1
|
Ahmed RM, Enan G, Saed S, Askora A. Hyaluronic acid production by Klebsiella pneumoniae strain H15 (OP354286) under different fermentation conditions. BMC Microbiol 2023; 23:295. [PMID: 37848828 PMCID: PMC10580645 DOI: 10.1186/s12866-023-03035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Hyaluronic acid (HA) has gained significant attention due to its unique physical, chemical, and biological properties, making it widely used in various industries. This study aimed to screen bacterial isolates for HA production, characterize favorable fermentation conditions, and evaluate the inhibitory effect of bacterial HA on cancer cell lines. RESULTS A total of 108 bacterial isolates from diverse sources were screened for HA production using HPLC, turbidimetric, and carbazole determination methods. Among the HA-producing isolates, Klebsiella pneumoniae H15 isolated from an animal feces sample, was superior in HA production. The strain was characterized based on its morphological, cultural, and biochemical characteristics. Molecular identification using 16S rDNA sequencing and phylogenetic analysis confirmed its identity. Fermentation conditions, including pH, temperature, time, and agitation rate, were optimized to maximize HA production. The basal medium, comprising sucrose (7.0%) as carbon source and combined yeast extract with peptone (1.25% each) as nitrogen substrate, favored the highest HA production at pH 8.0, for 30 h, at 30 °C, under shaking at 180 rpm. The average maximized HA concentration reached 1.5 g L-1. Furthermore, bacterial HA exhibited a significant inhibitory effect on three cancer cell lines (MCF-7, HepG-2 and HCT), with the lowest concentration ranging from 0.98-3.91 µg mL-1. CONCLUSIONS K. pneumoniae H15, isolated from animal feces demonstrated promising potential for HA production. The most favorable fermentation conditions led to a high HA production. The inhibitory effect of bacterial HA on cancer cell lines highlights its potential therapeutic applications. These findings contribute to a broader understanding and utilization of HA in various industries and therapeutic applications.
Collapse
Affiliation(s)
- Rania M Ahmed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gamal Enan
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Safaa Saed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Askora
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 2015; 99:9349-60. [PMID: 26362682 DOI: 10.1007/s00253-015-6947-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets.
Collapse
|
3
|
Wollein Waldetoft K, Råberg L. To harm or not to harm? On the evolution and expression of virulence in group A streptococci. Trends Microbiol 2013; 22:7-13. [PMID: 24238777 DOI: 10.1016/j.tim.2013.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 12/20/2022]
Abstract
Group A streptococci (GAS) cause three different types of infection (sensu lato) with distinct levels of virulence: asymptomatic colonization, superficial symptomatic infection, and invasive infection. To address why this pattern with several infection types has evolved, we combine mechanistic understanding from infection medicine with recent theory from evolutionary ecology. We propose that asymptomatic colonization and superficial symptomatic infection exploit different states of the host epithelium to maximize transmission between hosts in different epidemiological conditions, whereas the ability of the bacteria to cause invasive infection is a non-adaptive side effect of traits required for superficial symptomatic infection.
Collapse
Affiliation(s)
| | - Lars Råberg
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
4
|
Zhou Y, Hanks TS, Feng W, Li J, Liu G, Liu M, Lei B. The sagA/pel locus does not regulate the expression of the M protein of the M1T1 lineage of group A Streptococcus. Virulence 2013; 4:698-706. [PMID: 24121654 DOI: 10.4161/viru.26413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Altered expression of Group A Streptococcus (GAS) virulence factors, including the M protein, can result as a consequence of spontaneous genetic changes that occur during laboratory and animal passage. Occurrence of such secondary mutations during targeted gene deletion could confound the interpretation of effects attributable to the function of the gene being investigated. Contradicting reports on whether the sagA/pel locus regulates the M protein-encoding emm might be due to inconsistent occurrence of mutations unrelated with sagA. This study examined the possibility that altered emm expression observed in association with sagA/pel deletion mutants is artifactual. sagA deletion mutants (MGAS2221ΔsagA) of M1T1 isolate MGAS2221 obtained using liquid broth for GAS growth during the deletion process had diminished emm transcription and no detectable M protein production. In contrast, a ΔsagA mutant of another closely genetically related M1T1 isolate had normal emm expression. The sagB gene does not regulate emm; however, one of three MGAS2221ΔsagB mutants had diminished emm expression. The emm regulator mga was downregulated in these M protein expression-negative strains. These results argue that sagA deletion does not directly cause the downregulation of emm expression. Indeed, two MGAS2221ΔsagA mutants obtained using agar plates for GAS growth during the deletion process both had normal emm expression. We conclude that the sagA/pel locus does not regulate emm expression in the M1T1 lineage and provide a protocol for targeted gene deletion that we find less prone to the generation of mutants exhibiting downregulation in emm expression.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan, P.R. China; Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Tracey S Hanks
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Wenchao Feng
