1
|
Barthels DA, House RV, Gelhaus HC. The immune response to Francisella tularensis. Front Microbiol 2025; 16:1549343. [PMID: 40351308 PMCID: PMC12062900 DOI: 10.3389/fmicb.2025.1549343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Francisella tularensis (Ft) is a Gram negative intracellular bacterial pathogen, commonly transmitted via arthropod bites, but is most lethal when contracted via inhalation. The nature of a Gram-negative intracellular pathogen presents unique challenges to the mammalian immune response, unlike more common viral pathogens and extracellular bacterial pathogens. The current literature on Ft involves numerous variables, including the use of differing research strains and variation in animal models. This review aims to consolidate much of the recent literature on Ft to suggest promising research to better understand the complex immune response to this bacterium.
Collapse
Affiliation(s)
- Derek A. Barthels
- Department of Biology, Life Sciences Research Center, United States Air Force Academy, Colorado Springs, CO, United States
- National Research Council Research Associateships Program, Washington, DC, United States
| | - Robert V. House
- Dr. RV House LLC, Harpers Ferry, WV, United States
- Appili Therapeutics, Halifax, NS, Canada
| | | |
Collapse
|
2
|
Upton EM, Schlievert PM, Zhang Y, Rauckhorst AJ, Taylor EB, Radoshevich L. Glycerol monolaurate inhibits Francisella novicida growth and is produced intracellularly in an ISG15-dependent manner. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000905. [PMID: 37954520 PMCID: PMC10638595 DOI: 10.17912/micropub.biology.000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Glycerol Monolaurate (GML) is a naturally occurring fatty acid monoester with antimicrobial properties. Francisella tularensis is an agent of bioterrorism known for its unique lipopolysaccharide structure and low immunogenicity. Here we assessed whether exogenous GML would inhibit the growth of Francisella novicida . GML potently impeded Francisella growth and survival in vitro . To appraise the metabolic response to infection, we used GC-MS to survey the metabolome, and surprisingly, observed intracellular GML production following Francisella infection. Notably, the ubiquitin-like protein ISG15 was necessary for increased GML levels induced by bacterial infection, and enhanced ISG15 conjugation correlated with GML levels following serum starvation.
Collapse
Affiliation(s)
- Ellen M. Upton
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Barbosa CHD, Lantier L, Reynolds J, Wang J, Re F. Critical role of IL-25-ILC2-IL-5 axis in the production of anti-Francisella LPS IgM by B1 B cells. PLoS Pathog 2021; 17:e1009905. [PMID: 34449811 PMCID: PMC8428711 DOI: 10.1371/journal.ppat.1009905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of “natural” IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens. B1 cells are a subset of B lymphocytes that participate in the immune response to infection by producing antibodies of the IgM class. Here we investigate the mechanisms that control B1 cells activation and production of IgM directed against the lipopolysaccharide (LPS) of Francisella tularensis, a Gram-negative bacterium that causes tularemia. Using a mouse model of tularemia, our results revealed that Francisella LPS elicits production of the cytokine IL-25 that in turn activates blood cells called Innate Lymphoid Cells 2 (ILC2). Once activated, ILC2 produce the cytokine IL-5 that is required for activation of B1 cells and production of IgM. Mice unresponsive to IL-25 are more susceptible to F. tularensis infection. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against bacteria.
Collapse
Affiliation(s)
- Carlos Henrique D. Barbosa
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Louis Lantier
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Joseph Reynolds
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Jinyong Wang
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Fabio Re
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Glycoconjugate vaccine using a genetically modified O antigen induces protective antibodies to Francisella tularensis. Proc Natl Acad Sci U S A 2019; 116:7062-7070. [PMID: 30872471 PMCID: PMC6452683 DOI: 10.1073/pnas.1900144116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia, a category A bioterrorism agent. The lipopolysaccharide (LPS) O antigen (OAg) of F. tularensis has been considered for use in a glycoconjugate vaccine, but conjugate vaccines tested so far have failed to confer protection necessary against aerosolized pulmonary bacterial challenge. When F. tularensis OAg was purified under standard conditions, the antigen had a small molecular size [25 kDa, low molecular weight (LMW)]. Using milder extraction conditions, we found the native OAg had a larger molecular size [80 kDa, high molecular weight (HMW)], and in a mouse model of tularemia, a glycoconjugate vaccine made with the HMW polysaccharide coupled to tetanus toxoid (HMW-TT) conferred better protection against intranasal challenge than a conjugate made with the LMW polysaccharide (LMW-TT). To further investigate the role of OAg size in protection, we created an F. tularensis live vaccine strain (LVS) mutant with a significantly increased OAg size [220 kDa, very high molecular weight (VHMW)] by expressing in F. tularensis a heterologous chain-length regulator gene (wzz) from the related species Francisella novicida Immunization with VHMW-TT provided markedly increased protection over that obtained with TT glycoconjugates made using smaller OAgs. We found that protective antibodies recognize a length-dependent epitope better expressed on HMW and VHMW antigens, which bind with higher affinity to the organism.
Collapse
|
5
|
Roberts LM, Powell DA, Frelinger JA. Adaptive Immunity to Francisella tularensis and Considerations for Vaccine Development. Front Cell Infect Microbiol 2018; 8:115. [PMID: 29682484 PMCID: PMC5898179 DOI: 10.3389/fcimb.2018.00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that causes the disease tularemia. There are several subspecies of F. tularensis whose ability to cause disease varies in humans. The most virulent subspecies, tularensis, is a Tier One Select Agent and a potential bioweapon. Although considerable effort has made to generate efficacious tularemia vaccines, to date none have been licensed for use in the United States. Despite the lack of a tularemia vaccine, we have learned a great deal about the adaptive immune response the underlies protective immunity. Herein, we detail the animal models commonly used to study tularemia and their recapitulation of human disease, the field's current understanding of vaccine-mediated protection, and discuss the challenges associated with new vaccine development.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Daniel A Powell
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology and Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:355-378. [PMID: 30143807 DOI: 10.1007/10_2018_71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines. Graphical Abstract.
Collapse
|
7
|
Furuya Y, Kirimanjeswara GS, Roberts S, Racine R, Wilson-Welder J, Sanfilippo AM, Salmon SL, Metzger DW. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine 2017; 35:4997-5005. [PMID: 28774562 DOI: 10.1016/j.vaccine.2017.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023]
Abstract
We report that IgA-/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines (Francisella tularensis LPS and Pneumovax), but not protein vaccines such as Fluzone. This defect further included responses to polysaccharide-protein conjugate vaccines (Prevnar and Haemophilus influenzae type b-tetanus toxoid vaccine). In agreement with these findings, IgA-/- mice were protected from pathogen challenge with protein- but not polysaccharide-based vaccines. Interestingly, after immunization with live bacteria, IgA+/+ and IgA-/- mice were both resistant to lethal challenge and their IgG anti-polysaccharide antibody responses were comparable. Immunization with live bacteria, but not purified polysaccharide, induced production of serum B cell-activating factor (BAFF), a cytokine important for IgG class switching; supplementing IgA-/- cell cultures with BAFF enhanced in vitro polyclonal IgG production. Taken together, these findings show that IgA deficiency impairs IgG class switching following vaccination with polysaccharide antigens and that live bacterial immunization can overcome this defect. Since IgA deficient patients also often show defects in antibody responses following immunization with polysaccharide vaccines, our findings could have relevance to the clinical management of this population.
