1
|
Paul R, Lorenzo F, López B, Alegre MG, Couvin D, Rastogi N, Pérez-Lago L, García de Viedma D, Gamberale A, González N, Palmero D, Altabe S, Simboli N, Yokobori NK. Outbreak Caused by Multidrug-Resistant Mycobacterium Tuberculosis with Unusual Combination of Resistance Mutations, Northern Argentina, 2006-2022. Emerg Infect Dis 2025; 31:601-606. [PMID: 40023848 PMCID: PMC11878304 DOI: 10.3201/eid3103.241272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
To reconstruct transmission chains of the multidrug-resistant tuberculosis Ch strain, which harbors a unique combination of resistance mutations, we analyzed genomes of 25 isolates from 12 patients with diagnosis during 2006-2022 in Chaco Province, Argentina. Amplification of resistance, high mortality rates, and indications of a wider outbreak raise concerns for surveillance programs.
Collapse
|
2
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
3
|
Zheng W, LaCourse SM, Song B, Singh DK, Khanna M, Olivo J, Stern J, Escudero JN, Vergara C, Zhang F, Li S, Wang S, Cranmer LM, Huang Z, Bojanowski CM, Bao D, Njuguna I, Xiao Y, Wamalwa DC, Nguyen DT, Yang L, Maleche-Obimbo E, Nguyen N, Zhang L, Phan H, Fan J, Ning B, Li C, Lyon CJ, Graviss EA, John-Stewart G, Mitchell CD, Ramsay AJ, Kaushal D, Liang R, Pérez-Then E, Hu TY. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nat Biomed Eng 2022; 6:979-991. [PMID: 35986185 PMCID: PMC9391224 DOI: 10.1038/s41551-022-00922-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Sensitive and specific blood-based assays for the detection of pulmonary and extrapulmonary tuberculosis would reduce mortality associated with missed diagnoses, particularly in children. Here we report a nanoparticle-enhanced immunoassay read by dark-field microscopy that detects two Mycobacterium tuberculosis virulence factors (the glycolipid lipoarabinomannan and its carrier protein) on the surface of circulating extracellular vesicles. In a cohort study of 147 hospitalized and severely immunosuppressed children living with HIV, the assay detected 58 of the 78 (74%) cases of paediatric tuberculosis, 48 of the 66 (73%) cases that were missed by microbiological assays, and 8 out of 10 (80%) cases undiagnosed during the study. It also distinguished tuberculosis from latent-tuberculosis infections in non-human primates. We adapted the assay to make it portable and operable by a smartphone. With further development, the assay may facilitate the detection of tuberculosis at the point of care, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sylvia M LaCourse
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Bofan Song
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Dhiraj Kumar Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mayank Khanna
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Juan Olivo
- O&M Medical School (O&Med), Santo Domingo, Dominican Republic
| | - Joshua Stern
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jaclyn N Escudero
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Carlos Vergara
- O&M Medical School (O&Med), Santo Domingo, Dominican Republic
| | - Fangfang Zhang
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shaobai Li
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Shu Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lisa M Cranmer
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christine M Bojanowski
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Irene Njuguna
- Department of Global Health, University of Washington, Seattle, WA, USA
- Kenyatta National Hospital, Research and Programs, Nairobi, Kenya
| | - Yating Xiao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Dalton C Wamalwa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Duc T Nguyen
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX, USA
| | - Li Yang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Maleche-Obimbo
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | | | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ha Phan
- Center for Promotion of Advancement of Society (CPAS), Ha Noi, Vietnam
- Vietnam National Tuberculosis Program/University of California San Francisco Research Collaboration, Ha Noi, Vietnam
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chenzhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist, Houston, TX, USA
- Department of Surgery, J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist, Houston, TX, USA
| | - Grace John-Stewart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Charles D Mitchell
- Department of Pediatrics, Division of Infectious Diseases and Immunology, University of Miami Miller School of Medicine, Batchelor Children's Research Institute, Miami, FL, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rongguang Liang
- James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Eddy Pérez-Then
- O&M Medical School (O&Med), Santo Domingo, Dominican Republic
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
4
|
Poh XY, Hong JM, Bai C, Miow QH, Thong PM, Wang Y, Rajarethinam R, Ding CSL, Ong CWM. Nos2 -/- mice infected with M. tuberculosis develop neurobehavioral changes and immunopathology mimicking human central nervous system tuberculosis. J Neuroinflammation 2022; 19:21. [PMID: 35073927 PMCID: PMC8787888 DOI: 10.1186/s12974-022-02387-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Understanding the pathophysiology of central nervous system tuberculosis (CNS-TB) is hampered by the lack of a good pre-clinical model that mirrors the human CNS-TB infection. We developed a murine CNS-TB model that demonstrates neurobehavioral changes with similar immunopathology with human CNS-TB. METHODS We injected two Mycobacterium tuberculosis (M.tb) strains, H37Rv and CDC1551, respectively, into two mouse strains, C3HeB/FeJ and Nos2-/- mice, either into the third ventricle or intravenous. We compared the neurological symptoms, histopathological changes and levels of adhesion molecules, chemokines, and inflammatory cytokines in the brain induced by the infections through different routes in different strains. RESULTS Intra-cerebroventricular infection of Nos2-/- mice with M.tb led to development of neurological signs and more severe brain granulomas compared to C3HeB/FeJ mice. Compared with CDC1551 M.tb, H37Rv M.tb infection resulted in a higher neurobehavioral score and earlier mortality. Intra-cerebroventricular infection caused necrotic neutrophil-dominated pyogranulomas in the brain relative to intravenous infection which resulted in disseminated granulomas and mycobacteraemia. Histologically, intra-cerebroventricular infection of Nos2-/- mice with M.tb resembled human CNS-TB brain biopsy specimens. H37Rv intra-cerebroventricular infected mice demonstrated higher brain concentrations of inflammatory cytokines, chemokines and adhesion molecule ICAM-1 than H37Rv intravenous-infected mice. CONCLUSIONS Intra-cerebroventricular infection of Nos2-/- mice with H37Rv creates a murine CNS-TB model that resembled human CNS-TB immunopathology, exhibiting the worst neurobehavioral score with a high and early mortality reflecting disease severity and its associated neurological morbidity. Our murine CNS-TB model serves as a pre-clinical platform to dissect host-pathogen interactions and evaluate therapeutic agents for CNS-TB.
Collapse
Affiliation(s)
- Xuan Ying Poh
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Jia Mei Hong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Chen Bai
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Qing Hao Miow
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Pei Min Thong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Yu Wang
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cristine S L Ding
- Department of Pathology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10th floor, Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore.
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Abascal E, Genestet C, Valera A, Herranz M, Martinez-Lirola M, Muñoz P, Dumitrescu O, García de Viedma D. Assessment of closely related Mycobacterium tuberculosis variants with different transmission success and in vitro infection dynamics. Sci Rep 2021; 11:11041. [PMID: 34040136 PMCID: PMC8155013 DOI: 10.1038/s41598-021-90568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
Whole genome sequencing (WGS) is able to differentiate closely related Mycobacterium tuberculosis variants within the same transmission cluster. Our aim was to evaluate if this higher discriminatory power may help identify and characterize more actively transmitted variants and understand the factors behind their success. We selected a robust MIRU-VNTR-defined cluster from Almería, Spain (22 cases throughout 2003–2019). WGS allowed discriminating, within the same epidemiological setting, between a successfully transmitted variant and seven closely related variants that did not lead to secondary cases, or were involved in self-limiting transmission (one single secondary case). Intramacrophagic growth of representative variants was evaluated in an in vitro infection model using U937 cells. Intramacrophage multiplication ratios (CFUs at Day 4/CFUs at Day 0) were higher for the actively transmitted variant (range 5.3–10.7) than for the unsuccessfully transmitted closely related variants (1.5–3.95). Two SNPs, mapping at the DNA binding domain of DnaA and at kdpD, were found to be specific of the successful variant.
