1
|
Pourquoi A, Miller MR, Koch SR, Boyle K, Surratt V, Nguyen H, Panja S, Cartailler JP, Shrestha S, Stark RJ. DIFFERENTIAL SIGNALING EFFECTS OF ESCHERICHIA COLI AND STAPHYLOCOCCUS AUREUS IN HUMAN WHOLE BLOOD INDICATE DISTINCT REGULATION OF THE NRF2 PATHWAY. Shock 2024; 61:557-563. [PMID: 38604133 PMCID: PMC11018340 DOI: 10.1097/shk.0000000000002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
ABSTRACT Escherichia coli and Staphylococcus aureus are two of the most common bacterial species responsible for sepsis. While it is observed that they have disparate clinical phenotypes, the signaling differences elicited by each bacteria that drive this variance remain unclear. Therefore, we used human whole blood exposed to heat-killed E. coli or S. aureus and measured the transcriptomic signatures. Relative to unstimulated control blood, heat-killed bacteria exposure led to significant dysregulation (upregulated and downregulated) of >5,000 genes for each experimental condition, with a slight increase in gene alterations by S. aureus. While there was significant overlap regarding proinflammatory pathways, Gene Ontology overrepresentation analysis of the most altered genes suggested biological processes like macrophage differentiation and ubiquinone biosynthesis were more unique to heat-killed S. aureus, compared with heat-killed E. coli exposure. Using Ingenuity Pathway Analysis, it was demonstrated that nuclear factor erythroid 2-related factor 2 signaling, a main transcription factor in antioxidant responses, was predominately upregulated in S. aureus exposed blood relative to E. coli. Furthermore, the use of pharmacologics that preferentially targeted the nuclear factor erythroid 2-related factor 2 pathway led to differential cytokine profiles depending on the type of bacterial exposure. These findings reveal significant inflammatory dysregulation between E. coli and S. aureus and provide insight into the targeting of unique pathways to curb bacteria-specific responses.
Collapse
Affiliation(s)
| | | | - Stephen R Koch
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Hong Nguyen
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sourav Panja
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Shristi Shrestha
- Vanderbilt University, Creative Data Solutions, Nashville, Tennessee
| | - Ryan J Stark
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Bank NC, Singh V, McCourt B, Burberry A, Roberts KD, Grubb B, Rodriguez-Palacios A. Antigenic operon fragmentation and diversification mechanism in Bacteroidota impacts gut metagenomics and pathobionts in Crohn's disease microlesions. Gut Microbes 2024; 16:2350150. [PMID: 38841888 PMCID: PMC11164228 DOI: 10.1080/19490976.2024.2350150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.
Collapse
Affiliation(s)
- Nicholas C. Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D. Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Staphylococcus aureus Lung Infection Results in Down-Regulation of Surfactant Protein-A Mainly Caused by Pro-Inflammatory Macrophages. Microorganisms 2020; 8:microorganisms8040577. [PMID: 32316261 PMCID: PMC7232181 DOI: 10.3390/microorganisms8040577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/21/2023] Open
Abstract
Pneumonia is the leading cause of hospitalization worldwide. Besides viruses, bacterial co-infections dramatically exacerbate infection. In general, surfactant protein-A (SP-A) represents a first line of immune defense. In this study, we analyzed whether influenza A virus (IAV) and/or Staphylococcus aureus (S. aureus) infections affect SP-A expression. To closely reflect the situation in the lung, we used a human alveolus-on-a-chip model and a murine pneumonia model. Our results show that S. aureus can reduce extracellular levels of SP-A, most likely attributed to bacterial proteases. Mono-epithelial cell culture experiments reveal that the expression of SP-A is not directly affected by IAV or S. aureus. Yet, the mRNA expression of SP-A is strongly down-regulated by TNF-α, which is highly produced by professional phagocytes in response to bacterial infection. By using the human alveolus-on-a-chip model, we show that the down-regulation of SP-A is strongly dependent on macrophages. In a murine model of pneumonia, we can confirm that S. aureus decreases SP-A levels in vivo. These findings indicate that (I) complex interactions of epithelial and immune cells induce down-regulation of SP-A expression and (II) bacterial mono- and super-infections reduce SP-A expression in the lung, which might contribute to a severe outcome of bacterial pneumonia.
