1
|
Leontari K, Lianou A, Tsantes AG, Filippatos F, Iliodromiti Z, Boutsikou T, Paliatsou S, Chaldoupis AE, Ioannou P, Mpakosi A, Iacovidou N, Sokou R. Pertussis in Early Infancy: Diagnostic Challenges, Disease Burden, and Public Health Implications Amidst the 2024 Resurgence, with Emphasis on Maternal Vaccination Strategies. Vaccines (Basel) 2025; 13:276. [PMID: 40266155 PMCID: PMC11945951 DOI: 10.3390/vaccines13030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Bordetella pertussis is the causative agent of pertussis or whooping cough, an acute and highly contagious respiratory infection that can have serious and fatal complications such as pneumonia, encephalopathy, and seizures, especially for newborns. The disease is endemic not only in the European Union (EU)/European Economic Area (EEA) but also globally. Larger outbreaks are anticipated every three to five years, even in countries where vaccination rates are high. Despite the high pertussis vaccination coverage in developed countries and a low rate of pertussis incidence for many years, especially during the COVID-19 pandemic, the incidence of pertussis has been on the rise again, with outbreaks in some places, which is referred to as "re-emergence of pertussis". The aim of this review is to underscore the critical importance of achieving high vaccination coverage, particularly among pregnant women, to safeguard vulnerable neonates from pertussis during their early months, before they are eligible for vaccination. This aligns with the need to address diagnostic challenges, mitigate disease severity, and strengthen public health strategies in light of the ongoing 2024 Bordetella pertussis resurgence.
Collapse
Affiliation(s)
- Konstantina Leontari
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
| | - Alexandra Lianou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Andreas G. Tsantes
- Microbiology Department, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece
| | - Filippos Filippatos
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
- First Department of Pediatrics, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
| | - Theodora Boutsikou
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
| | - Styliani Paliatsou
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
| | - Anastasios E. Chaldoupis
- Laboratory of Haematology and Blood Bank Unit, School of Medicine, “Attiko” Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
| | - Rozeta Sokou
- Neonatal Department, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.L.); (S.P.); (N.I.)
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| |
Collapse
|
2
|
Hall JM, Gutiérrez-Ferman JL, Shamseldin MM, Guo M, Gupta YA, Deora R, Dubey P. Opposing effects of acellular and whole cell pertussis vaccines on Bordetella pertussis biofilm formation, Siglec-F+ neutrophil recruitment and bacterial clearance in mouse nasal tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576795. [PMID: 38328073 PMCID: PMC10849580 DOI: 10.1101/2024.01.23.576795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Despite global vaccination, pertussis caused by Bordetella pertussis (Bp) is resurging. Pertussis resurgence is correlated with the switch from whole cell vaccines (wPV) that elicit TH1/TH17 polarized immune responses to acellular pertussis vaccines (aPV) that elicit primarily TH2 polarized immune responses. One explanation for the increased incidence in aPV-immunized individuals is the lack of bacterial clearance from the nose. To understand the host and bacterial mechanisms that contribute to Bp persistence, we evaluated bacterial localization and the immune response in the nasal associated tissues (NT) of naïve and immunized mice following Bp challenge. Bp resided in the NT of unimmunized and aPV-immunized mice as biofilms. In contrast, Bp biofilms were not observed in wPV-immunized mice. Following infection, Siglec-F+ neutrophils, critical for eliminating Bp from the nose, were recruited to the nose at higher levels in wPV immunized mice compared to aPV immunized mice. Consistent with this observation, the neutrophil chemokine CXCL1 was only detected in the NT of wPV immunized mice. Importantly, the bacteria and immune cells were primarily localized within the NT and were not recovered by nasal lavage (NL). Together, our data suggest that the TH2 polarized immune response generated by aPV vaccination facilitates persistence in the NT by impeding the infiltration of immune effectors and the eradication of biofilms In contrast, the TH1/TH17 immune phenotype generated by wPV, recruits Siglec-F+ neutrophils that rapidly eliminate the bacterial burden and prevent biofilm establishment. Thus, our work shows that aPV and wPV have opposing effects on Bp biofilm formation in the respiratory tract and provides a mechanistic explanation for the inability of aPV vaccination to control bacterial numbers in the nose and prevent transmission.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | | | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University Ain Helwan, Helwan, 11795, Egypt
| | - Myra Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Yash A. Gupta
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Dubois V, Chatagnon J, Depessemier M, Locht C. Maternal acellular pertussis vaccination in mice impairs cellular immunity to Bordetella pertussis infection in offspring. JCI Insight 2023; 8:e167210. [PMID: 37581930 PMCID: PMC10561720 DOI: 10.1172/jci.insight.167210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Given the resurgence of pertussis, several countries have introduced maternal tetanus, diphtheria, and acellular pertussis (aP) vaccination during pregnancy to protect young infants against severe pertussis. Although protective against the disease, the effect of maternal aP vaccination on bacterial colonization of the offspring is unknown. Here, we used a mouse model to demonstrate that maternal aP immunization, either before or during pregnancy, protects pups from lung colonization by Bordetella pertussis. However, maternal aP vaccination resulted in significantly prolonged nasal carriage of B. pertussis by inhibiting the natural recruitment of IL-17-producing resident memory T cells and ensuing neutrophil influx in the nasal tissue, especially of those with proinflammatory and cytotoxic properties. Prolonged nasal carriage after aP vaccination is due to IL-4 signaling, as prolonged nasal carriage is abolished in IL-4Rα-/- mice. The effect of maternal aP vaccination can be transferred transplacentally to the offspring or via breastfeeding and is long-lasting, as it persists into adulthood. Maternal aP vaccination may, thus, augment the B. pertussis reservoir.
Collapse
|
4
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
5
|
Kiszel P, Sík P, Miklós J, Kajdácsi E, Sinkovits G, Cervenak L, Prohászka Z. Class switch towards spike protein-specific IgG4 antibodies after SARS-CoV-2 mRNA vaccination depends on prior infection history. Sci Rep 2023; 13:13166. [PMID: 37574522 PMCID: PMC10423719 DOI: 10.1038/s41598-023-40103-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
Vaccinations against SARS-CoV-2 reduce the risk of developing serious COVID-19 disease. Monitoring spike-specific IgG subclass levels after vaccinations may provide additional information on SARS-CoV-2 specific humoral immune response. Here, we examined the presence and levels of spike-specific IgG antibody subclasses in health-care coworkers vaccinated with vector- (Sputnik, AstraZeneca) or mRNA-based (Pfizer-BioNTech, Moderna) vaccines against SARS-CoV-2 and in unvaccinated COVID-19 patients. We found that vector-based vaccines elicited lower total spike-specific IgG levels than mRNA vaccines. The pattern of spike-specific IgG subclasses in individuals infected before mRNA vaccinations resembled that of vector-vaccinated subjects or unvaccinated COVID-19 patients. However, the pattern of mRNA-vaccinated individuals without SARS-CoV-2 preinfection showed a markedly different pattern. In addition to IgG1 and IgG3 subclasses presented in all groups, a switch towards distal IgG subclasses (spike-specific IgG4 and IgG2) appeared almost exclusively in individuals who received only mRNA vaccines or were infected after mRNA vaccinations. In these subjects, the magnitude of the spike-specific IgG4 response was comparable to that of the spike-specific IgG1 response. These data suggest that the priming of the immune system either by natural SARS-CoV-2 infection or by vector- or mRNA-based vaccinations has an important impact on the characteristics of the developed specific humoral immunity.
Collapse
Affiliation(s)
- Petra Kiszel
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, 1085, Hungary.
| | - Pál Sík
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - János Miklós
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Erika Kajdácsi
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, 1085, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - László Cervenak
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Zoltán Prohászka
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, 1085, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| |
Collapse
|
6
|
Yang B, Zhu D, Zhou Y, Gong B, Hu Y, Zhang J, Huang S, Nian X, Li X, Li X, Duan K, Yang X. Liposome and QS-21 Combined Adjuvant Induces theHumoral and Cellular Responses of Acellular Pertussis Vaccine in a Mice Model. Vaccines (Basel) 2023; 11:vaccines11050914. [PMID: 37243018 DOI: 10.3390/vaccines11050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The resurgence of pertussis in vaccinated communities may be related to the reduced long-term immunity induced by acellular pertussis vaccines. Therefore, developing improved pertussis vaccine candidates that could induce strong Th1 or Th17 cellular immunity is an urgent need. The use of new adjuvants may well meet this requirement. In this research, we developed a novel adjuvant candidate by combining liposome and QS-21 adjuvant. Adjuvant activity, protective efficacy, the level of neutralizing antibody against PT, and the resident memory T (TRM) cells in lung tissue after vaccination were studied. We then performed B. pertussis respiratory challenge in mice after they received vaccination with traditional aluminum hydroxide and the novel adjuvant combination. Results showed that the liposome + QS-21 adjuvant group had a rapid antibody and higher antibody (PT, FHA, Fim) level, induced anti-PT neutralizing antibody and recruited more IL-17A-secreting CD4+ TRM cells along with IL-17A-secreting CD8+ TRM cells in mice, which provided robust protection against B. pertussis infection. These results provide a key basis for liposome + QS-21 adjuvant as a promising adjuvant candidate for developing an acellular pertussis vaccine that elicits protective immunity against pertussis.
