1
|
Gaspar JP, Takahashi MB, Teixeira AF, Nascimento ALTO. In silico analysis and functional characterization of a leucine-rich repeat protein of Leptospira interrogans. Int J Med Microbiol 2024; 316:151633. [PMID: 39232290 DOI: 10.1016/j.ijmm.2024.151633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Pathogenic spirochetes of the genus Leptospira are the causative agent of leptospirosis, a widely disseminated zoonosis that affects humans and animals. The ability of leptospires to quickly cross host barriers causing infection is not yet fully understood. Thus, understanding the mechanisms of pathogenicity is important to combat leptospiral infection. Outer membrane proteins are interesting targets to study as they are able to interact with host molecules. Proteins containing leucine-rich repeat (LRR) domains are characterized by the presence of multiple regions containing leucine residues and they have putative functions related to host-pathogen interactions. Hence, the present study aimed to clone and express the recombinant protein encoded by the LIC11098 gene, an LRR protein of L. interrogans serovar Copenhageni. In silico analyses predicted that the target protein is conserved among pathogenic strains of Leptospira, having a signal peptide and multiple LRR domains. The DNA sequence encoding the LRR protein was cloned in frame into the pAE vector, expressed without mutations in Escherichia coli and purified by His-tag chromatography. Circular dichroism (CD) spectrum showed that the recombinant protein was predominantly composed of β-sheets. A dose-dependent interaction was observed with cellular and plasma fibronectins, laminin and the complement system component C9, suggesting a possible role of the protein encoded by LIC11098 gene at the initial stages of infection.
Collapse
Affiliation(s)
- João P Gaspar
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, São Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Maria B Takahashi
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, São Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Villarreal-Julio RG, Ordoñez B, Yepes-Blandón JA. Comparative genomic analysis of a Colombian strain of Leptospira santarosai serogroup Autumnalis serovar Alice and inference of its virulence factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607408. [PMID: 39211242 PMCID: PMC11360926 DOI: 10.1101/2024.08.09.607408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction The study aimed to characterize the genome of a Colombian strain of Leptospira santarosai to infer bacterial virulence factors. Materials and methods Under the approach of a quantitative research, an isolate of Colombian origin of L. santarosai was sequenced using new generation 454 GS FLX Titanium sequencers. Subsequently, bioinformatics programs were used for the physical description of the genome (number of genes, size), open reading frame prediction, prediction of proteins and their orthologs in other pathogenic species, of intermediate pathogenicity and non-pathogenic, cellular localization of proteins. Results The assembly of the spirochete genome was achieved Leptospira santarosai serogroup Autumnalis serovar Aliceand the description of the genetic, structural and functional characteristics of its genes. It is concluded that the core- genome of the isolate is composed of 1747 proteins, which are common to all L. santarosai strains available in GenBank. It was determined that it has a total of 4,138 proteins, 141 of which are unique to its genome. The possible role of the virulence factors found in the Colombian isolate was identified and described. Conclusions The study contributes to the understanding of the pathophysiological mechanisms induced by Leptospira .
Collapse
|
3
|
Hilbe M, Posthaus H, Paternoster G, Schuller S, Imlau M, Jahns H. Exudative glomerulonephritis associated with acute leptospirosis in dogs. Vet Pathol 2024; 61:453-461. [PMID: 37899628 PMCID: PMC11067394 DOI: 10.1177/03009858231207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In the past 20 years in Switzerland, dogs with suspect acute leptospirosis frequently showed severe glomerular changes that had not been previously reported. These features were characterized by abundant extravasated erythrocytes and fewer neutrophils accompanied by marked fibrin exudation into the urinary space that was interpreted as an exudative glomerulonephritis (GN). This retrospective study describes this significant glomerular pathological change and investigates the association with leptospirosis. Tissues from 50 dogs with exudative GN, retrieved from 2 pathology archives in Switzerland were reviewed using hematoxylin and eosin, periodic acid-Schiff, phosphotungstic acid-hematoxylin, and Warthin and Starry stains. Clinical and postmortem data were collected for each case. Immunohistochemistry (IHC) and/or polymerase chain reactions were used as confirmatory tests for leptospirosis. While all 50 cases had clinical and pathological features supporting a diagnosis of leptospirosis, 37 cases were confirmed for the disease. Using a LipL32 antibody in addition to the OMV2177 antibody raised against the lipopolysaccharide of Leptospira interrogans serovar Copenhageni increased the detection rate of Leptospira by IHC in exudative GN from 24% to 62%. Signalment, seasonality, clinical signs, blood results, and pathological changes in dogs with exudative GN were similar to those reported for dogs without GN and confirmed infection by Leptospira spp.. Exudative GN was common among Swiss dogs with leptospirosis where it caused acute severe disease. Leptospirosis should be considered as a cause of this new pathologic feature by the pathologist. The pathogenesis remains unclear, but involvement of a geographic-specific serovar with unique virulence factors is suspected and warrants further investigation.
Collapse
|
4
|
Taylor C, Belin E, Brodbelt D, Klaasen HLBM, Catchpole B. Exploration of the potential utility of the luciferase immunoprecipitation system (LIPS) assay for the detection of anti-leptospira antibodies in dogs. Vet Immunol Immunopathol 2023; 264:110661. [PMID: 37827091 DOI: 10.1016/j.vetimm.2023.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Canine leptospirosis represents a diagnostic challenge to veterinarians, due to the variability in presenting clinical signs and interpretation of serology test results in dogs that have been vaccinated previously. None of the commercially available serological assays, including the microscopic agglutination test (MAT), have been verified to be capable of differentiating infected from vaccinated animals (DIVA). Recent work identified that half of primary practice attending dogs were up to date with their leptospirosis vaccination and would be expected to have circulating anti-leptospira antibodies (Taylor et al., 2022), indicating that this is a relevant issue for suspected leptospirosis cases in dogs in the UK. This study aimed to explore the utility of three leptospiral outer membrane proteins (OMPs: LipL32, LipL21 and LipL41) as potential DIVA targets in the luciferase immunoprecipitation system (LIPS) assay. N and C terminal nanoluciferase tagged recombinant proteins were generated for each OMP. Differences in reactivity between serum samples from MAT positive dogs (n = 29) and paired samples (n = 6 dogs) taken pre and 21 days post leptospirosis vaccination were assessed against these six constructs. Reactivity was greater towards the N terminal than the C terminal recombinant proteins for all three OMPs. None of the constructs appeared to demonstrate DIVA capability, although two (pNLF1-N-FLAG/LipL32 and pNLF1-N-FLAG/LipL21) were able to detect vaccine seroconversion. The findings of this work suggest that these particular OMP targets do not offer DIVA ability, however LipL32 and LipL21 may be suitable for use in immunoassays for vaccine trials or for detection of infections in humans, where there is no requirement for DIVA capability.
Collapse
Affiliation(s)
- C Taylor
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom.
| | - E Belin
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom
| | - D Brodbelt
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom
| | - H L B M Klaasen
- Global Companion Animals Research and Development, Merck Sharp and Dohme Animal Health, Boxmeer, the Netherlands
| | - B Catchpole
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom
| |
Collapse
|
5
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
6
|
Chin VK, Basir R, Nordin SA, Abdullah M, Sekawi Z. Pathology and Host Immune Evasion During Human Leptospirosis: a Review. Int Microbiol 2019; 23:127-136. [DOI: 10.1007/s10123-019-00067-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
|
7
|
Eshghi A, Gaultney RA, England P, Brûlé S, Miras I, Sato H, Coburn J, Bellalou J, Moriarty TJ, Haouz A, Picardeau M. An extracellular Leptospira interrogans leucine-rich repeat protein binds human E- and VE-cadherins. Cell Microbiol 2018; 21:e12949. [PMID: 30171791 DOI: 10.1111/cmi.12949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023]
Abstract
Pathogenic Leptospira bacteria are the causative agents of leptospirosis, a zoonotic disease affecting animals and humans worldwide. These pathogenic species have the ability to rapidly cross host tissue barriers by a yet unknown mechanism. A comparative analysis of pathogens and saprophytes revealed a higher abundance of genes encoding proteins with leucine-rich repeat (LRR) domains in the genomes of pathogens. In other bacterial pathogens, proteins with LRR domains have been shown to be involved in mediating host cell attachment and invasion. One protein from the pathogenic species Leptospira interrogans, LIC10831, has been previously analysed via X-ray crystallography, with findings suggesting it may be an important bacterial adhesin. Herein we show that LIC10831 elicits an antibody response in infected animals, is actively secreted by the bacterium, and binds human E- and VE-cadherins. These results provide biochemical and cellular evidences of LRR protein-mediated host-pathogen interactions and identify a new multireceptor binding protein from this infectious Leptospira species.