Collapse
Affiliation(s)
- Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Girish S Kirimanjeswara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sean Roberts
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Rachael Racine
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jennifer Wilson-Welder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Alan M Sanfilippo
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sharon L Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
8
|
Richard K, Mann BJ, Qin A, Barry EM, Ernst RK, Vogel SN. Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00574-16. [PMID: 28077440 PMCID: PMC5339645 DOI: 10.1128/cvi.00574-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Barbara J Mann
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Aiping Qin
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Putzova D, Senitkova I, Stulik J. Tularemia vaccines. Folia Microbiol (Praha) 2016; 61:495-504. [PMID: 27194547 DOI: 10.1007/s12223-016-0461-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Francisella tularensis is the causative agent of the potentially lethal disease tularemia. Due to a low infectious dose and ease of airborne transmission, Francisella is classified as a category A biological agent. Despite the possible risk to public health, there is no safe and fully licensed vaccine. A potential vaccine candidate, an attenuated live vaccine strain, does not fulfil the criteria for general use. In this review, we will summarize existing and new candidates for live attenuated and subunit vaccines.
Collapse
Affiliation(s)
- Daniela Putzova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Iva Senitkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Chen L, Valentine JL, Huang CJ, Endicott CE, Moeller TD, Rasmussen JA, Fletcher JR, Boll JM, Rosenthal JA, Dobruchowska J, Wang Z, Heiss C, Azadi P, Putnam D, Trent MS, Jones BD, DeLisa MP. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc Natl Acad Sci U S A 2016; 113:E3609-18. [PMID: 27274048 PMCID: PMC4932928 DOI: 10.1073/pnas.1518311113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. Here, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Using this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS-specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.
Collapse
Affiliation(s)
- Linxiao Chen
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Jenny L Valentine
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Chung-Jr Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Christine E Endicott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Tyler D Moeller
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Jed A Rasmussen
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | | | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; Department of Infectious Diseases, The University of Georgia College of Veterinary Medicine, Athens, GA 30602
| | - Joseph A Rosenthal
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Justyna Dobruchowska
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - David Putnam
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - M Stephen Trent
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; Department of Infectious Diseases, The University of Georgia College of Veterinary Medicine, Athens, GA 30602
| | - Bradley D Jones
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; Genetics Program, University of Iowa, Iowa City, IA 52242
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
11
|
Abstract
Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
12
|
Activities of Murine Peripheral Blood Lymphocytes Provide Immune Correlates That Predict Francisella tularensis Vaccine Efficacy. Infect Immun 2016; 84:1054-1061. [PMID: 26810039 DOI: 10.1128/iai.01348-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
We previously identified potential correlates of vaccine-induced protection against Francisella tularensis using murine splenocytes and further demonstrated that the relative levels of gene expression varied significantly between tissues. In contrast to splenocytes, peripheral blood leukocytes (PBLs) represent a means to bridge vaccine efficacy in animal models to that in humans. Here we take advantage of this easily accessible source of immune cells to investigate cell-mediated immune responses against tularemia, whose sporadic incidence makes clinical trials of vaccines difficult. Using PBLs from mice vaccinated with F. tularensis Live Vaccine Strain (LVS) and related attenuated strains, we combined the control of in vitro Francisella replication within macrophages with gene expression analyses. The in vitro functions of PBLs, particularly the control of intramacrophage LVS replication, reflected the hierarchy of in vivo protection conferred by LVS-derived vaccines. Moreover, several genes previously identified by the evaluation of splenocytes were also found to be differentially expressed in immune PBLs. In addition, more extensive screening identified additional potential correlates of protection. Finally, expression of selected genes in mouse PBLs obtained shortly after vaccination, without ex vivo restimulation, was different among vaccine groups, suggesting a potential tool to monitor efficacious vaccine-induced immune responses against F. tularensis. Our studies demonstrate that murine PBLs can be used productively to identify potential correlates of protection against F. tularensis and to expand and refine a comprehensive set of protective correlates.
Collapse
|
13
|
De Pascalis R, Mittereder L, Chou AY, Kennett NJ, Elkins KL. Francisella tularensis Vaccines Elicit Concurrent Protective T- and B-Cell Immune Responses in BALB/cByJ Mice. PLoS One 2015; 10:e0126570. [PMID: 25973794 PMCID: PMC4431730 DOI: 10.1371/journal.pone.0126570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/06/2015] [Indexed: 12/28/2022] Open
Abstract
In the last decade several new vaccines against Francisella tularensis, which causes tularemia, have been characterized in animal models. Whereas many of these vaccine candidates showed promise, it remains critical to bridge the preclinical studies to human subjects, ideally by taking advantage of correlates of protection. By combining in vitro intramacrophage LVS replication with gene expression data through multivariate analysis, we previously identified and quantified correlative T cell immune responses that discriminate vaccines of different efficacy. Further, using C57BL/6J mice, we demonstrated that the relative levels of gene expression vary according to vaccination route and between cell types from different organs. Here, we extended our studies to the analysis of T cell functions of BALB/cByJ mice to evaluate whether our approach to identify correlates of protection also applies to a Th2 dominant mouse strain. BALB/cByJ mice had higher survival rates than C57BL/6J mice when they were immunized with suboptimal vaccines and challenged. However, splenocytes derived from differentially vaccinated BALB/cByJ mice controlled LVS intramacrophage replication in vitro in a pattern that reflected the hierarchy of protection observed in C57BL/6J mice. In addition, gene expression of selected potential correlates revealed similar patterns in splenocytes of BALB/cByJ and C57BL/6J mice. The different survival patterns were related to B cell functions, not necessarily to specific antibody production, which played an important protective role in BALB/cByJ mice when vaccinated with suboptimal vaccines. Our studies therefore demonstrate the range of mechanisms that operate in the most common mouse strains used for characterization of vaccines against F. tularensis, and illustrate the complexity necessary to define a comprehensive set of correlates.
Collapse
Affiliation(s)
- Roberto De Pascalis
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
- * E-mail:
| | - Lara Mittereder
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Alicia Y. Chou
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Nikki J. Kennett
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Karen L. Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
14
|
Downmodulation of vaccine-induced immunity and protection against the intracellular bacterium Francisella tularensis by the inhibitory receptor FcγRIIB. J Immunol Res 2015; 2015:840842. [PMID: 25961064 PMCID: PMC4417568 DOI: 10.1155/2015/840842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
Fc gamma receptor IIB (FcγRIIB) is the only Fc gamma receptor (FcγR) which negatively regulates the immune response, when engaged by antigen- (Ag-) antibody (Ab) complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft), a Category A biothreat agent. We utilized inactivated Ft (iFt) as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO) or wildtype (WT) mice were challenged with Ft-live vaccine strain (LVS). While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.