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan, P.R. China; Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Guanghui Liu
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Mengyao Liu
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Benfang Lei
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| |
Collapse
|
5
|
Cho KH, Wright J, Svencionis J, Kim JH. The prince and the pauper: which one is real? The problem of secondary mutation during mutagenesis in Streptococcus pyogenes. Virulence 2013; 4:664-5. [PMID: 24128432 PMCID: PMC3925696 DOI: 10.4161/viru.26767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Kyu Hong Cho
- Department of Microbiology; Southern Illinois University; Carbondale, IL USA
| | - Jordan Wright
- Department of Microbiology; Southern Illinois University; Carbondale, IL USA
| | - Juan Svencionis
- Department of Microbiology; Southern Illinois University; Carbondale, IL USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine; The George Washington University Medical Center; Washington, DC USA
| |
Collapse
|
6
|
Savic DJ, McShan WM. Long-term survival of Streptococcus pyogenes in rich media is pH-dependent. MICROBIOLOGY-SGM 2012; 158:1428-1436. [PMID: 22361943 DOI: 10.1099/mic.0.054478-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6-7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes.
Collapse
Affiliation(s)
- Dragutin J Savic
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, PO Box 26901, Oklahoma City, OK 73190, USA
| | - William M McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, PO Box 26901, Oklahoma City, OK 73190, USA
| |
Collapse
|
7
|
Izawa N, Serata M, Sone T, Omasa T, Ohtake H. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng 2011; 111:665-70. [DOI: 10.1016/j.jbiosc.2011.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
|
8
|
Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J Bacteriol 2010; 192:3645-53. [PMID: 20472797 DOI: 10.1128/jb.00166-10] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The publication of the complete genome sequence for Mycobacterium tuberculosis H37Rv in 1998 has had a great impact on the research community. Nonetheless, it is suspected that genetic differences have arisen in stocks of H37Rv that are maintained in different laboratories. In order to assess the consistency of the genome sequences among H37Rv strains in use and the extent to which they have diverged from the original strain sequenced, we carried out whole-genome sequencing on six strains of H37Rv from different laboratories. Polymorphisms at 73 sites were observed, which were shared among the lab strains, though 72 of these were also shared with H37Ra and are likely to be due to sequencing errors in the original H37Rv reference sequence. An updated H37Rv genome sequence should be valuable to the tuberculosis research community as well as the broader microbial research community. In addition, several polymorphisms unique to individual strains and several shared polymorphisms were identified and shown to be consistent with the known provenance of these strains. Aside from nucleotide substitutions and insertion/deletions, multiple IS6110 transposition events were observed, supporting the theory that they play a significant role in plasticity of the M. tuberculosis genome. This genome-wide catalog of genetic differences can help explain any phenotypic differences that might be found, including a frameshift mutation in the mycocerosic acid synthase gene which causes two of the strains to be deficient in biosynthesis of the surface glycolipid phthiocerol dimycocerosate (PDIM). The resequencing of these six lab strains represents a fortuitous "in vitro evolution" experiment that demonstrates how the M. tuberculosis genome continues to evolve even in a controlled environment.
Collapse
|
9
|
Generation of metabolically diverse strains of Streptococcus pyogenes during survival in stationary phase. J Bacteriol 2009; 191:6242-52. [PMID: 19666718 DOI: 10.1128/jb.00440-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes, in addition to causing fulminant disease, can be carried asymptomatically and may survive in the host without causing disease. Long-term stationary-phase cultures were used to characterize the metabolism of cultures surviving after glucose depletion. Survival of stationary-phase cultures in glucose-depleted rich medium was truncated by switching the cells to phosphate-buffered saline or by the addition of antibiotics, suggesting that survival depended on the presence of nutrients and metabolic activity. The metabolites of the pyruvate-to-acetate (PA) pathway (acetate and formate) and amino acid catabolic pathways (ammonia) accumulated throughout long-term stationary phase (12 weeks). Acid and ammonia production was balanced so that the culture pH was maintained above pH 5.6. Strains isolated from long-term stationary-phase cultures accumulated mutations that resulted in unique exponential-phase metabolisms, with some strains expressing the PA pathway, some strains producing ammonia, and some strains expressing both in the presence of glucose. Strains expressing high levels of PA pathway activity during exponential growth were unable to survive when regrown in pure culture due to the production of excess acid. These data suggest that S. pyogenes diversifies during survival in stationary phase into distinct strains with different metabolisms and that complementary metabolism is required to control the pH in stationary-phase cultures. One of three survivor strains isolated from tonsillar discard material from patients expressed high levels of the PA pathway during exponential growth. Sequencing of multiple group A streptococcus regulators revealed two different mutations in two different strains, suggesting that random mutation occurs during survival.
