1
|
Chen P, Rehman MU, He Y, Li A, Jian F, Zhang L, Huang S. Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function. Vet Q 2025; 45:1-22. [PMID: 39831548 PMCID: PMC11749151 DOI: 10.1080/01652176.2025.2452169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/23/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Coccidiosis is a global disease caused by protozoans, typically including Eimeria spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs. The intestinal barrier, which consists of chemical, mechanical, biological, and immune defences, plays a crucial role in protecting the host against pathogens, xenobiotics, and toxins present in the gastrointestinal tract. When animals ingest sporulated Eimeria spp. oocysts, these parasites primarily reproduce in the intestinal tract, causing damage to the structure and function of the intestine. This disruption of intestinal homeostasis adversely affects animal health. Numerous studies have also revealed that Eimeria-infected animals experience slower bone growth rates, inferior meat quality, reduced egg production and quality, as well as impaired growth and development. Therefore, the purpose of this review is to examine the underlying mechanisms through which Eimeria spp. regulate intestinal damage and disturb the balance of the internal environment. Specifically, this review will focus on their effects on the structural basis of the host intestine's chemical, mechanical, biological and immune barriers. This understanding is crucial for the development of effective drugs to prevent the invasion of Eimeria spp. into the intestine, which is of paramount importance for maintaining host health.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department Balochistan, Quetta, Pakistan
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Yuan J, Ajuwon KM, Adeola O. Impact of partially defatted black soldier fly larvae meal on coccidia-infected chickens: effects on growth performance, intestinal health, and cecal short-chain fatty acid concentrations. J Anim Sci Biotechnol 2025; 16:30. [PMID: 40001239 PMCID: PMC11863416 DOI: 10.1186/s40104-025-01167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Black soldier fly larvae meal (BSFLM) stands out as a promising nutritional resource due to its rich bioactive substances and favorable protein profile. Nonetheless, its potential to mitigate coccidia infection in broilers remains uncertain. This study aimed to evaluate the impact of partially defatted BSFLM (pBSFLM) on growth performance, nutrient utilization, and intestinal health, focusing on morphology, immunology, and cecal fermentation in coccidia-infected broilers. METHODS Over the initial 13 d, 480 newly-hatched Cobb 500 male birds were allocated to three diets with increasing pBSFLM concentrations (0, 60, or 120 g/kg). At d 13 post hatching, chicks within each dietary group were further allotted to non-challenge or challenge subsets, generating six treatments in a 3 × 2 factorial arrangement. Challenged birds were orally administered oocysts of E. maxima, E. acervulina, and E. tenella (25,000:125,000:25,000). RESULTS During the infection phase (d 13 to 19), linear interactions between Eimeria and pBSFLM were observed in gain to feed ratio (G:F) (P < 0.05) and cecal interferon-γ (IFN-γ, P < 0.05), with a tendency in cecal acetate concentration (P = 0.06). A quadratic interaction was observed in crypt depth (CD, P < 0.05). Incremental pBSFLM inclusion negatively affected G:F, CD, IFN-γ, and acetate productions in the ceca under coccidia challenge. Conversely in non-challenged birds, the impact of pBSFLM varied from neutral (e.g. G:F) to potentially advantageous (e.g. acetate). Challenged birds exhibited decreased (P < 0.01) BW, BW gain, feed intake (FI), and the apparent ileal digestibility and total tract nutrient utilization of DM, gross energy, and nitrogen (N). Eimeria challenge reduced (P < 0.01) serum carotenoid concentrations, decreased the villus height to crypt depth ratio (VH:CD, P < 0.01), and increased concentrations of branched-chain fatty acids, specifically isobutyrate (P = 0.059) and isovalerate (P < 0.05) in the cecum. Dietary pBSFLM addition linearly reduced (P < 0.05) BW, FI, and N utilization. Tendencies (P < 0.06) were observed where pBSFLM linearly decreased VH:CD and reduced goblet cell density. CONCLUSIONS Increasing pBSFLM supplementation, particularly at 12%, adversely affected growth, ileal morphology, cecal acetate production, and downregulated key cytokine expression in response to coccidia infection.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Liu S, Li S, Lu S, Yang M, Liu M, Li J, Li S, Jian F. Effects of fermented Artemisia annua on the intestinal microbiota and metabolites of Hu lambs with naturally infected with Eimeria spp. Front Cell Infect Microbiol 2025; 14:1448516. [PMID: 39839259 PMCID: PMC11747653 DOI: 10.3389/fcimb.2024.1448516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Background Sheep coccidiosis could disturb the balance of intestinal microbiota, causing diarrhea, and even death in lambs. Chemical drugs are the primary method of treating sheep coccidiosis, but their use will bring drug resistance, toxic side effects, drug residues, and other problems. Chinese herbal medicines are investigated as alternative methods for controlling coccidian infections. Methods In this study, the effect of fermented Artemisia annua (FA) on oocysts per gram (OPG), average daily gain (ADG), and expression of inflammatory factors were investigated in lambs that were naturally infected with coccidia. Results The results showed that the FA had similar anti-coccidiosis effect to the original drug, while the FA demonstrated a more significant effect on weight gain, and a better ability to reduce the inflammatory response compared to the unfermented drug during the treatment period (P < 0.05). Furthermore, High-throughput sequencing technology was used to study the effects of FA on intestinal microbiota, and fecal metabolites of naturally infected lambs. The species richness of intestinal microbiota of lambs was significantly improved by FA. The abundance of bacteria unclassified_Muribaculaceae, and UCG_005 were increased by fermentation of A. annua. The abundance of bacteria Escherichia_Shigella, unclassified_Clostridia_UCG_014, and Alistipes was reduced. The prevention, and treatment of coccidiosis by fermentation of A. annua may also be related to a series of metabolites affected by intestinal microbiota, including artemisinin, Lysyl-Proline, and TRP-tyrosine. Conclusion FA was found to have superior anti-coccidiosis, anti-inflammatory, and weight gain effects compared to the original Artemisia annua. Intestinal microbes and metabolites such as unclassified_Muribaculaceae, UCG-005, and Artemisinin were identified, suggesting their potential significance. Alistipes was proposed as a biomarker for predicting intestinal coccidia outbreak risk in lambs, pending further validation. The correlation between microbiota, and metabolites may provide new insights into pathogenic changes associated with Eimeria spp.
Collapse
Affiliation(s)
- Shuaiqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Shiheng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Shunli Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Mingfan Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Manyu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Juanfeng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Senyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| |
Collapse
|
4
|
Kishawy AT, Abd El-Wahab RA, Eldemery F, Abdel Rahman MMI, Altuwaijri S, Ezz-Eldin RM, Abd-Allah EM, Zayed S, Mulla ZS, El Sharkawy RB, Badr S, Youssef W, Ibrahim D. Insights of early feeding regime supplemented with glutamine and various levels of omega-3 in broiler chickens: growth performance, muscle building, antioxidant capacity, intestinal barriers health and defense against mixed Eimeria spp infection. Vet Q 2024; 44:1-20. [PMID: 38961536 PMCID: PMC11225632 DOI: 10.1080/01652176.2024.2373287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Early nutritional management approach greatly impacts broilers' performance and resistance against coccidiosis. The current study explored the impact of post-hatch feeding with a combination of glutamine (Glut) and different levels of omega-3 on broiler chickens' growth performance, muscle building, intestinal barrier, antioxidant ability and protection against avian coccidiosis. A total of six hundred Cobb 500 was divided into six groups: first group (fed basal diet and unchallenged (control) and challenged (negative control, NC) groups were fed a basal diet without additives, and the other groups were infected with Eimeria spp and supplemented with 1.5% Glut alone or with three different levels of omega-3 (0.25, 0.5 and 1%) during the starter period. Notable improvement in body weight gain was observed in the group which fed basal diet supplemented with glut and 1% omega 3 even after coccidia infection (increased by 25% compared challenged group) while feed conversion ratio was restored to control. Myogeneis was enhanced in the group supplemented with Glut and omega-3 (upregulation of myogenin, MyoD, mechanistic target of rapamycin kinase and insulin like growth factor-1 and downregulating of myostatin genes). Groups supplemented with Glut and higher levels of omega-3 highly expressed occluding, mucin-2, junctional Adhesion Molecule 2, b-defensin-1 and cathelicidins-2 genes. Group fed 1% Glut + omega-3 showed an increased total antioxidant capacity and glutathione peroxidase and super oxide dismutase enzymes activities with reduced levels of malondialdehyde, reactive oxygen species and H2O2. Post-infection, dietary Glut and 1% omega-3 increased intestinal interleukin-10 (IL) and secretory immunoglobulin-A and serum lysozyme, while decreased the elevated inflammatory mediators comprising interleukin IL-6, tumor necrosis factor-alpha, nitric oxide (NO) and inducible NO synthase. Fecal oocyst excretion and lesions score severity were lowered in the group fed 1% Glut and omega 3. Based on these findings, dietary Glut and omega-3 supplementation augmented restored overall broilers' performance after coccidial challenge.
Collapse
Affiliation(s)
- Asmaa T.Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A. Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Saleh Altuwaijri
- Department of Pathology and laboratory diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rasha M.M. Ezz-Eldin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ehab M. Abd-Allah
- Veterinary Educational Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Zohair S. Mulla
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudia Arabia
| | - Rasha B. El Sharkawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute (AHRI), Agriculture Research Center, Zagazig, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Mansoura Branch, Agricultural Research Center (ARC), Giza, Egypt
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Sziderics P, Medrano Zavala AR, Parada Lopez EG, Davila Panduro EL, Sanchez Babilonia JJ, Unterköfler MS, Ebmer D, Koumantakis EA, Ruiz Pezo JW, Macedo Tafur FI, Gomez-Puerta LA, Fuehrer HP. Endoparasite survey in Amazonian manatees ( Trichechus inunguis) under rehabilitation in the Peruvian Amazon. Int J Parasitol Parasites Wildl 2024; 25:101011. [PMID: 39526173 PMCID: PMC11550573 DOI: 10.1016/j.ijppaw.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Manatee populations are declining worldwide, and all currently existing species are considered vulnerable by the IUCN. The most common problems during nurturing young Amazonian manatees, Trichechus inunguis, in rescue centres are of gastrointestinal nature leading to inappetence, diarrhoea, cachexia and even death. Endoparasites play an important role in the well-being of wildlife in captivity as well as in the wild, though information about relevant protozoan and metazoan endoparasites in Amazonian manatees is still scarce. Therefore, this study aimed to find endoparasites in T. inunguis by analyzing faecal samples from 23 Amazonian manatees which were kept in rescue centres in the Peruvian Amazon. The samples were screened for protozoan and metazoan parasites using coproscopical analysis and molecular tools. Out of twenty juvenile animals eleven were positive for at least one Eimeriidae. Two morphologically different, not yet genetically described Eimeria species were identified. One of them seems to be Eimeria trichechi which has only been described once in 1984 in Amazonian manatees from Brazil. It was not found to lead to clinical symptoms of coccidiosis in this study. The second, Eimeria sp. Type B was associated with clinical coccidiosis in a young Amazonian manatee, which showed gastrointestinal symptoms including diarrhoea, inappetence and cachexia. No other protozoan or metazoan parasite were detected in any of the samples. The present study is the first to investigate endoparasites in Amazonian manatees using molecular tools and is the first to identify an Eimeria species that could be associated with clinical symptoms in T. inunguis. With information from our study rescue centres can improve monitoring of parasites more effectively to reduce morbidity and mortality rates among rehabilitated manatees as well as improve the health status and fitness of animals for a successful release back into the wild.