Collapse
Affiliation(s)
- Baifeng Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Dewu Zhu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yisi Zhou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Beizhe Gong
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yuan Hu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinghang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Biotec Group Company Limited, Beijing 100024, China
| |
Collapse
|
7
|
Corbière V, Lambert EE, Rodesch M, van Gaans-van den Brink JAM, Misiak A, Simonetti E, Van Praet A, Godefroid A, Diavatopoulos DA, van Els CACM, Mascart F. A semi high-throughput whole blood-based flow cytometry assay to detect and monitor Bordetella pertussis-specific Th1, Th2 and Th17 responses. Front Immunol 2023; 14:1101366. [PMID: 36814927 PMCID: PMC9939445 DOI: 10.3389/fimmu.2023.1101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction The characterization of B. pertussis (Bp) antigen-specific CD4+ T cell cytokine responses should be included in the evaluation of immunogenicity of pertussis vaccines but is often hindered by the lack of standardized robust assays. Methods To overcome this limitation, we developed a two-step assay comprising a short-term stimulation of fresh whole blood with Bp antigens and cryopreservation of the stimulated cells, followed later on by batch-wise intracellular cytokine analysis by flow cytometry. Blood samples collected from recently acellular (aP) vaccine boosted subjects with a whole-cell- or aP-primed background was incubated for 24 hrs with Pertussis toxin, Filamentous hemagglutinin or a Bp lysate (400µl per stimulation). Antigen-specific IFN-γ-, IL-4/IL-5/IL-13-, IL-17A/IL-17F- and/or IL-22-producing CD4+ T cells were quantified by flow cytometry to reveal Th1, Th2, and Th17-type responses, respectively. The frequencies of IFN-γ-producing CD8+ T cells were also analyzed. Results We demonstrate high reproducibility of the Bp-specific whole blood intracellular staining assay. The results obtained after cryopreservation of the stimulated and fixed cells were very well correlated to those obtained without cryopreservation, an approach used in our previously published assay. Optimization resulted in high sensitivity thanks to very low non-specific backgrounds, with reliable detection of Bp antigen-specific Th1, Th2 and Th17-type CD4+ T cells, in the lowest range frequency of 0.01-0.03%. Bp antigen-specific IFN-γ+ CD8+ T lymphocytes were also detected. This test is easy to perform, analyse and interpret with the establishment of strict criteria defining Bp antigen responses. Discussion Thus, this assay appears as a promising test for evaluation of Bp antigen-specific CD4+ T cells induced by current and next generation pertussis vaccines.
Collapse
Affiliation(s)
- Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Eleonora E Lambert
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marine Rodesch
- Department of Paediatrics, Cliniques Universitaires de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | | - Alicja Misiak
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elles Simonetti
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Dimitri A Diavatopoulos
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cécile A C M van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | |
Collapse
|
8
|
Szwejser-Zawislak E, Wilk MM, Piszczek P, Krawczyk J, Wilczyńska D, Hozbor D. Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines (Basel) 2022; 11:vaccines11010001. [PMID: 36679846 PMCID: PMC9863224 DOI: 10.3390/vaccines11010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
After the pertussis vaccine had been introduced in the 1940s and was shown to be very successful in reducing the morbidity and mortality associated with the disease, the possibility of improving both vaccine composition and vaccination schedules has become the subject of continuous interest. As a result, we are witnessing a considerable heterogeneity in pertussis vaccination policies, which remains beyond universal consensus. Many pertussis-related deaths still occur in low- and middle-income countries; however, these deaths are attributable to gaps in vaccination coverage and limited access to healthcare in these countries, rather than to the poor efficacy of the first generation of pertussis vaccine consisting in inactivated and detoxified whole cell pathogen (wP). In many, particularly high-income countries, a switch was made in the 1990s to the use of acellular pertussis (aP) vaccine, to reduce the rate of post-vaccination adverse events and thereby achieve a higher percentage of children vaccinated. However the epidemiological data collected over the past few decades, even in those high-income countries, show an increase in pertussis prevalence and morbidity rates, triggering a wide-ranging debate on the causes of pertussis resurgence and the effectiveness of current pertussis prevention strategies, as well as on the efficacy of available pertussis vaccines and immunization schedules. The current article presents a systematic review of scientific reports on the evaluation of the use of whole-cell and acellular pertussis vaccines, in the context of long-term immunity and vaccines efficacy.
Collapse
Affiliation(s)
- Ewa Szwejser-Zawislak
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Mieszko M. Wilk
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Piszczek
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Justyna Krawczyk
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daria Wilczyńska
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daniela Hozbor
- VacSal Laboratory, Institute of Biotechnology and Molecular Biology, Faculty of Sciences, National University of La Plata (UNLP), National Council for Scientific and Technical Research (CONICET), La Plata 1900, Argentina
- Correspondence:
| |
Collapse
|
9
|
Mucosal Immunization with DTaP Confers Protection against Bordetella pertussis Infection and Cough in Sprague-Dawley Rats. Infect Immun 2021; 89:e0034621. [PMID: 34516235 PMCID: PMC8594602 DOI: 10.1128/iai.00346-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage and intranasal vaccination of aP in B. pertussis challenged rats over a 9-day infection was compared to intramuscular wP (IM-wP)- and IM-aP-immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in the production of anti-B. pertussis IgG antibody titers similar to IM-wP- and IM-aP-vaccinated controls postchallenge. IN-aP also induced anti-B. pertussis IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against B. pertussis-induced cough, whereas OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both intranasal and oral gavage administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock-vaccinated challenge rats. The data presented in this study suggest that mucosal vaccination with aP can induce a mucosal immune response and provide protection against B. pertussis challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.
Collapse
|
10
|
Perez Chacon G, Ramsay J, Brennan-Jones CG, Estcourt MJ, Richmond P, Holt P, Snelling T. Whole-cell pertussis vaccine in early infancy for the prevention of allergy in children. Cochrane Database Syst Rev 2021; 9:CD013682. [PMID: 34693993 PMCID: PMC8543786 DOI: 10.1002/14651858.cd013682.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atopic diseases are the most common chronic conditions of childhood. The apparent rise in food anaphylaxis in young children over the past three decades is of particular concern, owing to the lack of proven prevention strategies other than the timely introduction of peanut and egg. Due to reported in vitro differences in the immune response of young infants primed with whole-cell pertussis (wP) versus acellular pertussis (aP) vaccine, we systematically appraised and synthesised evidence on the safety and the potential allergy preventive benefits of wP, to inform recommendation for future practice and research. OBJECTIVES To assess the efficacy and safety of wP vaccinations in comparison to aP vaccinations in early infancy for the prevention of atopic diseases in children. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, Ovid MEDLINE, Embase, and grey literature. The date of the search was 7 September 2020. SELECTION CRITERIA We included randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) that reported the occurrence of atopic diseases, and RCTs only to assess safety outcomes. To be included studies had to have at least six months follow-up, and involve children under 18 years old, who received a first dose of either wP (experimental intervention) or aP (comparator) before six months of age. DATA COLLECTION AND ANALYSIS Two review authors independently screened studies for eligibility, extracted the data, and assessed risk of bias using standard Cochrane methods. We assessed the certainty of the evidence using GRADE. Our primary outcomes were diagnosis of IgE-mediated food allergy and all-cause serious adverse events (SAEs). Secondary outcomes included: diagnosis of not vaccine-associated anaphylaxis or urticaria, diagnosis of asthma, diagnosis of allergic rhinitis, diagnosis of atopic dermatitis and diagnosis of encephalopathy. Due to paucity of RCTs reporting on the atopic outcomes of interest, we assessed a broader outcome domain (cumulative incidence of atopic disease) as specified in our protocol. We summarised effect estimates as risk ratios (RR) and 95% confidence intervals (CI). Where appropriate, we pooled safety data in meta-analyses using fixed-effect Mantel-Haenszel methods, without zero-cell corrections for dichotomous outcomes. MAIN RESULTS We identified four eligible studies reporting on atopic outcomes, representing 7333 children. Based on a single trial, there was uncertain evidence on whether wP vaccines affected the risk of overall atopic disease (RR 0.85, 95% CI 0.62 to 1.17) or asthma only (RR 1.04, 95% CI 0.59 to 1.82; 497 children) by 2.5 years old.Three NRSIs were judged to be at serious or critical risk of bias due to confounding, missing data, or both, and were ineligible for inclusion in a narrative synthesis. We identified 21 eligible studies (137,281 children) that reported the safety outcomes of interest. We judged seven studies to be at high risk of bias and those remaining, at unclear risk. The pooled RR was 0.94 for all-cause SAEs (95% CI 0.78 to 1.15; I2 = 0%; 15 studies, 38,072 children). For every 1000 children primed with a first dose of wP, 11 had an SAE. The corresponding risk with aP was 12 children (95% CI 9 to 13). The 95% CI around the risk difference ranged from three fewer to two more events per 1000 children, and the certainty of the evidence was judged as moderate (downgraded one level for imprecision). No diagnoses of encephalopathy following vaccination were reported (95% CI around the risk difference - 5 to 12 per 100,000 children; seven primary series studies; 115,271 children). The certainty of the evidence was judged as low, since this is a serious condition, and we could not exclude a clinically meaningful difference. AUTHORS' CONCLUSIONS There is very low-certainty evidence that a first dose of wP given early in infancy, compared to a first dose of aP, affects the risk of atopic diseases in children. The incidence of all-cause SAEs in wP and aP vaccinees was low, and no cases of encephalopathy were reported. The certainty of the evidence was judged as moderate for all-cause SAEs, and low for encephalopathy. Future studies should use sensitive and specific endpoints of clinical relevance, and should be conducted in settings with high prevalence of IgE-mediated food allergy. Safety endpoints should prioritise common vaccine reactions, parental acceptability, SAEs and their potential relatedness to the dose administered.