Collapse
Affiliation(s)
- Azad Eshghi
- Unité de Biologie des Spirochètes, Institut Pasteur, Paris, France.,University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, British Columbia, Canada
| | | | - Patrick England
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Sébastien Brûlé
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Isabelle Miras
- Plate-forme de Cristallographie, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Hiromi Sato
- Center for Infectious Disease Research, Department of Medicine (Division of Infectious Diseases), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenifer Coburn
- Center for Infectious Disease Research, Department of Medicine (Division of Infectious Diseases), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jacques Bellalou
- Plate-forme de Protéines Recombinantes, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Tara J Moriarty
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine (Department of Laboratory Medicine and Pathobiology), University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Haouz
- Plate-forme de Cristallographie, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | | |
Collapse
|
8
|
Walker A, Olsen R, Toth M, Srinivas G. Re-evaluating the LD50 requirements in the codified potency testing of veterinary vaccines containing Leptospira (L.) serogroup Icterohaemorrhagiae and L. serogroup Canicola in the United States. Biologicals 2018; 56:13-18. [PMID: 30126631 DOI: 10.1016/j.biologicals.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022] Open
Abstract
Approximately one-third of the reportable USDA Category D and E laboratory animals in the United States are expended on the potency testing of leptospiral vaccines by the codified hamster vaccination-challenge assay. Valid tests require ≥80% of challenge controls to succumb to disease and an LD50 between 10 and 10,000. This work evaluates the risk associated with the removal of LD50 limits; thereby, eliminating back-titration hamsters from in vivo potency assays for Leptospira (L.) serogroups Canicola and Icterohaemorrhagiae. The impact was assessed through 1) retrospective analysis of industry and CVB serial release data from July 2011-April 2015 and 2) evaluation through vaccination-challenge assays. For the initial vaccination-challenge assays (n = 3/serogroup), one group received potent bacterin (PB) and six groups received subpotent bacterins (SB1-SB6). PB and SB1 were challenged with a single dilution of Leptospira between 10 and 10,000 LD50. SB2-SB6 received serial dilutions of more concentrated challenge. Based on the retrospective analysis and in vivo assays, 80% of the challenge controls succumbing to disease reasonably ensured the minimal LD50 was administered. Subpotent vaccines were not at increased risk for being deemed potent when challenged with >10,000 LD50, but potent vaccines were at risk of being deemed subpotent when challenged with >10,000 LD50.
Collapse
Affiliation(s)
- Angela Walker
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, United States Department of Agriculture, P.O Box 844, Ames, IA, 50010, USA.
| | - Renee Olsen
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, United States Department of Agriculture, P.O Box 844, Ames, IA, 50010, USA
| | - Mindy Toth
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, United States Department of Agriculture, P.O Box 844, Ames, IA, 50010, USA
| | - Geetha Srinivas
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, United States Department of Agriculture, P.O Box 844, Ames, IA, 50010, USA
| |
Collapse
|
9
|
Efficacy of a New Recrystallized Enrofloxacin Hydrochloride-Dihydrate against Leptospirosis in a Hamster Model. Antimicrob Agents Chemother 2017; 61:AAC.01285-17. [PMID: 28874381 DOI: 10.1128/aac.01285-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022] Open
Abstract
A trial on Syrian hamsters (Mesocricetus auratus) infected with Leptospira interrogans serovar Canicola was established to compare treatment efficacies of daily intramuscular (i.m.) injections of either 10 mg/kg of 5% enrofloxacin (Baytril [BE]; Bayer Animal Health, Mexico) or the same dose of enrofloxacin hydrochloride-dihydrate (enro-C). Hamsters were experimentally infected via the oral submucosa with 400 microorganisms/animal, in a sequential time schedule aligned to the initial treatment day, and were treated in groups as follows: a group treated with 5% enrofloxacin daily for 7 days after 24 h of infection (group BE24); a group treated as described for group BE24 but with enro-C (enro-C24); a group also treated with 5% enrofloxacin but starting at 72 h after infection (BE74); a group treated as described for group BE74 but with injection of enro-C (enro-C74). An untreated-uninfected control group (group CG-) and an infected-untreated control group (group CG+) were assembled (n = 18 in all groups). Weights and temperatures of the hamsters were monitored daily for 28 days. After hamsters were euthanatized or following death, necropsy, histopathology, macroscopic agglutination tests (MAT), bacterial culture, and PCR were performed. The mortality rates were 38.8% in group BE24 and 100% in group BE74 No mortality was observed in group enro-C24, and 11.1% mortality was recorded in group enro-C74 The mortality rates in groups CG+ and CG- were 100% and zero, respectively. Combined necropsy and histopathologic findings revealed signs of septicemia and organ damage in groups BE24, BE72, and CG+ Groups enro-C24 and CG- showed no lesions. Moderated lesions were registered in 3 hamsters in group enro-C72 MAT results were positive in 83.3% of BE24 hamsters (83.3%) and 100% of BE72 and CG+ hamsters; MAT results were positive in 16.7% in group Enro-C24 and 38.9% in group enro-C72 Only 4/18 were PCR positive in group enro-C72 and only 1 in group enro-C24 (P < 0.05). It can be concluded that enro-C may be a viable option to treat leptospirosis in hamsters and that this may be the case in other species.
Collapse
|
10
|
Lp25 membrane protein from pathogenic Leptospira spp. is associated with rhabdomyolysis and oliguric acute kidney injury in a guinea pig model of leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005615. [PMID: 28505191 PMCID: PMC5444857 DOI: 10.1371/journal.pntd.0005615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/25/2017] [Accepted: 05/01/2017] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) from leptospirosis is frequently nonoliguric with hypo- or normokalemia. Higher serum potassium levels are observed in non-survivor patients and may have been caused by more severe AKI, metabolic disarrangement, or rhabdomyolysis. An association between the creatine phosphokinase (CPK) level and maximum serum creatinine level has been observed in these patients, which suggests that rhabdomyolysis contributes to severe AKI and hyperkalemia. LipL32 and Lp25 are conserved proteins in pathogenic strains of Leptospira spp., but these proteins have no known function. This study evaluated the effect of these proteins on renal function in guinea pigs. Lp25 is an outer membrane protein that appears responsible for the development of oliguric AKI associated with hyperkalemia induced by rhabdomyolysis (e.g., elevated CPK, uric acid and serum phosphate). This study is the first characterization of a leptospiral outer membrane protein that is associated with severe manifestations of leptospirosis. Therapeutic methods to attenuate this protein and inhibit rhabdomyolysis-induced AKI could protect animals and patients from severe forms of this disease and decrease mortality.
Collapse
|
11
|
Gomes-Solecki M, Santecchia I, Werts C. Animal Models of Leptospirosis: Of Mice and Hamsters. Front Immunol 2017; 8:58. [PMID: 28270811 PMCID: PMC5318464 DOI: 10.3389/fimmu.2017.00058] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/16/2017] [Indexed: 01/27/2023] Open
Abstract
Pathogenic Leptospira sp. are spirochetal bacteria responsible for leptospirosis, an emerging worldwide zoonosis. These spirochetes are very successful pathogens that infect a wide range of hosts such as fish, reptiles, birds, marsupials, and mammals. Transmission occurs when chronically infected animals excrete live bacteria in their urine, contaminating the environment. Leptospira sp. enter their hosts through damaged skin and mucosa. Chronically infected rats and mice are asymptomatic and are considered as important reservoirs of the disease. Infected humans may develop either a flu-like, usually mild illness with or without chronic asymptotic renal colonization, or a severe acute disease with kidney, liver, and heart failure, potentially leading to death. Leptospirosis is an economic burden on society due to health-care costs related to elevated morbidity of humans and loss of animals of agricultural interest. There are no effective vaccines against leptospirosis. Leptospira sp. are difficult to genetically manipulate which delays the pace of research progress. In this review, we discuss in an historical perspective how animal models have contributed to further our knowledge of leptospirosis. Hamsters, guinea pigs, and gerbils have been instrumental to study the pathophysiology of acute lethal leptospirosis and the Leptospira sp. genes involved in virulence. Chronic renal colonization has been mostly studied using experimentally infected rats. A special emphasis will be placed on mouse models, long thought to be irrelevant since they survive lethal infection. However, mice have recently been shown to be good models of sublethal infection leading to chronic colonization. Furthermore, congenic and transgenic mice have proven essential to study how innate immune cells interact with the pathogen and to understand the role of the toll-like receptor 4, which is important to control Leptospira sp. load and disease. The use of inbred and transgenic mouse models opens up the field to the comprehensive study of immune responses to Leptospira sp. infection and subsequent pathophysiology of inflammation. It also allows for testing of drugs and vaccines in a biological system that can avail of a wealth of molecular tools that enable understanding of the mechanisms of action of protective vaccines.