Collapse
|
15
|
del Barrio L, Sahoo M, Lantier L, Reynolds JM, Ceballos-Olvera I, Re F. Production of anti-LPS IgM by B1a B cells depends on IL-1β and is protective against lung infection with Francisella tularensis LVS. PLoS Pathog 2015; 11:e1004706. [PMID: 25768794 PMCID: PMC4358995 DOI: 10.1371/journal.ppat.1004706] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/26/2015] [Indexed: 01/28/2023] Open
Abstract
The role of IL-1β and IL-18 during lung infection with the gram-negative bacterium Francisella tularensis LVS has not been characterized in detail. Here, using a mouse model of pneumonic tularemia, we show that both cytokines are protective, but through different mechanisms. Il-18-/- mice quickly succumb to the infection and showed higher bacterial burden in organs and lower level of IFNγ in BALF and serum compared to wild type C57BL/6J mice. Administration of IFNγ rescued the survival of Il-18-/- mice, suggesting that their decreased resistance to tularemia is due to inability to produce IFNγ. In contrast, mice lacking IL-1 receptor or IL-1β, but not IL-1α, appeared to control the infection in its early stages, but eventually succumbed. IFNγ administration had no effect on Il-1r1-/- mice survival. Rather, Il-1r1-/- mice were found to have significantly reduced titer of Ft LPS-specific IgM. The anti-Ft LPS IgM was generated in a IL-1β-, TLR2-, and ASC-dependent fashion, promoted bacteria agglutination and phagocytosis, and was protective in passive immunization experiments. B1a B cells produced the anti-Ft LPS IgM and these cells were significantly decreased in the spleen and peritoneal cavity of infected Il-1b-/- mice, compared to C57BL/6J mice. Collectively, our results show that IL-1β and IL-18 activate non-redundant protective responses against tularemia and identify an essential role for IL-1β in the rapid generation of pathogen-specific IgM by B1a B cells.
Collapse
Affiliation(s)
- Laura del Barrio
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Manoranjan Sahoo
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Louis Lantier
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Joseph M. Reynolds
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Ivonne Ceballos-Olvera
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Fabio Re
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Chan J, Mehta S, Bharrhan S, Chen Y, Achkar JM, Casadevall A, Flynn J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Semin Immunol 2014; 26:588-600. [PMID: 25458990 PMCID: PMC4314354 DOI: 10.1016/j.smim.2014.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis.
Collapse
Affiliation(s)
- John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Simren Mehta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sushma Bharrhan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yong Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JoAnne Flynn
- Departments of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Plzakova L, Kubelkova K, Krocova Z, Zarybnicka L, Sinkorova Z, Macela A. B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb Pathog 2014; 75:49-58. [PMID: 25200734 DOI: 10.1016/j.micpath.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
Francisella tularensis, a facultative intracellular Gram-negative bacterium, causes the illness tularemia. The infection of mice with live vaccine strain is considered to be a model of human tularemia. F. tularensis infects predominantly such phagocytic cells as macrophages or neutrophils, but it also infects non-phagocytic hepatocytes, epithelial cells, and murine and human B cell lines. Based on work with the murine tularemia model, we report here that F. tularensis LVS infects peritoneal CD19(+) cells - exclusively B-1a cells - early after intraperitoneal infection in vivo. The peritoneal and consequently spleen CD19(+) cells are activated by the F. tularensis LVS infection to express the activation markers from MHC class II, CD25, CD54, CD69, and the co-stimulatory molecules CD80 and CD86. As early as 12 h post-infection, the peritoneal CD19(+) cells produce IFN-γ, IL-1β, IL-4, IL-6, IL-12, IL-17, IL-23, and TNF-α. The spleen CD19(+) cells respond to infection with some delay. Moreover, the F. tularensis infected A20 B cell line activates CD3(+) spleen cells isolated from naïve mice. Thus, the data presented here suggest that B cells have all the attributes to actively participate in the induction and regulation of the adaptive immune response during early stages of F. tularensis infection.
Collapse
Affiliation(s)
- Lenka Plzakova
- Institute of Molecular Pathology, Faculty of Military Health Sciences (FMHS), University of Defense (UO), Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Klara Kubelkova
- Centre of Advanced Studies, FMHS, UO, Hradec Kralove, Czech Republic
| | - Zuzana Krocova
- Institute of Molecular Pathology, Faculty of Military Health Sciences (FMHS), University of Defense (UO), Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Lenka Zarybnicka
- Department of Radiobiology, FMHS, UO, Hradec Kralove, Czech Republic
| | - Zuzana Sinkorova
- Department of Radiobiology, FMHS, UO, Hradec Kralove, Czech Republic
| | - Ales Macela
- Institute of Molecular Pathology, Faculty of Military Health Sciences (FMHS), University of Defense (UO), Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Crane DD, Bauler TJ, Wehrly TD, Bosio CM. Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome. Front Microbiol 2014; 5:438. [PMID: 25191316 PMCID: PMC4138581 DOI: 10.3389/fmicb.2014.00438] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
Activation of the inflammasome is important for the detection and clearance of cytosolic pathogens. In contrast to avirulent Francisella novicida (Fn), infection with virulent Francisella tularensis ssp tularensis does not trigger activation of the host AIM2 inflammasome. Here we show that differential activation of AIM2 following Francisella infection is due to sensitivity of each isolate to reactive oxygen species (ROS). ROS present at the outset of Fn infection contributes to activation of the AIM2 inflammasome, independent of NLRP3 and NADPH oxidase. Rather, mitochondrial ROS (mROS) is critical for Fn stimulation of the inflammasome. This study represents the first demonstration of the importance of mROS in the activation of the AIM2 inflammasome by bacteria. Our results also demonstrate that bacterial resistance to mROS is a mechanism of virulence for early evasion of detection by the host.
Collapse
Affiliation(s)
- Deborah D Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| | - Timothy J Bauler
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases - National Institutes of Health Hamilton, MT, USA
| |
Collapse
|
19
|
Pham GH, Iglesias BV, Gosselin EJ. Fc receptor-targeting of immunogen as a strategy for enhanced antigen loading, vaccination, and protection using intranasally administered antigen-pulsed dendritic cells. Vaccine 2014; 32:5212-20. [PMID: 25068496 DOI: 10.1016/j.vaccine.2014.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/14/2014] [Accepted: 07/15/2014] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) play a critical role in the generation of adaptive immunity via the efficient capture, processing, and presentation of antigen (Ag) to naïve T cells. Administration of Ag-pulsed DCs is also an effective strategy for enhancing immunity to tumors and infectious disease organisms. Studies have also demonstrated that targeting Ags to Fcγ receptors (FcγR) on Ag presenting cells can enhance humoral and cellular immunity in vitro and in vivo. Specifically, our studies using a Francisella tularensis (Ft) infectious disease vaccine model have demonstrated that targeting immunogens to FcγR via intranasal (i.n.) administration of monoclonal antibody (mAb)-inactivated Ft (iFt) immune complexes (ICs) enhances protection against Ft challenge. Ft is the causative agent of tularemia, a debilitating disease of humans and other mammals and a category A biothreat agent for which there is no approved vaccine. Therefore, using iFt Ag as a model immunogen, we sought to determine if ex vivo targeting of iFt to FcγR on DCs would enhance the potency of i.n. administered iFt-pulsed DCs. In this study, bone marrow-derived DCs (BMDCs) were pulsed ex vivo with iFt or mAb-iFt ICs. Intranasal administration of mAb-iFt-pulsed BMDCs enhanced humoral and cellular immune responses, as well as protection against Ft live vaccine strain (LVS) challenge. Increased protection correlated with increased iFt loading on the BMDC surface as a consequence of FcγR-targeting. However, the inhibitory FcγRIIB had no impact on this enhancement. In conclusion, targeting Ag ex vivo to FcγR on DCs provides a method for enhanced Ag loading of DCs ex vivo, thereby reducing the amount of Ag required, while also avoiding the inhibitory impact of FcγRIIB. Thus, this represents a simple and less invasive strategy for increasing the potency of ex vivo-pulsed DC vaccines against chronic infectious diseases and cancer.
