a range of defined fimbrial and flagella mutants of S. Enteritidis. Strains that did not express flagella were unable to multiply in eggs, and those deficient for curli fimbriae, including strains of S. Enteritidis PT6, displayed high-level growth in significantly fewer eggs than those able to express curli. Most S. Enteritidis strains multiplied to a high level in between 5 and 10 % of eggs during 8 days storage. One PT4 strain, though, showed high levels of growth in more than 25 % of eggs over this period, significantly higher than the other PTs or the two other isolates of PT4 tested. This ability may be important for the association of PT4 infection with the consumption of eggs.
Collapse
Affiliation(s)
- T A Cogan
- Food Microbiology Collaborating Unit, Health Protection Agency, School of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DT, UK
| | - F Jørgensen
- Food Microbiology Collaborating Unit, Health Protection Agency, School of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DT, UK
| | - H M Lappin-Scott
- School of Biological and Chemical Sciences, University of Exeter, Exeter, Devon EX5 4PS, UK
| | - C E Benson
- Laboratory of Microbiology, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania 19348-1692, USA
| | - M J Woodward
- Department of Bacterial Diseases, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - T J Humphrey
- Division of Farm Animal Science, School of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DT, UK
| |
Collapse
|
24
|
Li W, Watarai S, Iwasaki T, Kodama H. Suppression of Salmonella enterica serovar Enteritidis excretion by intraocular vaccination with fimbriae proteins incorporated in liposomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:29-38. [PMID: 12962980 DOI: 10.1016/s0145-305x(03)00086-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liposome-associated fimbriae antigens (SEF14 and SEF21) were prepared for intraocular immunization to seek protective efficacy for intestinal infection with Salmonella enterica serovar Enteritidis. Chickens were immunized intraocularly with the antigens at 8 and 10 weeks of age. Evidence of an IgA and IgG responses were found in the intestinal tract and in sera of these chickens. Antibody-secreting lymphocytes were detected in the Harderian gland of immunized chickens as determined by enzyme-linked immunospot assay. Two weeks after the booster immunization, the chickens were challenged orally with 1x10(7) live Salmonella Enteritidis, and fecal samples were examined for bacterial excretion from the intestinal tract. Significantly less fecal excretion of bacteria was observed in immunized chickens for 15 days after challenge. The numbers of bacteria in the intestinal contents (caecum and rectum) were also significantly lower in immunized chickens than in unimmunized controls. Detection of S. Enteritidis-specific DNA by the polymerase chain reaction was consistent with the bacterial observations. Intraocular immunization with liposome-associated SEF14 and SEF21 therefore elicits both systemic and mucosal antibody responses, so that bacterial colonization in the intestinal tract and excretion of S. Enteritidis in the feces are suppressed by immunization.
Collapse
Affiliation(s)
- Wenzhe Li
- Laboratory of Veterinary Immunology, Course of Veterinary Science, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, 599-8531, Osaka, Japan
| | | | | | | |
Collapse
|
25
|
Li W, Watarai S, Kodama H. Identification of possible chicken intestinal mucosa receptors for SEF21-fimbriated Salmonella enterica serovar Enteritidis. Vet Microbiol 2003; 91:215-29. [PMID: 12458170 DOI: 10.1016/s0378-1135(02)00294-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to test whether glycosphingolipids (GSLs) on the chicken intestinal mucosa serve as a receptor for Salmonella enterica serovar Enteritidis with fimbriae, we analyzed neutral GSLs and gangliosides from chicken intestinal mucosa and investigated the binding of bacteria to neutral GSLs and gangliosides. Four kinds of neutral GSLs, designated as N-1 to N-4 and four kinds of gangliosides, named G-1 to G-4, were identified on high-performance thin-layer chromatography (HPTLC) plates. In TLC immunostaining tests, fimbriated S. Enteritidis bound only to glucosylceramide (GlcCer) standard, N-1, GM3 standard and G-1, but neither to N-2, N-3, N-4, nor to G-2, G-3 and G-4. Further, the bacterial binding to N-1 and G-1 was completely inhibited by preincubation of bacteria with anti-S. Enteritidis fimbriae (SEF) 21 antibody, but not by anti-SEF14 antibody. These results suggest that both GlcCer (N-1) and ganglioside GM3 (G-1) on the epithelial cell surfaces of chicken intestine act as receptors for fimbriated S. Enteritidis.