Collapse
|
10
|
Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9. [PMID: 19460325 PMCID: PMC2685916 DOI: 10.1016/j.meegid.2009.03.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus pyogenes, also referred to as beta-hemolytic group A streptococci, are strictly human pathogens with a global distribution and high prevalence of infection. The organisms are characterized by high levels of genetic recombination, extensive strain diversity, and a narrow habitat. This review highlights many key features of the population genetics and molecular epidemiology of this biologically diverse bacterial species, with special emphasis on ecological subdivisions and tissue-specific infections, strain diversity and population dynamics in communities, selection pressures arising from the specific host immune response and antibiotic exposure, and within-host selection during the course of invasive disease.
Collapse
Affiliation(s)
- Debra E. Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA 10595, , +1-914-594-4193
| |
Collapse
|
11
|
Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2009; 9:581-93. [PMID: 19460325 DOI: 10.1016/j.meegid.2009.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 12/31/2022]
Abstract
Streptococcus pyogenes, also referred to as beta-hemolytic group A streptococci, are strictly human pathogens with a global distribution and high prevalence of infection. The organisms are characterized by high levels of genetic recombination, extensive strain diversity, and a narrow habitat. This review highlights many key features of the population genetics and molecular epidemiology of this biologically diverse bacterial species, with special emphasis on ecological subdivisions and tissue-specific infections, strain diversity and population dynamics in communities, selection pressures arising from the specific host immune response and antibiotic exposure, and within-host selection during the course of invasive disease.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
12
|
|
13
|
Chien LJ, Lee CK. Hyaluronic acid production by recombinant Lactococcus lactis. Appl Microbiol Biotechnol 2007; 77:339-46. [PMID: 17805528 DOI: 10.1007/s00253-007-1153-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/24/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Microbial hyaluronic acid (HA), commonly produced by pathogenic Streptococcus, was made possible to be produced by a generally recognized as safe Lactococcus lactis by coexpressing HA synthase and uridine diphosphate-glucose dehydrogenase (UDP-GlcDH) of Streptococcus equi subsp. zooepidemicus in a nisin-controlled expression (NICE) system. With scarce expressed HA synthase alone, the constructed recombinant L. lactis (LL-NA) strain could produce HA with a concentration about 0.08 g/l in the M17 medium supplemented with 1% (w/v) glucose. In contrast to HA synthase, UDP-GlcDH of Streptococcus could be overexpressed in the NICE system. With coexpression of heterologous UDP-GlcDH with HA synthase, the constructed LL-NAB strain grew slightly slower to a concentration about 10% lower that of the LL-NA strain. However, the HA concentration produced was enhanced about eightfold to 0.65 g/l.
Collapse
Affiliation(s)
- Liang-Jung Chien
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | | |
Collapse
|
14
|
Melchior MB, Vaarkamp H, Fink-Gremmels J. Biofilms: a role in recurrent mastitis infections? Vet J 2006; 171:398-407. [PMID: 16624706 DOI: 10.1016/j.tvjl.2005.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2005] [Indexed: 11/25/2022]
Abstract
Mastitis remains one the most important diseases in dairy cattle despite the progress made in improving general udder health in recent years. Epidemiological studies have revealed that following treatment with antimicrobials, bacteriological cure rates vary between 0% and 80% but with no evidence of a significant loss of activity of the major classes of antibiotics licensed for the treatment of bovine mastitis. Recurrent infections are often attributable to biofilm growth of bacteria and this review provides an overview of those mechanisms related to bacterial biofilm growth in mastitis. Biofilm formation is accompanied by significant genetic and subsequent physiological changes in the microorganisms resulting, inter alia, in a loss of sensitivity to virtually all classes of antibiotics.