Collapse
Affiliation(s)
- Giang H Pham
- Center for Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States
| | - Bibiana V Iglesias
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, 47 New Scotland Avenue, MC-151, Albany Medical College, Albany, NY 12208, United States.
| |
Collapse
|
20
|
Novel catanionic surfactant vesicle vaccines protect against Francisella tularensis LVS and confer significant partial protection against F. tularensis Schu S4 strain. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:212-26. [PMID: 24351755 DOI: 10.1128/cvi.00738-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with "bare" vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens.
Collapse
|
21
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
22
|
Effect of lipopolysaccharide (LPS) from Ochrobactrum intermedium on sheep experimentally infected with Fasciola hepatica. Parasitol Res 2013; 112:2913-23. [DOI: 10.1007/s00436-013-3463-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
|
23
|
Ashtekar AR, Katz J, Xu Q, Michalek SM. A mucosal subunit vaccine protects against lethal respiratory infection with Francisella tularensis LVS. PLoS One 2012; 7:e50460. [PMID: 23209745 PMCID: PMC3508931 DOI: 10.1371/journal.pone.0050460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis (FT) is a highly virulent pathogen for humans and other mammals. Severe morbidity and mortality is associated with respiratory FT infection and there are concerns about intentional dissemination of this organism. Therefore, FT has been designated a category A biothreat agent and there is a growing interest in the development of a protective vaccine. In the present study, we determine the protective potential of a subunit vaccine comprised of the FT heat shock protein DnaK and surface lipoprotein Tul4 against respiratory infection with the live vaccine strain (LVS) of FT in mice. First, we establish an optimal intranasal immunization regimen in C57BL/6 mice using recombinant DnaK or Tul4 together with the adjuvant GPI-0100. The individual immunization regimens induced robust salivary IgA, and vaginal and bronchoalveolar IgA and IgG antigen-specific antibodies. Serum IgG1 and IgG2c antibody responses were also induced, indicative of a mixed type 2 and type 1 response, respectively. Next, we show that immunization with DnaK and Tul4 induces mucosal and systemic antibody responses that are comparable to that seen following immunization with each antigen alone. This immunization regimen also induced IFN-γ, IL-10 and IL-17A production by splenic CD4(+) T cells in an antigen-specific manner. Importantly, over 80% of the mice immunized with DnaK and Tul4, but not with each antigen alone, were protected against a lethal respiratory challenge with FT LVS. Protection correlated with reduced bacterial burden in the lung, liver and spleen of mice. This study demonstrates the potential of DnaK and Tul4 as protective antigens and lends support to the notion of combining distinct, immunodominant antigens into an effective multivalent tularemia vaccine.
Collapse
Affiliation(s)
- Amit R. Ashtekar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
24
|
Signarovitz AL, Ray HJ, Yu JJ, Guentzel MN, Chambers JP, Klose KE, Arulanandam BP. Mucosal immunization with live attenuated Francisella novicida U112ΔiglB protects against pulmonary F. tularensis SCHU S4 in the Fischer 344 rat model. PLoS One 2012; 7:e47639. [PMID: 23118885 PMCID: PMC3484155 DOI: 10.1371/journal.pone.0047639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022] Open
Abstract
The need for an efficacious vaccine against Francisella tularensis is a consequence of its low infectious dose and high mortality rate if left untreated. This study sought to characterize a live attenuated subspecies novicida-based vaccine strain (U112ΔiglB) in an established second rodent model of pulmonary tularemia, namely the Fischer 344 rat using two distinct routes of vaccination (intratracheal [i.t.] and oral). Attenuation was verified by comparing replication of U112ΔiglB with wild type parental strain U112 in F344 primary alveolar macrophages. U112ΔiglB exhibited an LD50>107 CFU compared to the wild type (LD50 = 5×106 CFU i.t.). Immunization with 107 CFU U112ΔiglB by i.t. and oral routes induced antigen-specific IFN-γ and potent humoral responses both systemically (IgG2a>IgG1 in serum) and at the site of mucosal vaccination (respiratory/intestinal compartment). Importantly, vaccination with U112ΔiglB by either i.t. or oral routes provided equivalent levels of protection (50% survival) in F344 rats against a subsequent pulmonary challenge with ∼25 LD50 (1.25×104 CFU) of the highly human virulent strain SCHU S4. Collectively, these results provide further evidence on the utility of a mucosal vaccination platform with a defined subsp. novicida U112ΔiglB vaccine strain in conferring protective immunity against pulmonary tularemia.
Collapse
Affiliation(s)
- Aimee L. Signarovitz
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Heather J. Ray
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Arulanandam BP, Chetty SL, Yu JJ, Leonard S, Klose K, Seshu J, Cap A, Valdes JJ, Chambers JP. Francisella DnaK inhibits tissue-nonspecific alkaline phosphatase. J Biol Chem 2012; 287:37185-94. [PMID: 22923614 DOI: 10.1074/jbc.m112.404400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.
Collapse
|
26
|
Zarrella TM, Singh A, Bitsaktsis C, Rahman T, Sahay B, Feustel PJ, Gosselin EJ, Sellati TJ, Hazlett KRO. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 2011; 6:e22335. [PMID: 21799828 PMCID: PMC3142145 DOI: 10.1371/journal.pone.0022335] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anju Singh
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karsten R. O. Hazlett
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
27
|
Cole LE, Mann BJ, Shirey KA, Richard K, Yang Y, Gearhart PJ, Chesko KL, Viscardi RM, Vogel SN. Role of TLR signaling in Francisella tularensis-LPS-induced, antibody-mediated protection against Francisella tularensis challenge. J Leukoc Biol 2011; 90:787-97. [PMID: 21750122 DOI: 10.1189/jlb.0111014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immunization with Ft-LPS provokes an antigen-specific, B-1a cell-derived antibody response that protects WT mice against an otherwise lethal challenge with Ft LVS. However, this same regimen offers limited protection to TLR2(-/-) mice, despite production of WT levels of anti-Ft-LPS antibodies. As Ft-LPS exhibits no TLR2 agonist activity, and macrophage-induced cytokine production in response to Ft LVS is overwhelmingly TLR2-dependent, we hypothesized that treatment of TLR2(-/-) mice with an alternative, MyD88-dependent TLR agonist would compensate for reduced recognition of Ft LVS in TLR2(-/-) mice and thereby, restore Ft-LPS-mediated protection. Administration of the nontoxic TLR4 agonist, synthetic Escherichia coli MPL, at the time of Ft-LPS immunization or Ft LVS challenge, fully protected TLR2(-/-) mice, whereas treatment of WT or TLR2(-/-) mice with MPL alone conferred partial protection. The TLR5 agonist, flagellin, also synergized with Ft-LPS to protect TLR2(-/-) mice from lethal Ft LVS challenge. In contrast to Ft LVS, Ft-LPS pretreatment failed to protect mice against i.n. challenge with Ft Schu S4, whereas MPL, administered in the absence or presence of Ft-LPS, conferred significant, albeit partial, protection. MPL treatment of macrophages increased the uptake of Ft LVS and decreased intracellular bacterial survival while shifting the macrophage-differentiation phenotype from "alternatively activated" to "classically activated". Collectively, our data suggest that optimal, Ft-LPS-mediated protection against Ft LVS infection requires two discrete events, i.e., production of Ft-LPS-specific antibody, as well as TLR-mediated macrophage activation, to fully control Francisella infection.