Collapse
Affiliation(s)
- Estefanía Abascal
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon-1, 69007, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, 69317, Lyon Cedex 04, France
| | - Ana Valera
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon-1, 69007, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, 69317, Lyon Cedex 04, France
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. .,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
6
|
Kuldeep J, Sharma SK, Sharma T, Singh BN, Siddiqi MI. Targeting Mycobacterium Tuberculosis Enoyl-Acyl Carrier Protein Reductase Using Computational Tools for Identification of Potential Inhibitor and their Biological Activity. Mol Inform 2020; 40:e2000211. [PMID: 33283460 DOI: 10.1002/minf.202000211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023]
Abstract
Enoyl-acyl carrier protein reductase (InhA) of type II fatty acid synthase system is involved in the synthesis of mycolic acids which is a major component of the bacterial cell wall. Since they are the key enzymes playing a very significant role in the FASII pathway of the bacterium. In this study, we have developed a workflow for identification of InhA inhibitors by utilizing in silico virtual screening approaches based on various machine learning algorithms followed by pharmacophore based virtual screening. The hits screened from the models were further subjected to molecular docking. Further, based on the XP docking score best twenty compounds were subjected to molecular dynamics study. Finally, nine compounds were shortlisted on the basis of best stable ligand RMSD, c-alpha RMSD, and RMSF plot for biological evaluation studies. Experimental validation of the shortlisted compounds identified one compound JFD01724 having potent inhibitory activity and was able to inhibit the growth of mycobacterium tuberculosis. Further medicinal chemistry efforts may help to improve the inhibitory potency of the identified compound.
Collapse
Affiliation(s)
- Jitendra Kuldeep
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Sandeep K Sharma
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Tanuj Sharma
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Bhupendra N Singh
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India, 226031
| |
Collapse
|
7
|
Diedrich CR, Rutledge T, Maiello P, Baranowski TM, White AG, Borish HJ, Karell P, Hopkins F, Brown J, Fortune SM, Flynn JL, Ambrose Z, Lin PL. SIV and Mycobacterium tuberculosis synergy within the granuloma accelerates the reactivation pattern of latent tuberculosis. PLoS Pathog 2020; 16:e1008413. [PMID: 32730321 PMCID: PMC7419014 DOI: 10.1371/journal.ppat.1008413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/11/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus infection is the most common risk factor for severe forms of tuberculosis (TB), regardless of CD4 T cell count. Using a well-characterized cynomolgus macaque model of human TB, we compared radiographic, immunologic and microbiologic characteristics of early (subclinical) reactivation of latent M. tuberculosis (Mtb) infection among animals subsequently infected with simian immunodeficiency virus (SIV) or who underwent anti-CD4 depletion by a depletion antibody. CD4 depleted animals had significantly fewer CD4 T cells within granulomas compared to Mtb/SIV co-infected and Mtb-only control animals. After 2 months of treatment, subclinical reactivation occurred at similar rates among CD4 depleted (5 of 7 animals) and SIV infected animals (4 of 8 animals). However, SIV-induced reactivation was associated with more dissemination of lung granulomas that were permissive to Mtb growth resulting in greater bacterial burden within granulomas compared to CD4 depleted reactivators. Granulomas from Mtb/SIV animals displayed a more robust T cell activation profile (IFN-α, IFN-γ, TNF, IL-17, IL-2, IL-10, IL-4 and granzyme B) compared to CD4 depleted animals and controls though these effectors did not protect against reactivation or dissemination, but instead may be related to increased viral and/or Mtb antigens. SIV replication within the granuloma was associated with reactivation, greater overall Mtb growth and reduced Mtb killing resulting in greater overall Mtb burden. These data support that SIV disrupts protective immune responses against latent Mtb infection beyond the loss of CD4 T cells, and that synergy between SIV and Mtb occurs within granulomas.
Collapse
Affiliation(s)
- Collin R. Diedrich
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tara Rutledge
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Pauline Maiello
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tonilynn M. Baranowski
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - H. Jacob Borish
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Paul Karell
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Forrest Hopkins
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jessica Brown
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - JoAnne L. Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2020; 77:5543892. [PMID: 31381766 PMCID: PMC6687098 DOI: 10.1093/femspd/ftz037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately, we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the development of treatment and vaccination strategies.
Collapse
Affiliation(s)
- Allison N Bucsan
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Deepak Kaushal
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Southwest National Primate Research Center, San Antonio, TX, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
9
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
10
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
11
|
Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:E492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
Affiliation(s)
- Helmut Bischof
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Markus Waldeck-Weiermair
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Thomas Rauter
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Maximilian Schinagl
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Roland Malli
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
12
|
Mantilla Galindo A, Ocampo M, Patarroyo MA. Experimental models used in evaluating anti-tuberculosis vaccines: the latest advances in the field. Expert Rev Vaccines 2019; 18:365-377. [PMID: 30773949 DOI: 10.1080/14760584.2019.1583558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Tuberculosis is an infectious disease which is caused by bacilli from the M. tuberculosis complex. The Mycobacterium bovis Bacillus Calmette-Guérin vaccine is currently available as a prophylactic tool for preventing the disease; it has been shown to be efficient in preventing disseminated forms of tuberculosis during early ages; however, its efficiency is limited in areas where individuals have had prior exposure to environmental mycobacteria, and its efficacy decreases with a host's age. AREAS COVERED Following a comprehensive search of the available literature, this review describes some of the most frequently used animal models, the most frequently used methods for evaluating efficacy in animal models and some in vitro strategies as alternatives for evaluating vaccines. EXPERT OPINION Identifying the animal models used up to now for evaluating vaccines during their development stages, their characteristics and limitations, as well as knowledge regarding strategies for evaluating promising vaccine candidate efficacy, will ensure more efficient, reliable and reproducible pre-clinical trials. Although much of the knowledge accrued to date concerning vaccine effectiveness against tuberculosis has been based on animal models, it is clear that large questions still need to be resolved and that extrapolation of such efficacy to humans has yet to be achieved.
Collapse
Affiliation(s)
| | - Marisol Ocampo
- b Basic Sciences Department, School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia.,c Department of Tuberculosis and Molecular Biology , Fundación Instituto de Inmunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Manuel Alfonso Patarroyo
- b Basic Sciences Department, School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia.,c Department of Tuberculosis and Molecular Biology , Fundación Instituto de Inmunología de Colombia (FIDIC) , Bogotá , Colombia
| |
Collapse
|
13
|
Gautam SS, Mac Aogáin M, Bower JE, Basu I, O'Toole RF. Differential carriage of virulence-associated loci in the New Zealand Rangipo outbreak strain of Mycobacterium tuberculosis. Infect Dis (Lond) 2017; 49:680-688. [PMID: 28535727 DOI: 10.1080/23744235.2017.1330553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The Rangipo strain of Mycobacterium tuberculosis achieved notoriety in New Zealand due to its role in several tuberculosis (TB) outbreaks. Why this strain should be the source of relatively large clusters of the disease is unknown. In this work, we performed an in-depth analysis of the genome of the Rangipo strain to determine whether it offers clues to understanding its prevalence. METHODS Next-generation sequencing was performed on nine isolates which matched the Rangipo genotypic profile. Sequence reads were assembled against the H37Rv reference genome and single-locus variants identified. Unmapped reads were compared against the genome sequences of other M. tuberculosis strains, in particular CDC1551, Haarlem and Erdman. RESULTS Across the nine Rangipo strains, a total of 727 single-locus variants were identified with respect to H37Rv, of which 700 were common to all Rangipo strains sequenced. Within the common variants, 386 were non-synonymous, with 12 occurring in genes associated with M. tuberculosis virulence. Next-generation and Sanger sequencing determined the presence of three genes in the Rangipo isolates, which are absent in H37Rv, but which have been reported to be important for the pathogenicity of M. tuberculosis. The differentially encoded Rangipo genes consisted of transcriptional regulator EmbR2, and molybdopterin cofactor biosynthesis proteins A and B. The Rangipo strain also harbours an extended DNA helicase and an additional adenylate cyclase. CONCLUSIONS Our study provides new insights into the genomic content of the New Zealand Rangipo strain of M. tuberculosis and highlights the presence of additional virulence-related loci not found in H37Rv.