Collapse
Affiliation(s)
- M B Melchior
- Department of Veterinary Pharmacology Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80152, 3508 TD Utrecht, The Netherlands.
| | | | | |
Collapse
|
15
|
Wood DN, Chaussee MA, Chaussee MS, Buttaro BA. Persistence of Streptococcus pyogenes in stationary-phase cultures. J Bacteriol 2005; 187:3319-28. [PMID: 15866916 PMCID: PMC1111994 DOI: 10.1128/jb.187.10.3319-3328.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In addition to causing fulminant disease, Streptococcus pyogenes may be asymptomatically carried between recurrent episodes of pharyngitis. To better understand streptococcal carriage, we characterized in vitro long-term stationary-phase survival (>4 weeks) of S. pyogenes. When grown in sugar-limited Todd-Hewitt broth, S. pyogenes cells remained culturable for more than 1 year. Both Todd-Hewitt supplemented with excess glucose and chemically defined medium allowed survival for less than 1 week. After 4 weeks of survival in sugar-limited Todd-Hewitt broth, at least 10(3) CFU per ml remained. When stained with fluorescent live-dead viability stain, there were a number of cells with intact membranes that were nonculturable. Under conditions that did not support persistence, these cells disappeared 2 weeks after loss of culturability. In persistent cultures, these may be cells that are dying during cell turnover. After more than 4 weeks in stationary phase, the culturable cells formed two alternative colony phenotypes: atypical large colonies and microcolonies. Protein expression in two independently isolated microcolony strains, from 14-week cultures, was examined by use of two-dimensional electrophoresis. The proteomes of these two strains exhibited extensive changes compared to the parental strain. While some of these changes were common to the two strains, many of the changes were unique to a single strain. Some of the common changes were in metabolic pathways, suggesting a possible alternate metabolism for the persisters. Overall, these data suggest that under certain in vitro conditions, S. pyogenes cells can persist for greater than 1 year as a dynamic population.
Collapse
Affiliation(s)
- Daniel N Wood
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
16
|
Yamada T, Kawasaki T. Microbial synthesis of hyaluronan and chitin: New approaches. J Biosci Bioeng 2005; 99:521-8. [PMID: 16233827 DOI: 10.1263/jbb.99.521] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/06/2005] [Indexed: 11/17/2022]
Abstract
Hyaluronan (HA) is an important structural element in the vitreous humor of the eye, synovial fluid, and skin of vertebrates. Moreover, HA interacts with proteins such as CD44, RHAMM, and fibrinogen, thereby influencing many natural processes such as angiogenesis, cancer, cell motility, wound healing, and cell adhesion. Reflecting such a variety of functions, HA has attracted attention from a wide range of application fields such as medicine (including surgery), cosmetics, and health foods. Traditionally HA was extracted from rooster combs, but nowadays is produced by the fermentation of streptococci. At present, quality issues such as purity and molecular weight distribution, rather than quantity, have been the focus of strain and process development in HA production. To meet ever-increasing public demand, novel systems that can yield sufficient amounts of high-quality of HA and related materials are required.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
| | | |
Collapse
|
17
|
Blank LM, McLaughlin RL, Nielsen LK. Stable production of hyaluronic acid inStreptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnol Bioeng 2005; 90:685-93. [PMID: 15803469 DOI: 10.1002/bit.20466] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h-1) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci.
Collapse
Affiliation(s)
- Lars M Blank
- Department of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
18
|
Chong BF, Blank LM, Mclaughlin R, Nielsen LK. Microbial hyaluronic acid production. Appl Microbiol Biotechnol 2004; 66:341-51. [PMID: 15599518 DOI: 10.1007/s00253-004-1774-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 09/13/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.
Collapse
Affiliation(s)
- Barrie Fong Chong
- Department of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
19
|
Marouni MJ, Barzilai A, Keller N, Rubinstein E, Sela S. Intracellular survival of persistent Group A streptococci in cultured epithelial cells. Int J Med Microbiol 2004; 294:27-33. [PMID: 15293451 DOI: 10.1016/j.ijmm.2004.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Group A streptococcus (GAS) is the principle etiologic agent of bacterial pharyngotonsillitis and a wide range of other diseases. Failure to eradicate GAS from patients has been documented in 5-30% of patients with pharyngotonsillitis, in spite of the continued sensitivity of GAS to penicillin and other beta-lactams. It was recently proposed that eradication failure might be attributed to the ability of GAS to maintain an intracellular reservoir during antibiotic treatment. We have previously shown that strains derived from patients with bacterial eradication failure, despite antibiotic treatment (persistent strains), adhered to and were internalized by cultured epithelial cells more efficiently than strains that were successfully eradicated. Since, penicillin and other beta-lactams do not penetrate well into mammalian cells, intracellular survival of GAS is crucial in order to persist during prolonged antibiotic treatment. In this study, we compared the survival of GAS strains from cases of eradication failure and eradication success, using an epithelial cell culture model. We found that persistent strains show significantly increased intracellular survival, compared to the 'eradication success' strains. This finding supports the idea that an intracellular reservoir of GAS plays a role in the etiology of antibiotic eradication failure.