Collapse
Affiliation(s)
- Leah E Cole
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pietras EM, Miller LS, Johnson CT, O'Connell RM, Dempsey PW, Cheng G. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge. Cell Res 2011; 21:1068-79. [PMID: 21467996 PMCID: PMC3193491 DOI: 10.1038/cr.2011.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/25/2010] [Accepted: 12/15/2010] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mobilized to sites of infection via interaction between the chemokine MCP-1 and its receptor, CCR2, at which point they differentiate into macrophages that mediate potent antimicrobial effects. In this study, we investigated the mechanisms by which monocytes are mobilized in response to systemic challenge with the intracellular bacterium Francisella tularensis. We found that mice deficient in MyD88, interferon-γ (IFNγ)R or CCR2 all had defects in the expansion of splenic monocyte populations upon F. tularensis challenge, and in control of F. tularensis infection. Interestingly, MyD88-deficient mice were defective in production of IFNγ, and IFNγR-deficient mice exhibited defective production of MCP-1, the ligand for CCR2. Transplantation of IFNγR-deficient bone marrow (BM) into wild-type mice further suggested that mobilization of monocytes in response to F. tularensis challenge required IFNγR expression on BM-derived cells. These studies define a critical host defense circuit wherein MyD88-dependent IFNγ production signals via IFNγR expressed on BM-derived cells, resulting in MCP-1 production and activation of CCR2-dependent mobilization of monocytes in the innate immune response to systemic F. tularensis challenge.
Collapse
Affiliation(s)
- Eric M Pietras
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lloyd S Miller
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carl T Johnson
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan M O'Connell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul W Dempsey
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Current address: Cynvenio Biosystems LLC, Westlake Village, CA 91361, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Bandara AB, Champion AE, Wang X, Berg G, Apicella MA, McLendon M, Azadi P, Snyder DS, Inzana TJ. Isolation and mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One 2011; 6:e19003. [PMID: 21544194 PMCID: PMC3081320 DOI: 10.1371/journal.pone.0019003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/24/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Francisella tularensis is a category-A select agent and is responsible for tularemia in humans and animals. The surface components of F. tularensis that contribute to virulence are not well characterized. An electron-dense capsule has been postulated to be present around F. tularensis based primarily on electron microscopy, but this specific antigen has not been isolated or characterized. METHODS AND FINDINGS A capsule-like complex (CLC) was effectively extracted from the cell surface of an F. tularensis live vaccine strain (LVS) lacking O-antigen with 0.5% phenol after 10 passages in defined medium broth and growth on defined medium agar for 5 days at 32°C in 7% CO₂. The large molecular size CLC was extracted by enzyme digestion, ethanol precipitation, and ultracentrifugation, and consisted of glucose, galactose, mannose, and Proteinase K-resistant protein. Quantitative reverse transcriptase PCR showed that expression of genes in a putative polysaccharide locus in the LVS genome (FTL_1432 through FTL_1421) was upregulated when CLC expression was enhanced. Open reading frames FTL_1423 and FLT_1422, which have homology to genes encoding for glycosyl transferases, were deleted by allelic exchange, and the resulting mutant after passage in broth (LVSΔ1423/1422_P10) lacked most or all of the CLC, as determined by electron microscopy, and CLC isolation and analysis. Complementation of LVSΔ1423/1422 and subsequent passage in broth restored CLC expression. LVSΔ1423/1422_P10 was attenuated in BALB/c mice inoculated intranasally (IN) and intraperitoneally with greater than 80 times and 270 times the LVS LD₅₀, respectively. Following immunization, mice challenged IN with over 700 times the LD₅₀ of LVS remained healthy and asymptomatic. CONCLUSIONS Our results indicated that the CLC may be a glycoprotein, FTL_1422 and -FTL_1423 were involved in CLC biosynthesis, the CLC contributed to the virulence of F. tularensis LVS, and a CLC-deficient mutant of LVS can protect mice against challenge with the parent strain.
Collapse
Affiliation(s)
- Aloka B. Bandara
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Anna E. Champion
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xiaoshan Wang
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Gretchen Berg
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Michael A. Apicella
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Molly McLendon
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - D. Scott Snyder
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Thomas J. Inzana
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
31
|
Antibodies contribute to effective vaccination against respiratory infection by type A Francisella tularensis strains. Infect Immun 2011; 79:1770-8. [PMID: 21282410 DOI: 10.1128/iai.00605-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumonic tularemia is a life-threatening disease caused by inhalation of the highly infectious intracellular bacterium Francisella tularensis. The most serious form of the disease associated with the type A strains can be prevented in experimental animals through vaccination with the attenuated live vaccine strain (LVS). The protection is largely cell mediated, but the contribution of antibodies remains controversial. We addressed this issue in a series of passive immunization studies in Fischer 344 (F344) rats. Subcutaneous LVS vaccination induced a robust serum antibody response dominated by IgM, IgG2a, and IgG2b antibodies. Prophylactic administration of LVS immune serum or purified immune IgG reduced the severity and duration of disease in naïve rats challenged intratracheally with a lethal dose of the virulent type A strain SCHU S4. The level of resistance increased with the volume of immune serum given, but the maximum survivable SCHU S4 challenge dose was at least 100-fold lower than that shown for LVS-vaccinated rats. Protection correlated with reduced systemic bacterial growth, less severe histopathology in the liver and spleen during the early phase of infection, and bacterial clearance by a T cell-dependent mechanism. Our results suggest that treatment with immune serum limited the sequelae associated with infection, thereby enabling a sterilizing T cell response to develop and resolve the infection. Thus, antibodies induced by LVS vaccination may contribute to the defense of F344 rats against respiratory infection by type A strains of F. tularensis.
Collapse
|
32
|
Racine R, McLaughlin M, Jones DD, Wittmer ST, MacNamara KC, Woodland DL, Winslow GM. IgM production by bone marrow plasmablasts contributes to long-term protection against intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:1011-21. [PMID: 21148037 DOI: 10.4049/jimmunol.1002836] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgM responses are well known to occur early postinfection and tend to be short-lived, which has suggested that this Ig does not significantly contribute to long-term immunity. In this study, we demonstrate that chronic infection with the intracellular bacterium Ehrlichia muris elicits a protective, long-term IgM response. Moreover, we identified a population of CD138(high)IgM(high) B cells responsible for Ag-specific IgM production in the bone marrow. The IgM-secreting cells, which exhibited characteristics of both plasmablasts and plasma cells, contributed to protection against fatal ehrlichial challenge. Mice deficient in activation-induced cytidine deaminase, which produce only IgM, were protected against fatal ehrlichial challenge infection. The IgM-secreting cells that we have identified were maintained in the bone marrow in the absence of chronic infection, as antibiotic-treated mice remained protected against challenge infection. Our studies identify a cell population that is responsible for the IgM production in the bone marrow, and they highlight a novel role for IgM in the maintenance of long-term immunity during intracellular bacterial infection.