Collapse
Affiliation(s)
- Sanjay S Gautam
- a School of Medicine , University of Tasmania , Hobart , Australia
| | - Micheál Mac Aogáin
- b Department of Clinical Microbiology, Trinity Translational Medicine Institute, School of Medicine , Trinity College Dublin, St. James's Hospital , Dublin , Ireland
| | - James E Bower
- c LabPLUS, Auckland City Hospital , Auckland , New Zealand
| | - Indira Basu
- c LabPLUS, Auckland City Hospital , Auckland , New Zealand
| | - Ronan F O'Toole
- a School of Medicine , University of Tasmania , Hobart , Australia
| |
Collapse
|
14
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
15
|
Dehnad A, Ravindran R, Subbian S, Khan IH. Development of immune-biomarkers of pulmonary tuberculosis in a rabbit model. Tuberculosis (Edinb) 2016; 101:1-7. [PMID: 27865378 DOI: 10.1016/j.tube.2016.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) causes extensive morbidity and mortality worldwide with approximately 10 million new cases of active disease emerging mostly from a pool of two billion individuals latently infected with Mycobacterium tuberculosis (M. tb) every year. The underlying host immune responses that drive M. tb infection to active disease or latency are not well understood. We propose that identification and characterization of host immune biomarkers will be helpful to better understand the mechanisms that drive this process, and may, in addition, lead to the development of better diagnostic tools for TB. We have previously reported the profiles of plasma immune biomarkers in pulmonary TB patients in endemic countries, and in M. tb-infected nonhuman primates. However, biomarker profiling for a cost-effective and user-friendly animal model relevant to human disease, such as rabbit, has not been developed. One challenge in the analysis of circulating cytokines/chemokines for rabbit model of TB is the limited availability of validated immune-reagents. Here we report the use of a commercially available multiplex microbead human cytokine/chemokine panels as development platform for rabbit immune reagents. The results demonstrate their utility to determine circulating analytes and define their profiles related to TB in the rabbit model. In addition, we report the profiles of circulating anti-M. tb antibodies in the plasma of rabbits with active pulmonary TB. These studies show that the pattern of expression of circulating immune biomarkers correlate with TB pathology in rabbits, and are similar to those defined in pulmonary TB patients.
Collapse
Affiliation(s)
- Ali Dehnad
- Department of Pathology and Laboratory Medicine, University of California, Davis, USA
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Davis, USA
| | - Selvakumar Subbian
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, USA.
| | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, USA.
| |
Collapse
|
16
|
Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GEM, Lameira J, Lamichhane G, Kruger HG, Honarparvar B. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn 2016; 34:2399-417. [PMID: 26612108 DOI: 10.1080/07391102.2015.1117397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Zeynab Fakhar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Suhashni Naiker
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Claudio N Alves
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Thavendran Govender
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Glenn E M Maguire
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa.,c School of Chemistry and Physics , University of KwaZulu-Natal , 4001 Durban , South Africa
| | - Jeronimo Lameira
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Gyanu Lamichhane
- d Division of Infectious Diseases, Center for Tuberculosis Research , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Hendrik G Kruger
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Bahareh Honarparvar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| |
Collapse
|
17
|
Galbadage T, Shepherd TF, Cirillo SLG, Gumienny TL, Cirillo JD. The Caenorhabditis elegans p38 MAPK Gene plays a key role in protection from mycobacteria. Microbiologyopen 2016; 5:436-52. [PMID: 26919641 PMCID: PMC4905996 DOI: 10.1002/mbo3.341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are critical mediators of cellular responses to pathogens and are activated in response to infection, but investigation is difficult in multi-cell hosts due to developmental lethality of mutations. Mycobacterium marinum (Mm) is an established model for tuberculosis, a disease afflicting nearly one-third of the world's population. We found that Mm-infected Caenorhabditis elegans display >80% mortality, but nonpathogenic M. smegmatis cause <15% mortality. C. elegans display pathological changes when infected with Mm, whereas Mm mutants produce lower mortality, suggesting that C. elegans is a promising virulence model for detailed genetic analysis. C. elegans MAPK mutants are hypersusceptible to mycobacterial infection; however, the C. elegans TOL-like, TGF-β and insulin-like pathway genes do not play important roles in susceptibility. We show that pathogenic mycobacteria inhibit MAPK-mediated protection through the MAPK phosphatase gene and demonstrate that C. elegans provide a genetically tractable pathogenicity model of both the host and pathogen.
Collapse
Affiliation(s)
- Thushara Galbadage
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| | - Tonya F Shepherd
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| | - Suat L G Cirillo
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| | - Tina L Gumienny
- Department of Biology, Texas Woman's University, Denton, Texas, 76204-5799
| | - Jeffrey D Cirillo
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| |
Collapse
|
18
|
Schreuder LJ, Carroll P, Muwanguzi-Karugaba J, Kokoczka R, Brown AC, Parish T. Mycobacterium tuberculosis H37Rv has a single nucleotide polymorphism in PhoR which affects cell wall hydrophobicity and gene expression. MICROBIOLOGY-SGM 2015; 161:765-773. [PMID: 25635271 DOI: 10.1099/mic.0.000036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023]
Abstract
Mycobacterium tuberculosis is a successful pathogen that can adapt to multiple environmental niches. As part of its repertoire of adaptive responses, two-component regulatory systems play a major role in co-ordinating gene expression at the global level. The PhoPR system controls major cellular functions, including respiration, lipid metabolism, the immediate and enduring hypoxic responses, stress responses and persistence. We identified a single nucleotide polymorphism (SNP) found in the sensor kinase (PhoR) of this system between two commonly used strains of M. tuberculosis, H37Rv (PhoR(P152)) and CDC1551 (PhoR(L152)). We constructed an isogenic strain of H37Rv carrying PhoR(L152), as well as strains containing two different copies of the PhoPR locus, to determine the functional consequences of the SNP on phenotypic traits. The previously identified Apr locus was not acid-inducible in H37Rv, although it was in the CDC1551 strain. Surprisingly, the acid-responsive expression was not completely dependent on the PhoR SNP, and the locus remained constitutively expressed even in the isogenic strain H37Rv:PhoR(L152). The pattern of expression in PhoPR merodiploid strains was more complex, with neither allele showing dominance. This suggests that Apr regulation is more complex than previously thought and that additional factors must be responsible for Apr upregulation in response to acid conditions. In contrast, differences we identified in cell hydrophobicity between the two strains were wholly dependent on PhoR, confirming its role as major regulator of cell wall composition. Thus the SNP in the sensor kinase has functional consequences which account for some of the differences between widely used laboratory strains.
Collapse
Affiliation(s)
- L J Schreuder
- 1Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - P Carroll
- 1Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - J Muwanguzi-Karugaba
- 1Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Rachel Kokoczka
- 2TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Amanda C Brown
- 1Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - T Parish
- 2TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA.,1Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
19
|
Via LE, Weiner DM, Schimel D, Lin PL, Dayao E, Tankersley SL, Cai Y, Coleman MT, Tomko J, Paripati P, Orandle M, Kastenmayer RJ, Tartakovsky M, Rosenthal A, Portevin D, Eum SY, Lahouar S, Gagneux S, Young DB, Flynn JL, Barry CE. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). Infect Immun 2013; 81:2909-19. [PMID: 23716617 PMCID: PMC3719573 DOI: 10.1128/iai.00632-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022] Open
Abstract
Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.