Collapse
Affiliation(s)
- Wenzhe Li
- Laboratory of Veterinary Immunology, Division of Veterinary Science, Graduate School of Agriculture, Osaka Prefecture University, Sakai, 599-8531, Osaka, Japan.
| | | | | |
Collapse
|
26
|
Tinker JK, Clegg S. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol 2001; 40:757-68. [PMID: 11359580 DOI: 10.1046/j.1365-2958.2001.02430.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of type 1 fimbriae in Salmonella enterica serovar Typhimurium undergoes phase variation or alteration between a fimbriate and a non-fimbriate phenotype. This variation is known to be dependent upon environmental conditions in vitro and is thought to be a complex process involving regulation by a number of proteins. The regulatory genes located within the fim cluster include fimZ, fimY and fimW. A fourth gene of the cluster, fimU, encodes a tRNA molecule specific for rare arginine codons. We have shown previously that fimU affects the expression of S. typhimurium type 1 fimbriae, and that fimU is functionally related to the Escherichia coli gene argU. A high frequency of rare arginine codons was found within the three fim regulatory genes, and five of these codons were clustered within fimY alone. To investigate the affects of fimU on FimY production, a FimY fusion with the E. coli maltose-binding protein was constructed and expressed in an E. coli argU background. Western blots of extracts from the argU mutant and parental strain indicated that production of FimY was significantly reduced in the absence of a functional tRNAArg(UCU). FimY production in this mutant could be restored to high levels when fimU was introduced on a plasmid, and also when three rare arginine codons, located within the first 14 positions within fimY, were exchanged for major arginine codons. A Tn10 insertion from a Salmonella enteritidis fimU mutant was transduced into S. typhimurium, and this strain was analysed for the expression of type 1 fimbriae. The resulting S. typhimurium fimU mutant was found to be non-fimbriate under all conditions tested and could be complemented by the introduction of fimU alone on a plasmid. In addition, this mutant could be complemented by transformation with fimY altered in the first three rare arginine codons. Reverse transcriptase-polymerase chain reaction confirmed that the fimY transcript was present at similar levels in the fimU mutant and parental strain. These results indicated that the observed inhibition of protein expression was not occurring at the transcriptional level. Analysis of expression of the malEfimY fusion in the S. typhimurium fimU mutant and parental strain confirmed the data observed in E. coli. In contrast, a FimW fusion was found to be produced at similar levels in both the fimU mutant and the parental strain. Together, these data indicate that the absence of a functional fimU results in the inhibition of efficient FimY translation, and thus type 1 fimbrial production in S. typhimurium.
Collapse
Affiliation(s)
- J K Tinker
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
27
|
Collighan RJ, Walker SL, Woodward MJ. Sequence analysis and distribution in Salmonella enterica serovars of IS3-like elements. Int J Med Microbiol 2000; 290:619-26. [PMID: 11200543 DOI: 10.1016/s1438-4221(00)80011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The genome of Salmonella enterica serovar Enteritidis was shown to possess three IS3-like insertion elements, designated IS1230A, B and C, and each was cloned and their respective deoxynucleotide sequences determined. Mutations in elements IS1230A and B resulted in frameshifts in the open reading frames that encoded a putative transposase to be inactive. IS1230C was truncated at nucleotide 774 relative to IS1230B and therefore did not possess the 3' terminal inverted repeat. The three IS1230 derivatives were closely related to each other based on nucleotide sequence similarity. IS1230A was located adjacent to the sef operon encoding SEF14 fimbriae located at minute 97 of the genome of S. Enteritidis. IS1230B was located adjacent to the umuDC operon at minute 42.5 on the genome, itself located near to one terminus of an 815-kb genome inversion of S. Enteritidis relative to S. Typhimurium. IS1230C was located next to attB, the bacteriophage P22 attachment site, and proB, encoding gamma-glutamyl phosphate reductase. A truncated 3' remnant of IS1230, designated IS1230T, was identified in a clinical isolate of S. Typhimurium DT193 strain 2391. This element was located next to attB adjacent to which were bacteriophage P22-like sequences. Southern hybridisation of total genomic DNA from eighteen phage types of S. Enteritidis and eighteen definitive types of S. Typhimurium showed similar, if not identical, restriction fragment profiles in the respective serovars when probed with IS1230A.
Collapse
Affiliation(s)
- R J Collighan
- Department of Bacterial Diseases, Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
28
|
Pichel M, Binsztein N, Viboud G. CS22, a novel human enterotoxigenic Escherichia coli adhesin, is related to CS15. Infect Immun 2000; 68:3280-5. [PMID: 10816474 PMCID: PMC97580 DOI: 10.1128/iai.68.6.3280-3285.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expresses a broad spectrum of O:H antigens. Serogroup O20 is one of the most prevalent among the ETEC strains lacking any of the defined colonization factors (CFs), in Argentina. An O20:H- strain, ARG-3, adhered to Caco-2 cells and exhibited a thermoregulated 15.7-kDa protein band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). An antiserum against this protein inhibited ARG-3 adhesion to Caco-2 cells and bound to very thin fibrilla-like structures on the bacterial surface. A 15.7-kDa protein-defective mutant failed to adhere to Caco-2 cells and lacked immunogold-labeled surface structures. The N-terminal amino acid sequence of the structural subunit showed 95% homology to that of CS15 of ETEC (former antigen 8786) and 65% homology with fimbria SEF14 of Salmonella enterica serovar Enteritidis. Nevertheless, the molecular size of ARG-3 adhesin was different from that of CS15, as revealed by SDS-PAGE and mass spectrometry. Both proteins are immunologically related, yet not identical, since an antiserum against the 15.7-kDa protein reacted solely with ARG-3 after absorption with bacteria bearing CS15. Moreover, only under low stringency conditions could DNA from strain ARG-3 be amplified by PCR using primers derived from the nfaA sequence of CS15. Thus, from the DNA sequence obtained from the ARG-3 PCR product, it could be deduced that the subunit protein differed in 30 residues from that of CS15. ARG-3 adhesin was found in 60% of the O20:H- CF-negative ETEC strains from Argentina; however, it appeared restricted to this serotype. We propose the designation CS22 for the herein identified nonfimbrial adhesin of human ETEC.