Collapse
Affiliation(s)
- Rachael Racine
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim TH, Sebastian S, Pinkham JT, Ross RA, Blalock LT, Kasper DL. Characterization of the O-antigen polymerase (Wzy) of Francisella tularensis. J Biol Chem 2010; 285:27839-49. [PMID: 20605777 DOI: 10.1074/jbc.m110.143859] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O-antigen polymerase of gram-negative bacteria has been difficult to characterize. Herein we report the biochemical and functional characterization of the protein product (Wzy) of the gene annotated as the putative O-antigen polymerase, which is located in the O-antigen biosynthetic locus of Francisella tularensis. In silico analysis (homology searching, hydropathy plotting, and codon usage assessment) strongly suggested that Wzy is an O-antigen polymerase whose function is to catalyze the addition of newly synthesized O-antigen repeating units to a glycolipid consisting of lipid A, inner core polysaccharide, and one repeating unit of the O-polysaccharide (O-PS). To characterize the function of the Wzy protein, a non-polar deletion mutant of wzy was generated by allelic replacement, and the banding pattern of O-PS was observed by immunoblot analysis of whole-cell lysates obtained by SDS-PAGE and stained with an O-PS-specific monoclonal antibody. These immunoblot analyses showed that O-PS of the wzy mutant expresses only one repeating unit of O-antigen. Further biochemical characterization of the subcellular fractions of the wzy mutant demonstrated that (as is characteristic of O-antigen polymerase mutants) the low molecular weight O-antigen accumulates in the periplasm of the mutant. Site-directed mutagenesis based on protein homology and topology, which was carried out to locate a catalytic residue of the protein, showed that modification of specific residues (Gly(176), Asp(177), Gly(323), and Tyr(324)) leads to a loss of O-PS polymerization. Topology models indicate that these amino acids most likely lie in close proximity on the bacterial surface.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Microbiology and Molecular Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zivna L, Krocova Z, Härtlova A, Kubelkova K, Zakova J, Rudolf E, Hrstka R, Macela A, Stulik J. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb Pathog 2010; 49:226-36. [PMID: 20600796 DOI: 10.1016/j.micpath.2010.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 02/07/2023]
Abstract
Francisella tularensis is a facultative intracellular, gram-negative bacterium that induces apoptosis in macrophages and B cells. Here we show apoptotic pathways that are activated in the Ramos human B cell line in the course of F. tularensis infection. Live bacteria F. tularensis FSC200 activate caspases 8, 9 and 3, as well as Bid; release cytochrome c and apoptosis-inducing factor from mitochondria; and induce depolarization of mitochondrial membrane potential in the Ramos cell line, thus leading these cells to apoptosis. Unlike live bacteria, killed F. tularensis FSC200 bacteria activated only caspase 3, and did not cause apoptosis of Ramos cells as measured by annexin V. Killed bacteria also caused accumulation of anti-apoptotic protein Bclx(L) in mitochondrial membranes. Thus, live F. tularensis activates both caspase pathways (receptor-mediated and intrinsic) as well as caspase-independent mitochondrial death.
Collapse
Affiliation(s)
- Lucie Zivna
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS One 2010; 5:e11156. [PMID: 20585390 PMCID: PMC2886834 DOI: 10.1371/journal.pone.0011156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal adjuvant. METHODOLOGY/PRINCIPAL FINDINGS Mice were immunized via the nasal route with lipopolysaccharide isolated from F. tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with the F. tularensis attenuated live vaccine strain (LVS). Mouse survival and analysis of a number of immune parameters were conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of bronchus-associated lymphoid tissue (BALT). BALT areas contained proliferating B and T cells, germinal centers, T cell infiltrates, dendritic cells (DCs). We also observed local production of antibody generating cells and homeostatic chemokines in BALT areas. CONCLUSIONS These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F. tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its formation.
Collapse
|
36
|
Ireland R, Olivares-Zavaleta N, Warawa JM, Gherardini FC, Jarrett C, Hinnebusch BJ, Belisle JT, Fairman J, Bosio CM. Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens. PLoS Pathog 2010; 6:e1000921. [PMID: 20523903 PMCID: PMC2877747 DOI: 10.1371/journal.ppat.1000921] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/23/2010] [Indexed: 12/26/2022] Open
Abstract
Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens. Conventional treatment of bacterial infections typically includes administration of antibiotics. However, many pathogens have developed spontaneous resistance to commonly used antibiotics. Development of new compounds that stimulate the host immune system to directly kill bacteria by mechanisms different from those utilized by antibiotics may serve as effective alternatives to antibiotic therapy. In this report, we describe a novel compound capable of controlling infections mediated by different, unrelated bacteria via the induction of host derived reactive oxygen and reactive nitrogen species. This compound is comprised of cationic liposome DNA complexes (CLDC) and crude membrane preparations (MPF) obtained from attenuated Francisella tularensis Live Vaccine Strain (LVS). Pretreatment of primary mouse or human cells limited replication of virulent F. tularensis, Burkholderia pseudomallei, Yersinia pestis and Brucella abortus in vitro. CLDC+MPF was also effective for controlling lethal pulmonary infections with virulent F. tularensis. Thus, CLDC+MPF represents a novel antimicrobial for treatment of lethal, acute, bacterial infections.
Collapse
Affiliation(s)
- Robin Ireland
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Norma Olivares-Zavaleta
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Jonathan M. Warawa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Frank C. Gherardini
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Clayton Jarrett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffery Fairman
- Juvaris Biotherapeutics, Burlingame, California, United States of America
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Francisella tularensis is a Category A select agent for which vaccine and countermeasure development are a priority. In the past eight years, renewed interest in this pathogen has led to the generation of an enormous amount of new data on both the pathogen itself and its interaction with host cells. This information has fostered the development of various vaccine candidates including acellular subunit, killed whole cell and live attenuated. This review summarizes the progress and promise of these various candidates.
Collapse
Affiliation(s)
- Eileen M Barry
- University of Maryland School of Medicine, Center for Vaccine Development, Baltimore, MD, USA.
| | | | | |
Collapse
|
38
|
Lu S, Wang S. Technical transformation of biodefense vaccines. Vaccine 2009; 27 Suppl 4:D8-D15. [PMID: 19837293 DOI: 10.1016/j.vaccine.2009.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 01/08/2023]
Abstract
Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines.
Collapse
Affiliation(s)
- Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
39
|
Racine R, Winslow GM. IgM in microbial infections: taken for granted? Immunol Lett 2009; 125:79-85. [PMID: 19539648 DOI: 10.1016/j.imlet.2009.06.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Much has been learned about the structure, function, and production of IgM, since the antibody's initial characterization. It is widely accepted that IgM provides a first line of defense during microbial infections, prior to the generation of adaptive, high-affinity IgG responses that are important for long-lived immunity and immunological memory. Although IgM responses are commonly used as a measure of exposure to infectious diseases, it is perhaps surprising that the role of and requirement for IgM in many microbial infections has not been well explored in vivo. This is in part due to the lack of capabilities, until relatively recently, to evaluate the requirement for IgM in the absence of coincident IgG responses. Such evaluations are now possible, using gene-targeted mouse strains that produce only IgM, or isotype-switched IgG. A number of studies have revealed that IgM, produced either innately, or in response to antigen challenge, plays an important and perhaps under appreciated role in many microbial infections. Moreover, the characterization of the roles of various B cell subsets, in the production of IgM, and in host defense, has revealed important and divergent roles for B-1a and B-1b cells. This review will highlight studies in which IgM, in its own right, has been found to play an important role, not only in early immunity, but also in long-term protection, against a variety of microbial pathogens. Observations that long-lived IgM responses can be generated in vivo suggest that it may be feasible to target IgM production as part of vaccination strategies.