Collapse
Affiliation(s)
- Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Danielle M. Weiner
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Schimel
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Philana Ling Lin
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Emmanuel Dayao
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah L. Tankersley
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Cai
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - M. Teresa Coleman
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaime Tomko
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Michael Tartakovsky
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Damien Portevin
- MRC National Institute for Medical Research, London, United Kingdom
| | - Seok Yong Eum
- International Tuberculosis Research Center, Changwon, South Korea
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Douglas B. Young
- MRC National Institute for Medical Research, London, United Kingdom
| | - JoAnne L. Flynn
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, USA
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Subbian S, Tsenova L, O'Brien P, Yang G, Kushner NL, Parsons S, Peixoto B, Fallows D, Kaplan G. Spontaneous latency in a rabbit model of pulmonary tuberculosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1711-24. [PMID: 22960076 DOI: 10.1016/j.ajpath.2012.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/13/2012] [Accepted: 07/09/2012] [Indexed: 01/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is an exquisitely adapted human pathogen capable of surviving for decades in the lungs of immune-competent individuals in the absence of disease. The World Health Organization estimates that 2 billion people have latent TB infection (LTBI), defined by a positive immunological response to Mtb antigens, with no clinical signs of disease. A better understanding of host and pathogen determinants of LTBI and subsequent reactivation would benefit TB control efforts. Animal models of LTBI have been hampered generally by an inability to achieve complete bacillary clearance. Herein, we have characterized a rabbit model of LTBI in which, similar to most humans, complete clearance of pulmonary Mtb infection and pathological characteristics occurs spontaneously. The evidence that Mtb-CDC1551-infected rabbits achieve LTBI, rather than sterilization, is based on the ability of the bacilli to be reactivated after immune suppression. These rabbits showed early activation of T cells and macrophages and an early peak in the TNFα level, which decreased in association with clearance of bacilli from the lungs. In the absence of sustained tumor necrosis factor-α production, no necrosis was seen in the evolving lung granulomas. In addition, bacillary control was associated with down-regulation of several metalloprotease genes and an absence of lung fibrosis. This model will be used to characterize molecular markers of protective immunity and reactivation.
Collapse
Affiliation(s)
- Selvakumar Subbian
- Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute Center at the University of Medicine and Dentistry of New Jersey, Newark, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 2012; 8:e1002769. [PMID: 22737072 PMCID: PMC3380936 DOI: 10.1371/journal.ppat.1002769] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 05/07/2012] [Indexed: 12/27/2022] Open
Abstract
Intracellular pathogens such as Mycobacterium tuberculosis have evolved strategies for coping with the pressures encountered inside host cells. The ability to coordinate global gene expression in response to environmental and internal cues is one key to their success. Prolonged survival and replication within macrophages, a key virulence trait of M. tuberculosis, requires dynamic adaptation to diverse and changing conditions within its phagosomal niche. However, the physiological adaptations during the different phases of this infection process remain poorly understood. To address this knowledge gap, we have developed a multi-tiered approach to define the temporal patterns of gene expression in M. tuberculosis in a macrophage infection model that extends from infection, through intracellular adaptation, to the establishment of a productive infection. Using a clock plasmid to measure intracellular replication and death rates over a 14-day infection and electron microscopy to define bacterial integrity, we observed an initial period of rapid replication coupled with a high death rate. This was followed by period of slowed growth and enhanced intracellular survival, leading finally to an extended period of net growth. The transcriptional profiles of M. tuberculosis reflect these physiological transitions as the bacterium adapts to conditions within its host cell. Finally, analysis with a Transcriptional Regulatory Network model revealed linked genetic networks whereby M. tuberculosis coordinates global gene expression during intracellular survival. The integration of molecular and cellular biology together with transcriptional profiling and systems analysis offers unique insights into the host-driven responses of intracellular pathogens such as M. tuberculosis. The impact of Mycobacterium tuberculosis on global health is undeniable, with ∼2 million deaths and ∼9 million new cases of tuberculosis each year. A key to the success of M. tuberculosis as a persistent, intracellular pathogen is its ability to survive for extended periods within professional phagocytes. Sustained growth within macrophage phagosomes requires avoiding or resisting antimicrobial mechanisms and adapting to replicate in a stressful, nutrient-restricted environment. Our understanding of the survival strategies, metabolism, and physiology of M. tuberculosis during intracellular growth remains incomplete. We employed multi-disciplinary approaches to gain new insights into adaptive responses that M. tuberculosis mobilizes to secure a productive infection. We simultaneously quantified replication and death rates, used electron microscopy to evaluate bacterial integrity, and determined the temporal changes in bacterial gene expression during a 14-day infection. By overlaying this temporal transcriptome dataset onto an extended Transcriptional Regulatory Network model, we identified regulatory pathways, stress responses, and metabolic adaptations activated during key physiological transitions over the 14 days of infection.
Collapse
|
22
|
Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [¹⁸F]2-fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Antimicrob Agents Chemother 2012; 56:4391-402. [PMID: 22687508 DOI: 10.1128/aac.00531-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With a host of new antitubercular chemotherapeutics in development, methods to assess the activity of these agents beyond mouse efficacy are needed to prioritize combinations for clinical trials. Lesions in Mycobacterium tuberculosis-infected rabbits are hypoxic, with histopathologic features that closely resemble those of human tuberculous lesions. Using [(18)F]2-fluoro-deoxy-d-glucose ([(18)F]FDG) positron emission tomography-computed tomography (PET-CT) imaging, we studied the dynamics of tuberculosis infection in rabbits, revealing an initial inflammatory response followed by a consolidative chronic disease. Five weeks after infection, as much as 23% of total lung volume was abnormal, but this was contained and to some extent reversed naturally by 9 weeks. During development of this chronic state, individual lesions in the same animal had very different fates, ranging from complete resolution to significant progression. Lesions that remained through the initial stage showed an increase in volume and tissue density over time by CT. Initiation of chemotherapy using either isoniazid (INH) or rifampin (RIF) during chronic infection reduced bacterial load with quantitative changes in [(18)F]FDG uptake, lesion density and total lesion volume measured by CT. The [(18)F]FDG PET uptake in lesions was significantly reduced with as little as 1 week of treatment, while the volume and density of lesions changed more slowly. The results from this study suggest that rabbits may be a useful surrogate species for evaluating novel chemotherapies and understanding changes in both PET and CT scans in human clinical trials.
Collapse
|
23
|
Low dose aerosol fitness at the innate phase of murine infection better predicts virulence amongst clinical strains of Mycobacterium tuberculosis. PLoS One 2012; 7:e29010. [PMID: 22235258 PMCID: PMC3250398 DOI: 10.1371/journal.pone.0029010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023] Open
Abstract
Background Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 104 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 102 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection.
Collapse
|
24
|
Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T, Salmons J, Thi Ngoc Lan N, Bang ND, Daffé M, Young DB, Robertson BD, Guilhot C, Thwaites GE. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One 2011; 6:e23870. [PMID: 21931620 PMCID: PMC3169546 DOI: 10.1371/journal.pone.0023870] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/27/2011] [Indexed: 01/07/2023] Open
Abstract
The six major genetic lineages of Mycobacterium tuberculosis are strongly associated with specific geographical regions, but their relevance to bacterial virulence and the clinical consequences of infection are unclear. Previously, we found that in Vietnam, East Asian/Beijing and Indo-Oceanic strains were significantly more likely to cause disseminated tuberculosis with meningitis than those from the Euro-American lineage. To investigate this observation we characterised 7 East Asian/Beijing, 5 Indo-Oceanic and 6 Euro-American Vietnamese strains in bone-marrow-derived macrophages, dendritic cells and mice. East Asian/Beijing and Indo-Oceanic strains induced significantly more TNF-α and IL-1β from macrophages than the Euro-American strains, and East Asian/Beijing strains were detectable earlier in the blood of infected mice and grew faster in the lungs. We hypothesised that these differences were induced by lineage-specific variation in cell envelope lipids. Whole lipid extracts from East Asian/Beijing and Indo-Oceanic strains induced higher concentrations of TNF-α from macrophages than Euro-American lipids. The lipid extracts were fractionated and compared by thin layer chromatography to reveal a distinct pattern of lineage-associated profiles. A phthiotriol dimycocerosate was exclusively produced by East Asian/Beijing strains, but not the phenolic glycolipid previously associated with the hyper-virulent phenotype of some isolates of this lineage. All Indo-Oceanic strains produced a unique unidentified lipid, shown to be a phenolphthiocerol dimycocerosate dependent upon an intact pks15/1 for its production. This was described by Goren as the ‘attenuation indictor lipid’ more than 40 years ago, due to its association with less virulent strains from southern India. Mutation of pks15/1 in a representative Indo-Oceanic strain prevented phenolphthiocerol dimycocerosate synthesis, but did not alter macrophage cytokine induction. Our findings suggest that the early interactions between M. tuberculosis and host are determined by the lineage of the infecting strain; but we were unable to show these differences are driven by lineage-specific cell-surface expressed lipids.