Collapse
Affiliation(s)
- Mehran J Marouni
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
20
|
Hancock LE, Shepard BD, Gilmore MS. Molecular analysis of the Enterococcus faecalis serotype 2 polysaccharide determinant. J Bacteriol 2003; 185:4393-401. [PMID: 12867447 PMCID: PMC165784 DOI: 10.1128/jb.185.15.4393-4401.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 04/25/2003] [Indexed: 11/20/2022] Open
Abstract
We previously described a 15-kb genetic cluster consisting of 11 open reading frames (cps2A to cps2K) of Enterococcus faecalis FA2-2 that is responsible for the production of the serotype 2 capsular polysaccharide. By using transcriptional fusions to a promoterless lacZ gene, we identified two independent promoters related to the expression of the polysaccharide. Both transcription initiation sites were mapped by primer extension. Reverse transcription-PCR (RT-PCR) demonstrated the transcriptional linkage of genes present in both transcripts. Real-time RT-PCR quantification of transcripts revealed maximum transcription during log phase growth, an observation confirmed by promoter fusion studies. The heterologous expression of this pathway in Escherichia coli caused reactivity with E. faecalis type 2 antiserum, thus demonstrating the essential role of this pathway in the synthesis of the type-specific polysaccharide.
Collapse
Affiliation(s)
- Lynn E Hancock
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
21
|
Grow AE, Wood LL, Claycomb JL, Thompson PA. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods 2003; 53:221-33. [PMID: 12654493 DOI: 10.1016/s0167-7012(03)00026-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
microSERS is a new biochip technology that uses surface-enhanced Raman scattering (SERS) microscopy for label-free transduction. The biochip itself comprises pixels of capture biomolecules immobilized on a SERS-active metal surface. Once the biochip has been exposed to the sample and the capture biomolecules have selectively bound their ligands, a Raman microscope is used to collect SERS fingerprints from the pixels on the chip. SERS, like other whole-organism fingerprinting techniques, is very specific. Our initial studies have shown that the Gram-positive Listeria and Gram-negative Legionella bacteria, Bacillus spores and Cryptosporidium oocysts can often be identified at the subspecies/strain level on the basis of SERS fingerprints collected from single organisms. Therefore, pathogens can be individually identified by microSERS, even when organisms that cross-react with the capture biomolecules are present in a sample. Moreover, the SERS fingerprint reflects the physiological state of a bacterial cell, e.g., when pathogenic Listeria and Legionella were cultured under conditions known to affect virulence, their SERS fingerprints changed significantly. Similarly, nonviable (e.g., heat- or UV-killed) microorganisms could be differentiated from their viable counterparts by SERS fingerprinting. Finally, microSERS is also capable of the sensitive and highly specific detection of toxins. Toxins that comprised as little as 0.02% by weight of the biomolecule-toxin complex produced strong, unique fingerprints when spectra collected from the complexes were subtracted from the spectra of the uncomplexed biomolecules. For example, aflatoxins B(1) and G(1) could be detected and individually identified when biochips bearing pixels of antibody or enzyme capture biomolecules were incubated in samples containing one or both aflatoxins, and the spectra were then collected for 20 s from an area of the biomolecule pixel approximately 1 microm in diameter. In the future, we plan to investigate the use of hyperspectral imaging Raman microscopy for collecting fingerprints from all the pixels on the biochip, individually yet simultaneously, to enable the rapid detection of diverse pathogens and their toxins in a sample, using a single biochip.
Collapse
Affiliation(s)
- Ann E Grow
- Biopraxis, Inc., P.O. Box 910078, San Diego, CA 92191-0078, USA.
| | | | | | | |
Collapse
|
22
|
Jadoun J, Eyal O, Sela S. Role of CsrR, hyaluronic acid, and SpeB in the internalization of Streptococcus pyogenes M type 3 strain by epithelial cells. Infect Immun 2002; 70:462-9. [PMID: 11796571 PMCID: PMC127687 DOI: 10.1128/iai.70.2.462-469.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Internalization of group A streptococcus by human epithelial cells has been extensively studied during the past 6 years. It is now clear that multiple mechanisms are involved in this process. We have previously demonstrated that the CsrR global regulator controls the internalization of an invasive M type 3 strain through regulation of the has (hyaluronic acid synthesis) operon, as well as another, unknown gene(s). Recently, it was reported that the CsrR-regulated cysteine protease (SpeB) is also involved in bacterial uptake. In this study we have examined the roles of CsrR, hyaluronic acid capsule, and SpeB in streptococcal internalization. We have constructed isogenic mutants of the M3 serotype deficient in the csrR, hasA, and speB genes and tested their ability to be internalized by HEp-2 epithelial cells. Inactivation of csrR abolished internalization, while inactivation of either hasA or speB increased the internalization efficiency. Mutation in csrR derepressed hasA transcription and lowered the activity of SpeB, while no effect on speB transcription was observed. The speB mutant expressed smaller amounts of capsule, while the hasA mutant transcribed more csrR and speB mRNAs. Thus, it seems that complex interactions between CsrR, SpeB, and capsule are involved in modulation of group A streptococcus internalization.