Collapse
Affiliation(s)
- Philipp Sziderics
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Austria
| | | | | | | | | | - Maria S. Unterköfler
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Austria
| | | | | | | | | | - Luis A. Gomez-Puerta
- Department of Veterinary Epidemiology and Economics, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
6
|
Shanmugasundaram R, Ajao AM, Fathima S, Oladeinde A, Selvaraj RK, Applegate TJ, Olukosi OA. Growth performance and immune response of broilers during active Eimeria infection are modified by dietary inclusion of canola meal or corn-DDGS in reduced-protein corn-soybean meal diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:442-452. [PMID: 39650693 PMCID: PMC11621932 DOI: 10.1016/j.aninu.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 12/11/2024]
Abstract
The objective of this experiment was to study the effects of partial replacement of soybean meal (SBM) with canola meal (CM) or corn-distillers' dried grains with solubles (cDDGS) in reduced-protein (RP) diets for Eimeria-infected broilers. A total of 1120 broiler chicks were distributed in a 4 × 2 (4 diets × with or without infection) factorial arrangement with 7 replicates per treatment and 20 birds per replicate. The 4 diets, fed between d 7 and 42, were (i) a standard diet with crude protein at 200 g/kg (SP); (ii) a RP (crude protein at 160 g/kg) corn-SBM diet (RP-SBM); (iii) a RP diet in which 80 g/kg CM replaced 60 g/kg SBM (RP-CM); and (iv) a RP diet in which 100 g/kg cDDGS replaced 50 g/kg SBM (RP-cDDGS). On d 15, birds were infected with mixed Eimeria (+E) oocysts. Birds and feed were weighed at intervals for growth performance, and samples for immunology responses were collected on d 21. The results showed as follows: 1) during the acute infection phase, diet × Eimeria infection was shown by the diets having no effect in the uninfected group. In contrast, the RP-SBM diet tended to produce higher (P < 0.10) weight gain among the infected birds. The d 42 body weight was greater (P = 0.001) for the uninfected birds. 2) There was a significant diet × Eimeria infection on bile anti-Eimeria immunoglobulin A (IgA) concentrations (P = 0.015), splenocyte proliferation, macrophage nitric oxide (NO) production (P < 0.001), and cecal tonsil interleukin (IL)-17 mRNA amounts (P < 0.001). Most of these responses were not influenced by the diets in the uninfected birds. However, among the infected birds, birds fed RP-SBM had higher (P < 0.05) bile IgA than those fed SP or RP-cDDGS. For the spleen, the interaction was that birds fed RP-SBM or RP-cDDGS diets had the highest or lowest NO production, respectively, and birds that received RP-SBM had greater (P < 0.05) splenic CD8+:CD4+ cell ratio than other diets. In conclusion, partial replacement of SBM with CM or cDDGS had only a marginal effect on d 42 body weight and FCR of the broiler chickens receiving the RP diets. In contrast, these had a negative impact on the immune responses of the broiler chickens.
Collapse
Affiliation(s)
| | - Adeleye M. Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
7
|
Weng S, Tian E, Gao M, Zhang S, Yang G, Zhou B. Eimeria: Navigating complex intestinal ecosystems. PLoS Pathog 2024; 20:e1012689. [PMID: 39576763 PMCID: PMC11584145 DOI: 10.1371/journal.ppat.1012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Eimeria is an intracellular obligate apicomplexan parasite that parasitizes the intestinal epithelial cells of livestock and poultry, exhibiting strong host and tissue tropism. Parasite-host interactions involve complex networks and vary as the parasites develop in the host. However, understanding the underlying mechanisms remains a challenge. Acknowledging the lack of studies on Eimeria invasion mechanism, we described the possible invasion process through comparative analysis with other apicomplexan parasites and explored the fact that parasite-host interactions serve as a prerequisite for successful recognition, penetration of the intestinal mechanical barrier, and completion of the invasion. Although it is recognized that microbiota can enhance the host immune capacity to resist Eimeria invasion, changes in the microenvironment can, in turn, contribute to Eimeria invasion and may be associated with reduced immune capacity. We also discuss the immune evasion strategies of Eimeria, emphasizing that the host employs sophisticated immune regulatory mechanisms to suppress immune evasion by parasites, thereby sustaining a balanced immune response. This review aims to deepen our understanding of Eimeria-host interactions, providing a theoretical basis for the study of the pathogenicity of Eimeria and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- Shengjie Weng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Meng Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Siyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Guodong Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
8
|
Saddoris-Clemons K, Osho S, Garcia M, Humphrey B. Effects of Dietary Inclusion of a Proprietary Combination of Quillaja saponaria and Yucca schidigera on Intestinal Permeability and Immune Response in Broiler Chickens during a Coccidia Challenge. Animals (Basel) 2024; 14:1737. [PMID: 38929356 PMCID: PMC11200908 DOI: 10.3390/ani14121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study assessed the impact of Magni-Phi Ultra (MPU) inclusion on intestinal integrity and immunity in broiler chickens challenged with coccidia during peak and recovery phases. A total of 128 male Ross 708 broiler chicks were randomly allotted to one of four treatment groups (four chicks/cage). Treatments included an uninfected control (UUC); a coccidial challenge (CC) infected control (IUC); a CC fed salinomycin at 66 ppm (SAL); and a CC fed Magni-Phi Ultra at 0.11 g/kg of diet (MPU). At 16 days post-hatch, all birds in the CC groups were orally gavaged with a 3× dose of a live coccidia vaccine. At 5 dpi, the birds fed MPU and SAL showed decreased plasma FITC-d, oocyte shedding, and lesion scores and higher BWG compared to the IUC birds (p < 0.05). Jejunum IL-17, IL-10, and IFN-ϒ mRNA expression was higher in the IUC compared to the UUC (p < 0.05) group at 5 dpi. At 12 dpi, the birds fed MPU or SAL had lower plasma FITC-d and jejunum IFN-ϒ and IL-10 mRNA expression compared to the IUC birds (p < 0.05). This study indicates that MPU supports intestinal integrity and mucosal immune responses during the peak and recovery phases of infection, which may lead to improved health and performance.
Collapse
|
9
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Kasem SM, Mira NM, Helal IB, Mahfouz ME. Prophylactic and Therapeutic Efficacy of Ultrasonicated Rosmarinus officinalis Ethanolic Extract and its Chitosan-Loaded Nanoparticles Against Eimeria tenella Infected Broiler Chickens. Acta Parasitol 2024; 69:951-999. [PMID: 38492183 PMCID: PMC11001757 DOI: 10.1007/s11686-024-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1β and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-β4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1β, IL-6 and anti-inflammatory cytokines as TGF-β4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.
Collapse
Affiliation(s)
- Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| |
Collapse
|
11
|
Hassan SMH, Zayeda R, Elakany H, Badr S, Abou-Rawash A, Abd-Ellatieff H. Anticoccidial activity of Aloe Vera Leafs' aqueous extract and vaccination against Eimeria tenella: pathological study in broilers. Vet Res Commun 2024; 48:403-416. [PMID: 37736869 PMCID: PMC10811142 DOI: 10.1007/s11259-023-10222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to assess the efficacy of an anticoccidial vaccine and the anticoccidial activity of Aloe vera in broiler chickens infected with Eimeria tenella (E. tenella). A total of 225 healthy, sexless, one-day-old broiler chicks (avian48) from a commercial broiler company were randomized into nine experimental groups of 25 chicks. The groups were as follows: Group 1 (control, vaccinated, non-infected), Group 2 (vaccinated and infected with 5 × 104 sporulated oocysts), Group 3 (vaccinated, infected with 5 × 104 sporulated oocysts, and treated with Aloe vera), Group 4 (infected with 5 × 104 sporulated oocysts and treated with Aloe vera), Group 5 (positive control, infected with 5 × 104 sporulated oocysts), Group 6 (challenged with 5 × 104 sporulated oocysts and then treated with amprolium), Group 7 (treated with amprolium), Group 8 (blank control negative group), and Group 9 (treated with Aloe vera gel).Various parameters were evaluated, including clinical signs, growth performance, oocyst shedding, hematological and immunological parameters, and pathological lesion scoring. The results demonstrated that Aloe vera improved growth performance, reduced oocyst shedding, and decreased caecal lesion scores in E. Tenella-infected broiler chicks. The use of Aloe vera in combination with either amprolium or anticoccidial vaccines provided a potential solution to the issues of drug resistance and drug residues.In conclusion, this study provides valuable insights regarding the control of coccidiosis in broilers. Supplementing the chicken diet with Aloe vera had beneficial effects on the pathogenicity and infectivity of E. tenella, making it a cost-effective alternative as an herbal extract with no adverse side effects for coccidiosis control. These findings suggest that Aloe vera can be considered a potential candidate for inclusion in broiler diets for effective coccidiosis control.