Collapse
Affiliation(s)
- Maria Gomes-Solecki
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Ignacio Santecchia
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; INSERM, équipe Avenir, Paris, France
| | - Catherine Werts
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; INSERM, équipe Avenir, Paris, France
| |
Collapse
|
12
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
13
|
Anita K, Premlatha MM, Kanagavel M, Akino Mercy CS, Raja V, Shanmughapriya S, Natarajaseenivasan K. Evaluation of combined B cell specific N-terminal immunogenic domains of LipL21 for diagnosis of leptospirosis. Int J Biol Macromol 2016; 91:465-70. [DOI: 10.1016/j.ijbiomac.2016.05.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/13/2016] [Accepted: 05/29/2016] [Indexed: 11/15/2022]
|
14
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
15
|
Lee JW, Park S, Kim SH, Christova I, Jacob P, Vanasco NB, Kang YM, Woo YJ, Kim MS, Kim YJ, Cho MK, Kim YW. Clinical Evaluation of Rapid Diagnostic Test Kit Using the Polysaccharide as a Genus-Specific Diagnostic Antigen for Leptospirosis in Korea, Bulgaria, and Argentina. J Korean Med Sci 2016; 31:183-9. [PMID: 26839470 PMCID: PMC4729496 DOI: 10.3346/jkms.2016.31.2.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/07/2016] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis, a zoonotic disease that is caused by many serovars which are more than 200 in the world, is an emerging worldwide disease. Accurate and rapid diagnostic tests for leptospirosis are a critical step to diagnose the disease. There are some commercial kits available for diagnosis of leptospirosis, but the obscurity of a species- or genus-specific antigen of pathogenic Leptospira interrogans causes the reduced sensitivity and specificity. In this study, the polysaccharide derived from lipopolysaccharide (LPS) of nonpathogenic Leptospira biflexa serovar patoc was prepared, and the antigenicity was confirmed by immunoblot and enzyme linked immunosorbent assay (ELISA). The performance of the rapid diagnostic test (RDT) kit using the polysaccharide as a diagnostic antigen was evaluated in Korea, Bulgaria and Argentina. The sensitivity was 93.9%, 100%, and 81.0% and the specificity was 97.9%, 100%, and 95.4% in Korea (which is a rare region occurring with 2 serovars mostly), Bulgaria (epidemic region with 3 serovars chiefly) and Argentina (endemic region with 19 serovars mainly) respectively. These results indicate that this RDT is applicable for global diagnosis of leptospirosis. This rapid and effective diagnosis will be helpful for diagnosis and manage of leptospirosis to use and the polysaccharide of Leptospira may be called as genus specific antigen for diagnosis.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Sungman Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Seung Han Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Iva Christova
- National Reference Vector-borne Infections Laboratory, National Center of Infectious and Parasitic Diseases, Bulgaria
| | - Paulina Jacob
- Instituto Nacional de Enfermedades Respiratorias, Santa Fe, Argentina
| | - Norma B. Vanasco
- Instituto Nacional de Enfermedades Respiratorias, Santa Fe, Argentina
| | - Yeon-Mi Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Ye-Ju Woo
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min Soo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Young-Jin Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Kee Cho
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Yoon-Won Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
16
|
Abstract
The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able to survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H.Factor H. On the other hand, the OM must enable leptospires to evade detection by the host's immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane outer membrane proteins (OMPs) in many cases are better understood, thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis.
Collapse
Affiliation(s)
- David A Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA,
| | | |
Collapse
|
17
|
Ratet G, Veyrier FJ, Fanton d'Andon M, Kammerscheit X, Nicola MA, Picardeau M, Boneca IG, Werts C. Live imaging of bioluminescent leptospira interrogans in mice reveals renal colonization as a stealth escape from the blood defenses and antibiotics. PLoS Negl Trop Dis 2014; 8:e3359. [PMID: 25474719 PMCID: PMC4256284 DOI: 10.1371/journal.pntd.0003359] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/18/2014] [Indexed: 01/02/2023] Open
Abstract
Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts. Leptospirosis is a worldwide neglected disease caused by the pathogenic bacterium named Leptospira interrogans. Some rodents, such as rats, do not get sick from leptospirosis and constitute a reservoir. They carry leptospires in their kidneys and excrete the bacteria in the environment. L. interrogans are mobile and penetrate their hosts through abraded skin or mucosa. Infected humans may develop mild to severe leptospirosis, potentially leading to death. Leptospires are difficult to cultivate and to genetically manipulate, impairing the study of leptospirosis. Here, we constructed bioluminescent leptospires, and monitored infection in live mice by tracking bioluminescence. In the first days after infection, a rapid dissemination and growth of bacteria was observed in the blood circulation, followed around one week after the infection by their apparent disappearance. However, the leptospires reemerged and multiplied in the kidneys, to reach sustained levels three weeks after infection. The use of antibiotics showed that antibiotic-susceptible L. interrogans are very difficult to eradicate once they are settled in the kidneys. Mice infected with bioluminescent leptospires represent a pertinent model to study leptospirosis. These bioluminescent leptospires are novel tools that will be useful to test the efficacy of treatments or vaccines against leptospirosis.
Collapse
Affiliation(s)
- Gwenn Ratet
- Institut Pasteur, Unité Biologie et Génétique des parois bactériennes, Paris, France
- INSERM, équipe Avenir, Paris, France
| | - Frédéric J. Veyrier
- Institut Pasteur, Unité Biologie et Génétique des parois bactériennes, Paris, France
- INSERM, équipe Avenir, Paris, France
- Institut Pasteur, Unité des infections bactériennes invasives, Paris, France
| | - Martine Fanton d'Andon
- Institut Pasteur, Unité Biologie et Génétique des parois bactériennes, Paris, France
- INSERM, équipe Avenir, Paris, France
| | - Xavier Kammerscheit
- Institut Pasteur, Unité Biologie et Génétique des parois bactériennes, Paris, France
- INSERM, équipe Avenir, Paris, France
- ENS Cachan, département de Biologie, Paris, France
| | | | | | - Ivo G. Boneca
- Institut Pasteur, Unité Biologie et Génétique des parois bactériennes, Paris, France
- INSERM, équipe Avenir, Paris, France
| | - Catherine Werts
- Institut Pasteur, Unité Biologie et Génétique des parois bactériennes, Paris, France
- INSERM, équipe Avenir, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Potential impact on kidney infection: a whole-genome analysis of Leptospira santarosai serovar Shermani. Emerg Microbes Infect 2014; 3:e82. [PMID: 26038504 PMCID: PMC4274889 DOI: 10.1038/emi.2014.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Leptospira santarosai serovar Shermani is the most frequently encountered
serovar, and it causes leptospirosis and tubulointerstitial nephritis in Taiwan. This
study aims to complete the genome sequence of L. santarosai serovar Shermani
and analyze the transcriptional responses of L. santarosai serovar Shermani
to renal tubular cells. To assemble this highly repetitive genome, we combined reads
that were generated from four next-generation sequencing platforms by using hybrid
assembly approaches to finish two-chromosome contiguous sequences without gaps by
validating the data with optical restriction maps and Sanger sequencing. Whole-genome
comparison studies revealed a 28-kb region containing genes that encode transposases
and hypothetical proteins in L. santarosai serovar Shermani, but this region
is absent in other pathogenic Leptospira spp. We found that lipoprotein gene
expression in both L. santarosai serovar Shermani and L.
interrogans serovar Copenhageni were upregulated upon interaction with renal
tubular cells, and LSS19962, a L. santarosai serovar Shermani-specific gene
within a 28-kb region that encodes hypothetical proteins, was upregulated in L.
santarosai serovar Shermani-infected renal tubular cells. Lipoprotein
expression during leptospiral infection might facilitate the interactions of
leptospires within kidneys. The availability of the whole-genome sequence of L.
santarosai serovar Shermani would make it the first completed sequence of
this species, and its comparison with that of other Leptospira spp. may
provide invaluable information for further studies in leptospiral pathogenesis.