Collapse
Affiliation(s)
- Gladymar Perez Chacon
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- School of Public Health, Curtin University, Perth, Australia
| | - Jessica Ramsay
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | | | - Marie J Estcourt
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Peter Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Division of Paediatrics, The University of Western Australia, Perth, Australia
| | - Patrick Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Tom Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| |
Collapse
|
11
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
12
|
da Silva Antunes R, Soldevila F, Pomaznoy M, Babor M, Bennett J, Tian Y, Khalil N, Qian Y, Mandava A, Scheuermann RH, Cortese M, Pulendran B, Petro CD, Gilkes AP, Purcell LA, Sette A, Peters B. A system-view of Bordetella pertussis booster vaccine responses in adults primed with whole-cell versus acellular vaccine in infancy. JCI Insight 2021; 6:141023. [PMID: 33690224 PMCID: PMC8119213 DOI: 10.1172/jci.insight.141023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/03/2021] [Indexed: 01/26/2023] Open
Abstract
The increased incidence of whooping cough worldwide suggests that current vaccination against Bordetella pertussis infection has limitations in quality and duration of protection. The resurgence of infection has been linked to the introduction of acellular vaccines (aP), which have an improved safety profile compared with the previously used whole-cell (wP) vaccines. To determine immunological differences between aP and wP priming in infancy, we performed a systems approach of the immune response to booster vaccination. Transcriptomic, proteomic, cytometric, and serologic profiling revealed multiple shared immune responses with different kinetics across cohorts, including an increase of blood monocyte frequencies and strong antigen-specific IgG responses. Additionally, we found a prominent subset of aP-primed individuals (30%) with a strong differential signature, including higher levels of expression for CCL3, NFKBIA, and ICAM1. Contrary to the wP individuals, this subset displayed increased PT-specific IgE responses after boost and higher antigen-specific IgG4 and IgG3 antibodies against FHA and FIM2/3 at baseline and after boost. Overall, the results show that, while broad immune response patterns to Tdap boost overlap between aP- and wP-primed individuals, a subset of aP-primed individuals present a divergent response. These findings provide candidate targets to study the causes and correlates of waning immunity after aP vaccination.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Ferran Soldevila
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mikhail Pomaznoy
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jason Bennett
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yu Qian
- J. Craig Venter Institute, La Jolla, California, USA
| | | | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, California, USA
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
13
|
Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, Locht C. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 2021; 6:6. [PMID: 33420041 PMCID: PMC7794405 DOI: 10.1038/s41541-020-00270-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Pertussis has made a spectacular rebound in countries that have switched from whole-cell (wPV) to acellular pertussis vaccines (aPV). Here, we show that, unlike wPV, aPV, while protective against lung colonization by Bordetella pertussis (Bp), did not protect BALB/c mice from nasal colonization, but instead substantially prolonged nasal carriage. aPV prevented the natural induction of nasal interleukin-17 (IL-17)-producing and interferon-γ (IFN-γ)-producing CD103+ CD44+ CD69+ CD4+-resident memory T (TRM) cells. IL-17-deficient, but not IFN-γ-deficient, mice failed to clear nasal Bp, indicating a key role of IL-17+ TRM cells in the control of nasal infection. These cells appeared essential for neutrophil recruitment, crucial for clearance of Bp tightly bound to the nasal epithelium. Transfer of IL-17+ TRM cells from Bp-infected mice to IL-17-deficient mice resulted in neutrophil recruitment and protection against nasal colonization. Thus, aPV may have augmented the Bp reservoir by inhibiting natural TRM cell induction and neutrophil recruitment, thereby contributing to the pertussis resurgence.
Collapse
Affiliation(s)
- Violaine Dubois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France.
| | - Jonathan Chatagnon
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Anaïs Thiriard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Hélène Bauderlique-Le Roy
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UMS 2014-PLBS, Univ. Lille, 59000, Lille, France
| | - Anne-Sophie Debrie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Loïc Coutte
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| | - Camille Locht
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Univ. Lille, 59000, Lille, France
| |
Collapse
|
14
|
IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F + neutrophils. Mucosal Immunol 2021; 14:1183-1202. [PMID: 33976385 PMCID: PMC8379078 DOI: 10.1038/s41385-021-00407-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Understanding the mechanism of protective immunity in the nasal mucosae is central to the design of more effective vaccines that prevent nasal infection and transmission of Bordetella pertussis. We found significant infiltration of IL-17-secreting CD4+ tissue-resident memory T (TRM) cells and Siglec-F+ neutrophils into the nasal tissue during primary infection with B. pertussis. Il17A-/- mice had significantly higher bacterial load in the nasal mucosae, associated with significantly reduced infiltration of Siglec-F+ neutrophils. Re-infected convalescent mice rapidly cleared B. pertussis from the nasal cavity and this was associated with local expansion of IL-17-producing CD4+ TRM cells. Depletion of CD4 T cells from the nasal tissue during primary infection or after re-challenge of convalescent mice significantly delayed clearance of bacteria from the nasal mucosae. Protection was lost in Il17A-/- mice and this was associated with significantly less infiltration of Siglec-F+ neutrophils and antimicrobial peptide (AMP) production. Finally, depletion of neutrophils reduced the clearance of B. pertussis following re-challenge of convalescent mice. Our findings demonstrate that IL-17 plays a critical role in natural and acquired immunity to B. pertussis in the nasal mucosae and this effect is mediated by mobilizing neutrophils, especially Siglec-F+ neutrophils, which have high neutrophil extracellular trap (NET) activity.
Collapse
|
15
|
Cole LE, Zhang J, Pacheco KM, Lhéritier P, Anosova NG, Piolat J, Zheng L, Reveneau N. Immunological Distinctions between Acellular and Whole-Cell Pertussis Immunizations of Baboons Persist for at Least One Year after Acellular Vaccine Boosting. Vaccines (Basel) 2020; 8:vaccines8040729. [PMID: 33276673 PMCID: PMC7761625 DOI: 10.3390/vaccines8040729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
While both whole-cell (wP) and acellular pertussis (aP) vaccines have been highly effective at reducing the global pertussis disease burden, there are concerns that compared to wP vaccination, the immune responses to aP vaccination may wane more rapidly. To gain insights into the vaccine elicited immune responses, pre-adult baboons were immunized with either aP or wP vaccines, boosted with an aP vaccine, and observed over a nearly two-year period. Priming with a wP vaccine elicited a more Th17-biased response than priming with aP, whereas priming with an aP vaccine led to a more Th2-biased response than priming with wP. These differences were maintained after aP vaccine boost immunizations. Compared to aP, animals primed with a wP vaccine exhibited greater numbers of pertussis specific memory B cells. While aP and wP vaccine priming initially elicited similar levels of anti-pertussis toxin antibody, titers declined more rapidly in aP vaccine primed animals leading to a 4-fold difference. Both wP and aP vaccine immunization could induce serum bactericidal activity (SBA); however, only one wP vaccine immunization was required to elicit SBA while multiple aP vaccine immunizations were required to elicit lower, less durable SBA titers. In conclusion, when compared to aP vaccine, priming with wP vaccine elicits distinct cellular and humoral immune responses that persist after aP vaccine boosting.
Collapse
Affiliation(s)
- Leah E. Cole
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
- Correspondence: (L.E.C.); (N.R.); Tel.: +1-617-866-4473 (L.E.C.); +33-4-37-66-8510 (N.R.)
| | - Jinrong Zhang
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
| | - Kristl M. Pacheco
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
| | | | | | - Julie Piolat
- Sanofi Pasteur, 69280 Marcy L’Etoile, France; (P.L.); (J.P.)
| | | | - Nathalie Reveneau
- Sanofi Pasteur, 69280 Marcy L’Etoile, France; (P.L.); (J.P.)
- Correspondence: (L.E.C.); (N.R.); Tel.: +1-617-866-4473 (L.E.C.); +33-4-37-66-8510 (N.R.)
| |
Collapse
|
16
|
Perez Chacon G, Estcourt M, Ramsay J, Brennan-Jones CG, Richmond P, Holt P, Snelling T. Whole-cell pertussis vaccine in early infancy for the prevention of allergy. Hippokratia 2020. [DOI: 10.1002/14651858.cd013682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gladymar Perez Chacon
- Wesfarmers Centre of Vaccines and Infectious Diseases; Telethon Kids Institute; Perth Australia
- School of Public Health; Curtin University; Perth Australia
| | - Marie Estcourt
- Sydney School of Public Health, Faculty of Medicine and Health; University of Sydney; Camperdown Australia
| | - Jessica Ramsay
- Wesfarmers Centre of Vaccines and Infectious Diseases; Telethon Kids Institute; Perth Australia
| | | | - Peter Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases; Telethon Kids Institute; Perth Australia
- Division of Paediatrics; The University of Western Australia; Perth Australia
| | - Patrick Holt
- Telethon Kids Institute; The University of Western Australia; Perth Australia
| | - Tom Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases; Telethon Kids Institute; Perth Australia
- Sydney School of Public Health, Faculty of Medicine and Health; University of Sydney; Camperdown Australia
| |
Collapse
|
17
|
Lambert EE, Corbière V, van Gaans-van den Brink JAM, Duijst M, Venkatasubramanian PB, Simonetti E, Huynen M, Diavatopoulos DD, Versteegen P, Berbers GAM, Mascart F, van Els CACM. Uncovering Distinct Primary Vaccination-Dependent Profiles in Human Bordetella Pertussis Specific CD4+ T-Cell Responses Using a Novel Whole Blood Assay. Vaccines (Basel) 2020; 8:E225. [PMID: 32429152 PMCID: PMC7349943 DOI: 10.3390/vaccines8020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023] Open
Abstract
To advance research and development of improved pertussis vaccines, new immunoassays are needed to qualify the outcome of Bordetella pertussis (Bp) specific CD4+ T-cell differentiation. Here, we applied a recently developed whole blood assay to evaluate Bp specific CD4+ T-cell responses. The assay is based on intracellular cytokine detection after overnight in vitro Bp antigen stimulation of diluted whole blood. We show for the first time that CD4+ T-cell memory of Th1, Th2, and Th17 lineages can be identified simultaneously in whole blood. Participants ranging from 7 to 70 years of age with different priming backgrounds of whole-cell pertussis (wP) and acellular pertussis (aP) vaccination were analyzed around an acellular booster vaccination. The assay allowed detection of low frequent antigen-specific CD4+ T-cells and revealed significantly elevated numbers of activated and cytokine-producing CD4+ T-cells, with a significant tendency to segregate recall responses based on primary vaccination background. A stronger Th2 response hallmarked an aP primed cohort compared to a wP primed cohort. In conclusion, analysis of Bp specific CD4+ T-cell responses in whole blood showed separation based on vaccination background and provides a promising tool to assess the quantity and quality of CD4+ T-cell responses induced by vaccine candidates.