Collapse
Affiliation(s)
- Shahenaz M H Hassan
- Alexandria Regional Laboratory, Animal Health Research Institute, Agriculture Research Center, Alexandria City, Egypt
| | - Rasha Zayeda
- Animal Health Research Institute, Tanta Regional Laboratory, Tanta City, Egypt
| | - H Elakany
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, Egypt
| | - Sohair Badr
- Pathology Department, Animal Health Research Institute Agriculture Research Center, Cairo City, Egypt
| | - A Abou-Rawash
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour Cty, 25511, Egypt.
| | - Hoda Abd-Ellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour Cty, 25511, Egypt
| |
Collapse
|
12
|
Hassan SM, Zayeda R, Ellakany HF, Badr S, A AA, Abd-ellatieff HA. Anticoccidial Activity of Aloe Vera Leafs’ Aqueous Extract and vaccination Against Eimeria tenella: Pathological Study in Broilers.. [DOI: 10.21203/rs.3.rs-3158113/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This study aimed to assess the efficacy of an anticoccidial vaccine and the anticoccidial activity of Aloe vera in broiler chickens infected with Eimeria tenella. A total of 225 healthy one-day-old, unsexed broiler chicks (avian48) from a commercial broiler company were randomly divided into nine experimental groups, with 25 chicks in each group. The groups included: Group 1 (control, vaccinated, non-infected), Group 2 (vaccinated and infected with 5×104 sporulated oocysts), Group 3 (vaccinated, infected with 5×104 sporulated oocysts, and treated with Aloe vera), Group 4 (infected with 5×104 sporulated oocysts and treated with Aloe vera), Group 5 (positive control, infected with 5×104 sporulated oocysts), Group 6 (challenged with 5×104 sporulated oocysts and then treated with amprolium), Group 7 (treated with amprolium), Group 8 (blank control negative group), and Group 9 (treated with Aloe vera gel). Various parameters including clinical signs, growth performance, oocyst shedding, hematological and immunological parameters, and pathological lesion scoring were evaluated. The results showed that Aloe vera improved growth performance, reduced oocyst shedding, and decreased caecal lesion scores in broiler chicks infected with Eimeria tenella. The use of Aloe vera in combination with either amprolium or anticoccidial vaccines provided a potential solution to the issues of drug resistance and drug residues. In conclusion, this study provides valuable insights into the control of coccidiosis in broilers. Supplementing the chicken diet with Aloe vera had beneficial effects on the pathogenicity and infectivity of Eimeria tenella, making it a cost-effective alternative as an herbal extract with no adverse side effects for coccidiosis control. These findings suggest that Aloe vera can be considered as a potential candidate for inclusion in broiler diets to effectively control coccidiosis.
Collapse
|
13
|
Teng PY, Choi J, Yadav S, Marshall B, Castro FLS, Ferrel J, Kim WK. Evaluation of a dacitic (rhyolitic) tuff breccia use on performance, inflammatory, and antioxidant responses in broilers mildly challenged with Eimeria spp. Poult Sci 2023; 102:102697. [PMID: 37141812 DOI: 10.1016/j.psj.2023.102697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023] Open
Abstract
The objective of the study was to investigate the effects of a dacitic tuff breccia (DTB) on Eimeria-infected broilers. A total of 600 one-day-old Cobb 500 male chickens were randomly assigned to 5 treatments with 10 replicates of 12 birds. Treatments were: an unchallenged control (UC), a challenged (CC) control (0% DTB), and 3 challenged groups with 0.125, 0.25, or 0.5% DTB. At d 14, birds in the CC and DTB groups were orally gavaged with mixed Eimeria spp., while the UC received water. Growth performance was evaluated during prechallenge, challenge, and postchallenge periods (0-14 d; 14-20 d; and 20-26 d, respectively). Gastrointestinal permeability was measured at 5 days postinfection (dpi). Intestinal histology and nutrient digestibility of dry matter (DM), crude protein (CP), and ileal digestible energy (IDE) were measured at 6 dpi. Liver activity of glutathione peroxidase (GSH-Px) was determined at 6 dpi, and concentrations of reduced (GSH) and oxidized glutathione (GSSG) were analyzed at 6 and 12 dpi. Data were analyzed using a linear mixed model analysis and Tukey's test (P ≤ 0.05). From 0 to 14 d, similar average daily gain (ADG) and average daily feed intake (ADFI, P > 0.05) were observed. Gain:feed ratio (GF) was higher in 0.125, 0.25, and 0.5% of DTB than the CC and UC (P < 0.001). From 14 to 20 d, the UC had the highest ADG, ADFI, and GF (P < 0.001). At 5 dpi, intestinal permeability was higher in the challenged groups than the UC. Additionally, the UC showed the highest apparent ileal digestibility of CP, whereas 0.125% DTB had higher CP digestibility than the CC and 0.5% DTB (P < 0.001). At 6 dpi, 0.125% DTB increased GSH-Px activity compared to the CC, 0.5% DTB, and UC (P < 0.001). At 12 dpi, 0.125% DTB showed increased GSH concentration compared to the CC, 0.25% DTB, and 0.5% DTB (P < 0.01). The mild coccidia infection negatively impacted growth performance, apparent ileal nutrient digestibility, intestinal histology, and gastrointestinal integrity in broilers. The use of 0.125% DTB exhibited potential in improving antioxidant responses, apparent ileal digestibility of CP, and growth performance.
Collapse
Affiliation(s)
- P-Y Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - J Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - S Yadav
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - B Marshall
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - F L S Castro
- AZOMITE Mineral Products Inc., Nephi, UT 84648, USA
| | - J Ferrel
- AZOMITE Mineral Products Inc., Nephi, UT 84648, USA
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Li C, Chen J, Wang J, Whelan R, Bütz DE, Ramuta MD, Wang W, Li J, Yang X, Liu Y, Yang X, Cook ME, Crenshaw TD, Ren Z. Effects of dietary sulfur amino acid levels on growth performance and intestinal immunity in broilers vaccinated and subsequently infected with coccidiosis. Poult Sci 2023; 102:102557. [PMID: 36863121 PMCID: PMC10011515 DOI: 10.1016/j.psj.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Coccidia vaccination is a common practice in the poultry industry. However, research is lacking regarding the optimal nutritional support for coccidia vaccinated broilers. In this study, broilers were vaccinated with coccidia oocyst at hatch and were fed with a common starter diet from 1 to 10 d. On d 11, the broilers were randomly assigned to groups in a 4 × 2 factorial arrangement. Briefly, the broilers were fed one of four diets containing 0.6, 0.8, 0.9, and 1.0% of standardized ileal digestible methionine plus cysteine (SID M+C), respectively, from 11 to 21 d. On d 14, the broilers from each diet group were orally gavaged with either PBS (Mock challenge) or Eimeria oocysts. Compared to PBS-gavaged broilers and regardless of dietary SID M+C levels, the Eimeria-gavaged broilers had 1) decreased gain-to-feed ratio (15-21 d, P = 0.002; 11-21 d, P = 0.011); 2) increased fecal oocysts (P < 0.001); 3) increased plasma anti-Eimeria IgY (P = 0.033); and 4) increased intestinal luminal interleukin-10 (IL-10; duodenum, P = 0.039; jejunum, P = 0.018) and gamma interferon (IFN-γ; duodenum, P < 0.001; jejunum, P = 0.017). Regardless of Eimeria gavage, broilers fed 0.6% SID M+C had decreased (P<0.001) body weight gain (15-21 and 11-21 d) and gain-to-feed ratio (11-14, 15-21, and 11-21 d) when compared to those fed ≥ 0.8% SID M+C. Eimeria challenge increased (P < 0.001) duodenum lesions when the broilers were fed with 0.6, 0.8, and 1.0% SID M+C, and increased (P = 0.014) mid-intestine lesions when the broilers were fed with 0.6 and 1.0% SID M+C. An interaction between the two experimental factors was detected on plasma anti-Eimeria IgY titers (P = 0.022), as coccidiosis challenge increased plasma anti-Eimeria IgY titers only when the broilers were fed with 0.9% SID M+C. In summary, the dietary SID M+C requirement for grower (11-21 d) broilers vaccinated with coccidiosis was ranged from 0.8 to 1.0% for optimal growth performance and intestinal immunity, regardless of coccidiosis challenge.
Collapse
Affiliation(s)
- Changqing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang 63457, Germany
| | - Daniel E Bütz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mitchell D Ramuta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiachen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mark E Cook
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Effect of Immunomodulation in Turkeys Infected with Haemorrhagic Enteritis Virus on the Percentage of CD4 + and CD8α + T Lymphocyte Subpopulations Synthesising IFN-γ. J Vet Res 2022; 66:537-547. [PMID: 36846033 PMCID: PMC9944994 DOI: 10.2478/jvetres-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Haemorrhagic enteritis virus (HEV) is a common turkey pathogen which suppresses the immune function. The immunosuppressive potential of both field and vaccine strains of HEV makes it necessary to seek substances which can limit or prevent this phenomenon. The aim of the presented work was to investigate the effect of two immunomodulators in the immune response of HEV-infected turkeys. The immunomodulators were synthetic methisoprinol and a natural preparation containing 34.2% β-glucans (β-1,3/1,6) and 12% mannan oligosaccharides (MOS). Material and Methods The synthetic immunomodulator was administered to female Big 6 turkey chicks at a dose of 200 mg/kg b.w. in drinking water i) for 3 days before, ii) for 5 days after, or iii) for 3 days before, on the day of infection, and for 5 days after experimental HEV infection in turkeys. The natural counterpart was also given to female Big 6 turkey chicks at a dose of 500 g/tonne of feed i) for 14 days before, ii) for 5 days after, or iii) for 14 days before, on the day of infection, and for 5 days after infection. Their effect was evaluated on the synthesis of interferon gamma (IFN-γ) by splenic CD4+ and CD8α+ T cells in response to mitogen stimulation in vitro. Samples were taken 3, 5 and 7 days after infection and analysed by intracellular cytokine staining assay. Results Methisoprinol was shown to increase the CD4+IFN-γ+ and CD8α+IFN-γ+ T cell count in these birds over the same cell count in control turkeys. A similar effect was obtained in turkeys that received the natural immunomodulator. Conclusion The evaluated immunomodulators may be used to attenuate the effects of immunosuppression in HEV-infected turkeys.