Collapse
Affiliation(s)
- Rachael Racine
- The Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201-0509, United States
| | | |
Collapse
|
40
|
Kirimanjeswara GS, Olmos S, Bakshi CS, Metzger DW. Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis. Immunol Rev 2009; 225:244-55. [PMID: 18837786 DOI: 10.1111/j.1600-065x.2008.00689.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Francisella tularensis can cause fatal respiratory tularemia in humans and animals and is increasingly being isolated in the United States and several European countries. The correlates of protective immunity against this intracellular bacterium are not known, and currently there are no licensed vaccines available for human use. Cell-mediated immunity has long been believed to be critical for protection, and the importance of humoral immunity is also now recognized. Furthermore, synergy between antibodies, T cell-derived cytokines, and phagocytes appears to be critical to achieve sterilizing immunity against F. tularensis. Thus, novel vaccine approaches should be designed to induce robust antibody and cell-mediated immune responses to this pathogen.
Collapse
|
41
|
Bitsaktsis C, Rawool DB, Li Y, Kurkure NV, Iglesias B, Gosselin EJ. Differential requirements for protection against mucosal challenge with Francisella tularensis in the presence versus absence of cholera toxin B and inactivated F. tularensis. THE JOURNAL OF IMMUNOLOGY 2009; 182:4899-909. [PMID: 19342669 DOI: 10.4049/jimmunol.0803242] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Francisella tularensis is a category A biothreat agent for which there is no approved vaccine and the correlates of protection are not well understood. In particular, the relationship between the humoral and cellular immune response to F. tularensis and the relative importance of each in protection is controversial. Yet, understanding this relationship will be crucial to the development of an effective vaccine against this organism. We demonstrate, for the first time, a differential requirement for humoral vs cellular immunity in vaccine-induced protection against F. tularensis infection, and that the requirement for Ab observed in some protection studies, may be overcome through the induction of enhanced cellular immunity. Specifically, following intranasal/mucosal immunization of mice with inactivated F. tularensis organisms plus the cholera toxin B subunit, we observe increased production of IgG2a/2c vs IgG1 Ab, as well as IFN-gamma, indicating induction of a Th1 response. In addition, the requirement for F. tularensis-specific IgA Ab production, observed in studies following immunization with inactivated F. tularensis alone, is eliminated. Thus, these data indicate that enhanced Th1 responses can supersede the requirement for anti-F. tularensis-specific IgA. This observation also has important ramifications for vaccine development against this organism.
Collapse
Affiliation(s)
- Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
42
|
Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc Natl Acad Sci U S A 2009; 106:4343-8. [PMID: 19251656 DOI: 10.1073/pnas.0813411106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis (Ft), a gram-negative intracellular bacterium, is the etiologic agent of tularemia. Infection of mice with <10 Ft Live Vaccine Strain (Ft LVS) organisms i.p. causes a lethal infection that resembles human tularemia. Here, we show that immunization with as little as 0.1 ng Ft LVS lipopolysaccharide (Ft-LPS), but not Ft lipid A, generates a rapid antibody response that protects wild-type (WT) mice against lethal Ft LVS challenge. Protection is not induced in Ft-LPS-immunized B cell-deficient mice (muMT or JhD), male xid mice, or Ig transgenic mice that produce a single IgH (not reactive with Ft-LPS). Focusing on the cellular mechanisms that underlie this protective response, we show that Ft-LPS specifically stimulates proliferation of B-1a lymphocytes that bind fluorochrome-labeled Ft-LPS and the differentiation of these cells to plasma cells that secrete antibodies specific for Ft-LPS. This exclusively B-1a antibody response is equivalent in WT, T-deficient (TCRalphabeta(-/-), TCRgammadelta(-/-)), and Toll-like receptor 4 (TLR4)-deficient (TLR4(-/-)) mice and thus is not dependent on T cells or typical inflammatory processes. Serum antibody levels peak approximately 5 days after Ft-LPS immunization and persist at low levels for months. Thus, immunization with Ft-LPS activates a rare population of antigen-specific B-1a cells to produce a persistent T-independent antibody response that provides long-term protection against lethal Ft LVS infection. These data support the possibility of creating effective, minimally invasive vaccines that can provide effective protection against pathogen invasion.
Collapse
|
43
|
Sebastian S, Pinkham JT, Lynch JG, Ross RA, Reinap B, Blalock LT, Conlan JW, Kasper DL. Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis. Vaccine 2008; 27:597-605. [PMID: 19022323 DOI: 10.1016/j.vaccine.2008.10.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Herein we report studies with a novel combination vaccine that, when administered to mice, conferred protection against highly virulent strains of Francisella tularensis by stimulating both arms of the immune system. Our earlier studies with Ft.LVS::wbtA, an O-polysaccharide (OPS)-negative mutant derived from the available live vaccine strain of F. tularensis (Ft.LVS), elucidated the role of antibodies to the OPS - a key virulence determinant - in protection against virulent type A organisms. However, when expressed on the organism, the OPS enhances virulence. In contrast, in purified form, the OPS is completely benign. We hypothesized that a novel combination vaccine containing both a component that induces humoral immunity and a component that induces cellular immunity to this intracellular microbe would have an enhanced protective capacity over either component alone and would be much safer than the LVS vaccine. Thus we developed a combination vaccine containing both OPS (supplied in an OPS-tetanus toxoid glycoconjugate) to induce a humoral antibody response and strain Ft.LVS::wbtA (which is markedly attenuated by its lack of OPS) to induce a cell-mediated protective response. This vaccine protected mice against otherwise-lethal intranasal and intradermal challenge with wild-type F. tularensis strains Schu S4 (type A) and FSC 108 (type B). These results represent a significant advance in our understanding of immunity to F. tularensis and provide important insight into the development of a safer vaccine effective against infections caused by clinical type A and B strains of F. tularensis.