Collapse
Affiliation(s)
- Eleonora E. Lambert
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (E.E.L.); (J.A.M.v.G.-v.d.B.); (M.D.); (P.V.); (G.A.M.B.)
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium; (V.C.); (F.M.)
| | - Jacqueline A. M. van Gaans-van den Brink
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (E.E.L.); (J.A.M.v.G.-v.d.B.); (M.D.); (P.V.); (G.A.M.B.)
| | - Maxime Duijst
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (E.E.L.); (J.A.M.v.G.-v.d.B.); (M.D.); (P.V.); (G.A.M.B.)
| | - Prashanna Balaji Venkatasubramanian
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (P.B.V.); (M.H.)
| | - Elles Simonetti
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.S.); (D.D.D.)
| | - Martijn Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (P.B.V.); (M.H.)
| | - Dimitri D. Diavatopoulos
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.S.); (D.D.D.)
| | - Pauline Versteegen
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (E.E.L.); (J.A.M.v.G.-v.d.B.); (M.D.); (P.V.); (G.A.M.B.)
| | - Guy A. M. Berbers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (E.E.L.); (J.A.M.v.G.-v.d.B.); (M.D.); (P.V.); (G.A.M.B.)
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium; (V.C.); (F.M.)
| | - Cécile A. C. M. van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (E.E.L.); (J.A.M.v.G.-v.d.B.); (M.D.); (P.V.); (G.A.M.B.)
| |
Collapse
|
18
|
Wang P, Huo CX, Lang S, Caution K, Nick ST, Dubey P, Deora R, Huang X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti-pertussis Vaccine. Angew Chem Int Ed Engl 2020; 59:6451-6458. [PMID: 31953912 PMCID: PMC7141973 DOI: 10.1002/anie.201915913] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/11/2023]
Abstract
With the infection rate of Bordetella pertussis at a 60-year high, there is an urgent need for new anti-pertussis vaccines. The lipopolysaccharide (LPS) of B. pertussis is an attractive antigen for vaccine development. With the presence of multiple rare sugars and unusual glycosyl linkages, the B. pertussis LPS is a highly challenging synthetic target. In this work, aided by molecular dynamics simulation and modeling, a pertussis-LPS-like pentasaccharide was chemically synthesized for the first time. The pentasaccharide was conjugated with a powerful carrier, bacteriophage Qβ, as a vaccine candidate. Immunization of mice with the conjugate induced robust anti-glycan IgG responses with IgG titers reaching several million enzyme-linked immunosorbent assay (ELISA) units. The antibodies generated were long lasting and boostable and could recognize multiple clinical strains of B. pertussis, highlighting the potential of Qβ-glycan as a new anti-pertussis vaccine.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Chang-Xin Huo
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Kyle Caution
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Setare Tahmasebi Nick
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, USA
| |
Collapse
|
19
|
Development and Validation of a Bordetella pertussis Whole-Genome Screening Strategy. J Immunol Res 2020; 2020:8202067. [PMID: 32322598 PMCID: PMC7154976 DOI: 10.1155/2020/8202067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
The immune response elicited by the protective whole-cell pertussis (wP) versus the less-protective acellular pertussis (aP) vaccine has been well characterized; however, important clinical problems remain unsolved, as the inability of the currently administered aP vaccine is resulting in the reemergence of clinical disease (i.e., whooping cough). Strong evidence has shown that original, childhood aP and wP priming vaccines provide a long-lasting imprint on the CD4+ T cells that impacts protective immunity. However, aP vaccination might prevent disease but not infection, which might also affect the breadth of responses to Bordetella pertussis (BP) antigens. Thus, characterizing and defining novel targets associated with T cell reactivity are of considerable interest. Here, we compare the T cell reactivity of original aP and wP priming for different antigens contained or not contained in the aP vaccine and define the basis of a full-scale genomic map of memory T cell reactivity to BP antigens in humans. Our data show that the original priming after birth with aP vaccines has higher T cell reactivity than originally expected against a variety of BP antigens and that the genome-wide mapping of BP using an ex vivo screening methodology is feasible, unbiased, and reproducible. This could provide invaluable knowledge towards the direction of a new and improved pertussis vaccine design.
Collapse
|
20
|
Wang P, Huo C, Lang S, Caution K, Nick ST, Dubey P, Deora R, Huang X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti‐pertussis Vaccine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Peng Wang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Chang‐xin Huo
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Shuyao Lang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Kyle Caution
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
| | - Setare Tahmasebi Nick
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Purnima Dubey
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
| | - Rajendar Deora
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
- Department of MicrobiologyThe Ohio State University USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
- Department of Biomedical EngineeringMichigan State University USA
- Institute for Quantitative Health Science and EngineeringMichigan State University USA
| |
Collapse
|
21
|
Pertussis Vaccines and Vaccination Strategies. An Ever-Challenging Health Problem. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 31342457 DOI: 10.1007/5584_2019_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Vaccines and vaccination against pertussis (whooping cough) have had one of the longest and most complex history, with alternating splendour and public disbelief, enthusiasm and concerns, overall resulting in changes in composition and replacement of vaccines, and associated vaccination strategies, including use of different vaccines in different countries, with no apparent equals for other bacterial vaccines. Of this both frustrating and exciting venue no end has been reached. In this note, I am shortly recapitulating the history of pertussis vaccines, from the inactivated, whole-cell vaccine to the acellular ones, with their merits and limitations, particularly concerning the debated issue of waning immunity, and a glimpse on a new vaccine proposal. Some reflections on the complexity and apparent peculiarity of this field are also made to the final scope of discussing aspects of the evolving strategies of disease control in a high-income country.
Collapse
|
22
|
Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. NPJ Vaccines 2019; 4:40. [PMID: 31602318 PMCID: PMC6776550 DOI: 10.1038/s41541-019-0136-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.
Collapse
|
23
|
Bakhshaei P, Kazemi MH, Golara M, Abdolmaleki S, Khosravi-Eghbal R, Khoshnoodi J, Judaki MA, Salimi V, Douraghi M, Jeddi-Tehrani M, Shokri F. Investigation of the Cellular Immune Response to Recombinant Fragments of Filamentous Hemagglutinin and Pertactin of Bordetella pertussis in BALB/c Mice. J Interferon Cytokine Res 2019; 38:161-170. [PMID: 29638208 DOI: 10.1089/jir.2017.0060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccination with whole-cell or acellular (Ac) vaccines has been very effective for the control of pertussis. The immune response to Ac vaccines has been generally associated with a shift toward the Th2 profile. In the present study, overlapping recombinant fragments of filamentous hemagglutinin (FHA) and pertactin (PRN) were produced in Escherichia coli. BALB/c mice were immunized with recombinant FHA and PRN together with the native pertussis toxin and alum or CpG as adjuvant. Immunized mice were subsequently aerosol challenged with Bordetella pertussis. Bacterial growth was assessed in bronchoalveolar lavage samples and the levels of cytokines were quantitated in supernatants of stimulated splenocytes by enzyme-linked immunosorbent assay. Our results demonstrated that both PRN and FHA antigens were able to induce IFN-γ, IL-4, and to some extent IL-17 cytokines in challenged mice. The level of IFN-γ was higher in response to CpG formulated antigens. These findings indicate immunoprotective efficacy of our recombinant FHA and PRN antigens in mice.