Collapse
|
16
|
Ren Z, Yan J, Whelan R, Liao X, Bütz DE, Arendt MK, Cook ME, Yang X, Crenshaw TD. Dietary supplementation of sulfur amino acids improves intestinal immunity to Eimeria in broilers treated with anti-interleukin-10 antibody. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:382-389. [PMID: 35949200 PMCID: PMC9356037 DOI: 10.1016/j.aninu.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Oral antibody to interleukin-10 (anti-IL-10) enhances the intestinal immune defense against Eimeria. The sulfur amino acids methionine and cysteine (M+C) play essential roles in inducing and maintaining protective immune responses during intestinal infections. Hence, increased dietary M+C may support the anti-IL-10-induced intestinal immunity to Eimeria. Broilers (n = 640) were arranged in a 2 × 2 × 2 factorial design with 2 levels of each of the 3 main factors: dietary standardized ileal digestible (SID) M+C levels (0.6% or 0.8%), dietary anti-IL-10 supplementation (with or without), and coccidiosis challenge (control or challenge). Briefly, the broilers were supplied with either 0.6% or 0.8% SID M+C, each with or without anti-IL-10 (300 μg/kg), from d 10 to 21. On d 14, broilers from each diet were gavaged with either PBS or Eimeria. The resulting Eimeria infection induced fecal oocyst shedding and intestinal lesions. Broilers fed 0.8% SID M+C (main effects, P ≤ 0.05) had decreased feed-to-gain ratio, increased duodenum and cecum luminal anti-Eimeria IgA titers, and decreased fecal oocyst counts, when compared to 0.6% SID M+C. The supplementation of anti-IL-10 (main effects, P ≤ 0.05) increased cecum luminal total IgA concentration and decreased cecum lesions. Interactions (P ≤ 0.05) were detected for growth performance and cecum luminal IFN-γ. Briefly, the highest body weight gain and feed intake were reached in PBS-gavaged broilers fed 0.8% SID M+C with no anti-IL-10 and in Eimeria-challenged broilers fed 0.8% SID M+C with anti-IL-10. In Eimeria-infected broilers, anti-IL-10 increased intestinal luminal IFN-γ and body weight gain only at 0.8% SID M+C. Collectively, anti-IL-10 increased intestinal luminal IFN-γ levels, decreased cecum lesions and restored growth only when fed with adequate amounts of sulfur amino acids. Our findings underscore the importance of providing sufficient essential nutrients to support the anti-IL-10 induced immunity against coccidiosis.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Daniel E. Bütz
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Maria K. Arendt
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Mark E. Cook
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Thomas D. Crenshaw
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
17
|
Kim WH, Min W, Park KI, Lillehoj HS, Fernandez-Colorado CP, Flores RA, Cammayo PLT, Nguyen BT. Expression of Chicken NK-Lysin and Its Role in Chicken Coccidiosis Induced by Eimeria necatrix. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:439-445. [PMID: 34724762 PMCID: PMC8561051 DOI: 10.3347/kjp.2021.59.5.439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Coccidiosis in chickens is an intestinal parasitic disease caused by protozoan parasites named Eimeria spp. In some Eimeria infections, intestinal lymphocytes are known to highly express chicken NK-lysin (cNK-lysin), an antimicrobial peptide with anticoccidial activity. Therefore, this study aims to investigate the expression of cNK-lysin in E. necatrix-infected chickens and its role in E. necatrix infection. The expression of cNK-lysin transcript was significantly increased in E. necatrix sporozoites-treated lymphocytes. In E. necatrix infection, cNK-lysin transcript was induced in intestinal lymphocytes but not in the spleen. The recombinant cNK-lysin exhibited anticoccidial activity against E. necatrix sporozoites as well as immunomodulatory activity on macrophages by inducing proinflammatory cytokines. These results indicated that E. necatrix infection induces high local expression of cNK-lysin and the secreted cNK-lysin helps protect coccidiosis.
Collapse
Affiliation(s)
- Woo Hyun Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang Il Park
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Cherry P Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Paula Leona T Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Binh Thanh Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
18
|
Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, Su Z, Zhang K. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express 2021; 11:140. [PMID: 34669066 PMCID: PMC8528927 DOI: 10.1186/s13568-021-01299-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
A total of 360-day-old broiler chicks were allocated into six groups in 2 (Coccidial challenge or not) × 3 (dietary treatments) factorial design. Three dietary treatments including: basic diet, basic diet plus organic acids (OAs) in drinking water, and basic diet plus OAs in the feed with and without coccidial challenge. The OAs in water or feed improved (P < 0.01) average body weight (ABW), average body weight gain (ABWG), and feed conversion ratio (FCR) as compared with the control diet during starter, grower, and whole experimental period. Coccidial challenge decreased BW, ABWG, and average feed intake (AFI), as well as resulted in poor FCR during the starter and whole experimental period (P < 0.05). Though there was no interaction between OAs supplementation and coccidial challenge, the OAs supplementation improved the overall performance with and without coccidial challenge birds on 21 d and 35 d. IgG was found higher (P = 0.03) in broilers fed OAs in feed without the coccidial challenge group. On 18 d, OAs supplementation in feed increased TNF-γ (P = 0.006), whereas the coccidial challenge decreases TNF-γ (P = 0.01) and IL-10 (P = < .0001), and increases IgM (P = 0.03), IgG (P = 0.04) and IgA (P = 0.02). On 29 d, the coccidial challenge increases IgM and IgA. On 18 d, jejunal lesion score was found significantly higher in the coccidial challenged group as compared to OAs supplementation with coccidial challenged groups on 18 d (P < 0.0001) and 29 d (P = 0.03). Crypt depth was higher, and Villus-height to Crypt depth ratio was lower in the coccidial challenge group on 18 and 29 d. The Goblet cells were found higher in the non-coccidial challenge on 18 d. After 18 d, 16S rDNA gene sequence analysis of ileal chyme has shown that coccidial challenge decreases Lactobacillus_reuteri species as compared to the non-challenged group (P = 0.02). After 29, Cyanobacteria abundance reduced (P = 0.014) in the challenged group than the non-challenged group at the phylum level. At the genus level, Lactobacillus (P = 0.036) and unidentified Cyanobacteria (P = 0.01) were found higher in the non-challenged group than the coccidial challenge group. The results indicate that the OAs supplementation showed improved responses in a pattern similar to the non-challenged control group by neutralizing the negative effects of the coccidial challenge.
Collapse
|
19
|
Bremner A, Kim S, Morris KM, Nolan MJ, Borowska D, Wu Z, Tomley F, Blake DP, Hawken R, Kaiser P, Vervelde L. Kinetics of the Cellular and Transcriptomic Response to Eimeria maxima in Relatively Resistant and Susceptible Chicken Lines. Front Immunol 2021; 12:653085. [PMID: 33841436 PMCID: PMC8027475 DOI: 10.3389/fimmu.2021.653085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Eimeria maxima is a common cause of coccidiosis in chickens, a disease that has a huge economic impact on poultry production. Knowledge of immunity to E. maxima and the specific mechanisms that contribute to differing levels of resistance observed between chicken breeds and between congenic lines derived from a single breed of chickens is required. This study aimed to define differences in the kinetics of the immune response of two inbred lines of White Leghorn chickens that exhibit differential resistance (line C.B12) or susceptibility (line 15I) to infection by E. maxima. Line C.B12 and 15I chickens were infected with E. maxima and transcriptome analysis of jejunal tissue was performed at 2, 4, 6 and 8 days post-infection (dpi). RNA-Seq analysis revealed differences in the rapidity and magnitude of cytokine transcription responses post-infection between the two lines. In particular, IFN-γ and IL-10 transcript expression increased in the jejunum earlier in line C.B12 (at 4 dpi) compared to line 15I (at 6 dpi). Line C.B12 chickens exhibited increases of IFNG and IL10 mRNA in the jejunum at 4 dpi, whereas in line 15I transcription was delayed but increased to a greater extent. RT-qPCR and ELISAs confirmed the results of the transcriptomic study. Higher serum IL-10 correlated strongly with higher E. maxima replication in line 15I compared to line C.B12 chickens. Overall, the findings suggest early induction of the IFN-γ and IL-10 responses, as well as immune-related genes including IL21 at 4 dpi identified by RNA-Seq, may be key to resistance to E. maxima.
Collapse
Affiliation(s)
- Abi Bremner
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Sungwon Kim
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom.,Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Katrina M Morris
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Matthew John Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dominika Borowska
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Zhiguang Wu
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Fiona Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Rachel Hawken
- Cobb-Vantress Inc., Siloam Springs, AR, United States
| | - Pete Kaiser
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, United Kingdom
| |
Collapse
|
20
|
Soutter F, Werling D, Kim S, Pastor-Fernández I, Marugán-Hernández V, Tomley FM, Blake DP. Impact of Eimeria tenella Oocyst Dose on Parasite Replication, Lesion Score and Cytokine Transcription in the Caeca in Three Breeds of Commercial Layer Chickens. Front Vet Sci 2021; 8:640041. [PMID: 33693044 PMCID: PMC7937735 DOI: 10.3389/fvets.2021.640041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Eimeria species parasites infect the gastrointestinal tract of chickens, causing disease and impacting on production. The poultry industry relies on anticoccidial drugs and live vaccines to control Eimeria and there is a need for novel, scalable alternatives. Understanding the outcomes of experimental infection in commercial chickens is valuable for assessment of novel interventions. We examined the impact of different infectious doses of Eimeria tenella (one low dose, three high doses) in three commercial layer chicken lines, evaluating lesion score, parasite replication and cytokine response in the caeca. Groups of eight to ten chickens were housed together and infected with 250, 4,000, 8,000 or 12,000 sporulated oocysts at 21 days of age. Five days post-infection caeca were assessed for lesions and to quantify parasite replication by qPCR and cytokine transcription by RT-qPCR. Comparison of the three high doses revealed no significant variation between them in observed lesions or parasite replication with all being significantly higher than the low dose infection. Transcription of IFN-γ and IL-10 increased in all infected chickens relative to unchallenged controls, with no significant differences associated with dose magnitude (p > 0.05). No significant differences were detected in lesion score, parasite replication or caecal cytokine expression between the three lines of chickens. We therefore propose 4,000 E. tenella oocysts is a sufficient dose to reliably induce lesions in commercial layer chickens, and that estimates of parasite replication can be derived by qPCR from these same birds. However, more accurate quantification of Eimeria replication requires a separate low dose challenge group. Optimisation of challenge dose in an appropriate chicken line is essential to maximize the value of in vivo efficacy studies. For coccidiosis, this approach can reduce the numbers of chickens required for statistically significant studies and reduce experimental severity.