Collapse
Affiliation(s)
- M Pichel
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Carlos G. Malbrán," 1281 Capital Federal, Argentina
| | | | | |
Collapse
|
29
|
Rajashekara G, Munir S, Alexeyev MF, Halvorson DA, Wells CL, Nagaraja KV. Pathogenic role of SEF14, SEF17, and SEF21 fimbriae in Salmonella enterica serovar enteritidis infection of chickens. Appl Environ Microbiol 2000; 66:1759-63. [PMID: 10742278 PMCID: PMC92059 DOI: 10.1128/aem.66.4.1759-1763.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Very little is known about the contribution of surface appendages of Salmonella enterica serovar Enteritidis to pathogenesis in chickens. This study was designed to clarify the role of SEF14, SEF17, and SEF21 fimbriae in serovar Enteritidis pathogenesis. Stable, single, defined sefA (SEF14), agfA (SEF17), and fimA (SEF21) insertionally inactivated fimbrial gene mutants of serovar Enteritidis were constructed. All mutant strains invaded Caco-2 and HT-29 enterocytes at levels similar to that of the wild type. Both mutant and wild-type strains were ingested equally well by chicken macrophage cell lines HD11 and MQ-NCSU. There were no significant differences in the abilities of these strains to colonize chicken ceca. The SEF14(-) strain was isolated in lower numbers from the livers of infected chickens and was cleared from the spleens faster than other strains. No significant differences in fecal shedding of these strains were observed.
Collapse
Affiliation(s)
- G Rajashekara
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
30
|
Edwards RA, Schifferli DM, Maloy SR. A role for Salmonella fimbriae in intraperitoneal infections. Proc Natl Acad Sci U S A 2000; 97:1258-62. [PMID: 10655518 PMCID: PMC15588 DOI: 10.1073/pnas.97.3.1258] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enteric bacteria possess multiple fimbriae, many of which play critical roles in attachment to epithelial cell surfaces. SEF14 fimbriae are only found in Salmonella enterica serovar Enteritidis (S. enteritidis) and closely related serovars, suggesting that SEF14 fimbriae may affect serovar-specific virulence traits. Despite evidence that SEF14 fimbriae are expressed by S. enteritidis in vivo, previous studies showed that SEF14 fimbriae do not mediate adhesion to the intestinal epithelium. Therefore, we tested whether SEF14 fimbriae are required for virulence at a stage in infection after the bacteria have passed the intestinal barrier. Polar mutations that disrupt the entire sef operon decreased virulence in mice more than 1,000-fold. Nonpolar mutations that disrupted sefA (encoding the major structural subunit) did not affect virulence, but mutations that disrupted sefD (encoding the putative adhesion subunit) resulted in a severe virulence defect. The results indicate that the putative SEF14 adhesion subunit is specifically required for a stage of the infection subsequent to transit across the intestinal barrier. Therefore, we tested whether SefD is required for uptake or survival in macrophages. The majority of wild-type bacteria were detected inside macrophages soon after i.p. infection, but the sefD mutants were not readily internalized by peritoneal macrophages. These results indicate that the potential SEF14 adhesion subunit is essential for efficient uptake or survival of S. enteritidis in macrophages. This report describes a role of fimbriae in intracellular infection, and indicates that fimbriae may be required for systemic infections at stages beyond the initial colonization of host epithelial surfaces.
Collapse
Affiliation(s)
- R A Edwards
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Building, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
31
|
Collighan RJ, Woodward MJ. Sequence analysis and distribution of an IS3-like insertion element isolated from Salmonella enteritidis. FEMS Microbiol Lett 1997; 154:207-13. [PMID: 9311118 DOI: 10.1111/j.1574-6968.1997.tb12645.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of a 3 kb region immediately upstream of the sef operon of Salmonella enteritidis was determined. A 1230 base pair insertion sequence which shared sequence identity (> 75%) with members of the IS3 family was revealed. This element, designated IS1230, had almost identical (90% identity) terminal inverted repeats to Escherichia coli IS3 but unlike other IS3-like sequences lacked the two characteristic open reading frames which encode the putative transposase. S. enteritidis possessed only one copy of this insertion sequence although Southern hybridisation analysis of restriction digests of genomic DNA revealed another fragment located in a region different from the sef operon which hybridised weakly which suggested the presence of an IS1230 homologue. The distribution of IS1230 and IS1230-like elements was shown to be widespread amongst salmonellas and the patterns of restriction fragments which hybridised differed significantly between Salmonella serotypes and it is suggested that IS1230 has potential for development as a differential diagnostic tool.
Collapse
Affiliation(s)
- R J Collighan
- Bacteriology Department, Central Veterinary Laboratory, Addlestone, Surrey, UK.
| | | |
Collapse
|