Collapse
Affiliation(s)
- Jeries Jadoun
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
23
|
Molinari G, Rohde M, Talay SR, Chhatwal GS, Beckert S, Podbielski A. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol Microbiol 2001; 40:99-114. [PMID: 11298279 DOI: 10.1046/j.1365-2958.2001.02373.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group A streptococci (GAS) specifically attach to and internalize into human epithelial host cells. In some GAS isolates, fibronectin-binding proteins were identified as being responsible for these virulence traits. In the present study, the previously identified global negative regulator Nra was shown to control the binding of soluble fibronectin probably via regulation of protein F2 and/or SfbII expression in the serotype M49 strain 591. According to results from a conventional invasion assay based on the recovery of viable intracellular bacteria, the increased fibronectin binding did not affect bacterial adherence to HEp-2 epithelial cells, but was associated with a reduction in the internalization rates. However, when examined by confocal and electron microscopy techniques, the nra-mutant bacteria were shown to exhibit higher adherence and internalization rates than the corresponding wild type. The mutant bacteria escaped from the phagocytic vacuoles much faster, promoting consistent morphological changes which resulted in severe host cell damage. The apoptotic and lytic processes observed in nra-mutant infected host cells were correlated with an increased expression of the genes encoding superantigen SpeA, the cysteine protease SpeB, and streptolysin S in the nra-mutant bacteria. Adherence and internalization rates of a nra/speB-double mutant at wild-type levels indicated that the altered speB expression in the nra mutant contributed to the observed changes in both processes. The Nra-dependent effects on bacterial virulence were confined to infections carried out with stationary growth phase bacteria. In conclusion, the obtained results demonstrated that the global GAS regulator Nra modulates virulence genes, which are involved in host cell damage. Thus, by helping to achieve a critical balance of virulence factor expression that avoids the injury of target cells, Nra may facilitate GAS persistence in a safe intracellular niche.
Collapse
Affiliation(s)
- G Molinari
- Department of Microbial Pathogenicity and Vaccine Research, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Steiner K, Malke H. Life in protein-rich environments: the relA-independent response of Streptococcus pyogenes to amino acid starvation. Mol Microbiol 2000; 38:1004-16. [PMID: 11123674 DOI: 10.1046/j.1365-2958.2000.02203.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Considering that group A streptococci are multiple auxotrophs that may encounter shortage of amino acids during specific stages of the infectious process, we studied their adaptive response to amino acid deprivation. We found that, in addition to the (p)ppGpp-mediated stringent response characterized previously, Streptococcus pyogenes exhibits a relA-independent response comprising transcriptional modulation of a specific subset of genes involved in pathogenesis. Genes/operons transcriptionally upregulated during starvation of both wild type and relA mutants included the two-component signal transduction system covRS, the positive regulator (ropB) of the pyrogenic exotoxin B gene, speB, the oligopeptide (opp) and dipeptide (dpp) permease systems and the pepB gene putatively involved in the intracellular processing of oligopeptides. Upregulation of covRS was accompanied by downregulation of ska, one of the target genes of the negative CovR regulator, and the net effect of amino acid starvation also favoured repression of speB. A significant feature of upregulated opp expression was stimulated readthrough transcription of the operon-internal oppA terminator, leading to increased mRNA levels for synthesis of the translocator complex relative to the substrate-binding protein. Based on these and previous results, a stimulus-response network is proposed that counteracts the stringent response and may enable the pathogen to mount a dynamic response to the protein-rich environment provided by its human host.