Collapse
Affiliation(s)
- Francesca Soutter
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Sungwon Kim
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Iván Pastor-Fernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom.,SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
21
|
Hofmann T, Schmucker S, Sommerfeld V, Huber K, Rodehutscord M, Stefanski V. Immunomodulatory Effects of Dietary Phosphorus and Calcium in Two Strains of Laying Hens. Animals (Basel) 2021; 11:ani11010129. [PMID: 33430096 PMCID: PMC7826506 DOI: 10.3390/ani11010129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Phosphorus and calcium are essential nutrients for body functions including the immune system and are generally supplemented to poultry diets. Phosphorus is also present in plant feedstuffs, bound as phytate, which can be used by enzymatic hydrolyzation in the chicken. A reduction of dietary mineral phosphorus might consequently be conceivable, without negatively influencing the immune system. The high concentration of calcium in diets for laying hens that is needed for eggshell formation may inhibit phytate degrading enzymes, and thus, decrease phosphorus availability for the hen. Both phytate degradation and several immune parameters are known to be strain-specific, making an interaction of the genetic background and the dietary phosphorus and calcium supply with the immune system likely. The aim of the study was to evaluate the impact of reduced concentrations of dietary phosphorus and calcium on the peripheral and gut-associated immune system in two laying hen strains. Reduced mineral phosphorus enhanced, while reduced calcium reduced several immune parameters. The two strains showed differences in many immune parameters, but only the impact of dietary phosphorus was influenced by the genetic background. These results suggest that dietary phosphorus and calcium supply may strain-specifically influence immune defense and protection against infection in chicken. Abstract Insufficient nutrient supply can impair the immune system, which is important for animal health and welfare. Since chicken can partly hydrolyze phytate, which is the primary phosphorus storage in plant seeds, a reduction of mineral phosphorus in the diets could be an option for more sustainable egg production. Laying hens require high concentrations of calcium that might inhibit the function of endogenous enzymes for phytate hydrolyzation. The objective of this study was to characterize the impact of standard and reduced dietary phosphorus and calcium concentrations on the number and functionality of immune cells in the peripheral and gut-associated immune system in a white and brown laying hen strain. Reduced mineral phosphorus enhanced several immune parameters such as B cells in blood and IgA concentrations in bile in both strains, and peripheral monocytes and γδ T cells in cecal tonsils in brown hens. Reduced calcium levels resulted in lower numbers of T cells in blood and cecal tonsils in both strains, suggesting negative effects on adaptive immunity. Differences between the two strains were found in almost all immune parameters. Results suggest a potentially beneficial effect of reduced dietary mineral phosphorus on the immune system that is dependent on the genetic background.
Collapse
|
22
|
Ren Z, Bütz DE, Whelan R, Naranjo V, Arendt MK, Ramuta MD, Yang X, Crenshaw TD, Cook ME. Effects of dietary methionine plus cysteine levels on growth performance and intestinal antibody production in broilers during Eimeria challenge. Poult Sci 2019; 99:374-384. [PMID: 32416822 PMCID: PMC7587792 DOI: 10.3382/ps/pez503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Research has shown that methionine+ cysteine (M+C) requirements may be higher when chickens are infected with Eimeria app. In a 4 × 2 factorial design, broilers (11 to 21 D) were fed one of 4 corn–soybean meal-based diets containing either 0.6, 0.8, 0.9, or 1.0% standardized ileal digestible (SID) M+C; on day 14, broilers from each diet were gavaged with either phosphate-buffered saline (PBS) or a commercial coccidiosis vaccine (at 100 × vaccine dose) which provide a mixture of live Eimeria acervulina, Eimeria maxima, and Eimeria tenella oocysts. Growth performance was recorded from day 11 to 21. Plasma and intestinal luminal samples were collected on days 14 and 21. Intestine lesion scores and fecal oocyst counts were conducted on day 21. Regardless of dietary SID M+C levels, compared to PBS gavaged broilers, the Eimeria-challenged broilers had (1) decreased (P < 0.05) body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F); (2) increased (P < 0.05) intestinal lesion scores and fecal oocyst counts; (3) increased (P < 0.05) plasma anti-Eimeria IgG, and intestinal luminal total IgA and anti-Eimeria IgA concentrations; and (4) increased (P < 0.05) levels of duodenum luminal gamma interferon (IFN-γ) and interleukin-10 (IL-10), as well as jejunum and cecum luminal IFN-γ concentrations. Regardless of Eimeria challenge, when compared to 0.6% SID M+C, broilers fed ≥0.8% SID M+C had (1) increased (P < 0.05) BWG, FI, and G:F and (2) increased (P < 0.05) levels of jejunum luminal total IgA. After Eimeria challenge, broilers fed 0.8% SID M+C had increased (P < 0.05) levels of jejunum luminal anti-Eimeria IgA compared to broilers fed diets containing 0.6 and 1.0% SID M+C. Collectively, in 11- to 21-D broilers, the growth suppression caused by Eimeria infection could not be mitigated by further increasing dietary M+C alone ≥0.8%. Further research should investigate interactions between dietary M+C and other nutrients for support of immune function and growth in pathogen-challenged broilers.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Daniel E Bütz
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, 4 Rodenbacher Chaussee, Hanau-Wolfgang 63457, Germany
| | - Victor Naranjo
- Evonik Nutrition & Care GmbH, 4 Rodenbacher Chaussee, Hanau-Wolfgang 63457, Germany
| | - Maria K Arendt
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Mitchell D Ramuta
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Thomas D Crenshaw
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Mark E Cook
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| |
Collapse
|
23
|
Oxford JH, Selvaraj RK. Effects of Glutamine Supplementation on Broiler Performance and Intestinal Immune Parameters During an Experimental Coccidiosis Infection. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
24
|
Osho SO, Adeola O. Impact of dietary chitosan oligosaccharide and its effects on coccidia challenge in broiler chickens. Br Poult Sci 2019; 60:766-776. [PMID: 31483171 DOI: 10.1080/00071668.2019.1662887] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
1. Two experiments were conducted, the first to determine the optimum inclusion of chitosan oligosaccharide (COS) in broiler diets to support growth performance, digestive functions, intestinal morphology, and immune organs. The second experiment evaluated the immune-protective properties of COS on broiler chickens during coccidia challenge (CC).2. Experiment 1 investigated the effect of graded dietary concentration of COS in the diets of broiler chickens using eight cage replicates for each of the six diets. A corn-soybean meal-based diet was used as the basal diet and supplemented with 0.0, 0.5, 1.0, 1.5, 2.0, or 2.5 g of COS/kg feed to form the six treatments.3. The diet supplemented with 1.0 g COS/kg of feed provided the optimal inclusion level for broiler chickens regarding body weight (BW) gain, jejunal villus height, villus height to crypt depth ratio, and ileal energy digestibility at d 22 of age.4. Experiment 2 investigated the immune-protective properties of COS in broiler chickens during CC. A total of 224 male broiler chicks were randomly assigned to eight replicate cages in a 2 × 2 factorial arrangement of treatments with two COS concentrations (0 or 1 g of COS/kg of diet), with or without CC.5. On d 18 of age, birds in the CC group received twice the recommended coccidia vaccine dose of 30 doses/kg BW.6. Coccidia challenge reduced (P < 0.05) and dietary COS increased (P < 0.05) BW gain, and feed intake. Dietary COS mitigated (P < 0.05) the CC-induced effects on gain:feed. Dietary COS supplementation attenuated the CC-induced effects (P < 0.05) on the expression of occludin genes.7. In conclusion, dietary COS improved performance, and the immune-related beneficial impact of COS supplementation was associated with reduced expression of pro-inflammatory cytokine genes.
Collapse
Affiliation(s)
- S O Osho
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - O Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Abstract
Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.
Collapse
|
26
|
Arendt M, Elissa J, Schmidt N, Michael E, Potter N, Cook M, Knoll LJ. Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Vet Immunol Immunopathol 2019; 218:109934. [PMID: 31520870 DOI: 10.1016/j.vetimm.2019.109934] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Eimeria species are intestinal protozoan parasites that cause lack of production, malabsorption and mortality in floor raised chickens. Administering an oral antibody to interleukin 10 (aIL-10) reduces the symptoms of coccidiosis in broilers, indicating interleukin 10 (IL-10) is key to Eimeria pathology. IL-10 is an anti-inflammatory cytokine and acts as a stand down signal to reduce inflammation and host pathology during disease. Related protozoan parasites exploit IL-10 to reduce pathogen-damaging host inflammatory responses. We hypothesize that IL-10 is increased during Eimeria infection through an unknown host-pathogen interaction, and by feeding aIL-10 to neutralize excess IL-10 the bird is allowed to mount an effective immune response to Eimeria. To determine the effects of aIL-10 during the intestinal immune response, intestinal pathology and the relationship between IL-10, interferon gamma (IFNγ) and Eimeria infection were evaluated in this study. In both experiments, broilers were administered either a 10x dose of Advent® Eimeria vaccine or saline. Duodenum, jejunum and cecum samples were collected, processed, stained and examined under a microscope. Evaluation of intestinal histomorphology during aIL-10 administration showed minimal differences in birds fed aIL-10 during infection compared to animals fed a control antibody during Eimeria infection. To further evaluate aIL-10's positive effect during infection, immunofluorescent histochemistry was performed on chicken intestines days 3-7 post Eimeria infection for IL-10 and IFNγ presence in intestinal mucosa in control and infected birds, in regions with and without visible Eimeria burden. IL-10 and IFNγ had significant changes between days 4.5-7 post-infection in birds fed aIL-10 compared to animals fed a control antibody. Overall we found that the duodenum had increased IL-10 presence and increased IFNγ presence, and the jejunum and cecum had decreased IL-10 presence and decreased IFNγ presence. These differences in spatial regulation of IL-10 and IFNγ may indicate Eimeria species induce slightly different cytokine responses.