Collapse
Affiliation(s)
- Peyman Bakhshaei
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Maryam Golara
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Sara Abdolmaleki
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Roya Khosravi-Eghbal
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Jalal Khoshnoodi
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Ali Judaki
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran
| | - Vahid Salimi
- 2 Department of Virology, Tehran University of Medical Sciences , Tehran, Iran
| | - Masoumeh Douraghi
- 3 Department of Microbiology, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- 4 Hybridoma Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Fazel Shokri
- 1 Department of Immunology, Tehran University of Medical Sciences , Tehran, Iran .,4 Hybridoma Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| |
Collapse
|
24
|
Auderset F, Ballester M, Mastelic-Gavillet B, Fontannaz P, Chabaud-Riou M, Reveneau N, Garinot M, Mistretta N, Liu Y, Lambert PH, Ochs M, Siegrist CA. Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circulating Antibodies: Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation. Front Immunol 2019; 10:1520. [PMID: 31333656 PMCID: PMC6618515 DOI: 10.3389/fimmu.2019.01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Pertussis is still observed in many countries despite of high vaccine coverage. Acellular pertussis (aP) vaccination is widely implemented in many countries as primary series in infants and as boosters in school-entry/adolescents/adults (including pregnant women in some). One novel strategy to improve the reactivation of aP-vaccine primed immunity could be to include genetically- detoxified pertussis toxin and novel adjuvants in aP vaccine boosters. Their preclinical evaluation is not straightforward, as it requires mimicking the human situation where T and B memory cells may persist longer than vaccine-induced circulating antibodies. Toward this objective, we developed a novel murine model including two consecutive adoptive transfers of the memory cells induced by priming and boosting, respectively. Using this model, we assessed the capacity of three novel aP vaccine candidates including genetically-detoxified pertussis toxin, pertactin, filamentous hemagglutinin, and fimbriae adsorbed to aluminum hydroxide, supplemented—or not—with Toll-Like-Receptor 4 or 9 agonists (TLR4A, TLR9A), to reactivate aP vaccine-induced immune memory and protection, reflected by bacterial clearance. In the conventional murine immunization model, TLR4A- and TLR9A-containing aP formulations induced similar aP-specific IgG antibody responses and protection against bacterial lung colonization as current aP vaccines, despite IL-5 down-modulation by both TLR4A and TLR9A and IL-17 up-modulation by TLR4A. In the absence of serum antibodies at time of boosting or exposure, TLR4A- and TLR9A-containing formulations both enhanced vaccine antibody recall compared to current aP formulations. Unexpectedly, however, protection was only increased by the TLR9A-containing vaccine, through both earlier bacterial control and accelerated clearance. This suggests that TLR9A-containing aP vaccines may better reactivate aP vaccine-primed pertussis memory and enhance protection than current or TLR4A-adjuvanted aP vaccines.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Marie Ballester
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paola Fontannaz
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | | | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. Immunization with whole cell but not acellular pertussis vaccines primes CD4 T RM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect 2019; 8:169-185. [PMID: 30866771 PMCID: PMC6455184 DOI: 10.1080/22221751.2018.1564630] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protective immunity wanes rapidly after immunization of children with acellular pertussis (aP) vaccines and these vaccines do not prevent nasal colonization or transmission of Bordetella pertussis in baboons. In this study, we examined the role of tissue-resident memory T (TRM) cells in persistent protective immunity induced by infection or immunization with aP and whole-cell pertussis (wP) vaccines in mice. Immunization of mice with a wP vaccine protected against lung and nasal colonization, whereas an aP vaccine failed to protect in the nose. IL-17 and IFN-γ-secreting CD69+CD4+ TRM cells were expanded in the lung and nasal tissue after B. pertussis challenge of mice immunized with wP, but not aP vaccines. However, previous infection induced the most persistent protection against nasal colonization and this correlated with potent induction of nasal tissue TRM cells, especially IL-17-secreting TRM cells. Blocking T cell migration to respiratory tissue during immunization with a wP vaccine impaired bacterial clearance, whereas transfer of TRM cells from convalescent or wP-immunized mice conferred protection to naïve mice. Our findings reveal that previous infection or wP vaccination are significantly more effective than aP vaccination in conferring persistent protective immunity against B. pertussis and that this is mediated by respiratory TRM cells.
Collapse
Affiliation(s)
- Mieszko M Wilk
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Lisa Borkner
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Alicja Misiak
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Lucy Curham
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Aideen C Allen
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Kingston H G Mills
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
26
|
Muhammad A, Kassmannhuber J, Rauscher M, Falcon AA, Wheeler DW, Zhang AA, Lubitz P, Lubitz W. Subcutaneous Immunization of Dogs With Bordetella bronchiseptica Bacterial Ghost Vaccine. Front Immunol 2019; 10:1377. [PMID: 31293571 PMCID: PMC6603212 DOI: 10.3389/fimmu.2019.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/31/2019] [Indexed: 11/15/2022] Open
Abstract
The Bordetella species are Gram-negative bacterial pathogens that colonizes mammalian respiratory tract causing respiratory diseases in humans and animals. B. bronchiseptica causes clinical conditions in many mammals including immunocompromised humans. Using the dog model of respiratory infection, it has been shown in this study that a newly developed B. bronchiseptica Bacterial Ghost (BbBG) vaccine exhibited significant protection in the face of a severe pathogenic bacterial challenge in seronegative dogs. The protein E-specific lysis mechanism was used to produce BbBGs. Bacterial Ghosts (BGs) are the empty cell envelope of Gram-negative bacterium. They are genetically processed to form a microscopic hole in their membrane, through which all the cytoplasmic contents are expelled leaving behind intact empty bacterial shells. Due to the intact surface structures of BGs, they offer the safety of inactivated but efficacy of live attenuated vaccines. In this study, seronegative dogs were vaccinated subcutaneously (s/c) with two different doses of a newly developed BbBG vaccine [lower 10∧5 (BbBG – 5) and higher 10∧7 (BbBG – 7)] on day 0 and 21. The animals were challenged (by aerosol) with virulent live B. bronchiseptica strains 41 days after first vaccination. The dogs vaccinated s/c with BbBG – 7 vaccine had significantly lower spontaneous coughing scores (P = 0.0001) than dogs in negative control group. Furthermore, the tested BbBG – 7 vaccine was equivalent to the positive control vaccine Bronchicine CAe in terms of safety and efficacy. For the first time, we report the successful use of liquid formulated BGs vaccines in animal studies. Earlier reported studies using BGs vaccines were performed with resuspended freeze-dried BGs preparations.
Collapse
Affiliation(s)
| | - Johannes Kassmannhuber
- BIRD-C GmbH & Co KG, Vienna, Austria.,Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Mascha Rauscher
- BIRD-C GmbH & Co KG, Vienna, Austria.,Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | | | | | - Alan A Zhang
- ELANCO Animal Health, Greenfield, IN, United States
| | | | | |
Collapse
|
27
|
Akinola F, Muloiwa R, Hussey GD, Dirix V, Kagina B, Amponsah-Dacosta E. Assessment of humoral and cell-mediated immune responses to pertussis vaccination: a systematic review protocol. BMJ Open 2019; 9:e028109. [PMID: 31182449 PMCID: PMC6561409 DOI: 10.1136/bmjopen-2018-028109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Globally, some studies show a resurgence of pertussis. The risks and benefits of using whole-cell pertussis (wP) or acellular pertussis (aP) vaccines in the control of the disease have been widely debated. Better control of pertussis will require improved understanding of the immune response to pertussis vaccines. Improved understanding and assessment of the immunity induced by pertussis vaccines is thus imperative. Several studies have documented different immunological outcomes to pertussis vaccination from an array of assays. We propose to conduct a systematic review of the different immunological assays and outcomes used in the assessment of the humoraland cell-mediated immune response following pertussis vaccination. METHODS AND ANALYSIS The primary outcomes for consideration are quality and quantity of immune responses (humoral and cell-mediated) post-pertussis vaccination. Of interest as secondary outcomes are types of immunoassays used in assessing immune responses post-pertussis vaccination, types of biological samples used in assessing immune responses post-pertussis vaccination, as well as the types of antigens used to stimulate these samples during post-pertussis vaccination immune response assessments. Different electronic databases (including PubMed, Cochrane, EBSCO Host, Scopus and Web of Science) will be accessed for peer-reviewed published and grey literature evaluating immune responses to pertussis vaccines between 1990 and 2019. The quality of included articles will be assessed using standardised risk and quality assessment tools specific to the study design used in each article. Data extraction will be done using a data extraction form. The extracted data will be analysed using STATA V.14.0 and RevMan V.5.3 software. A subgroup analysis will be conducted based on the study population, type of vaccine (wP or aP) and type of immune response (cell-mediated or humoral). Guidelines for reporting systematic reviews in the revised 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement will be used in this study. ETHICS AND DISSEMINATION Ethics approval is not required for this study as it is a systematic review. We will only make use of data already available in the public space. Findings will be reported via publication in a peer-reviewed journal and presented at scientific meetings and workshops. TRIAL REGISTRATION NUMBER CRD42018102455.
Collapse
Affiliation(s)
- Funbi Akinola
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rudzani Muloiwa
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Gregory D Hussey
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Kagina
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Edina Amponsah-Dacosta
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Argondizo-Correia C, Rodrigues AKS, de Brito CA. Neonatal Immunity to Bordetella pertussis Infection and Current Prevention Strategies. J Immunol Res 2019; 2019:7134168. [PMID: 30882004 PMCID: PMC6387735 DOI: 10.1155/2019/7134168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023] Open
Abstract
Bordetella pertussis is the bacterial agent of whooping cough, an infectious disease that is reemerging despite high vaccine coverage. Newborn children are the most affected, not only because they are too young to be vaccinated but also due to qualitative and quantitative differences in their immune system, which makes them more susceptible to infection and severe manifestations, leading to a higher mortality rate comparing to other groups. Until recently, prevention consisted of vaccinating children in the first year of life and the herd vaccination of people directly in touch with them, but the increase in cases demands more effective strategies that can overcome the developing immune response in early life and induce protection while children are most vulnerable.