Collapse
|
19
|
Characterization of Leptospira infection in suckling and weaning rat pups. Comp Immunol Microbiol Infect Dis 2014; 38:47-55. [PMID: 25605653 DOI: 10.1016/j.cimid.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
Abstract
Rats are known to be the most important reservoirs of Leptospira spp. However, the leptospiral dose and age at which rats become resistant to Leptospira infection are not yet well elucidated. Aimed to characterize leptospirosis in rat pups, we found that suckling pups (4-, 7-, and 14-day old) are susceptible to leptospires and resistance starts from the weaning age (23-day old). Susceptibility of rat pups was also affected by the infecting dose of the organisms. Jaundice, decrease in body weight, and neurological symptoms prior to moribundity was evident in infected suckling pups. However, 23-day-old infected pups did not manifest any pathological changes and were able to survive the infection similar to adult rats. Based on these results, we propose the suckling rat pup as a novel animal model of human leptospirosis to investigate pathogenesis, development of host resistance, and the mechanisms involved in rats becoming maintenance hosts for leptospires.
Collapse
|
20
|
Riazi M, Zainul F, Bahaman A, Amran F, Khalilpour A. Role of 72 kDa protein of Leptospira interrogans as a diagnostic marker in acute leptospirosis. Indian J Med Res 2014; 139:308-13. [PMID: 24718408 PMCID: PMC4001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Leptospirosis is a widespread zoonotic disease and a public health problem, particularly in tropical and subtropical countries. Varied clinical manifestations of the disease frequently lead to misdiagnosis resulting in life-threatening multi-organ complications. Therefore, early laboratory investigation using an appropriate diagnostic approach is crucial. In the present study, a potential protein marker was identified and evaluated for its usefulness in the serodiagnosis of acute leptospirosis. METHODS Leptospira interrogans serovar Icterohaemorrhagiae (L44), which represents a commonly prevalent serovar in Malaysia, was cultivated for preparation of sequential protein extract (SEQ). SDS-PAGE and immunoblotting were performed with a serum panel comprising confirmed cases of leptospirosis and controls (n=42 each). Identification and characterization of the highest scoring protein from the antigenic band was performed. Subsequently based on the nucleotide coding sequence of the protein, the corresponding recombinant protein was custom-produced. It was then evaluated for sensitivity and specificity by testing against 20 serum samples from leptospirosis patients and 32 from controls. RESULTS Among the antigenic components, a 72 kDa protein band demonstrated significant sensitivity (83.3%) and specificity (95.2%) for the detection of specific anti-leptospiral IgM antibodies. The protein was identified by mass-spectrometry analysis as heat shock protein DnaK of L. interrogans. Recombinant form of the protein (r72SEQ) showed 85 per cent sensitivity and 81 per cent specificity for the detection of specific anti-leptospiral IgM antibodies. INTERPRETATION & CONCLUSIONS The findings of our study indicate that a protein (72 kDa) of L. interrogans has the potential utility of being used for the diagnosis of acute leptospirosis. Further studies need to be done to confirm these findings.
Collapse
Affiliation(s)
- M. Riazi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia & School of Health Sciences, USM, Kelantan, Malaysia,Reprint requests: Dr Mehdi Riazi, School of Pharmaceutical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia e-mail:
| | - F.Z. Zainul
- School of Health Sciences, USM & Institute for Research in Molecular Medicine (INFORMM), Penang, USM, Malaysia
| | - A.R. Bahaman
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - F. Amran
- Bacteriology Division, Institute for Medical Research, Kuala Lumpur, Malaysia
| | | |
Collapse
|
21
|
Lin MH, Chang YC, Hsiao CD, Huang SH, Wang MS, Ko YC, Yang CW, Sun YJ. LipL41, a hemin binding protein from Leptospira santarosai serovar Shermani. PLoS One 2013; 8:e83246. [PMID: 24349474 PMCID: PMC3861479 DOI: 10.1371/journal.pone.0083246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/31/2013] [Indexed: 12/24/2022] Open
Abstract
Leptospirosis is one of the most widespread zoonotic diseases in the world. It is caused by the pathogen Leptospira that results in multiple-organ failure, in particular of the kidney. Outer membrane lipoprotein is the suspected virulence factor of Leptospira. In Leptospira spp LipL41 is one major lipoprotein and is highly conserved. Previous study suggests that LipL41 bears hemin-binding ability and might play a possible role in iron regulation and storage. However, the characterization of hemin-binding ability of LipL41 is still unclear. Here the hemin-binding ability of LipL41 was examined, yielding a Kd = 0.59 ± 0.14 μM. Two possible heme regulatory motifs (HRMs), C[P/S], were found in LipL41 at 140Cys-Ser and 220Cys-Pro. The mutation study indicates that Cys140 and Cys220 might be cooperatively involved in hemin binding. A supramolecular assembly of LipL41 was determined by transmission electron microscopy. The LipL41 oligomer consists of 36 molecules and folds as a double-layered particle. At the C-terminus of LipL41, there are two tetratricopeptide repeats (TPRs), which might be involved in the protein-protein interaction of the supramolecular assembly.
Collapse
Affiliation(s)
- Ming-Hsing Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Shih-Hsun Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Shi Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ching Ko
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Chou LF, Chen YT, Lu CW, Ko YC, Tang CY, Pan MJ, Tian YC, Chiu CH, Hung CC, Yang CW. Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. Gene 2012; 511:364-70. [PMID: 23041083 DOI: 10.1016/j.gene.2012.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Abstract
Leptospirosis, a widespread zoonosis, is a re-emerging infectious disease caused by pathogenic Leptospira species. In Taiwan, Leptospira santarosai serovar Shermani is the most frequently isolated serovar, causing both renal and systemic infections. This study aimed to generate a L. santarosai serovar Shermani genome sequence and categorize its hypothetical genes, particularly those associated with virulence. The genome sequence consists of 3,936,333 nucleotides and 4033 predicted genes. Additionally, 2244 coding sequences could be placed into clusters of orthologous groups and the number of genes involving cell wall/membrane/envelope biogenesis and defense mechanisms was higher than that of other Leptospira spp. Comparative genetic analysis based on BLASTX data revealed that about 73% and 68.8% of all coding sequences have matches to pathogenic L. interrogans and L. borgpetersenii, respectively, and about 57.6% to saprophyte L. biflexa. Among the hypothetical proteins, 421 have a transmembrane region, 172 have a signal peptide and 17 possess a lipoprotein signature. According to PFAM prediction, 32 hypothetical proteins have properties of toxins and surface proteins mediated bacterial attachment, suggesting they may have roles associated with virulence. The availability of the genome sequence of L. santarosai serovar Shermani and the bioinformatics re-annotation of leptospiral hypothetical proteins will facilitate further functional genomic studies to elucidate the pathogenesis of leptospirosis and develop leptospiral vaccines.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Linkou, and College of Medicine, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp. Infect Immun 2012; 80:3679-92. [PMID: 22802342 DOI: 10.1128/iai.00474-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
Collapse
|
24
|
Chaemchuen S, Rungpragayphan S, Poovorawan Y, Patarakul K. Identification of candidate host proteins that interact with LipL32, the major outer membrane protein of pathogenic Leptospira, by random phage display peptide library. Vet Microbiol 2011; 153:178-185. [PMID: 21592685 DOI: 10.1016/j.vetmic.2011.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/05/2011] [Accepted: 04/18/2011] [Indexed: 11/23/2022]
Abstract
Leptospirosis is a worldwide zoonotic disease caused by pathogenic Leptospira spp. Rodent species are the major reservoir hosts that can excrete leptospires in their urine leading to environmental contamination. After gaining entry into the host via skin breaks and mucosa, leptospires disseminate through the bloodstream to target organs causing a wide range of disease manifestations in susceptible mammalian hosts. The crucial step of infection requires host-pathogen interactions. LipL32, the major outer membrane protein (OMP) of pathogenic Leptospira, is conserved among pathogenic leptospires, immunogenic, and expressed in target organs during acute infection in animal models. Therefore, it may play a key role in host-microbe interactions. To identify host proteins that interact with LipL32, phage display technology was employed in our study. Recombinant LipL32 was used as a target molecule for biopanning with a random heptapeptide phage library to enrich for phages expressing peptides with high affinity to LipL32. After three rounds of panning, 44 plaques of eluted phages were subjected to pyrosequencing. Six different peptide sequences were identified and used to search for matching proteins in the database. Putative proteins with potential binding to LipL32 are proteins known to be expressed on the surface of target cells of pathogenic Leptospira such as chloride channel accessory 2, glycoprotein VI, scavenger receptor expressed by endothelial cell isoform I (SREC-I), coronin 2A, laminin alpha 5, collagen XX, and prostaglandin receptor EP1. However, interactions of LipL32 with these host proteins and their role in the pathogenesis of leptospirosis requires experimental confirmation.