Collapse
Affiliation(s)
- Maria Arendt
- University of Wisconsin - Madison, Comparative Biomedical Sciences Department, United States.
| | - Jonathan Elissa
- University of Wisconsin - Madison, School of Veterinary Medicine, United States
| | - Natalie Schmidt
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Emily Michael
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Nicole Potter
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Mark Cook
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Laura J Knoll
- University of Wisconsin - Madison, Medical Microbiology & Immunology Department, United States
| |
Collapse
|
27
|
Oelschlager ML, Rasheed MSA, Smith BN, Rincker MJ, Dilger RN. Effects of Yucca schidigera-derived saponin supplementation during a mixed Eimeria challenge in broilers. Poult Sci 2019; 98:3212-3222. [PMID: 30789216 DOI: 10.3382/ps/pez051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/26/2019] [Indexed: 11/20/2022] Open
Abstract
An experiment was conducted to determine if dietary Yucca-derived saponin supplementation could ameliorate the immune and growth responses of broilers during a mixed coccidian challenge. A total of 576 two-day-old male Ross 308 broiler chicks were housed in galvanized starter batteries and randomly assigned to 1 of 4 dietary treatment groups (12 replicate cages of 12 birds). Dietary treatments were corn-soybean meal-based and included 1) control diet + sham-inoculated (Ucon), 2) control diet + Eimeria oocyst challenge (Icon), 3) control diet with 250 mg/kg Yucca-derived saponin product + Eimeria oocyst challenge (ISap250), and 4) control diet with 500 mg/kg of Yucca-derived saponin product + Eimeria oocyst challenge (ISap500). On study day 14, birds were orally inoculated with 1.5 mL of tap water containing Eimeria acervulina, E. maxima, and E. tenella (100,000, 40,000, and 30,000 oocysts/dose, respectively), or sham-inoculated with 1.5 mL of tap water. Eimeria-challenged birds exhibited a reduction in growth compared with uninfected birds (P < 0.001); however, there were no detectable differences due to dietary treatment among Eimeria-challenged groups. Mucosal thickness in the jejunum was increased (P < 0.042) in all infected groups and there were no differences among infected groups; however, saponin supplementation included at 250 mg/kg was not significantly different from the uninfected birds. Lymphocytes as a percentage of total white blood cells were increased (P < 0.014) in all Eimeria-challenged groups at 7 D post-inoculation compared with uninfected birds, but birds supplemented at 250 mg/kg were not different from uninfected birds. Cecal and duodenal IFN-γ expression increased with infection when compared with sham-inoculated birds. Cecal and duodenal IL-1β expression increased (P < 0.008 and P < 0.039) due to infection, and ISap250 and ISap500 treatments ameliorated IL-1β expression to levels not different from sham-inoculated birds. These results suggest that saponin supplementation may provide some immunomodulatory effects during a mixed coccidian challenge as evidenced by lymphocyte responses, changes in intestinal structure, and alterations in cecal and duodenal inflammatory cytokine mRNA expression.
Collapse
Affiliation(s)
- M L Oelschlager
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - M S A Rasheed
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - B N Smith
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Kim WH, Lillehoj HS, Min W. Indole Treatment Alleviates Intestinal Tissue Damage Induced by Chicken Coccidiosis Through Activation of the Aryl Hydrocarbon Receptor. Front Immunol 2019; 10:560. [PMID: 30972060 PMCID: PMC6443889 DOI: 10.3389/fimmu.2019.00560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Indoles, as the ligands of aryl hydrocarbon receptor (AhR), have been shown to possess immune-modulating property in terms of the balancing between regulatory T cells (Treg) and T helper 17 cells (Th17) activities. In the present study, we examined the effects of dietary indoles, 3,3′-diindolylmethane (DIM) and indole-3-carbinol (I3C), on CD4+T cell population and functions in chickens. Furthermore, the effects of dietary DIM treatment on chicken coccidiosis caused by an apicomplexan parasite were investigated. Dietary treatment of healthy chickens with DIM and I3C induced increased CD4+CD25+ (Treg) cells and the mRNA expression of IL-10, while decreasing number of CD4+IL-17A+ (Th17) cells and Th17-related cytokines transcripts expression in the intestine. In addition, we explored the role of AhR in indole-treated splenic lymphocytes by using AhR antagonist and our results suggested that DIM is a ligand for chicken AhR. In chicken coccidiosis, treatment of DIM increased the ratio of Treg/Th17 cells and significantly reduced intestinal lesion although no significant changes in body weight and fecal oocyst production were noted compared to non-treated control group. These results indicate that DIM is likely to affect the ratios of Treg/Th17 reducing the level of local inflammatory response induced by Eimeria or facilitate repairing process of inflamed gut following Eimeria infection. The results described herein are thus consistent with the concept that AhR ligand modulates the T cell immunity through the alteration of Treg/Th17 cells with Treg dominance. To our knowledge, present study is the first scientific report showing the effects of dietary indole on T cell immunity in poultry species.
Collapse
Affiliation(s)
- Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, U. S. Department of Agriculture, Beltsville Agricultural Research Center, ARS, Beltsville, MD, United States
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, U. S. Department of Agriculture, Beltsville Agricultural Research Center, ARS, Beltsville, MD, United States
| | - Wongi Min
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
29
|
Yang WC, Yang CY, Liang YC, Yang CW, Li WQ, Chung CY, Yang MT, Kuo TF, Lin CF, Liang CL, Chang CLT. Anti-coccidial properties and mechanisms of an edible herb, Bidens pilosa, and its active compounds for coccidiosis. Sci Rep 2019; 9:2896. [PMID: 30814608 PMCID: PMC6393484 DOI: 10.1038/s41598-019-39194-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/11/2019] [Indexed: 11/09/2022] Open
Abstract
Avian coccidiosis is an economically important disease in the poultry industry. In view of the disadvantages of anti-coccidial drugs in chickens, edible plants and their compounds are re-emerging as an alternative strategy to combat this disease. A previous publication reported that the edible plant B. pilosa showed promise for use against coccidiosis. Here, we first investigated into the anti-coccidial effects of B. pilosa. We found that B. pilosa at 100 ppm or more significantly suppressed E. tenella as evidenced by reduction in mortality rate, oocyst excretion and gut pathological severity in chickens and its minimum prophylactic duration was 3 days. Next, we explored the mode of action of anti-coccidial mechanism of B. pilosa. The E. tenella oocysts were not directly killed by B. pilosa; however, administration of the plant suppressed oocyst sporulation, sporozoite invasion, and schizonts in the life cycle of E. tenella. Besides, B. pilosa boosted T cell-mediated immunity. Finally, we characterized the related anti-coccidial phytochemicals and their mode of action. One of three potent polyynes present in B. pilsoa, Compound 1 (cytopiloyne), acted against coccidiosis in chickens in a similar manner to B. pilosa. These data illustrate the anti-coccidial potency and mechanism of B. pilosa and one of its active compounds, and provide a cornerstone for development of novel herbal remedies for avian coccidiosis.
Collapse
Affiliation(s)
- Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Cheng-Ying Yang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei City, Taiwan
| | - Wei-Qun Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chih-Yao Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Meng-Ting Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taiwan, and National Chung-Hsing University, Taichung City, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung City, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chih-Lung Liang
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Cicero Lee-Tian Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan.
| |
Collapse
|
30
|
Yu X, Wang Z, Chen H, Niu X, Dou Y, Yang J, Tang Y, Diao Y. Serological and Pathogenic Analyses of Fowl Adenovirus Serotype 4 (FAdV-4) Strain in Muscovy Ducks. Front Microbiol 2018; 9:1163. [PMID: 29922258 PMCID: PMC5996943 DOI: 10.3389/fmicb.2018.01163] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023] Open
Abstract
Hydropericardium hepatitis syndrome (HHS) is a lethal disease caused by Fowl adenovirus serotype 4(FAdV-4) that mainly infects 3- to 6-week-old broiler chicks. In 2015, an infectious disease characterized similar symptom to HHS in broilers outbroke in commercial duck flocks in Shandong province. FAdV-4 was isolated from naturally infected ducks and determined by polymerase chain reaction (PCR) amplification and DNA sequence analysis. In order to investigate the effect of FAdV-4 infection on muscovy ducks, we determined and characterized the FAdV-4 Isolate, and assessed its pathogenicity. In this study, HHS was respectively reproduced in 5-week-old muscovy duck by intramuscular injection and intranasal inoculation of allantoic fluid containing FAdV-4, ducks in the negative control group were inoculated with allantoic fluids of healthy duck embryos in the same manner. Clinical symptoms, gross and microscopic lesions, cytokines and antibodies, blood biochemical indices were detected and recorded for 12 days after infection. Typical hydropericardium and hepatitis was observed in experimental muscovy duck in the 3rd day post-inoculation (dpi). FAdV-4 can be replicated in tissues and cause pathological damage, especially in the liver and immune organs. Most of the immune-related cytokines and antibodies levels are up-regulated and then decreased, which may be caused by the initial infection and the normal immune response, later the virus caused the immunosuppression and led to the decrease of levels. To the best of our knowledge, this is the first systematic trial of the pathogenicity of FAdV-4 in muscovy ducks mainly based on the serological test, which will provide new insights into the study of the disease.
Collapse
Affiliation(s)
- Xianglong Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Zhenzhong Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Hao Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Xiaoyu Niu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yanguo Dou
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
31
|
Lai A, Dong G, Song D, Yang T, Zhang X. Responses to dietary levels of methionine in broilers medicated or vaccinated against coccidia under Eimeria tenella-challenged condition. BMC Vet Res 2018; 14:140. [PMID: 29699573 PMCID: PMC5922021 DOI: 10.1186/s12917-018-1470-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background Coccidiosis is a prevalent problem in chicken production. Dietary addition of coccidiostats and vaccination are two approaches used to suppress coccidia in the practical production. Methionine (Met) is usually the first limiting amino acid that plays important roles in protein metabolism and immune functions in chickens. The present study is aimed to investigate whether increasing dietary Met levels will improve the anticoccidial effects in broilers medicated or vaccinated against coccidia under Eimeria (E.) tenella-challenged condition. Two thousand male Partridge Shank broiler chicks were obtained from a hatchery. After hatch, birds were weighed, color-marked and allocated equally into two anticoccidial treatments, namely medicated and vaccinated groups. Chicks were either fed, from 1 d of age, diets containing coccidiostat (narasin) or diets without the coccidiostat but were inoculated with an anticoccidial vaccine at 3 d of age. At 22 d of age, 1080 chicks among them were randomly allocated evenly into 6 groups under a 2 × 3 treatment with 2 anticoccidial programs and 3 dietary methionine (Met) levels. Chicks medicated or vaccinated against coccidia were fed diets containing 0.45%, 0.56% or 0.68% of Met from 22 to 42 d of age. All chicks were orally introduced with an amount of 5 × 104 sporulated oocysts of E. tenella at 24 d of age. The growth performance, serum anti-oxidative indexes, intestinal morphology, cecal lesion scores, fecal oocyst counts and immune parameters were measured. Results The results showed increasing dietary Met level from 0.45% to 0.56% and 0.68% improved weight gain and feed conversion of broilers medicated against coccidia. In contrast, higher dietary levels of Met did not improve growth performance of the vaccinated chickens. Higher Met levels helped the medicated chickens resist E. tenella infection, as indicated by improved intestinal morphology and immune functions as well as decreased cecal lesion and fecal oocyst counts. Conclusions Anticoccidial vaccination is a better strategy for controlling coccidiosis than feeding narasin, due to not only greater growth performance, but also the lower Met supplementation. Furthermore, higher dietary Met levels improved growth performance of chickens medicated rather than vaccinated against coccidia under E. tenella-challenged condition.