Collapse
Affiliation(s)
- K Steiner
- Friedrich Schiller University Jena, Institute for Molecular Biology, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | |
Collapse
|
25
|
Woischnik M, Buttaro BA, Podbielski A. Inactivation of the cysteine protease SpeB affects hyaluronic acid capsule expression in group A streptococci. Microb Pathog 2000; 28:221-6. [PMID: 10764613 DOI: 10.1006/mpat.1999.0341] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human pathogen Streptococcus pyogenes expresses several virulence factors that are required for the pathogens survival within the host and the concomitant development of disease. To examine the influence of one virulence factor, the extracellular cysteine protease SpeB, on the expression of other virulence factors, the speB structural gene of a serotype M3 and M49 strain was inactivated. Morphologic examination, quantification of extracellular hyaluronic acid capsule, and Northern blot analysis of the isogenic speB -mutants revealed a strain-dependent decrease of hyaluronic acid capsule production and an increase in superoxide dismutase transcription. The transcription of streptolysin O (slo), di- and oligo-peptide permease (dpp, opp), hyaluronidase (hyl), streptokinase (ska) and streptococcal pyrogenic exotoxin A (speA) was unaffected.
Collapse
Affiliation(s)
- M Woischnik
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA.
| | | | | |
Collapse
|
26
|
Darmstadt GL, Mentele L, Podbielski A, Rubens CE. Role of group A streptococcal virulence factors in adherence to keratinocytes. Infect Immun 2000; 68:1215-21. [PMID: 10678929 PMCID: PMC97270 DOI: 10.1128/iai.68.3.1215-1221.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of putative group A streptococcal virulence factors in the initiation of skin infections, we compared the adherence of a wild-type M49-protein skin-associated strain to that of a series of 16 isogenic mutants created by insertional inactivation of virulence genes. None of the mutants, including the M-protein-deficient (emm mutant) strain, displayed reduced adherence to early-passage cultured human keratinocytes, but adherence of the mutant lacking hyaluronic acid capsule expression (has mutant) was increased 13-fold. In contrast, elimination of capsule expression in M2-, M3-, and M18-protein has mutants increased adherence only slightly (1.3- to 2.3-fold) compared to their respective wild-type strains. A mutant with inactivation of both emm and has displayed high-level adherence (34.9 +/- 4.1%) equal to that of the has mutant strain (40.7 + 8.0%), confirming the lack of involvement of M49 protein in attachment. Moreover, adherence of the M49-protein-deficient (emm mutant) and wild-type strains was increased to the same level (57 and 55%, respectively) following enzymatic digestion of their hyaluronic acid capsule. Adherence of mutants lacking oligopeptide permease (Opp) expression was increased 3.8- to 5.5-fold, in association with decreased cell-associated hyaluronic acid capsule. Finally, soluble CD46 failed to inhibit adherence of M49- and M52-serotype skin strains. We conclude that (i) bacterial M protein and keratinocyte CD46 do not mediate adherence of M49 skin-associated Streptococcus pyogenes to epidermal keratinocytes, (ii) hyaluronic acid capsule impedes the interaction of bacterial adhesins with keratinocyte receptors, (iii) modulation of capsule expression may be important in the pathogenesis of skin infections, and (iv) the molecular interactions in attachment of skin strains of S. pyogenes to keratinocytes are unique and remain unidentified.
Collapse
Affiliation(s)
- G L Darmstadt
- Departments of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
27
|
Raeder R, Harokopakis E, Hollingshead S, Boyle MD. Absence of SpeB production in virulent large capsular forms of group A streptococcal strain 64. Infect Immun 2000; 68:744-51. [PMID: 10639442 PMCID: PMC97201 DOI: 10.1128/iai.68.2.744-751.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passage in human blood of group A streptococcal isolate 64p was previously shown to result in the enhanced expression of M and M-related proteins. Similarly, when this isolate was injected into mice via an air sac model for skin infection, organisms recovered from the spleens showed both increased expression of M and M-related proteins and increased skin-invasive potential. We show that these phenotypic changes were not solely the result of increased transcription of the mRNAs encoding the M and M-related gene products. Rather, the altered expression was associated with posttranslational modifications of the M and M-related proteins that occur in this strain, based on the presence or absence of another virulence protein, the streptococcal cysteine protease SpeB. The phenotypic variability also correlates with colony size variation. Large colonies selected by both regimens expressed more hyaluronic acid, which may explain differences in colony morphology. All large-colony variants were SpeB negative and expressed three distinct immunoglobulin G (IgG)-binding proteins in the M and M-related protein family. Small-colony variants were SpeB positive and bound little IgG through their M and M-related proteins because these proteins, although made, were degraded or altered in profile by the SpeB protease. We conclude that passage in either human blood or a mouse selects for a stable, phase-varied strain of group A streptococci which is altered in many virulence properties.