Collapse
Affiliation(s)
- Nitya Krishnan
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Wladimir Malaga
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Patricia Constant
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Maxine Caws
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Jenifer Salmons
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Nguyen Thi Ngoc Lan
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Mamadou Daffé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Douglas B. Young
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
- National Institute for Medical Research, London, United Kingdom
| | - Brian D. Robertson
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Christophe Guilhot
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guy E. Thwaites
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Mehaffy C, Hess A, Prenni JE, Mathema B, Kreiswirth B, Dobos KM. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Proteomics 2010; 10:1966-84. [PMID: 20217870 PMCID: PMC3517044 DOI: 10.1002/pmic.200900836] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/16/2010] [Indexed: 01/29/2023]
Abstract
The use of isobaric tags such as iTRAQ allows the relative and absolute quantification of hundreds of proteins in a single experiment for up to eight different samples. More classical techniques such as 2-DE can offer a complimentary approach for the analysis of complex protein samples. In this study, the proteomes of secreted and cytosolic proteins of genetically closely related strains of Mycobacterium tuberculosis were analyzed. Analysis of 2-D gels afforded 28 spots with variations in protein abundance between strains. These were identified by MS/MS. Meanwhile, a rigorous statistical analysis of iTRAQ data allowed the identification and quantification of 101 and 137 proteins in the secreted and cytosolic fractions, respectively. Interestingly, several differences in protein levels were observed between the closely related strains BE, C28 and H6. Seven proteins related to cell wall and cell processes were more abundant in BE, while enzymes related to metabolic pathways (GltA2, SucC, Gnd1, Eno) presented lower levels in the BE strain. Proteins involved in iron and sulfur acquisition (BfrB, ViuB, TB15.3 and SseC2) were more abundant in C28 and H6. In general, iTRAQ afforded rapid identification of fine differences between protein levels such as those presented between closely related strains. This provides a platform from which the relevance of these differences can be assessed further using complimentary proteomic and biological modeling methods.
Collapse
Affiliation(s)
- Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University; Fort Collins, CO, 80523
| | - Ann Hess
- Center for bioinformatics and Department of Statistics, Colorado State University, Fort Collins, CO, 80523
| | - Jessica E. Prenni
- Proteomics and Metabolomics Facility, Colorado State University Fort Collins, CO, 80523
| | | | | | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University; Fort Collins, CO, 80523
| |
Collapse
|
26
|
Dutta NK, Mehra S, Kaushal D. A Mycobacterium tuberculosis sigma factor network responds to cell-envelope damage by the promising anti-mycobacterial thioridazine. PLoS One 2010; 5:e10069. [PMID: 20386700 PMCID: PMC2851646 DOI: 10.1371/journal.pone.0010069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/11/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Novel therapeutics are urgently needed to control tuberculosis (TB). Thioridazine (THZ) is a candidate for the therapy of multidrug and extensively drug-resistant TB. METHODOLOGY/PRINCIPAL FINDINGS We studied the impact of THZ on Mycobacterium tuberculosis (Mtb) by analyzing gene expression profiles after treatment at the minimal inhibitory (1x MIC) or highly inhibitory (4x MIC) concentrations between 1-6 hours. THZ modulated the expression of genes encoding membrane proteins, efflux pumps, oxido-reductases and enzymes involved in fatty acid metabolism and aerobic respiration. The Rv3160c-Rv3161c operon, a multi-drug transporter and the Rv3614c/3615c/3616c regulon, were highly induced in response to THZ. A significantly high number of Mtb genes co-expressed with sigma(B) (the sigma(B) regulon) was turned on by THZ treatment. sigma(B) has recently been shown to protect Mtb from envelope-damage. We hypothesized that THZ damages the Mtb cell-envelope, turning on the expression of the sigma(B) regulon. Consistent with this hypothesis, we present electron-microscopy data which shows that THZ modulates cell-envelope integrity. Moreover, the Mtb mutants in sigma(H) and sigma(E), two alternate stress response sigma factors that induce the expression of sigma(B), exhibited higher sensitivity to THZ, indicating that the presence and expression of sigma(B) allows Mtb to resist the impact of THZ. Conditional induction of sigma(B) levels increased the survival of Mtb in the presence of THZ. CONCLUSIONS/SIGNIFICANCE THZ targets different pathways and can thus be used as a multi-target inhibitor itself as well as provide strategies for multi-target drug development for combination chemotherapy. Our results show that the Mtb sigma factor network comprising of sigma(H), sigma(E) and sigma(B) plays a crucial role in protecting the pathogen against cell-envelope damage.
Collapse
Affiliation(s)
- Noton K. Dutta
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Smriti Mehra
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- DNA Microarray and Expression Core, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- DNA Microarray and Expression Core, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Coscolla M, Gagneux S. Does M. tuberculosis genomic diversity explain disease diversity? DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2010; 7:e43-e59. [PMID: 21076640 PMCID: PMC2976975 DOI: 10.1016/j.ddmec.2010.09.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The outcome of tuberculosis infection and disease is highly variable. This variation has been attributed primarily to host and environmental factors, but better understanding of the global genomic diversity in the M. tuberculosis complex (MTBC) suggests that bacterial factors could also be involved. Review of nearly 100 published reports shows that MTBC strains differ in their virulence and immunogenicity in experimental models, but whether this phenotypic variation plays a role in human disease remains unclear. Given the complex interactions between the host, the pathogen and the environment, linking MTBC genotypic diversity to experimental and clinical phenotypes requires an integrated systems epidemiology approach embedded in a robust evolutionary framework.
Collapse
Affiliation(s)
- Mireilla Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- MRC National Institute for Medical Research, London, UK
| |
Collapse
|
28
|
Sharma D, Tyagi JS. The value of comparative genomics in understanding mycobacterial virulence: Mycobacterium tuberculosis H37Ra genome sequencing - a worthwhile endeavour. J Biosci 2008; 32:185-9. [PMID: 17435310 DOI: 10.1007/s12038-007-0018-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Deepak Sharma
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
29
|
Nicol MP, Wilkinson RJ. The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg 2008; 102:955-65. [PMID: 18513773 DOI: 10.1016/j.trstmh.2008.03.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 01/28/2023] Open
Abstract
The influence of strain variation on the outcome of infection with Mycobacterium tuberculosis is an emerging area of research. Significant genetic diversity is generated within the species through deletion, duplication and recombination events; however, unlike many bacterial pathogens gene exchange is rare in M. tuberculosis, resulting in the evolution of distinct clonal lineages. One such lineage, W-Beijing, is particularly virulent in animal models, may be emerging worldwide, has distinct phenotypic and genotypic characteristics and is associated with extrapulmonary disease and drug resistance. Strains of M. tuberculosis responsible for outbreaks have been shown to vary in virulence in animal models, which in turn has been related to their ability to inhibit innate immune responses. However, there is no clear evidence that this variability manifests as differences in human disease. An improved understanding of the phylogenetic relationship between strains of M. tuberculosis, based on increased availability of sequence data from the major strain lineages, will allow a structured approach to understand further the consequences of strain diversity in M. tuberculosis.