Collapse
Affiliation(s)
- Anqiang Lai
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400716, People's Republic of China.
| | - Daijun Song
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Tan Yang
- Sichuan Giant Star Company's Experimental Station, Leshan, Sichuan, 614800, People's Republic of China
| | - Xiaolong Zhang
- Sichuan Giant Star Company's Experimental Station, Leshan, Sichuan, 614800, People's Republic of China
| |
Collapse
|
32
|
Recombinant anticoccidial vaccines - a cup half full? INFECTION GENETICS AND EVOLUTION 2017; 55:358-365. [DOI: 10.1016/j.meegid.2017.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/27/2022]
|
33
|
Kundu K, Garg R, Kumar S, Mandal M, Tomley FM, Blake DP, Banerjee PS. Humoral and cytokine response elicited during immunisation with recombinant Immune Mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella. Vet Parasitol 2017; 244:44-53. [PMID: 28917316 DOI: 10.1016/j.vetpar.2017.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/16/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022]
Abstract
Eimeria tenella, the causative agent of caecal coccidiosis, is a pathogenic gut dwelling protozoan which can cause severe morbidity and mortality in farmed chickens. Immune mapped protein-1 (IMP-1) has been identified as an anticoccidial vaccine candidate; in the present study allelic polymorphism was assessed across the IMP-1 coding sequence in E. tenella isolates from four countries and compared with the UK reference Houghton strain. Nucleotide diversity was low, limited to expansion/contraction of a CAG triplet repeat and five substitutions, three of which were non-synonymous. The EtIMP-1 coding sequence from a cloned Indian E. tenella isolate was expressed in E. coli and purified as a His-tagged thioredoxin fusion protein. An in-vivo vaccination and challenge trial was conducted to test the vaccine potential of recombinant EtIMP-1 (rEtIMP-1) and to compare post-vaccination immune responses of chickens to those stimulated by live oocyst infection. Following challenge, parasite replication measured using quantitative PCR was significantly reduced in chickens that had been vaccinated with rEtIMP-1 (rIC group; 67% reduction compared to UC or unimmunised controls; 79% reduction compared to rTC group or recombinant thioredoxin mock-immunised controls, p<0.05), or the birds vaccinated by infection with oocysts (OC group, 90% compared to unimmunised controls). Chickens vaccinated with oocysts (OC) had significantly higher levels of interferon gamma in their serum post-challenge, compared to rEtIMP-1 vaccinated birds (rIC). Conversely rEtIMP-1 (rIC) vaccinated birds had significantly higher antigen specific serum IgY responses, correlating with higher serum IL-4 (both p<0.05).
Collapse
Affiliation(s)
- Krishnendu Kundu
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Rajat Garg
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Saroj Kumar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Mrityunjay Mandal
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA, UK
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA, UK
| | - Partha Sarathi Banerjee
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India.
| |
Collapse
|
34
|
Widespread extrahepatic expression of acute-phase proteins in healthy chicken (Gallus gallus) tissues. Vet Immunol Immunopathol 2017; 190:10-17. [PMID: 28778317 DOI: 10.1016/j.vetimm.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022]
Abstract
Acute phase proteins (APP) are plasma proteins that can modify their expression in response to inflammation caused by tissue injury, infections, immunological disorders or stress. Although APP are produced mainly in liver, extrahepatic production has also been described. As a prerequisite to get insight the expression of APP in chicken during diseases, this study investigated the presence of five APP, including alpha1-acid glycoprotein (AGP), Serum Amyloid A (SAA), PIT54, C-Reactive protein (CRP) and Ovotransferrin (OVT) in twenty tissues collected from healthy chicken (Gallus gallus) by quantitative Real Time PCR and immunohistochemistry. As expected, APP gene abundance was higher in liver compared with other tissues. The mRNA coding for CRP, OVT and SAA was detected in all analyzed tissues with a higher expression in gastrointestinal tract, respiratory and lymphatic samples. SAA expression was particularly high in cecal tonsil, lung, spleen and Meckel's diverticulum, whereas OVT in lung, bursa of Fabricius and pancreas. AGP and PIT54 mRNA expression were detected in all tissues but at negligible levels. Immunohistochemical expression of AGP and OVT was variably detected in different organs, being identified in endothelium of every tissue. Positive cells were present in the epithelium of the mucosal layer of gastrointestinal tract and kidney. Lung and central nervous system stained for both proteins. No positive staining was detected in lymphoid tissues and muscle. These results suggest that most tissues can express different amount of APP even in healthy conditions and are therefore capable to mount a local acute phase reaction.
Collapse
|
35
|
Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks. Br J Nutr 2016; 116:2030-2043. [DOI: 10.1017/s0007114516003238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractFor this study, threonine (Thr) deficiency was hypothesised to exacerbate the intestinal damage induced by feed withdrawal with coccidial infection because of its high obligatory requirement by the gut; two dietary Thr treatments (0·49 and 0·90 %) were applied to chicks from 0 to 21 d of age. At 13 d of age, feed was withdrawn for 24 h from one-half of birds of each dietary treatment with subsequent gavage of a 25× dose of coccidial vaccine. Overall, there were four treatments with eight replicate cages per treatment. Under combined challenge, birds fed the Thr-deficient diet had 38 % lower 13–21-d body weight gain (P≤0·05) compared with birds fed the Thr-control diet. At 21 d, the challenged group fed low Thr had higher number of oocysts (+40 %, P=0·03) and lower crypt depth (−31 %, P<0·01). In addition, birds fed the low-Thr diet had higher gut permeability as measured after 2 h of administration of fluorescein isothiocyanate-dextran (3–5 kDa, P<0·01), which may be attributed to decreased IgA production (P=0·03) in the ileum. In caecal tonsils, the challenged group fed low Thr had lower CD3:Bu-1 ratio (P≤0·05), along with a tendency for lower CCR9 mRNA expression in birds fed the low-Thr diet (P=0·10). In addition, Thr deficiency tended to increase IL-10 mRNA expression regardless of infection (P=0·06), but did not change interferon-γ mRNA expression upon coccidial infection (P>0·05). Overall, Thr deficiency worsened the detrimental effects of combined feed withdrawal and coccidial infection on growth performance and oocyst shedding by impairing intestinal morphology, barrier function, lymphocyte profiles and their cytokine expressions.
Collapse
|
36
|
Walston M, Shanmugasundaram R, Selvaraj R. Effect of infection with mixed Eimeria species on T cells and T regulatory cell properties. J APPL POULTRY RES 2016. [DOI: 10.3382/japr/pfw026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
37
|
Marugan-Hernandez V, Cockle C, Macdonald S, Pegg E, Crouch C, Blake DP, Tomley FM. Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system. Parasit Vectors 2016; 9:463. [PMID: 27553200 PMCID: PMC4994267 DOI: 10.1186/s13071-016-1756-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background Eimeria species are parasitic protozoa that cause coccidiosis, an intestinal disease commonly characterised by malabsorption, diarrhoea and haemorrhage that is particularly important in chickens. Vaccination against chicken coccidiosis is effective using wild-type or attenuated live parasite lines. The development of protocols to express foreign proteins in Eimeria species has opened up the possibility of using Eimeria live vaccines to deliver heterologous antigens and function as multivalent vaccine vectors that could protect chickens against a range of pathogens. Results In this study, genetic complementation was used to express immunoprotective virus antigens in Eimeria tenella. Infectious bursal disease virus (IBDV) causes Gumboro, an immunosuppressive disease that affects productivity and can interfere with the efficacy of poultry vaccination programmes. Infectious laryngotracheitis virus (ILTV) causes a highly transmissible respiratory disease for which strong cellular immunity and antibody responses are required for effective vaccination. Genes encoding the VP2 protein from a very virulent strain of IBDV (vvVP2) and glycoprotein I from ILTV (gI) were cloned downstream of 5’Et-Actin or 5’Et-TIF promoter regions in plasmids that also contained a mCitrine fluorescent reporter cassette under control of the 5’Et-MIC1 promoter. The plasmids were introduced by nucleofection into E. tenella sporozoites, which were then used to infect chickens. Progeny oocysts were sorted by FACS and passaged several times in vivo until the proportion of fluorescent parasites in each transgenic population reached ~20 % and the number of transgene copies per parasite genome decreased to < 10. All populations were found to transcribe and express the transgene and induced the generation of low titre, transgene-specific antibodies when used to immunise chickens. Conclusions E. tenella can express antigens of other poultry pathogens that are successfully recognised by the chicken immune system. Nonetheless, further work has to be done in order to improve the levels of expression for its future use as a multivalent vaccine vector. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1756-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Charlotte Cockle
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Sarah Macdonald
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Elaine Pegg
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Damer P Blake
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Fiona M Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| |
Collapse
|
38
|
Lin Z, Shi Y, Deng B, Mao X, Yu D, Li W. Protective immunity against Eimeria tenella infection in chickens following oral immunization with Bacillus subtilis expressing Eimeria tenella 3-1E protein. Parasitol Res 2015; 114:3229-36. [DOI: 10.1007/s00436-015-4539-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
39
|
Comparative Phylogeny of the Mucosa-Associated Lymphoid Tissue. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
40
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 2014; 5:143-63. [PMID: 16451116 DOI: 10.1586/14760584.5.1.143] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coccidiosis is recognized as the major parasitic disease of poultry and is caused by the apicomplexan protozoan Eimeria. Coccidiosis seriously impairs the growth and feed utilization of infected animals resulting in loss of productivity. Conventional disease control strategies rely heavily on chemoprophylaxis and, to a certain extent, live vaccines. Combined, these factors inflict tremendous economic losses to the world poultry industry in excess of USD 3 billion annually. Increasing regulations and bans on the use of anticoccidial drugs coupled with the associated costs in developing new drugs and live vaccines increases the need for the development of novel approaches and alternative control strategies for coccidiosis. This paper aims to review the current progress in understanding the host immune response to Eimeria and discuss current and potential strategies being developed for coccidiosis control in poultry.