Collapse
Affiliation(s)
- Suwittra Chaemchuen
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
25
|
Diniz JA, Félix SR, Bonel-Raposo J, Seixas Neto ACP, Vasconcellos FA, Grassmann AA, Dellagostin OA, Aleixo JAG, da Silva EF. Highly virulent Leptospira borgpetersenii strain characterized in the hamster model. Am J Trop Med Hyg 2011; 85:271-4. [PMID: 21813846 DOI: 10.4269/ajtmh.2011.11-0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract. A recent study by our group reported the isolation and partial serological and molecular characterization of four Leptospira borgpetersenii serogroup Ballum strains. Here, we reproduced experimental leptospirosis in golden Syrian hamsters (Mesocricetus auratus) and carried out standardization of lethal dose 50% (LD50) of one of these strains (4E). Clinical disease features and histopathologic analyses of tissue lesions were also observed. As results, strain 4E induced lethality in the hamster model with inocula lower than 10 leptospires, and histopathological examination of animals showed typical lesions found in severe leptospirosis. Gross pathological findings were peculiar; animals that died early had more chance of presenting severe jaundice and less chance of presenting pulmonary hemorrhages (P < 0.01). L. borgpetersenii serogroup Ballum has had a considerable growth in human leptospirosis cases in recent years. This strain has now been thoroughly characterized and can be used in more studies, especially evaluations of vaccine candidates.
Collapse
|
26
|
Mineiro ALBB, Vieira RJ, Costa ÉA, Santos RL, Gonçalves LMF, Carvalho SM, Bomfim MRQ, Costa FAL. Serology, polymerase chain reaction and histopathology for leptospirosis in samples collected at slaughter from dairy cows of Parnaiba region, state of Piauí, Brazil. PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011001000005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of anti leptospiral agglutinins (microscopic agglutination test - MAT) and DNA of leptospires was investigated in the kidney and urine (Polymerase Chain Reaction - PCR) in samples collected at the time of slaughter of cattle originating from the dairy basin of Parnaíba, Piauí, Brazil, as also the lesions in kidney, lung, liver, uterus, ovary and placenta (histopathology and immunohistochemistry). In the MAT, Hardjo was the predominant serovar with the highest number of reagent animals for the strain Hardjobovis/Sponselee. Anti-leptospiral antigens were scored in epithelial cells, interstitial vascular endothelium, endothelium of glomerular capillaries and Bowman's capsule of 20 positive animals. Inflammatory cells were more common in the kidney. PCR was positive in urine and kidney tissue
Collapse
|
27
|
Carvalho SMD, Gonçalves LMF, Macedo NAD, Goto H, Silva SMMDS, Mineiro ALBB, Kanashiro EHY, Costa FAL. Infecção por leptospiras em ovinos e caracterização da resposta inflamatória renal. PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000800001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As Leptospiroses são zoonoses graves de distribuição mundial que afetam o homem e outros animais. A infecção em animais, geralmente, é inaparente, ou os sintomas quando presentes são similares a outras infecções. Neste estudo foram colhidos soros de 119 ovinos e seus respectivos rins durante abate em feiras livres no município de Teresina-Piauí. Pela técnica de soroaglutinação microscópica (SAM) obtiveram-se 34 amostras sorológicas positivas para um ou mais sorovares de Leptospira spp., com taxa de ocorrência de 28,6% de anticorpos anti-leptospiras, sendo 23 casos de infecção para um único sorovar e 11 com coaglutinações para dois ou mais sorovares. Dentre os sorovares patogênicos, o de maior ocorrência foi o Autumnalis (29,4%). A análise histopatológica de 36 fragmentos de rins revelou alterações túbulo intersticiais em 33 (91,7%) animais soro-reagentes. Lesões tubulares foram observadas em 20 (55,5%) animais soro-reagentes. A presença de leptospiras, pela técnica de Warthin Starry, foi observada em 8 (22,20%) amostras positivas. Pela técnica de imunoperixidase, de 20 casos analisados, foi verificada a presença de leptospira em 12 (60%) de 20 amostras positivas. Nos animais soro-reagentes, o infiltrado inflamatório foi significantemente mais evidente na região córtico-medular e cortical do que na região medular (p=0,000), mas não houve diferença entre animais soro-reagentes e soro não-reagentes. Cilindros hialinos nos túbulos proximais estavam presentes em quantidade significantemente maior nos animais soro-reagentes comparados aos não-reagentes (p=0,0001). Em glomérulos, foi observada lesão discreta. Os resultados deste estudo mostram que ovinos soro-reagentes para leptospiras apresentam lesões renais túbulo intersticiais, com presença de leptospiras nos túbulos, o que confere a esses animais a condição de disseminadores da infecção.
Collapse
|
28
|
Schmidt A, Beck M, Malmström J, Lam H, Claassen M, Campbell D, Aebersold R. Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol Syst Biol 2011; 7:510. [PMID: 21772258 PMCID: PMC3159967 DOI: 10.1038/msb.2011.37] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/18/2011] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has evolved into the main proteome discovery technology. Up to several thousand proteins can now be reliably identified from a sample and the relative abundance of the identified proteins can be determined across samples. However, the remeasurement of substantially similar proteomes, for example those generated by perturbation experiments in systems biology, at high reproducibility and throughput remains challenging. Here, we apply a directed MS strategy to detect and quantify sets of pre-determined peptides in tryptic digests of cells of the human pathogen Leptospira interrogans at 25 different states. We show that in a single LC-MS/MS experiment around 5000 peptides, covering 1680 L. interrogans proteins, can be consistently detected and their absolute expression levels estimated, revealing new insights about the proteome changes involved in pathogenic progression and antibiotic defense of L. interrogans. This is the first study that describes the absolute quantitative behavior of any proteome over multiple states, and represents the most comprehensive proteome abundance pattern comparison for any organism to date.
Collapse
Affiliation(s)
- Alexander Schmidt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Martin Beck
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johan Malmström
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- BiognoSYS AG, c/o IMSB ETH Zurich, Zurich, Switzerland
| | - Henry Lam
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
- Department of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Potent innate immune response to pathogenic leptospira in human whole blood. PLoS One 2011; 6:e18279. [PMID: 21483834 PMCID: PMC3069077 DOI: 10.1371/journal.pone.0018279] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. Methodology/Principal Findings We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. Conclusions/Significance Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.
Collapse
|
30
|
Cerqueira GM, Souza NM, Araújo ER, Barros AT, Morais ZM, Vasconcellos SA, Nascimento ALTO. Development of transcriptional fusions to assess Leptospira interrogans promoter activity. PLoS One 2011; 6:e17409. [PMID: 21445252 PMCID: PMC3060810 DOI: 10.1371/journal.pone.0017409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Background Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. Methodology and Principal Findings A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. Conclusions The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.
Collapse
|
31
|
Srikram A, Zhang K, Bartpho T, Lo M, Hoke DE, Sermswan RW, Adler B, Murray GL. Cross-protective immunity against leptospirosis elicited by a live, attenuated lipopolysaccharide mutant. J Infect Dis 2011; 203:870-9. [PMID: 21220775 DOI: 10.1093/infdis/jiq127] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Leptospira species cause leptospirosis, a zoonotic disease found worldwide. Current vaccines against leptospirosis provide protection only against closely related serovars. METHODS We evaluated an attenuated transposon mutant of Leptospira interrogans serovar Manilae (M1352, defective in lipopolysaccharide biosynthesis) as a live vaccine against leptospirosis. Hamsters received a single dose of vaccine and were challenged with the homologous serovar (Manilae) and a serologically unrelated heterologous serovar (Pomona). Comparisons were made with killed vaccines. Potential cross-protective antigens against leptospirosis were investigated. RESULTS Live M1352 vaccine induced superior protection in hamsters against homologous challenge. The live vaccine also stimulated cross-protection against heterologous challenge, with 100% survival (live M1352) versus 40% survival (killed vaccine). Hamsters receiving either vaccine responded to the dominant membrane proteins LipL32 and LipL41. Hamsters receiving the live vaccine additionally recognized LA3961/OmpL36 (unknown function), Loa22 (OmpA family protein, recognized virulence factor), LA2372 (general secretory protein G), and LA1939 (hypothetical protein). Manilae LigA was recognized by M1352 vaccinates, whereas LipL36 was detected in Pomona. CONCLUSION This study demonstrated that a live, attenuated vaccine can stimulate cross-protective immunity to L. interrogans and has identified antigens that potentially confer cross-protection against leptospirosis.