Collapse
Affiliation(s)
- Shite Sebastian
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shirey KA, Cole LE, Keegan AD, Vogel SN. Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism. THE JOURNAL OF IMMUNOLOGY 2008; 181:4159-67. [PMID: 18768873 DOI: 10.4049/jimmunol.181.6.4159] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Francisella tularensis (Ft), the causative agent of tularemia, elicits a potent inflammatory response early in infection, yet persists within host macrophages and can be lethal if left unchecked. We report in this study that Ft live vaccine strain (LVS) infection of murine macrophages induced TLR2-dependent expression of alternative activation markers that followed the appearance of classically activated markers. Intraperitoneal infection with Ft LVS also resulted in induction of alternatively activated macrophages (AA-Mphi). Induction of AA-Mphi by treatment of cells with rIL-4 or by infection with Ft LVS promoted replication of intracellular Ftn, in contrast to classically activated (IFN-gamma plus LPS) macrophages that promoted intracellular killing of Ft LVS. Ft LVS failed to induce alternative activation in IL-4Ralpha(-/-) or STAT6(-/-) macrophages and prolonged the classical inflammatory response in these cells, resulting in intracellular killing of Ft. Treatment of macrophages with anti-IL-4 and anti-IL-13 Ab blunted Ft-induced AA-Mphi differentiation and resulted in increased expression of IL-12 p70 and decreased bacterial replication. In vivo, Ft-infected IL-4Ralpha(-/-) mice exhibited increased survival compared with wild-type mice. Thus, redirection of macrophage differentiation by Ft LVS from a classical to an alternative activation state enables the organism to survive at the expense of the host.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
45
|
Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4. Infect Immun 2008; 77:180-95. [PMID: 18981246 DOI: 10.1128/iai.00879-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gram-negative, facultative intracellular bacterium Francisella tularensis causes acute, lethal pneumonic disease following infection with only 10 CFU. The mechanisms used by the bacterium to accomplish this in humans are unknown. Here, we demonstrate that virulent, type A F. tularensis strain Schu S4 efficiently infects and replicates in human myeloid dendritic cells (DCs). Despite exponential replication over time, Schu S4 failed to stimulate transforming growth factor beta, interleukin-10 (IL-10), IL-6, IL-1beta, IL-12, tumor necrosis factor alpha, alpha interferon (IFN-alpha), and IFN-beta throughout the course of infection. Schu S4 also suppressed the ability of directly infected DCs to respond to different Toll-like receptor agonists. Furthermore, we also observed functional inhibition of uninfected bystander cells. This inhibition was mediated, in part, by a heat-stable bacterial component. Lipopolysaccharide (LPS) from Schu S4 was present in Schu S4-conditioned medium. However, Schu S4 LPS was weakly inflammatory and failed to induce suppression of DCs at concentrations below 10 microg/ml, and depletion of Schu S4 LPS did not significantly alleviate the inhibitory effect of Schu S4-conditioned medium in uninfected human DCs. Together, these data show that type A F. tularensis interferes with the ability of a central cell type of the immune system, DCs, to alert the host of infection both intra- and extracellularly. This suggests that immune dysregulation by F. tularensis operates on a broader and more comprehensive scale than previously appreciated.
Collapse
|
46
|
Veremeichenko SN, Zdorovenko GM. Specific structural features and immunomodulatory properties of the lipopolysaccharides of Pseudomonas bacteria. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s0003683808060033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Krocova Z, Härtlova A, Souckova D, Zivna L, Kroca M, Rudolf E, Macela A, Stulik J. Interaction of B cells with intracellular pathogen Francisella tularensis. Microb Pathog 2008; 45:79-85. [DOI: 10.1016/j.micpath.2008.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/21/2008] [Accepted: 01/25/2008] [Indexed: 11/26/2022]
|
48
|
Neisseria meningitidis PorB, a Toll-like receptor 2 ligand, improves the capacity of Francisella tularensis lipopolysaccharide to protect mice against experimental tularemia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1322-9. [PMID: 18614668 DOI: 10.1128/cvi.00125-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis causes severe pneumonia that can be fatal if it is left untreated. Due to its potential use as a biological weapon, research is being conducted to develop an effective vaccine and to select and study adjuvant molecules able to generate a better and long-lasting protective effect. PorB, a porin from Neisseria meningitidis, is a well-established Toll-like receptor 2 ligand and has been shown to be a promising vaccine adjuvant candidate due to its ability to enhance the T-cell costimulatory activity of antigen-presenting cells both in vitro and in vivo. BALB/c mice were immunized with lipopolysaccharide (LPS) isolated from the F. tularensis subsp. holarctica live vaccine strain (LVS), with or without PorB from N. meningitidis, and the antibody levels induced during the vaccination regimen and the level of protection against intranasal challenge with LVS were determined. Antigen administered alone induced a specific F. tularensis LPS immunoglobulin M (IgM) response that was not maintained over the weeks and that conferred protection to only 25% of the mice. In contrast, F. tularensis LPS given in combination with neisserial PorB induced consistent levels of specific IgM throughout the immunization and increased the proportion of surviving mice to 70%. Postchallenge cytokine analysis showed that interleukin-6 (IL-6), monocyte chemoattractant protein 1, and gamma interferon were markers of mortality and that IL-1beta was a correlate of survival, independent of the presence of PorB as an adjuvant. These data indicate that neisserial PorB might be an optimal candidate adjuvant for improving the protective effect of F. tularensis LPS and other subunit vaccines against tularemia, but there is still a need to test its efficacy against virulent type A and type B F. tularensis strains.
Collapse
|
49
|
Rawool DB, Bitsaktsis C, Li Y, Gosselin DR, Lin Y, Kurkure NV, Metzger DW, Gosselin EJ. Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2008; 180:5548-57. [PMID: 18390739 DOI: 10.4049/jimmunol.180.8.5548] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous studies have demonstrated that targeting Ag to Fc receptors (FcR) on APCs can enhance humoral and cellular immunity. However, studies are lacking that examine both the use of FcR-targeting in generating immune protection against infectious agents and the use of FcRs in the induction of mucosal immunity. Francisella tularensis is a category A intracellular mucosal pathogen. Thus, intense efforts are underway to develop a vaccine against this organism. We hypothesized that protection against mucosal infection with F. tularensis would be significantly enhanced by targeting inactivated F. tularensis live vaccine strain (iFt) to FcRs at mucosal sites, via intranasal immunization with mAb-iFt complexes. These studies demonstrate for the first time that: 1) FcR-targeted immunogen enhances immunogen-specific IgA production and protection against subsequent infection in an IgA-dependent manner, 2) FcgammaR and neonatal FcR are crucial to this protection, and 3) inactivated F. tularensis, when targeted to FcRs, enhances protection against the highly virulent SchuS4 strain of F. tularensis, a category A biothreat agent. In summary, these studies show for the first time the use of FcRs as a highly effective vaccination strategy against a highly virulent mucosal intracellular pathogen.
Collapse
Affiliation(s)
- Deepak B Rawool
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis. Infect Immun 2008; 76:3664-71. [PMID: 18505805 DOI: 10.1128/iai.00374-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular bacterium and the causative agent of the zoonotic disease tularemia. F. tularensis is a category A select agent and thus a potential agent of bioterrorism. Whereas an F. tularensis live, attenuated vaccine strain (LVS) is the basis of an investigational vaccine, this vaccine is not licensed for human use because of efficacy and safety concerns. In the present study, we immunized mice with isolated native outer membrane proteins (OMPs), ethanol-inactivated LVS (iLVS), or purified LVS lipopolysaccharide (LPS) and assessed the ability of each vaccine preparation to protect mice against pulmonary challenge with the virulent type A F. tularensis strain SchuS4. Antibody isotyping indicated that both Th1 and Th2 antibody responses were generated in mice after immunization with OMPs or iLVS, whereas LPS immunization resulted in only immunoglobulin A production. In survival studies, OMP immunization provided the greatest level of protection (50% survival at 20 days after infection with SchuS4), and there were associated 3-log reductions in the spleen and liver bacterial burdens (compared to nonvaccinated mice). Cytokine quantitation for the sera of SchuS4-challenged mice indicated that OMP and iLVS immunizations induced high levels of tumor necrosis factor alpha and interleukin-2 (IL-2) production, whereas only OMP immunization induced high levels of IL-10 production. By comparison, high levels of proinflammatory cytokines, including RANTES, granulocyte colony-stimulating factor, IL-6, IL-1alpha, IL-12p40, and KC, in nonvaccinated mice indicated that these cytokines may facilitate disease progression. Taken together, the results of this study demonstrate the potential utility of an OMP subunit (acellular) vaccine for protecting mammals against type A F. tularensis.
Collapse
|