Collapse
Affiliation(s)
- Rami A Dalloul
- Animal & Natural Resources Institute, BARC-East, Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
42
|
Shanmugasundaram R, Sifri M, Selvaraj RK. Effect of yeast cell product supplementation on broiler cecal microflora species and immune responses during an experimental coccidial infection. Poult Sci 2013; 92:1195-201. [PMID: 23571328 DOI: 10.3382/ps.2012-02991] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This experiment was conducted to study the effects of whole yeast (Pichia guilliermondii; CitriStim, ADM, Quincy, IL) cell product supplementation on cecal microflora population and intestinal immune parameters in broilers. In the first experiment, birds were fed 0, 0.1, or 0.2% yeast cell wall product for 42 d. Feeding yeast cell wall products decreased (P = 0.03) the proportion of Escherichia coli in the ceca by 31% compared with the control group. The group fed 0.2% yeast cell wall product had a 20% decrease (P = 0.23) in Salmonella population compared with the control group. In the second experiment, birds were fed yeast cell wall product for 21 d and challenged or not challenged with coccidial oocysts, thus resulting in a 2 (0 and 0.2% whole yeast product) × 2 (coccidial challenge and no coccidial challenge) factorial model. Supplementing whole yeast cell wall product prevented a coccidial infection-induced decrease in the Lactobacillus population (P = 0.09) at 12 d postchallenge. Supplementing yeast cell wall product prevented a coccidial infection-induced increase in the Salmonella population (P = 0.08) and E. coli (P = 0.12) at 12 d postchallenge. At 5 d (P < 0.01) and 12 d (P < 0.01) postcoccidial infection, yeast cell wall product supplementation or coccidial infection increased the regulatory T cell (Treg) percentage in the cecal tonsils, whereas yeast cell wall product supplementation in the coccidial-infected group decreased the increase in Treg percentage. At 5 d postcoccidial infection, coccidial infection increased (P = 0.01) the relative amounts of cecal interferon (IFN)γ mRNA. In addition, the yeast cell wall product supplementation in the coccidial-infected groups further increased (P = 0.15) the IFNγ mRNA. It could be concluded that yeast cell wall product supplementation decreased coccidial-infection-induced increase in E. coli and Salmonella colonization and improved IFNγ mRNA amounts after coccidial infection.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | | | |
Collapse
|
43
|
Guo A, Cai J, Gong W, Yan H, Luo X, Tian G, Zhang S, Zhang H, Zhu G, Cai X. Transcriptome analysis in chicken cecal epithelia upon infection by Eimeria tenella in vivo. PLoS One 2013; 8:e64236. [PMID: 23737974 PMCID: PMC3667848 DOI: 10.1371/journal.pone.0064236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/10/2013] [Indexed: 11/25/2022] Open
Abstract
Coccidiosis, caused by various Eimeria species, is a major parasitic disease in chickens. However, our understanding on how chickens respond to coccidian infection is highly limited at both molecular and cellular levels. The present study employed the Affymetrix chicken genome array and performed transcriptome analysis on chicken cecal epithelia in response to infection for 4.5 days in vivo by the cecal-specific species E. tenella. By Significance Analysis of Microarrays (SAM), we have identified 7,099 probe sets with q-values at <0.05, in which 4,033 and 3,066 genes were found to be up- or down-regulated in response to parasite infection. The reliability of the microarray data were validated by real-time qRT-PCR of 20 genes with varied fold changes in expression (i.e., correlation coefficient between microarray and qRT-PCR datasets: R (2) = 0.8773, p<0.0001). Gene ontology analysis, KEGG pathway mapping and manual annotations of regulated genes indicated that up-regulated genes were mainly involved in immunity/defense, responses to various stimuli, apoptosis/cell death and differentiation, signal transduction and extracellular matrix (ECM), whereas down-regulated genes were mainly encoding general metabolic enzymes, membrane components, and some transporters. Chickens mustered complex cecal eipthelia molecular and immunological responses in response to E. tenella infection, which included pathways involved in cytokine production and interactions, natural killer cell mediated cytotoxicity, and intestinal IgA production. In response to the pathogenesis and damage caused by infection, chicken cecal epithelia reduced general metabolism, DNA replication and repair, protein degradation, and mitochondrial functions.
Collapse
Affiliation(s)
- Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Wei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Guangfu Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- Adjunct Professorship, Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research, China Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
44
|
Xu JJ, Ren CZ, Wang SS, Liu DD, Cao LQ, Tao JP. Protection Efficacy of Multivalent Egg Yolk Immunoglobulin against Eimeria tenella Infection in Chickens. IRANIAN JOURNAL OF PARASITOLOGY 2013; 8:449-58. [PMID: 24454440 PMCID: PMC3887248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/27/2013] [Indexed: 11/03/2022]
Abstract
BACKGROUND To control avian coccidiosis with drug-independent strategy effectively and safely, multivalent hyperimmune egg yolk immunoglobulin (IgY) was prepared and its ability to protect against Eimeria tenella infection was evaluated. METHODS Hens were orally immunized with live oocysts of 5 species of Eimeria for six times, antibody titers in serum and yolk were monitored by indirect enzyme-linked immunosorbent assay. The specific IgY was isolated, purified and lyophilized. IgY powder was orally administrated as dietary supplement in newly hatched chicks at various dosages. Birds were orally challenged with 10000 sporulated oocysts of E. tenella at 10 days of age, weighed and killed at 8 days post challenge, and the protective effect was assessed. RESULTS The averge yeid of IgY was 9.2 mg/ml yolk, the antibody titer of IgY reached to 1:163840 per mg with the purity up to 98%. Chickens fed IgY resulted in reduced mortality, increased body weight gain (BWG), reduced oocyst shedding, reduced caecal lesion score and increased anti-coccidial index. In terms of BWG and caecal lesion, IgY significantly enhanced the resistance of bird at ≥ 0.05% of IgY in the diet when compared with the challenged control group (P<0.05). No significant difference was observed at dosage ≥ 0.5% and 1.0% when BWG and caecal lesion were compared with the sodium salinomycin control group, respectively (P>0.05). CONCLUSION Supplementing newly hatched chicks with Eimeria-specific IgY represents a promising strategy to prevent avian coccidiosis.
Collapse
|
45
|
Jeong J, Kim WH, Yoo J, Lee C, Kim S, Cho JH, Jang HK, Kim DW, Lillehoj HS, Min W. Identification and comparative expression analysis of interleukin 2/15 receptor β chain in chickens infected with E. tenella. PLoS One 2012; 7:e37704. [PMID: 22662196 PMCID: PMC3360756 DOI: 10.1371/journal.pone.0037704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background Interleukin (IL) 2 and IL15 receptor β chain (IL2/15Rβ, CD122) play critical roles in signal transduction for the biological activities of IL2 and IL15. Increased knowledge of non-mammalian IL2/15Rβ will enhance the understanding of IL2 and IL15 functions. Methology/Principal Findings Chicken IL2/15Rβ (chIL2/15Rβ) cDNA was cloned using 5′/3′-RACE. The predicted protein sequence contained 576 amino acids and typical features of the type-I cytokine receptor family. COS-7 cells transfected with chIL2/15Rβ produced proteins of approximately 75 and 62.5 kDa under normal and tunicamycin-treated conditions, respectively. The genomic structure of chIL2/15Rβ was similar to its mammalian counterparts. chIL2/15Rβ transcripts were detected in the lymphoblast cell line CU205 and in normal lymphoid organs and at moderate levels in bursa samples. Expression profiles of chIL2/15Rβ and its related cytokines and receptors were examined in ConA-stimulated splenic lymphocytes and in ceca-tonsils of Eimeria tenella-infected chickens using quantitative real-time PCR. Expression levels of chIL2/15Rβ, chIL2Rα, and chIL15Rα were generally elevated in ceca-tonsils and ConA-activated splenic lymphocytes. However, chIL2 and chIL15 expression levels were differentially regulated between the samples. chIL2 expression was upregulated in ConA-activated splenic lymphocytes, but not in ceca-tonsils. In constrast, chIL15 expression was upregulated in ceca-tonsils, but not in ConA-activated splenic lymphocytes. Conclusions/Significance We identified an avian form of IL2/15Rβ and compared its gene expression pattern with those of chIL2, chIL15, chIL2Rα, and chIL15Rα. Our observations suggest that chIL15 and its receptors, including chIL2/15Rβ, play important roles in mucosal immunity to intestinal intracellular parasites such as Eimeria.
Collapse
Affiliation(s)
- Jipseol Jeong
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Woo H. Kim
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Jeongmi Yoo
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Changhwan Lee
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Suk Kim
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Jae-Hyeon Cho
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Hyung-Kwan Jang
- Departments of Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Korea
| | - Dong W. Kim
- National Institute of Animal Science, RDA, Cheonan, Chungnam, Korea
| | - Hyun S. Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Wongi Min
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
- * E-mail:
| |
Collapse
|
46
|
Eimeria tenella: Expression profiling of toll-like receptors and associated cytokines in the cecum of infected day-old and three-week old SPF chickens. Exp Parasitol 2012; 130:442-8. [DOI: 10.1016/j.exppara.2012.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 11/22/2022]
|
47
|
Lillehoj HS, Lee SH, Jang SI, Kim DK, Lee KW. Recent Progress in Understanding Host Mucosal Response to Avian Coccidiosis and Development of Alternative Strategies to Mitigate the Use of Antibiotics in Poultry Production. ACTA ACUST UNITED AC 2011. [DOI: 10.5536/kjps.2011.38.4.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Gadde U, Chapman H, Rathinam T, Erf G. Cellular immune responses, chemokine, and cytokine profiles in turkey poults following infection with the intestinal parasite Eimeria adenoeides. Poult Sci 2011; 90:2243-50. [DOI: 10.3382/ps.2011-01558] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Huang X, Zou J, Xu H, Ding Y, Yin G, Liu X, Suo X. Transgenic Eimeria tenella Expressing Enhanced Yellow Fluorescent Protein Targeted to Different Cellular Compartments Stimulated Dichotomic Immune Responses in Chickens. THE JOURNAL OF IMMUNOLOGY 2011; 187:3595-602. [DOI: 10.4049/jimmunol.1100043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Schwarz A, Gauly M, Abel H, Daş G, Humburg J, Weiss ATA, Breves G, Rautenschlein S. Pathobiology ofHeterakis gallinarummono-infection and co-infection withHistomonas meleagridisin layer chickens. Avian Pathol 2011; 40:277-87. [DOI: 10.1080/03079457.2011.561280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|