Collapse
Affiliation(s)
- Amporn Srikram
- Faculty of Medicine, Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lowanitchapat A, Payungporn S, Sereemaspun A, Ekpo P, Phulsuksombati D, Poovorawan Y, Chirathaworn C. Expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys of hamsters infected with pathogenic Leptospira. Comp Immunol Microbiol Infect Dis 2010; 33:423-434. [PMID: 19559480 DOI: 10.1016/j.cimid.2009.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2009] [Indexed: 01/19/2023]
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. Although several components of this organism have been identified, the molecular mechanisms underlying pathogenesis of this infectious disease are still poorly understood. Besides, direct injury by microbial factors, cytokines produced in response to infection have been proposed to be involved in pathogenesis of leptospirosis. In this study, cytokine gene expression in kidneys was investigated. Hamsters were injected with pathogenic Leptospira interrogans serovar Pyrogenes and were sacrificed on days 3, 5 and 7 after infection. RNA was extracted from kidney tissues. Real-time PCR was performed to demonstrate expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys. TNF-alpha, TGF-beta and IP-10 expression could be demonstrated since day 3 post-infection whereas IL-10 expression was detected later on day 5. Leptospira infection resulted in not only expression of a proinflammatory cytokine, TNF-alpha, but also a T cell chemokine, IP-10. Detection of IP-10 suggested the involvement of T cell recruitment in the immune response or pathology in infected kidneys. Expressions of anti-inflammatory cytokines, TGF-beta and IL-10 were also observed. However, the level of TGF-beta expression was prominent since day 3 post-infection whereas IL-10 expression was clearly observed on day 5. Further experiments will provide additional information whether there is a correlation between the expression of these cytokines and pathologies found in an affected organ.
Collapse
Affiliation(s)
- Alisa Lowanitchapat
- Medical Science Master Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Leptospira is a genus of spirochaetes that includes organisms with a variety of lifestyles ranging from aquatic saprophytes to invasive pathogens. Adaptation to a wide variety of environmental conditions has required leptospires to acquire a large genome and a complex outer membrane with features that are unique among bacteria. The most abundant surface-exposed outer membrane proteins are lipoproteins that are integrated into the lipid bilayer by amino-terminal fatty acids. In contrast to many spirochaetes, the leptospiral outer membrane also includes lipopolysaccharide and many homologues of well-known beta-barrel transmembrane outer membrane proteins. Research on leptospiral transmembrane outer membrane proteins has lagged behind studies of lipoproteins because of their aberrant behaviour by Triton X-114 detergent fractionation. For this reason, transmembrane outer membrane proteins are best characterized by assessing membrane integration and surface exposure. Not surprisingly, some outer membrane proteins that mediate host-pathogen interactions are strongly regulated by conditions found in mammalian host tissues. For example, the leptospiral immunoglobulin-like (Lig) repeat proteins are dramatically induced by osmolarity and mediate interactions with host extracellular matrix proteins. Development of molecular genetic tools are making it possible to finally understand the roles of these and other outer membrane proteins in mechanisms of leptospiral pathogenesis.
Collapse
Affiliation(s)
- David A Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
34
|
Patarakul K, Lo M, Adler B. Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. BMC Microbiol 2010; 10:31. [PMID: 20113507 PMCID: PMC2841595 DOI: 10.1186/1471-2180-10-31] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 01/29/2010] [Indexed: 01/08/2023] Open
Abstract
Background Leptospirosis is a zoonosis of worldwide distribution caused by infection with pathogenic serovars of Leptospira spp. The most common species, L. interrogans, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. Transmission of pathogenic Leptospira to humans mostly occurs through abraded skin or mucosal surfaces after direct or indirect contact with infected animals or contaminated soil or water. The spirochete then spreads hematogenously, resulting in multi-organ failure and death in severe cases. Previous DNA microarray studies have identified differentially expressed genes required for adaptation to temperature and osmolarity conditions inside the host compared to those of the environment. Results In order to identify genes involved in survival in the early spirochetemic phase of infection, we performed a transcriptional analysis of L. interrogans serovar Copenhageni upon exposure to serum in comparison with EMJH medium. One hundred and sixty-eight genes were found to be differentially expressed, of which 55 were up-regulated and 113 were down-regulated. Genes of known or predicted function accounted for 54.5 and 45.1% of up- and down-regulated genes, respectively. Most of the differentially expressed genes were predicted to be involved in transcriptional regulation, translational process, two-component signal transduction systems, cell or membrane biogenesis, and metabolic pathways. Conclusions Our study showed global transcriptional changes of pathogenic Leptospira upon exposure to serum, representing a specific host environmental cue present in the bloodstream. The presence of serum led to a distinct pattern of gene expression in comparison to those of previous single-stimulus microarray studies on the effect of temperature and osmolarity upshift. The results provide insights into the pathogenesis of leptospirosis during the early bacteremic phase of infection.
Collapse
Affiliation(s)
- Kanitha Patarakul
- Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
35
|
Vieira ML, de Morais ZM, Gonçales AP, Romero EC, Vasconcellos SA, Nascimento AL. Lsa63, a newly identified surface protein of Leptospira interrogans binds laminin and collagen IV. J Infect 2010; 60:52-64. [DOI: 10.1016/j.jinf.2009.10.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
36
|
Asención Diez MD, Demonte A, Giacomelli J, Garay S, Rodrígues D, Hofmann B, Hecht HJ, Guerrero SA, Iglesias AA. Functional characterization of GDP-mannose pyrophosphorylase from Leptospira interrogans serovar Copenhageni. Arch Microbiol 2009; 192:103-14. [PMID: 20035319 DOI: 10.1007/s00203-009-0534-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 11/30/2022]
Abstract
Leptospira interrogans synthesizes a range of mannose-containing glycoconjugates relevant for its virulence. A prerequisite in the synthesis is the availability of the GDP-mannose, produced from mannose-1-phosphate and GTP in a reaction catalyzed by GDP-mannose pyrophosphorylase. The gene coding for a putative enzyme in L. interrogans was expressed in Escherichia coli BL21(DE3). The identity of this enzyme was confirmed by electrospray-mass spectroscopy, Edman sequencing and immunological assays. Gel filtration chromatography showed that the dimeric form of the enzyme is catalytically active and stable. The recombinant protein was characterized as a mannose-1-phosphate guanylyltransferase. S (0.5) for the substrates were determined both in GDP-mannose pyrophosphorolysis: 0.20 mM (GDP-mannose), 0.089 mM (PPi), and 0.47 mM; and in GDP-mannose synthesis: 0.24 mM (GTP), 0.063 mM (mannose-1-phosphate), and 0.45 mM (Mg(2+)). The enzyme was able to produce GDP-mannose, IDP-mannose, UDP-mannose and ADP-glucose. We obtained a structural model of the enzyme using as a template the crystal structure of mannose-1-phosphate guanylyltransferase from Thermus thermophilus HB8. Binding of substrates and cofactor in the model agree with the pyrophosphorylases reaction mechanism. Our studies provide insights into the structure of a novel molecular target, which could be useful for detection of leptospirosis and for the development of anti-leptospiral drugs.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Laboratorio de Bioquímica Microbiana, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lo M, Cordwell SJ, Bulach DM, Adler B. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature. PLoS Negl Trop Dis 2009; 3:e560. [PMID: 19997626 PMCID: PMC2780356 DOI: 10.1371/journal.pntd.0000560] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/28/2009] [Indexed: 11/19/2022] Open
Abstract
Background Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. Methodology/Principal Findings To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30°C or overnight upshift to 37°C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. Conclusions/Significance This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms. Leptospirosis, caused by Leptospira spp., is a disease of worldwide significance affecting millions of people annually. Bacteria of this species are spread by various carrier animals, including rodents and domestic livestock, which shed the leptospires via their urine into the environment. Humans become infected through direct contact with carrier animals or indirectly via contaminated water or soil. Temperature is a key trigger used by many bacteria to sense changes in environmental conditions, including entry from the environment into the host. This study was the first comprehensive research into changes occurring in the outer membrane of Leptospira in response to temperature and how these changes correlate with gene expression changes. An understanding of the regulation and function of these proteins is important as they may provide an adaptation and survival advantage for the microorganism which may enhance its ability to infect hosts and cause disease. Our data suggest regulation of proteins in the outer membrane which may possibly be a mechanism to minimise interactions with the host immune response.