Collapse
Affiliation(s)
- R Raeder
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43613-5806, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- M R Wessels
- Channing Laboratory and Divn. of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Li Z, Sledjeski DD, Kreikemeyer B, Podbielski A, Boyle MD. Identification of pel, a Streptococcus pyogenes locus that affects both surface and secreted proteins. J Bacteriol 1999; 181:6019-27. [PMID: 10498714 PMCID: PMC103629 DOI: 10.1128/jb.181.19.6019-6027.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A Tn917 insertion mutant of an M49 serotype, opacity factor-positive Streptococcus pyogenes, was isolated. It had the following phenotypes: decreased beta-hemolysis mediated by streptolysin S, reduction in the activity of a secreted cysteine protease and streptokinase, and an altered immunoglobulin and fibrinogen-binding phenotype. The site of insertion of Tn917 into the chromosome and the surrounding sequence, the pel region (pleiotropic effect locus), was determined. Phage A25 transduction confirmed that the pleiotropic changes in phenotype could be cotransduced with Tn917. The pel region was cloned and sequenced, and the transposon was found to be inserted upstream of a single open reading frame which led to a failure to transcribe a 500-base mRNA. The loss of this transcript decreased the transcription of emm and speB genes and reduced the secretion of streptokinase. Enhanced Pel expression from a nisin-inducible plasmid resulted in increased message levels for emm in a wild-type organism. Characterization of the pel mutant provides evidence for the coordinated regulation of secreted and surface proteins and suggests the existence of a new global regulatory factor in S. pyogenes.
Collapse
Affiliation(s)
- Z Li
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
30
|
Sriskandan S, Unnikrishnan M, Krausz T, Cohen J. Molecular analysis of the role of streptococcal pyrogenic Exotoxin A (SPEA) in invasive soft-tissue infection resulting from Streptococcus pyogenes. Mol Microbiol 1999; 33:778-90. [PMID: 10447887 DOI: 10.1046/j.1365-2958.1999.01525.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies strongly implicate the bacterial superantigen, streptococcal pyrogenic exotoxin A (SPEA), in the pathogenesis of necrotizing soft-tissue infection and toxic shock syndrome resulting from Streptococcus pyogenes. SPEA can act as a superantigen and cellular toxin ex vivo, but its role during invasive streptococcal infection is unclear. We have disrupted the wild-type spea gene in an M1 streptococcal isolate. Supernatants from toxin-negative mutant bacteria demonstrated a 50% reduction in pro-mitogenic activity in HLA DQ-positive murine splenocyte culture, and up to 20% reduction in activity in human PBMC culture. Mutant and wild-type bacteria were then compared in mouse models of bacteraemia and streptococcal muscle infection. Disruption of spea was not associated with attenuation of virulence in either model. Indeed, a paradoxical increase in mutant strain-induced mortality was seen after intravenous infection. Intramuscular infection with the SPEA-negative mutant led to increased bacteraemia at 24 h and a reduction in neutrophils at the site of primary muscle infection. Purified SPEA led to a dose-dependent increase in peritoneal neutrophils 6 h after administration. SPEA is not a critical virulence factor in invasive soft-tissue infection or bacteraemia caused by S. pyogenes, and it could have a protective role in murine immunity to pyogenic infection. The role of this toxin may be different in hosts with augmented superantigen responsiveness.
Collapse
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases Imperial College School of Medicine aat Hammersmith Hospital, London,UK
| | | | | | | |
Collapse
|
31
|
Trainor VC, Udy RK, Bremer PJ, Cook GM. Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiol Lett 1999; 176:421-8. [PMID: 10427725 DOI: 10.1111/j.1574-6968.1999.tb13692.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The ability of Streptococcus pyogenes to enter a quiescent state, similar to the stationary phase of lab cultures, is believed to be an important factor in its ability to persist within the host and to subsequently cause disease. Using a model broth system, we determined that after entering the stationary phase, there was a 99.99% reduction in cell viability over a 4-day period, following which the cells appeared to enter a resistant starvation state where cell numbers remained constant over the subsequent 3-4 weeks. This starvation response was induced by carbon or phosphorous limitation, but not by nitrogen limitation in the form of amino acids where cells became non-culturable after 4 days. Amino acid utilization in the absence of a carbon source may be an essential factor for the long-term survival of this bacterium in the stationary phase. Early stationary phase cells showed a greater resistance to oxidative and pH stress compared to 24-h-starved cultures. There was evidence for the formation of a viable but non-culturable state as indicated by a comparison of the numbers of cells with a functional membrane potential (rhodamine 123) against culturable cells on either Todd Hewitt broth agar or sheep blood agar. Long-term survival of S. pyogenes was dependent on both cell wall and protein synthesis, suggesting that starving cultures are a dynamic cell population.
Collapse
Affiliation(s)
- V C Trainor
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|