Collapse
Affiliation(s)
- Mark P Nicol
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa.
| | | |
Collapse
|
30
|
Molle V, Reynolds RC, Alderwick LJ, Besra GS, Cozzone AJ, Fütterer K, Kremer L. EmbR2, a structural homologue of EmbR, inhibits the Mycobacterium tuberculosis kinase/substrate pair PknH/EmbR. Biochem J 2008; 410:309-17. [PMID: 17999640 DOI: 10.1042/bj20071384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
EmbR is a transcriptional regulator that is phosphorylated by the cognate mycobacterial STPK (serine/threonine protein kinase) PknH. Recent studies demonstrated that PknH-dependent phosphorylation of EmbR enhances its DNA-binding activity and activates the transcription of the embCAB genes encoding arabinosyltransferases, which participate in arabinan biosynthesis. In the present study, we identified a genomic region of 4425 bp, which is present in Mycobacterium tuberculosis CDC1551, but absent from M. tuberculosis H37Rv, comprising the MT3428 gene, which is homologous with embR. Homology modelling of the MT3428 gene product illustrated its close relationship (56% identity) to EmbR, and it was hence termed EmbR2. In marked contrast with EmbR, EmbR2 was not phosphorylated by PknH, although it is a substrate of other M. tuberculosis kinases, including PknE and PknF. Tryptophan fluorescence emission of EmbR2 was monitored in the presence of three different PknH-derived phosphopeptides and demonstrated that EmbR2 binds to at least two of the threonine sites known to undergo autophosphorylation in PknH. We observed that the capacity of EmbR2 to interact physically with PknH without being phosphorylated was a result of EmbR2-mediated inhibition of kinase activity: incubation of PknH with increasing concentrations of EmbR2 led to a dose-response inhibition of the autokinase activity, similarly to O6-cyclohexylmethylguanine, a known inhibitor of eukaryotic cyclin-dependent kinases. Moreover, EmbR2 inhibited PknH-dependent phosphorylation of EmbR in a dose-dependent manner. Together, these results suggest that EmbR2 is a regulator of PknH activation, thus directly participating in the control of the PknH/EmbR pair and potentially in mycobacterial physiology/virulence of M. tuberculosis CDC1551.
Collapse
Affiliation(s)
- Virginie Molle
- Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon I, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. THE LANCET. INFECTIOUS DISEASES 2007; 7:328-37. [PMID: 17448936 DOI: 10.1016/s1473-3099(07)70108-1] [Citation(s) in RCA: 516] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New tools for controlling tuberculosis are urgently needed. Despite our emerging understanding of the biogeography of Mycobacterium tuberculosis, the implications for development of new diagnostics, drugs, and vaccines is unknown. M tuberculosis has a clonal genetic population structure that is geographically constrained. Evidence suggests strain-specific differences in virulence and immunogenicity in light of this global phylogeography. We propose a strain selection framework, based on robust phylogenetic markers, which will allow for systematic and comprehensive evaluation of new tools for tuberculosis control.
Collapse
|
32
|
Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, Bange FC, Ehlers S. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 2006; 210:298-305. [PMID: 17001607 DOI: 10.1002/path.2055] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is often assumed that Mycobacterium tuberculosis (Mtb)-induced granulomatous lesions, particularly those undergoing central caseation, are anoxic, and that the survival of Mtb in these lesions requires the integrity of its non-oxidative respiratory pathways. Using the hypoxia marker pimonidazole, we now provide immunohistochemical evidence that in the most frequently used animal model system of inbred mice Mtb-induced granulomas, even after more than one year of aerogenic infection, are not severely hypoxic. In contrast, chronic aerosol infection with M. avium strain TMC724 was associated with hypoxia surrounding necrotizing granuloma centres. Direct measurements of oxygen tension with a flexible microelectrode in mouse lungs chronically infected with Mtb disclosed a wide range of oxygen partial pressures in different parts of the lungs which, however, rarely approached the anoxic conditions consistently found in necrotizing tumours. We further show that an Mtb mutant, defective in nitrate reductase (narG) necessary for survival under anaerobic conditions in vitro, can persist in the lungs of chronically infected mice to a similar extent as wild-type Mtb. These findings have important implications for the use of the mouse model of Mtb infection in developing eradication chemotherapy and for evaluating putative mechanisms of chronic persistence and latency of Mtb.
Collapse
Affiliation(s)
- S Aly
- Molecular Infection Biology, Research Centre Borstel, Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Agarwal N, Woolwine SC, Tyagi S, Bishai WR. Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect Immun 2006; 75:452-61. [PMID: 17088352 PMCID: PMC1828396 DOI: 10.1128/iai.01395-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternate sigma factors have been implicated in the survival of mycobacteria in response to specific stresses. To characterize the role of SigM in Mycobacterium tuberculosis, a sigM deletion mutant was generated by allelic exchange in the virulent CDC1551 strain. Comparing the wild-type and Delta sigM strains by complete genomic microarray, we observed a low level of baseline expression of sigM in wild-type M. tuberculosis and no significant differences in the gene expression patterns between these two strains. Alternatively, a SigM-overexpressing M. tuberculosis strain was constructed and microarray profiling revealed SigM-dependent expression of a relatively small group of genes, which included four esat-6 homologues: esxE, esxF, esxT, and esxU. An assessment of SigM-dependent promoters from the microarray analysis revealed a putative consensus sequence for M. tuberculosis SigM of -35 GGAAC and -10 CGTCR. In vitro expression studies showed that M. tuberculosis sigM transcripts accumulate slightly in stationary phase and following heat shock. To understand the role of SigM in pathogenesis, the M. tuberculosis sigM deletion strain was compared with the isogenic wild-type strain and the complemented mutant strain for survival in murine macrophages and in the mouse model. The mutant was found to have similar abilities to survive in both the resting and activated J774A.1 macrophages. Mouse organ bacterial burdens indicated that the mutant proliferated and persisted at the same level as that of the wild-type and complemented strains in lung and spleen tissues. In time-to-death experiments in the mouse model, the Delta sigM mutant exhibited lethality times comparable to those observed for the wild-type and complemented strains. These data indicate that M. tuberculosis SigM governs the expression of a small set of genes, including four esat-6 homologues, and that the loss of sigM does not confer a detectable virulence defect in the macrophages and mouse models of infection.
Collapse
Affiliation(s)
- Nisheeth Agarwal
- Department of Medicine, Johns Hopkins School of Medicine, CRB2 Room 1.08, 1550 Orleans Street, Baltimore, Maryland 21231-1044, USA
| | | | | | | |
Collapse
|
34
|
Schluger NW. Assessing tuberculosis transmission and virulence: the vanishing tuberculin skin test. Am J Respir Crit Care Med 2006; 173:942-3. [PMID: 16632632 DOI: 10.1164/rccm.2601009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
de Jonge MI, Brosch R, Brodin P, Demangel C, Cole ST. Tuberculosis: from genome to vaccine. Expert Rev Vaccines 2006; 4:541-51. [PMID: 16117711 DOI: 10.1586/14760584.4.4.541] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The availability of mycobacterial genome sequences has paved the way to identifying potential tuberculosis vaccine candidates in order to replace the currently used bacillus Calmette-Guérin (BCG) vaccines that show variable protective efficacy in adults. Genomics provides the basis for bioinformatic, transcriptomic and proteomic analysis, increases screening efficiency and enables valuable information concerning the biology and virulence of the mycobacterial species to be extracted by comparative genomics. Although in silico results must be confirmed in vitro and in vivo, bioinformatic analysis of the genomes is highlighting candidates for testing. For designing subunit vaccines, attenuated or improved recombinant whole-cell live vaccines, information from the genomes of the human host and pathogenic mycobacterial species is of great help.