Collapse
Affiliation(s)
- Miranda Lo
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
| | - Stuart J. Cordwell
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia
| | - Dieter M. Bulach
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
- Victorian Bioinformatics Consortium, Monash University, Melbourne. Australia
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Melbourne, Australia
- Victorian Bioinformatics Consortium, Monash University, Melbourne. Australia
- * E-mail: .
| |
Collapse
|
38
|
Tung JY, Yang CW, Chou SW, Lin CC, Sun YJ. Calcium binds to LipL32, a lipoprotein from pathogenic Leptospira, and modulates fibronectin binding. J Biol Chem 2009; 285:3245-52. [PMID: 19948735 DOI: 10.1074/jbc.m109.006320] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubulointerstitial nephritis is a cardinal renal manifestation of leptospirosis. LipL32, a major lipoprotein and a virulence factor, locates on the outer membrane of the pathogen Leptospira. It evades immune response by recognizing and adhering to extracellular matrix components of the host cell. The crystal structure of Ca(2+)-bound LipL32 was determined at 2.3 A resolution. LipL32 has a novel polyD sequence of seven aspartates that forms a continuous acidic surface patch for Ca(2+) binding. A significant conformational change was observed for the Ca(2+)-bound form of LipL32. Calcium binding to LipL32 was determined by isothermal titration calorimetry. The binding of fibronectin to LipL32 was observed by Stains-all CD and enzyme-linked immunosorbent assay experiments. The interaction between LipL32 and fibronectin might be associated with Ca(2+) binding. Based on the crystal structure of Ca(2+)-bound LipL32 and the Stains-all results, fibronectin probably binds near the polyD region on LipL32. Ca(2+) binding to LipL32 might be important for Leptospira to interact with the extracellular matrix of the host cell.
Collapse
Affiliation(s)
- Jung-Yu Tung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Abdulkader RCRM, Silva MV. The kidney in leptospirosis. Pediatr Nephrol 2008; 23:2111-20. [PMID: 18446381 DOI: 10.1007/s00467-008-0811-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 11/30/2022]
Abstract
Leptospirosis is a worldwide zoonosis. Typically, patients are young men, although children can be affected. In children, this disease causes mainly alterations of sensorium. Acute renal failure and jaundice (Weil's syndrome) are less common in children than in adults. The main renal histological findings are acute interstitial nephritis and acute tubular necrosis. Acute renal failure is characterized by hypokalemia and nonoliguria. Many factors are involved in its physiopathology: hypotension, hypovolemia, rhabdomyolysis, hyperbilirubinemia, and, primarily, the direct action of leptospiral proteins. Antibiotic administration (especially early administration) reduces length of hospitalization and leptospiruria. For children, even late antibiotic treatment has been shown to reduce the extent of acute renal failure and thrombocytopenia. Although the best method of dialysis is not yet established, early and intensive dialysis can decrease mortality. Mortality in patients with acute renal failure is approximately 15-20% in association with the presence of oliguria, higher levels of creatinine, and older age. Functional recovery is fast and complete; however, abnormal urinary concentration can persist.
Collapse
|
40
|
Gómez RM, Vieira ML, Schattner M, Malaver E, Watanabe MM, Barbosa AS, Abreu PAE, de Morais ZM, Cifuente JO, Atzingen MV, Oliveira TR, Vasconcellos SA, Nascimento ALTO. Putative outer membrane proteins of Leptospira interrogans stimulate human umbilical vein endothelial cells (HUVECS) and express during infection. Microb Pathog 2008; 45:315-22. [PMID: 18778767 DOI: 10.1016/j.micpath.2008.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/04/2008] [Accepted: 08/06/2008] [Indexed: 11/19/2022]
Abstract
Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L. interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L. interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Systemic leptospirosis followed by salmonella vertebral osteomyelitis without sickling or immunosuppression. Spine (Phila Pa 1976) 2008; 33:E55-61. [PMID: 18197092 DOI: 10.1097/brs.0b013e3181604708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN The clinical history of a healthy young patient who acquired systemic leptospirosis followed by salmonella vertebral osteomyelitis was studied in detail, and compared to the histories of leptospirosis and salmonella vertebral osteomyelitis reported in the literature. OBJECTIVE To alert the medical community about this unusual association of infectious diseases in a healthy patient without sickling or immunosuppression. SUMMARY OF BACKGROUND DATA Human leptospirosis has been intensively studied, and there are several reports of salmonella vertebral osteomyelitis in patients without sickling. However, the combination of these entities in a single healthy patient is unexpected. METHODS The extensive literature on human leptospirosis and salmonella vertebral osteomyelitis was reviewed in detail, in correlation with this patient's clinical history and imaging studies. RESULTS The patient had no previous medical history. He contracted systemic leptospirosis when swimming in a lake contaminated with the urine of infected animals. As his leptospirosis symptoms resolved with doxycycline, he experienced increasing thoracolumbar spine pain, because of salmonella vertebral osteomyelitis, which responded to amoxicillin. CONCLUSION Leptospirosis may have caused gut mucosal vasculitis, allowing salmonella to enter the bloodstream and infect the spine.
Collapse
|
42
|
Vieira ML, D'Atri LP, Schattner M, Habarta AM, Barbosa AS, de Morais ZM, Vasconcellos SA, Abreu PAE, Gómez RM, Nascimento ALTO. A novel leptospiral protein increases ICAM-1 and E-selectin expression in human umbilical vein endothelial cells. FEMS Microbiol Lett 2008; 276:172-80. [PMID: 17956423 DOI: 10.1111/j.1574-6968.2007.00924.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has been reported previously that activation of vascular endothelium by outer membrane proteins of the spirochetes Borrelia sp. and Treponema sp. resulted in enhanced expression of endothelial cell adhesion molecules. To investigate the role of leptospiral proteins in this process, a predicted lipoprotein encoded by the gene LIC10365 was selected, which belongs to a paralogous family that presents a domain of unknown function, DUF1565. The LIC10365 gene was cloned and the protein expressed in Escherichia coli C43 (DE3) strain using the vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and was used to assess its ability to activate cultured human umbilical vein endothelial cells. The rLIC10365 activated endothelium in such a manner that E-selectin and intercellular adhesion molecule 1 (ICAM-1) became upregulated in a dose-dependent fashion. The LIC10365-encoded protein was identified in vivo in the renal tubules of animal during experimental infection with Leptospira interrogans. Collectively, these results implicate the LIC10365-coding protein of L. interrogans as a potential effector molecule in the promotion of a host inflammatory response. This is the first report of a leptospiral protein capable of up-regulating the expression of endothelial cell adhesion molecules ICAM-1 and E-selectin.
Collapse
Affiliation(s)
- Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP) vaccines, lipopolysaccharide (LPS) vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool.
Collapse
Affiliation(s)
- Zhijun Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, PR China.
| | | | | |
Collapse
|
44
|
Abstract
Leptospirosis is a prevalent infectious disease affecting both humans and animals worldwide. This infection is associated with occupational or recreational exposure to animals as well as contact with leptospires, particularly in flood-prone areas. Multiple organ dysfunctions may be associated with acute severe leptospirosis. A triad presentation of fever, jaundice, and acute renal failure in patients with acute multiple organ dysfunction should alert physicians to possible leptospirosis. Penicillin is effective and can rescue multiple organ failure if administered early. Renal involvement is common in leptospirosis characterized by tubulo-interstitial nephritis, and tubular dysfunction. Leptospira outer membrane proteins (OMPs) may elicit tubular injury and inflammation through Toll-like receptors (TLRs)-dependent pathway followed by activation of nuclear transcription factor kappa B and mitogen-activated protein kinases and a differential induction of chemokines and cytokines relevant to tubular inflammation. Leptospira OMP may also induce activation of the transforming growth factor-beta/Smad-associated fibrosis pathway leading to accumulation of extracellular matrix. Thus, leptospirosis renal disease is a model for understanding the pathogenesis and initiation of pathogen-induced tubulo-interstitial nephritis and fibrosis. In particular, TLRs may be important mediators.