Collapse
Affiliation(s)
- Carolina Argondizo-Correia
- Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar Avenue 470 Jardim América, São Paulo, SP 05403-000, Brazil
- Immunology Centre, Adolfo Lutz Institute, Dr. Arnaldo Avenue 351 Cerqueira César, São Paulo, SP 01246-000, Brazil
| | - Ana Kelly Sousa Rodrigues
- Immunology Centre, Adolfo Lutz Institute, Dr. Arnaldo Avenue 351 Cerqueira César, São Paulo, SP 01246-000, Brazil
| | - Cyro Alves de Brito
- Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar Avenue 470 Jardim América, São Paulo, SP 05403-000, Brazil
- Immunology Centre, Adolfo Lutz Institute, Dr. Arnaldo Avenue 351 Cerqueira César, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
29
|
Torkashvand A, Bahrami F, Adib M, Ajdary S. Subcutaneous Immunization with Recombinant Lactococcus lactis Expressing F1S1 Fusion Protein Induces Systemic and Mucosal Immune Responses in BALB/C Mice. Rep Biochem Mol Biol 2019; 7:196-203. [PMID: 30805400 PMCID: PMC6374061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lactic acid bacteria such as Lactococcus (L.) lactis are powerful tools that can function as live delivery vectors and heterologous protein expression hosts in development of novel vaccines. Pertussis toxin (PT) and filamentous hemagglutinin (FHA) are important virulence factors of Bordetella (B.) pertussis and constitute the major components of commercially available acellular pertussis (aP) vaccines. The purpose of the present study was to express F1S1 fusion protein, consisted of the N-terminal region of S1 subunit from PT and FHA type 1 immunodominant domain by L. lactis and to evaluate its immunogenicity. METHODS The fusion gene composed of sequences encoding the F1S1 and the signal peptide of usp45 fragments (SECF1S1) was codon optimized for protein production in L. lactis and was synthesized and inserted in-frame inside pNZ8149 plasmid. The resulting pNZ8149-SECF1S1 construct was introduced by electroporation into L. lactis cells (LL-F1S1). BALB/c mice were subcutaneously immunized with LL-F1S1 or commercial DTaP vaccine. The immune responses were investigated. RESULTS The LL-F1S1-immunized mice produced significant levels of specific IFN-g compared to their respective controls and DTaP-immunized mice. The F1S1- specific IgG antibody response was lower in LL-F1S1-immunized mice while the IgG2a/IgG1 ratio was higher in this group compared to the DTaP-immunized mice. Moreover, anti-F1S1 IgA antibodies were only detected in the lung homogenates of the LL-F1S1-immunized mice, suggesting the induction of a mucosal immune response. CONCLUSION These results indicate the feasibility of expression of F1S1 fusion protein in L. lactis. This recombinant bacterium could induce mucosal and Th1-type systemic immune responses following subcutaneous administration.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR-Iran.
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran 13169-43551, IR-Iran.
| | - Minoo Adib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR-Iran.
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran 13169-43551, IR-Iran.
| |
Collapse
|
30
|
Human Immune Responses to Pertussis Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:99-113. [PMID: 31342460 DOI: 10.1007/5584_2019_406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pertussis still represents a major cause of morbidity and mortality worldwide. Although vaccination is the most powerful tool in preventing pertussis and despite nearly 70 years of universal childhood vaccination, incidence of the disease has been rising in the last two decades in countries with high vaccination coverage. Two types of vaccines are commercially available against pertussis: whole-cell pertussis vaccines (wPVs) introduced in the 1940s and still in use especially in low and middle-income countries; less reactogenic acellular pertussis vaccines (aPVs), licensed since the mid-1990s.In the last years, studies on pertussis vaccination have highlighted significant gaps and major differences between the two types of vaccines in the induction of protective anti-pertussis immunity in humans. This chapter will discuss the responses of the immune system to wPVs and aPVs, with the aim to enlighten critical points needing further efforts to reach a good level of protection in vaccinated individuals.
Collapse
|
31
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
32
|
Tian Y, da Silva Antunes R, Sidney J, Lindestam Arlehamn CS, Grifoni A, Dhanda SK, Paul S, Peters B, Weiskopf D, Sette A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front Immunol 2018; 9:2778. [PMID: 30555469 PMCID: PMC6281829 DOI: 10.3389/fimmu.2018.02778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
In the present review, we summarize work from our as well as other groups related to the characterization of bacterial T cell epitopes, with a specific focus on two important pathogens, namely, Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), and Bordetella pertussis (BP), the bacterium that causes whooping cough. Both bacteria and their associated diseases are of large societal significance. Although vaccines exist for both pathogens, their efficacy is incomplete. It is widely thought that defects and/or alteration in T cell compartments are associated with limited vaccine effectiveness. As discussed below, a full genome-wide map was performed in the case of Mtb. For BP, our focus has thus far been on the antigens contained in the acellular vaccine; a full genome-wide screen is in the planning stage. Nevertheless, the sum-total of the results in the two different bacterial systems allows us to exemplify approaches and techniques that we believe are generally applicable to the mapping and characterization of human immune responses to bacterial pathogens. Finally, we add, as a disclaimer, that this review by design is focused on the work produced by our laboratory as an illustration of approaches to the study of T cell responses to Mtb and BP, and is not meant to be comprehensive, nor to detract from the excellent work performed by many other groups.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
33
|
Varney ME, Boehm DT, DeRoos K, Nowak ES, Wong TY, Sen-Kilic E, Bradford SD, Elkins C, Epperly MS, Witt WT, Barbier M, Damron FH. Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice. Front Immunol 2018; 9:2376. [PMID: 30405604 PMCID: PMC6200895 DOI: 10.3389/fimmu.2018.02376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response.
Collapse
Affiliation(s)
- Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Katherine DeRoos
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Evan S Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Shebly D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Cody Elkins
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S Epperly
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
34
|
da Silva Antunes R, Babor M, Carpenter C, Khalil N, Cortese M, Mentzer AJ, Seumois G, Petro CD, Purcell LA, Vijayanand P, Crotty S, Pulendran B, Peters B, Sette A. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest 2018; 128:3853-3865. [PMID: 29920186 DOI: 10.1172/jci121309] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
In the mid-1990s, whole-cell pertussis (wP) vaccines were associated with local and systemic adverse events that prompted their replacement with acellular pertussis (aP) vaccines in many high-income countries. In the past decade, rates of pertussis disease have increased in children receiving only aP vaccines. We compared the immune responses to aP boosters in individuals who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a type 2/Th2 versus type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were (a) associated with increased IL-4, IL-5, IL-13, IL-9, and TGF-β and decreased IFN-γ and IL-17 production, (b) defective in their ex vivo capacity to expand memory cells, and (c) less capable of proliferating in vitro. These differences appeared to be T cell specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that there are long-lasting effects and differences in polarization and proliferation of T cell responses in adults originally vaccinated with aP compared with those that initially received wP, despite repeated acellular boosters.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Lisa A Purcell
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| |
Collapse
|
35
|
Torkashvand A, Bahrami F, Adib M, Ajdary S. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis. Microb Pathog 2018; 120:155-160. [PMID: 29738814 PMCID: PMC7125623 DOI: 10.1016/j.micpath.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Lactococcus lactis was used for expression of fusion protein from Bordetella pertussis. BALB/c mice were immunized via oral or intranasal routes with recombinant L. lactis. Strong mucosal and Th1 systemic immune responses were developed. L. lactis is a suitable vehicle for expression and delivery of B. pertussis fusion protein.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13169-43551, Islamic Republic of Iran
| | - Minoo Adib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13169-43551, Islamic Republic of Iran.
| |
Collapse
|
36
|
Affiliation(s)
- Heather L Daniels
- Center for Pediatric Infectious Diseases, Cleveland Clinic Children's, Cleveland, OH
| | - Camille Sabella
- Center for Pediatric Infectious Diseases, Cleveland Clinic Children's, Cleveland, OH
| |
Collapse
|
37
|
Ausiello CM, Palazzo R, Spensieri F, Urbani F, Massari M, Triebel F, Benagiano M, D'Elios MM, Prete GD, Cassone A. Soluble CD30 and Lymphocyte Activation Gene-3 (CD223), as Potential Serological Markers of T Helper-Type Cytokine Response Induced by Acellular Pertussis Vaccine. Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
T cell responses are involved in vaccine-induced immunity to pertussis but no easy-to-monitor, serological markers are available to assess these responses. The lymphocyte activation gene-3 (CD223) molecule is present on, and released by, activated T helper (Th) 1 cells, whereas CD30 molecules have been associated with Th2 immune responses. Starting from the recent knowledge of the cytokine profile induced by pertussis vaccination, we examined the levels of soluble (s)CD223 and sCD30 proteins in child recipients of acellular pertussis (aP) and diphtheria-tetanus (DT) vaccines and in children receiving DT vaccine only, as control. The correlation of the two proteins with specific antibody and T cell responses was assessed. The main findings are: i) sCD223 and sCD30 levels are inversely related, suggesting that the two markers are the expression of different and counter-regulated T-cell responses; ii) sCD30 level correlated with induction of T cell proliferation to pertussis vaccine antigens and antibody response to pertussis toxin. Overall, sCD30 and sCD223 levels seem to be promising candidate markers to assess the induction of Th-type responses in vaccine recipients.
Collapse
Affiliation(s)
- C. M. Ausiello
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - R. Palazzo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - F. Spensieri
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - F. Urbani
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M. Massari
- National Centre for Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - F. Triebel
- E.A. 35.45, Faculte de Pharmacie, Chatenay-Malabry, France
| | - M. Benagiano
- Department of Internal Medicine, University of Florence, Florence, Italy
| | - M. M. D'Elios
- Department of Internal Medicine, University of Florence, Florence, Italy
| | - G. Del Prete
- Department of Internal Medicine, University of Florence, Florence, Italy
| | - A. Cassone
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
38
|
Burdin N, Handy LK, Plotkin SA. What Is Wrong with Pertussis Vaccine Immunity? The Problem of Waning Effectiveness of Pertussis Vaccines. Cold Spring Harb Perspect Biol 2017; 9:a029454. [PMID: 28289064 PMCID: PMC5710106 DOI: 10.1101/cshperspect.a029454] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pertussis is resurgent in some countries, particularly those in which children receive acellular pertussis (aP) vaccines in early infancy and boosters later in life. Immunologic studies show that, whereas whole-cell pertussis (wP) vaccines orient the immune system toward Th1/Th17 responses, acellular pertussis vaccines orient toward Th1/Th2 responses. Although aP vaccines do provide protection during the first years of life, the change in T-cell priming results in waning effectiveness of aP as early as 2-3 years post-boosters. Although other factors, such as increased virulence of pertussis strains, better diagnosis, and better surveillance may play a role, the increase in pertussis appears to be the result of waning immunity. In addition, studies in baboon models, requiring confirmation in humans, show that aP is less able to prevent nasopharyngeal colonization of Bordetella pertussis than wP or natural infection.