Collapse
Affiliation(s)
- Marien I de Jonge
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, 28 Rue du Docteur Roux 75724 Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Anderson ST, Williams AJ, Brown JR, Newton SM, Simsova M, Nicol MP, Sebo P, Levin M, Wilkinson RJ, Wilkinson KA. Transmission of Mycobacterium tuberculosis undetected by tuberculin skin testing. Am J Respir Crit Care Med 2006; 173:1038-42. [PMID: 16456140 DOI: 10.1164/rccm.200509-1526oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The development of tuberculin skin test (TST) positivity following infection by Mycobacterium tuberculosis is not invariable and may depend on bacillary as well as host factors. OBJECTIVES First, to compare the diagnostic performance of the TST and a form of in vitro IFN-gamma release assay (IFNGRA) in the circumstances of a contact investigation prompted by an unusually severe index case of infectious pulmonary tuberculosis. Second, to investigate the ability of the strain of M. tuberculosis responsible to induce cytokine secretion from monocytes in vitro. METHODS A routine TST-based tuberculosis-contact screening procedure supplemented by the use of an "in house" IFNGRA that assays the T-cell response to the M. tuberculosis-specific antigens ESAT-6, CFP-10 (presented as a fusion protein within the inactivated adenylate cyclase of Bordetella pertussis), and purified protein derivative of M. tuberculosis. Isolation and genetic typing of the strain of M. tuberculosis responsible, and investigation of its ability to induce cytokine secretion from monocytes in vitro. MEASUREMENTS AND MAIN RESULTS TST screening suggested a low rate of transmission with just 2/75 unequivocally positive responses. By contrast, the IFNGRA suggested an infection rate of 16/75 (22%). When compared with two reference strains of M. tuberculosis (H37Rv and CDC1551), the outbreak strain induced lower levels of tumor necrosis factor-alpha and interleukin-12p40 (p < 0.04), cytokines associated with the development of delayed-type hypersensitivity. CONCLUSIONS These data suggest that infection by M. tuberculosis can be undetected by TST, and that this may partially relate to strain differences in immunogenicity.
Collapse
Affiliation(s)
- Suzanne T Anderson
- M.B.B.S., Department of Pediatrics, Division of Medicine, Wright Fleming Institute, Imperial College London, London W2 1PG, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbón MH, Bobadilla del Valle M, Fyfe J, García-García L, Rastogi N, Sola C, Zozio T, Guerrero MI, León CI, Crabtree J, Angiuoli S, Eisenach KD, Durmaz R, Joloba ML, Rendón A, Sifuentes-Osornio J, Ponce de León A, Cave MD, Fleischmann R, Whittam TS, Alland D. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 2006; 188:759-72. [PMID: 16385065 PMCID: PMC1347298 DOI: 10.1128/jb.188.2.759-772.2006] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis.
Collapse
Affiliation(s)
- Ingrid Filliol
- Division of Infectious Disease, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., MSB A920C, Newark, NJ 07103.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Flynn JL. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect 2006; 8:1179-88. [PMID: 16513383 DOI: 10.1016/j.micinf.2005.10.033] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/19/2005] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis is the cause of enormous human morbidity and mortality each year. Although this bacterium can infect and cause disease in many animals, humans are the natural host. For the purposes of studying the pathogenesis of M. tuberculosis, as well as the protective and immunopathologic host responses against this pathogen, suitable animal models must be used. However, modeling the human infection and disease in animals can be difficult, and interpreting the data from animal models must be done carefully. In this paper, the animal models of tuberculosis are discussed, as well as the limitations and advantages of various models. In particular, the lessons we have learned about tuberculosis from the mouse models are highlighted. The careful and thoughtful use of animal models is essential to furthering our understanding of M. tuberculosis, and this knowledge will enhance the discovery of improved treatment and prevention strategies.
Collapse
Affiliation(s)
- JoAnne L Flynn
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA.
| |
Collapse
|
39
|
Lewin A, Sharbati-Tehrani S. Das langsame Wachstum von Mykobakterien. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2005; 48:1390-9. [PMID: 16283122 DOI: 10.1007/s00103-005-1171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A characteristic feature of mycobacteria is their slow growth rate, which in addition strongly varies in different species of the genus. All highly pathogenic species such as M. tuberculosis and M. leprae causing tuberculosis and leprosy, respectively, belong to the slow growing mycobacteria, while the apathogenic and opportunistic species are members of the fast growing mycobacteria. This suggests that the question be posed whether there is causality between mycobacterial growth rate and virulence. We discuss possible reasons for the slow and variable growth rates of mycobacteria and the current state of knowledge concerning the significance of slow growth for mycobacterial pathogenicity.
Collapse
Affiliation(s)
- A Lewin
- Robert Koch-Institut, Berlin, Germany.
| | | |
Collapse
|
40
|
Malik ANJ, Godfrey-Faussett P. Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. THE LANCET. INFECTIOUS DISEASES 2005; 5:174-83. [PMID: 15766652 DOI: 10.1016/s1473-3099(05)01310-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nature of the variability in the clinical and epidemiological consequences of Mycobacterium tuberculosis infection remains poorly understood. Environmental and host factors that contribute to the outcome of infection and disease presentation are well recognised, but the role of bacterial factors has been more elusive. The rapid increase in the understanding of the molecular basis of M tuberculosis over the past decades has revived research into its pathogenesis. DNA fingerprinting techniques have been used to distinguish between strains of M tuberculosis, and efforts to characterise the strains present within populations have led to increased understanding of their global distribution. This research has shown that in certain areas a small number of strains are causing a disproportionate number of cases of the disease. The sequencing of the complete genome of M tuberculosis has accelerated the development of molecular techniques to differentiate strains according to their genetic polymorphisms. Investigation into the reasons why some strains are predominant by genetic strain-typing techniques may clarify which bacterial factors contribute to disease. This knowledge has the potential to influence control and prevention strategies for tuberculosis in the future. However, there are still limitations in these techniques and their results. This review discusses molecular epidemiology and genetic studies, and their contribution to the understanding of the links between genotypic and phenotypic characteristics of M tuberculosis strains.
Collapse
|
41
|
Manganelli R, Fattorini L, Tan D, Iona E, Orefici G, Altavilla G, Cusatelli P, Smith I. The extra cytoplasmic function sigma factor sigma(E) is essential for Mycobacterium tuberculosis virulence in mice. Infect Immun 2004; 72:3038-41. [PMID: 15102817 PMCID: PMC387853 DOI: 10.1128/iai.72.5.3038-3041.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of a Mycobacterium tuberculosis H37Rv sigE mutant was studied in immunodeficient and immunocompetent mice. The mutant was strongly attenuated in both animal models and induced formation of granulomas with different characteristics than those induced by the wild-type strain.
Collapse
Affiliation(s)
- Riccardo Manganelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Geiman DE, Kaushal D, Ko C, Tyagi S, Manabe YC, Schroeder BG, Fleischmann RD, Morrison NE, Converse PJ, Chen P, Bishai WR. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect Immun 2004; 72:1733-45. [PMID: 14977982 PMCID: PMC356042 DOI: 10.1128/iai.72.3.1733-1745.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis alternate sigma factor, SigF, is expressed during stationary growth phase and under stress conditions in vitro. To better understand the function of SigF we studied the phenotype of the M. tuberculosis DeltasigF mutant in vivo during mouse infection, tested the mutant as a vaccine in rabbits, and evaluated the mutant's microarray expression profile in comparison with the wild type. In mice the growth rates of the DeltasigF mutant and wild-type strains were nearly identical during the first 8 weeks after infection. At 8 weeks, the DeltasigF mutant persisted in the lung, while the wild type continued growing through 20 weeks. Histopathological analysis showed that both wild-type and mutant strains had similar degrees of interstitial and granulomatous inflammation during the first 12 weeks of infection. However, from 12 to 20 weeks the mutant strain showed smaller and fewer lesions and less inflammation in the lungs and spleen. Intradermal vaccination of rabbits with the M. tuberculosis DeltasigF strain, followed by aerosol challenge, resulted in fewer tubercles than did intradermal M. bovis BCG vaccination. Complete genomic microarray analysis revealed that 187 genes were relatively underexpressed in the absence of SigF in early stationary phase, 277 in late stationary phase, and only 38 genes in exponential growth phase. Numerous regulatory genes and those involved in cell envelope synthesis were down-regulated in the absence of SigF; moreover, the DeltasigF mutant strain lacked neutral red staining, suggesting a reduction in the expression of envelope-associated sulfolipids. Examination of 5'-untranslated sequences among the downregulated genes revealed multiple instances of a putative SigF consensus recognition sequence: GGTTTCX(18)GGGTAT. These results indicate that in the mouse the M. tuberculosis DeltasigF mutant strain persists in the lung but at lower bacterial burdens than wild type and is attenuated by histopathologic assessment. Microarray analysis has identified SigF-dependent genes and a putative SigF consensus recognition site.