Collapse
Affiliation(s)
- C-W Yang
- Department of Nephrology, Kidney Institute, Chang Gung Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
45
|
Brandes K, Wollanke B, Niedermaier G, Brem S, Gerhards H. Recurrent uveitis in horses: vitreal examinations with ultrastructural detection of leptospires. ACTA ACUST UNITED AC 2007; 54:270-5. [PMID: 17523963 DOI: 10.1111/j.1439-0442.2007.00921.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study documents the examination of 17 horses (both sexes, 3-18 years old) suffering from spontaneous equine recurrent uveitis (ERU). Vitreal samples obtained by pars plana vitrectomy were examined macroscopically and ultrastructurally, and in most cases also by cultural examination, by microscopic agglutination test (MAT) and by polymerase chain reaction. In 24% (4/17) of the animals, ultrastructural examination by electron microscopy revealed intact leptospiral bacteria in the vitreous. The leptospires were detected freely in the vitreous and also incorporated by a phagocyte. They were surrounded by a rim of proteinaceous material which was reduced around a phagocytosed leptospira. Ninety-four per cent (16/17) of the vitreal samples presented significant antibody levels in the MAT, mostly against leptospiral serovar Grippotyphosa. Seventy-five per cent (9/12) of bacterial culture examinations were positive for leptospira. Polymerase chain reaction was positive in all (16/16) examinations performed. Our findings support previous reports suggesting that leptospires play an important role in the pathogenesis of ERU. Interestingly, this study found leptospires after secondary and later acute episodes. A persistent leptospiral infection is therefore suggested as the cause of ERU.
Collapse
Affiliation(s)
- K Brandes
- Equine Clinic, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Muenchen, Veterinaerstr. 13, 80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
46
|
Asuthkar S, Velineni S, Stadlmann J, Altmann F, Sritharan M. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun 2007; 75:4582-91. [PMID: 17576761 PMCID: PMC1951163 DOI: 10.1128/iai.00324-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.
Collapse
Affiliation(s)
- Swapna Asuthkar
- School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | | | | | | | | |
Collapse
|
47
|
Matsunaga J, Lo M, Bulach DM, Zuerner RL, Adler B, Haake DA. Response of Leptospira interrogans to physiologic osmolarity: relevance in signaling the environment-to-host transition. Infect Immun 2007; 75:2864-74. [PMID: 17371863 PMCID: PMC1932867 DOI: 10.1128/iai.01619-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/19/2006] [Accepted: 03/11/2007] [Indexed: 12/11/2022] Open
Abstract
Transmission of pathogenic Leptospira between mammalian hosts usually involves dissemination via soil or water contaminated by the urine of carrier animals. The ability of Leptospira to adapt to the diverse conditions found inside and outside the host is reflected in its relatively large genome size and high percentage of signal transduction genes. An exception is Leptospira borgpetersenii serovar Hardjo, which is transmitted by direct contact and appears to have lost genes necessary for survival outside the mammalian host. Invasion of host tissues by Leptospira interrogans involves a transition from a low osmolar environment outside the host to a higher physiologic osmolar environment within the host. Expression of the lipoprotein LigA and LigB adhesins is strongly induced by an upshift in osmolarity to the level found in mammalian host tissues. These data suggest that Leptospira utilizes changes in osmolarity to regulate virulence characteristics. To better understand how L. interrogans serovar Copenhageni adapts to osmolar conditions that correspond with invasion of a mammalian host, we quantified alterations in transcript levels using whole-genome microarrays. Overnight exposure in leptospiral culture medium supplemented with sodium chloride to physiologic osmolarity significantly altered the transcript levels of 6% of L. interrogans genes. Repressed genes were significantly more likely to be absent or pseudogenes in L. borgpetersenii, suggesting that osmolarity is relevant in studying the adaptation of L. interrogans to host conditions. Genes induced by physiologic osmolarity encoded a higher than expected number of proteins involved in signal transduction. Further, genes predicted to encode lipoproteins and those coregulated by temperature were overrepresented among both salt-induced and salt-repressed genes. In contrast, leptospiral homologues of hyperosmotic or general stress genes were not induced at physiologic osmolarity. These findings suggest that physiologic osmolarity is an important signal for regulation of gene expression by pathogenic leptospires during transition from ambient conditions to the host tissue environment.
Collapse
Affiliation(s)
- James Matsunaga
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Leptospirosis is among the most important zoonotic diseases worldwide. Completion of the genomic sequences of leptospires has facilitated advances in diagnosis and prevention of the disease, and yielded insight into its pathogenesis. This article reviews this research, emphasizing recent progress. RECENT FINDINGS Leptospirosis is caused by a group of highly invasive spiral bacteria (spirochetes) that can infect both people and animals. Spirochetes can survive in the environment and host, and therefore outer membrane and secretory proteins that interact with the host are of considerable interest in leptospire research. The genetic approach to studying pathogenesis is hindered by fastidious growth of pathogenic leptospires. Integrated genomic and proteomic approaches, however, have yielded enhanced understanding of the pathogenesis of leptospirosis. Furthermore, studies of innate immune response to the organism have enhanced our understanding of host susceptibility and resistance to infection. In-silico analysis and high-throughput cloning and expression have had major impacts on efforts to develop vaccine candidates and diagnostic reagents. SUMMARY In the future, we must effectively utilize the wealth of genetic information to combat the disease. More studies into genetics, immune mechanisms that may be exploited to prevent leptospirosis, and pathogenesis of the disease are necessary.
Collapse
Affiliation(s)
- Raghavan U M Palaniappan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
49
|
Doungchawee G, Sirawaraporn W, Icksang-Ko A, Kongtim S, Naigowit P, Thongboonkerd V. Use of immunoblotting as an alternative method for serogrouping Leptospira. J Med Microbiol 2007; 56:587-592. [PMID: 17446278 DOI: 10.1099/jmm.0.47143-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis is a worldwide zoonotic disease caused by a spirochaete bacterium, Leptospira. Serological detection of this micro-organism basically relies on a conventional microscopic agglutination test (MAT), which has some limitations and disadvantages. In the present study, immunoblotting has been applied as an alternative method for differentiating serogroups and serovars of leptospires. Leptospiral whole-cell lysates from a total of 26 serovars were subjected to immunoblotting using rabbit antisera against individual serovars. The findings clearly demonstrated that the pattern of immunoreactive bands could be used to differentiate between leptospires of different serogroups, consistent with MAT results. There was a multi-band pattern that was unique for the pathogenic Leptospira antigens and was not observed in the non-pathogenic Leptospira biflexa and non-leptospiral bacteria (i.e. Escherichia coli, Burkholderia pseudomallei and Helicobacter pylori). For pathogenic Leptospira species, a prominent smear-like band at approximately 19–30 kDa was present when the antigens were probed with the homologous antisera. The molecular size of the prominent band, although it showed a cross-reaction between members within the same serogroup, differed among different serovars. The results obtained from polyclonal antibodies (antisera) were confirmed using mAb. With its simplicity and safety of experimental procedures, it is proposed that immunoblotting may potentially be useful as an alternative method for differentiating between serogroups of leptospires.
Collapse
Affiliation(s)
- Galayanee Doungchawee
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Worachart Sirawaraporn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Albert Icksang-Ko
- Division of International Medicine and Infectious Disease, Weill Medical College of Cornell University, New York, NY 10021, USA
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation/Brazilian Ministry of Health, Rua Waldemar Falcão, 12140295-001 Salvador, Bahia, Brazil
| | - Suraphol Kongtim
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimjai Naigowit
- Research Center for Leptospira Laboratory, National Institute of Health, Nonthaburi, Thailand
| | - Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Department of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
50
|
Amutha R, Chaudhury P, Garg AP, Vasan P, Cheema PS, Srivastava SK. Cloning and Sequence Analysis of the Gene Encoding LipL32 of Leptospira interrogans Serovar Sejroe. Vet Res Commun 2007; 31:513-9. [PMID: 17221365 DOI: 10.1007/s11259-007-3533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2006] [Indexed: 11/26/2022]
Abstract
Leptospira, a member of the order Spirochaetales, is the causative agent of leptospirosis, an important zoonosis encountered worldwide. The Leptospira interrogans serovar Sejroe was grown in EMJH medium and its DNA was isolated using standard techniques. The LipL32 gene was amplified using the reported primer of Kirschneri of LipL32. The amplified product was found to comprise 756 base pairs. This amplified gene fragment of LipL32 lipoprotein was cloned in E. coli (DH5 alpha) cells using pDrive plasmid as a vector. The recombinant cells were selected on LB agar medium containing ampicillin, X-gal and isopropyl-beta-D-thiogalactopyranoside. Plasmid was extracted from the recombinant white colonies, and restriction endonuclease (RE) analysis was carried out using PstI and SalI. On partial sequence analysis, the product exhibited 756 base pairs, corresponding to 251 amino acids. The cloned gene could be further used for expression of recombinant protein for serodiagnosis of leptospirosis.
Collapse
Affiliation(s)
- R Amutha
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | | | | | | | | | | |
Collapse
|