Collapse
Affiliation(s)
- Nicolas Burdin
- EU Research and Non Clinical Safety, R&D, Sanofi Pasteur, Campus Mérieux, 69280 Marcy l'Etoile, France
| | - Lori Kestenbaum Handy
- Assistant Professor of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Division of Infectious Diseases, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania 18902
| |
Collapse
|
39
|
Leroux-Roels G, Lattanzi M, Solis CD, Contorni M, Costantini M, Moraschini L, Bardelli M, Bertholet S, Borgogni E, Buricchi F, Cantisani R, Faenzi E, Finco O, Leuzzi R, Pizza M, Rosa D, Schiavetti F, Seubert A, Spensieri F, Volpini G, Zedda L, Giudice GD, Galgani I. A phase I, randomized, controlled, dose-ranging study of investigational acellular pertussis (aP) and reduced tetanus-diphtheria-acellular pertussis (TdaP) booster vaccines in adults. Hum Vaccin Immunother 2017; 14:45-58. [PMID: 29172945 PMCID: PMC5791588 DOI: 10.1080/21645515.2017.1385686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- a Centre for Vaccinology, Ghent University and University Hospital , Ghent , Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins (Basel) 2017; 9:toxins9100293. [PMID: 28934122 PMCID: PMC5666340 DOI: 10.3390/toxins9100293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/27/2023] Open
Abstract
Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.
Collapse
|
41
|
Mitchell TC, Casella CR. No pain no gain? Adjuvant effects of alum and monophosphoryl lipid A in pertussis and HPV vaccines. Curr Opin Immunol 2017; 47:17-25. [PMID: 28728074 DOI: 10.1016/j.coi.2017.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Development of non-infectious subunit vaccines is hampered by a slow pipeline of new adjuvants to replace or enhance alum in part because expectations of safety are high. Transient vaccine side effects are not clinical priorities because they cause no lasting harm and vaccine development has appropriately been focused on avoidance of serious adverse events. As a result, surprisingly little is known about the extent to which side effects caused by a vaccine's reactogencicity are predictive of successful immunization outcomes. Recent clinical studies of pertussis and human papillomavirus vaccines adjuvanted with alum or the TLR4 agonist monophosphoryl lipid A can be used to advance understanding of the relationship between vaccine side effects and immunization outcomes.
Collapse
Affiliation(s)
- Thomas C Mitchell
- The University of Louisville School of Medicine, Department of Microbiology and Immunology, Institute for Cellular Therapeutics, 570 S. Preston St., Donald Baxter Bldg., Louisville, KY 40202, USA.
| | - Carolyn R Casella
- The University of Louisville School of Medicine, Department of Microbiology and Immunology, Institute for Cellular Therapeutics, 570 S. Preston St., Donald Baxter Bldg., Louisville, KY 40202, USA
| |
Collapse
|
42
|
Bordetella PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proc Natl Acad Sci U S A 2017; 114:E1519-E1527. [PMID: 28167784 DOI: 10.1073/pnas.1609565114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial pathogens coordinate virulence using two-component regulatory systems (TCS). The Bordetella virulence gene (BvgAS) phosphorelay-type TCS controls expression of all known protein virulence factor-encoding genes and is considered the "master virulence regulator" in Bordetella pertussis, the causal agent of pertussis, and related organisms, including the broad host range pathogen Bordetella bronchiseptica We recently discovered an additional sensor kinase, PlrS [for persistence in the lower respiratory tract (LRT) sensor], which is required for B. bronchiseptica persistence in the LRT. Here, we show that PlrS is required for BvgAS to become and remain fully active in mouse lungs but not the nasal cavity, demonstrating that PlrS coordinates virulence specifically in the LRT. PlrS is required for LRT persistence even when BvgAS is rendered constitutively active, suggesting the presence of BvgAS-independent, PlrS-dependent virulence factors that are critical for bacterial survival in the LRT. We show that PlrS is also required for persistence of the human pathogen B. pertussis in the murine LRT and we provide evidence that PlrS most likely functions via the putative cognate response regulator PlrR. These data support a model in which PlrS senses conditions present in the LRT and activates PlrR, which controls expression of genes required for the maintenance of BvgAS activity and for essential BvgAS-independent functions. In addition to providing a major advance in our understanding of virulence regulation in Bordetella, which has served as a paradigm for several decades, these results indicate the existence of previously unknown virulence factors that may serve as new vaccine components and therapeutic or diagnostic targets.
Collapse
|
43
|
Sirivichayakul C, Chanthavanich P, Limkittikul K, Siegrist CA, Wijagkanalan W, Chinwangso P, Petre J, Hong Thai P, Chauhan M, Viviani S. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults. Hum Vaccin Immunother 2016; 13:136-143. [PMID: 27686283 PMCID: PMC5287298 DOI: 10.1080/21645515.2016.1234555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: An acellular Pertussis (aP) vaccine containing recombinant genetically detoxified Pertussis Toxin (PTgen), Filamentous Hemagglutinin (FHA) and Pertactin (PRN) has been developed by BioNet-Asia (BioNet). We present here the results of the first clinical study of this recombinant aP vaccine formulated alone or in combination with tetanus and diphtheria toxoids (TdaP). Methods: A phase I/II, observer-blind, randomized controlled trial was conducted at Mahidol University in Bangkok, Thailand in healthy adult volunteers aged 18–35 y. The eligible volunteers were randomized to receive one dose of either BioNet's aP or Tetanus toxoid-reduced Diphtheria toxoid-acellular Pertussis (TdaP) vaccine, or the Tdap Adacel® vaccine in a 1:1:1 ratio. Safety follow-up was performed for one month. Immunogenicity was assessed at baseline, at 7 and 28 d after vaccination. Anti-PT, anti-FHA, anti-PRN, anti-tetanus and anti-diphtheria IgG antibodies were assessed by ELISA. Anti-PT neutralizing antibodies were assessed also by CHO cell assay. Results: A total of 60 subjects (20 per each vaccine group) were enrolled and included in the safety analysis. Safety laboratory parameters, incidence of local and systemic post-immunization reactions during 7 d after vaccination and incidence of adverse events during one month after vaccination were similar in the 3 vaccine groups. One month after vaccination, seroresponse rates of anti-PT, anti-FHA and anti-PRN IgG antibodies exceeded 78% in all vaccine groups. The anti-PT IgG, anti-FHA IgG, and anti-PT neutralizing antibody geometric mean titers (GMTs) were significantly higher following immunization with BioNet's aP and BioNet's TdaP than Adacel® (P< 0.05). The anti-PRN IgG, anti-tetanus and anti-diphtheria GMTs at one month after immunization were comparable in all vaccine groups. All subjects had seroprotective titers of anti-tetanus and anti-diphtheria antibodies at baseline. Conclusion: In this first clinical study, PTgen-based BioNet's aP and TdaP vaccines showed a similar tolerability and safety profile to Adacel® and elicited significantly higher immune responses to PT and FHA.
Collapse
Affiliation(s)
- Chukiat Sirivichayakul
- a Department of Tropical Pediatrics , Faculty of Tropical Medicine, Mahidol University , Bangkok , Thailand
| | - Pornthep Chanthavanich
- a Department of Tropical Pediatrics , Faculty of Tropical Medicine, Mahidol University , Bangkok , Thailand
| | - Kriengsak Limkittikul
- a Department of Tropical Pediatrics , Faculty of Tropical Medicine, Mahidol University , Bangkok , Thailand
| | - Claire-Anne Siegrist
- b WHO Collaborating Center for Vaccine Immunology, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | | | | | - Jean Petre
- c BioNet-Asia Co., Ltd., Prakanong , Bangkok , Thailand
| | | | | | | |
Collapse
|
44
|
Li P, Asokanathan C, Liu F, Khaing KK, Kmiec D, Wei X, Song B, Xing D, Kong D. PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model. Int J Pharm 2016; 513:183-190. [PMID: 27586408 DOI: 10.1016/j.ijpharm.2016.08.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) based nano/micro particles were investigated as a potential vaccine platform for pertussis antigen. Presentation of pertussis toxoid as nano/micro particles (NP/MP) gave similar antigen-specific IgG responses in mice compared to soluble antigen. Notably, in cell line based assays, it was found that PLGA based nano/micro particles enhanced the phagocytosis of fluorescent antigen-nano/micro particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen. More importantly, when mice were immunised with the antigen-nano/micro particles they significantly increased antigen-specific Th1 cytokines INF-γ and IL-17 secretion in splenocytes after in vitro re-stimulation with heat killed Bordetalla pertussis, indicating the induction of a Th1/Th17 response. Also, presentation of pertussis antigen in a NP/MP formulation is able to provide protection against respiratory infection in a murine model. Thus, the NP/MP formulation may provide an alternative to conventional acellular vaccines to achieve a more balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Pan Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin 300192, China
| | - Catpagavalli Asokanathan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Fang Liu
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - Kyi Kyi Khaing
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Dorota Kmiec
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Xiaoqing Wei
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, Collegeof Biomedical and Life Sciences, Cardiff University, UK
| | - Bing Song
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, Collegeof Biomedical and Life Sciences, Cardiff University, UK
| | - Dorothy Xing
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Deling Kong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin 300192, China.