Collapse
Affiliation(s)
- Deborah E Geiman
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Manabe YC, Dannenberg AM, Tyagi SK, Hatem CL, Yoder M, Woolwine SC, Zook BC, Pitt MLM, Bishai WR. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect Immun 2003; 71:6004-11. [PMID: 14500521 PMCID: PMC201108 DOI: 10.1128/iai.71.10.6004-6011.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rabbit model of tuberculosis has been used historically to differentiate between Mycobacterium tuberculosis and Mycobacterium bovis based on their relative virulence in this animal host. M. tuberculosis infection in market rabbits is cleared over time, whereas infection with M. bovis results in chronic, progressive, cavitary disease leading to death. Because of the innate resistance of commercial rabbits to M. tuberculosis, 320 to 1,890 log-phase, actively growing inhaled bacilli were required to form one grossly visible pulmonary tubercle at 5 weeks. The range of inhaled doses required to make one tubercle allows us to determine the relative pathogenicities of different strains. Fewer inhaled organisms of the M. tuberculosis Erdman strain were required than of M. tuberculosis H37Rv to produce a visible lesion at 5 weeks. Furthermore, with the Erdman strain, only 7 of 15 rabbits had healed lesions at 16 to 18 weeks; among the other animals, two had chronic, progressive cavitary disease, a phenotype usually seen only with M. bovis infection. Genotypic investigation of the Erdman strain with an H37Rv-based microarray identified gene differences in the RD6 region. Southern blot and PCR structural genetic analysis showed significant differences between M. tuberculosis strains in this region. Correlation of the relative pathogenicity, including disease severity, in the rabbit model with the strain genotype may help identify stage-specific M. tuberculosis genes important in human disease.
Collapse
Affiliation(s)
- Yukari C Manabe
- Department of Medicine, School of Medicine, Bloomberg School of Public Health, The Johns Hopkins University, 424 North Bond Street, Room 1108, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Tuberculosis (TB), one of the oldest known human diseases. is still is one of the major causes of mortality, since two million people die each year from this malady. TB has many manifestations, affecting bone, the central nervous system, and many other organ systems, but it is primarily a pulmonary disease that is initiated by the deposition of Mycobacterium tuberculosis, contained in aerosol droplets, onto lung alveolar surfaces. From this point, the progression of the disease can have several outcomes, determined largely by the response of the host immune system. The efficacy of this response is affected by intrinsic factors such as the genetics of the immune system as well as extrinsic factors, e.g., insults to the immune system and the nutritional and physiological state of the host. In addition, the pathogen may play a role in disease progression since some M. tuberculosis strains are reportedly more virulent than others, as defined by increased transmissibility as well as being associated with higher morbidity and mortality in infected individuals. Despite the widespread use of an attenuated live vaccine and several antibiotics, there is more TB than ever before, requiring new vaccines and drugs and more specific and rapid diagnostics. Researchers are utilizing information obtained from the complete sequence of the M. tuberculosis genome and from new genetic and physiological methods to identify targets in M. tuberculosis that will aid in the development of these sorely needed antitubercular agents.
Collapse
Affiliation(s)
- Issar Smith
- TB Center, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA.
| |
Collapse
|
45
|
Comstock GW. Tuberculosis transmission--rogue pathogen, rogue patient, or the vagaries of change? Am J Respir Crit Care Med 2002; 166:1141-2. [PMID: 12379562 DOI: 10.1164/ajrccm.166.8.257b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR, Venter JC, Fraser CM. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002; 184:5479-90. [PMID: 12218036 PMCID: PMC135346 DOI: 10.1128/jb.184.19.5479-5490.2002] [Citation(s) in RCA: 498] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.
Collapse
Affiliation(s)
- R D Fleischmann
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Firmani MA, Riley LW. Mycobacterium tuberculosis CDC1551 is resistant to reactive nitrogen and oxygen intermediates in vitro. Infect Immun 2002; 70:3965-8. [PMID: 12065545 PMCID: PMC128088 DOI: 10.1128/iai.70.7.3965-3968.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to reactive oxygen intermediates and reactive nitrogen intermediates in vitro of a clinical isolate of Mycobacterium tuberculosis (CDC1551) that caused a large outbreak of tuberculosis was compared to that of M. tuberculosis strains CB3.3, H37Rv, H37Ra, Erdman, RJ2E, C.C. 13, and C.C. 22 as well as M. bovis strains Ravenel and BCG. CDC1551 and CB3.3 were significantly more resistant to both hydrogen peroxide (H(2)O(2)) and acidified sodium nitrite than were the other strains tested. This biological phenotype may serve as an in vitro marker for clinical strains of M. tuberculosis likely to cause a large outbreak of tuberculosis.
Collapse
Affiliation(s)
- Marcia A Firmani
- School of Public Health, Division of Infectious Disease, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
48
|
Oursler KK, Moore RD, Bishai WR, Harrington SM, Pope DS, Chaisson RE. Survival of patients with pulmonary tuberculosis: clinical and molecular epidemiologic factors. Clin Infect Dis 2002; 34:752-9. [PMID: 11850859 DOI: 10.1086/338784] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 10/09/2001] [Indexed: 11/04/2022] Open
Abstract
Using restriction fragment-length polymorphism data, we conducted a retrospective cohort study of 139 adult patients with pulmonary tuberculosis to investigate the clinical impact of Mycobacterium tuberculosis infection with a clustered isolate. The cumulative all-cause mortality rate during treatment was 21%. Patients with clustered DNA fingerprint patterns had a reduced risk of death, compared with patients with unique patterns (hazard ratio [HR], 0.5; 95% confidence interval [CI], 0.2-1.1), but this finding was confounded by age (adjusted HR, 0.8; 95% CI, 0.4-1.8). After adjustment for age, the strongest predictors of death were such underlying illnesses as diabetes mellitus, renal failure, chronic obstructive pulmonary disease, and human immunodeficiency virus infection. We conclude that comorbidity and immunosuppression are important predictors of survival for patients with pulmonary tuberculosis in an inner-city cohort. Recently transmitted infection, as determined by use of DNA fingerprinting to classify patients' isolates as being either clustered or unique, was not independently associated with death.
Collapse
Affiliation(s)
- Kris K Oursler
- Center for Tuberculosis Research, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, 21231, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Randhawa GS, Bishai WR. Beneficial impact of genome projects on tuberculosis control. Infect Dis Clin North Am 2002; 16:145-61. [PMID: 11917811 DOI: 10.1016/s0891-5520(03)00050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The M. tuberculosis genome project is a landmark achievement in the history of TB research. The DNA sequence has provided valuable insights, along with a few surprises, into the complete genetic complement of M. tuberculosis. This information has been used to gain a better understanding of isoniazid-induced alteration in gene expression. It also has been used to construct a genealogy tree of different BCG strains, besides identifying genes that may be responsible for the human-specificity of M. tuberculosis. The impact of this project is far-reaching and in the next few years should yield innovative vaccines and therapeutic agents, besides aiding in the rapid and accurate diagnosis of TB.
Collapse
Affiliation(s)
- Gurvaneet S Randhawa
- Department of Preventive Medicine, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
50
|
|