| |
Collapse
|
45
|
Hoonakker ME, Verhagen LM, van der Maas L, Metz B, Uittenbogaard JP, van de Waterbeemd B, van Els CACM, van Eden W, Hendriksen CFM, Sloots A, Han WGH. Adaptive immune response to whole cell pertussis vaccine reflects vaccine quality: A possible complementation to the Pertussis Serological Potency test. Vaccine 2016; 34:4429-36. [PMID: 27452867 DOI: 10.1016/j.vaccine.2016.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/17/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022]
Abstract
Whole cell Bordetella pertussis (wP) vaccines are still used in many countries to protect against the respiratory disease pertussis. The potency of whole-cell pertussis vaccine lots is determined by an intracerebral challenge test (the Kendrick test). This test is criticized due to lack of immunological relevance of the read-out after an intracerebral challenge with B. pertussis. The alternative in vivo test, which assesses specific antibody levels in serum after wP vaccination, is the Pertussis Serological Potency test (PSPT). Although the PSPT focuses on a parameter that contributes to protection, the protective immune mechanisms after wP vaccination includes more elements than specific antibody responses only. In this study, additional parameters were investigated, i.e. circulating pro-inflammatory cytokines, antibody specificity and T helper cell responses and it was evaluated whether they can be used as complementary readout parameters in the PSPT to assess wP lot quality. By deliberate manipulation of the vaccine preparation procedure, a panel of high, intermediate and low quality wP vaccines were made. The results revealed that these vaccines induced similar IL-6 and IP10 levels in serum 4h after vaccination (innate responses) and similar antibody levels directed against the entire bacterium. In contrast, the induced antibody specificity to distinct wP antigens differed after vaccination with high, intermediate and low quality wP vaccines. In addition, the magnitude of wP-induced Th cell responses (Th17, Th1 and Th2) was reduced after vaccination with a wP vaccine of low quality. T cell responses and antibody specificity are therefore correlates of qualitative differences in the investigated vaccines, while the current parameter of the PSPT alone was not sensitive enough to distinguish between vaccines of different qualities. This study demonstrates that assessment of the magnitude of Th cell responses and the antigen specificity of antibodies induced by wP vaccination could form valuable complementary parameters to the PSPT.
Collapse
Affiliation(s)
- M E Hoonakker
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department Animals in Science and Society, Utrecht, The Netherlands.
| | - L M Verhagen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands; Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - L van der Maas
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - B Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - J P Uittenbogaard
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - B van de Waterbeemd
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - C A C M van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - W van Eden
- Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands
| | - C F M Hendriksen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department Animals in Science and Society, Utrecht, The Netherlands
| | - A Sloots
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - W G H Han
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
46
|
Venter C, Stowe J, Andrews NJ, Miller E, Turner PJ. No association between atopic outcomes and type of pertussis vaccine given in children born on the Isle of Wight 2001-2002. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:1248-1250. [PMID: 27372600 PMCID: PMC5123618 DOI: 10.1016/j.jaip.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Carina Venter
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, United Kingdom; School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom
| | - Julia Stowe
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Nick J Andrews
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Elizabeth Miller
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Paul J Turner
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom; The Section of Paediatrics (Allergy and Infectious Diseases) and MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom.
| |
Collapse
|
47
|
Holt PG, Snelling T, White OJ, Sly PD, DeKlerk N, Carapetis J, Biggelaar AVD, Wood N, McIntyre P, Gold M. Transiently increased IgE responses in infants and pre-schoolers receiving only acellular Diphtheria-Pertussis-Tetanus (DTaP) vaccines compared to those initially receiving at least one dose of cellular vaccine (DTwP) - Immunological curiosity or canary in the mine? Vaccine 2016; 34:4257-4262. [PMID: 27265452 DOI: 10.1016/j.vaccine.2016.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/06/2016] [Accepted: 05/18/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several previous studies have highlighted the strong Th2-polarising and IgE-promoting activity of the DTaP vaccine, but there is no evidence that this has pathological consequences and accordingly there is no current interest amongst vaccine developers in reformulating DTaP to attenuate these properties. In light of an apparent resurgence in pertussis in many countries, and emerging evidence from other areas of paediatric immunology of IgE-mediated interference with host defence mechanisms, this issue requires more detailed clarification. METHODS We have re-evaluated the impact of DTaP-only versus mixed DTwP/DTaP vaccination on Th2-dependent "bystander" IgE responses in three cohorts of children under different priming conditions, encompassing both vaccine-targeted and unrelated antigens including food allergens. RESULTS We confirm the generalised IgE-trophic activity of the DTaP vaccine in pre-schoolers and demonstrate similar (albeit transient) effects in infants. We additionally demonstrate that use of an alternative mixed infant priming schedule encompassing an initial dose of DTwP significantly attenuates this property. INTERPRETATION Central to our interpretation of these findings are studies demonstrating: (i) mixed DTwP/DTaP priming improves resistance to pertussis disease and attenuates the IgE-stimulatory component of long term vaccine-specific memory; (ii) IgE-mediated mechanisms can interfere with innate antiviral immunity and accordingly exacerbate airway symptoms in infected children. These observations, taken together with the data presented here, suggest a plausible mechanistic link between baseline pertussis-specific IgE titres in DTaP vaccinees and susceptibility to pertussis disease, which merits testing. Retrospective IgE analyses on sera collected from children at the time of presentation with pertussis could resolve this issue.
Collapse
Affiliation(s)
- Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - Tom Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Olivia J White
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas DeKlerk
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Jonathan Carapetis
- Telethon Kids Institute, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Anita Van Den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, Sydney, Australia
| | - Peter McIntyre
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, Sydney, Australia
| | - Michael Gold
- Discipline of Paediatrics, School of Medicine, University of Adelaide, Australia
| |
Collapse
|
48
|
Abstract
Pertussis, caused by Bordetella (B.) pertussis, a Gram-negative bacterium, is a highly contagious airway infection. Especially in infants, pertussis remains a major health concern. Acute infection with B. pertussis can cause severe illness characterized by severe respiratory failure, pulmonary hypertension, leucocytosis, and death. Over the past years, rising incidence rates of intensive care treatment in young infants were described. Due to several virulence factors (pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and lipooligosaccharide) that promote bacterial adhesion and invasion, B. pertussis creates a unique niche for colonization within the human respiratory tract. The resulting long-term infection is mainly caused by the ability of B. pertussis to interfere with the host's innate and adaptive immune system. Although pertussis is a vaccine-preventable disease, it has persisted in vaccinated populations. Epidemiological data reported a worldwide increase in pertussis incidence among children during the past years. Either acellular pertussis (aP) vaccines or whole-cell vaccines are worldwide used. Recent studies did not detect any differences according to pertussis incidence when comparing the different vaccines used. Most of the currently used aP vaccines protect against acute infections for a period of 6-8 years. The resurgence of pertussis may be due to the lack of herd immunity caused by missing booster immunizations among adolescents and adults, low vaccine coverages in some geographic areas, and genetic changes of different B. pertussis strains. Due to the rising incidence of pertussis, probable solution strategies are discussed. Cocooning strategies (vaccination of close contact persons) and immunizations during pregnancy appear to be an approach to reduce neonatal contagiousness. During the past years, studies focused on the pathway of the immune modulation done by B. pertussis to provide a basis for the identification of new therapeutic targets to enhance the host's immune response and to probably modulate certain virulence factors.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Bancroft T, Dillon MBC, da Silva Antunes R, Paul S, Peters B, Crotty S, Lindestam Arlehamn CS, Sette A. Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood. Cell Immunol 2016; 304-305:35-43. [PMID: 27212461 DOI: 10.1016/j.cellimm.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/11/2022]
Abstract
The recent increase in cases of whooping cough among teenagers in the US suggests that the acellular Bordetella pertussis vaccine (aP) that became standard in the mid 1990s might be relatively less effective than the whole-bacteria formulation (wP) previously used since the 1950s. To understand this effect, we compared antibody and T cell responses to a booster immunization in subjects who received either the wP or aP vaccine as their initial priming dose in childhood. Antibody responses in wP- and aP-primed donors were similar. Magnitude of T cell responses was higher in aP-primed individuals. Epitope mapping revealed the T cell immunodominance patterns were similar for both vaccines. Further comparison of the ratios of IFNγ and IL-5 revealed that IFNγ strongly dominates the T cell response in wP-primed donors, while IL-5 is dominant in aP primed individuals. Surprisingly, this differential pattern is maintained after booster vaccination, at times from eighteen years to several decades after the original aP/wP priming. These findings suggest that childhood aP versus wP vaccination induces functionally different T cell responses to pertussis that become fixed and are unchanged even upon boosting.
Collapse
Affiliation(s)
- Tara Bancroft
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Myles B C Dillon
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Shane Crotty
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Xing D, Asokanathan C, Xu YH, Bolgiano B, Douglas-Bardsley A, Zhang S, Wang J, Corbel M. Relationship of immunogenicity to protective potency in acellular pertussis vaccines. Hum Vaccin Immunother 2016; 10:2066-73. [PMID: 25424817 DOI: 10.4161/hv.28765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Comparison of the immunogenicity response and resistance to challenge in the modified intracerebral challenge assay induced by various acellular pertussis vaccines showed that these were not closely linked. The immunogenicity assay was effective for confirming the presence of specific antigenic components and was invaluable for detecting minor components present in co-purified vaccines. However, the magnitude of antibody responses was not consistently related to antigen concentration nor did it correlate with protection in the modified intracerebral challenge assay. The immunogenicity assay detected degradation of pertussis toxin and pertactin components but not of filamentous haemagglutinin or fimbriae 2 and 3 in denatured acellular pertussis vaccines. The modified intracerebral challenge assay was effective in detecting antigen degradation in all types of acellular pertussis vaccines including those of European/North American origin but was dominated by the response to pertussis toxin. Aerosol challenge was more sensitive in detecting denaturation of filamentous haemagglutinin or fimbriae. The modified intracerebral challenge assay was the only assay that provided a quantitative indication of protective activity. Both immunogenicity and challenge assays provided useful data on acellular pertussis vaccine properties but were complementary and not alternatives.
Collapse
Affiliation(s)
- Dorothy Xing
- a National Institute for Biological Standards and Control (NIBSC); South Mimms, Potters Bar, Hertfordshire UK
| | | | | | | | | | | | | | | |
Collapse
|