Collapse
|
4
|
Bischoff M, Wonnenberg B, Nippe N, Nyffenegger-Jann NJ, Voss M, Beisswenger C, Sunderkötter C, Molle V, Dinh QT, Lammert F, Bals R, Herrmann M, Somerville GA, Tschernig T, Gaupp R. CcpA Affects Infectivity of Staphylococcus aureus in a Hyperglycemic Environment. Front Cell Infect Microbiol 2017; 7:172. [PMID: 28536677 PMCID: PMC5422431 DOI: 10.3389/fcimb.2017.00172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤ 10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals.
Collapse
Affiliation(s)
- Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Bodo Wonnenberg
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Nadine Nippe
- Institute of Immunology, University of MunsterMunster, Germany
| | - Naja J Nyffenegger-Jann
- Division of Infection Biology, Department of Biomedicine, University Hospital BaselBasel, Switzerland
| | - Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | | | | | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University HospitalHomburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University HospitalHomburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Mathias Herrmann
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Greg A Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-LincolnLincoln, NE, USA
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Rosmarie Gaupp
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| |
Collapse
|
5
|
Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation. Sci Rep 2017; 7:44189. [PMID: 28287124 PMCID: PMC5347029 DOI: 10.1038/srep44189] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo.
Collapse
|
6
|
Dahdah A, Gautier G, Attout T, Fiore F, Lebourdais E, Msallam R, Daëron M, Monteiro RC, Benhamou M, Charles N, Davoust J, Blank U, Malissen B, Launay P. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest 2014; 124:4577-89. [PMID: 25180604 DOI: 10.1172/jci75212] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/24/2014] [Indexed: 12/31/2022] Open
Abstract
Controlling the overwhelming inflammatory reaction associated with polymicrobial sepsis remains a prevalent clinical challenge with few treatment options. In septic peritonitis, blood neutrophils and monocytes are rapidly recruited into the peritoneal cavity to control infection, but the role of resident sentinel cells during the early phase of infection is less clear. In particular, the influence of mast cells on other tissue-resident cells remains poorly understood. Here, we developed a mouse model that allows both visualization and conditional ablation of mast cells and basophils to investigate the role of mast cells in severe septic peritonitis. Specific depletion of mast cells led to increased survival rates in mice with acute sepsis. Furthermore, we determined that mast cells impair the phagocytic action of resident macrophages, thereby allowing local and systemic bacterial proliferation. Mast cells did not influence local recruitment of neutrophils and monocytes or the release of inflammatory cytokines. Phagocytosis inhibition by mast cells involved their ability to release prestored IL-4 within 15 minutes after bacterial encounter, and treatment with an IL-4-neutralizing antibody prevented this inhibitory effect and improved survival of septic mice. Our study uncovers a local crosstalk between mast cells and macrophages during the early phase of sepsis development that aggravates the outcome of severe bacterial infection.
Collapse
|
7
|
Palmer CD, Mancuso CJ, Weiss JP, Serhan CN, Guinan EC, Levy O. 17(R)-Resolvin D1 differentially regulates TLR4-mediated responses of primary human macrophages to purified LPS and live E. coli. J Leukoc Biol 2011; 90:459-70. [PMID: 21653234 DOI: 10.1189/jlb.0311145] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Detection and clearance of bacterial infection require balanced effector and resolution signals to avoid chronic inflammation. Detection of GNB LPS by TLR4 on m induces inflammatory responses, contributing to chronic inflammation and tissue injury. LXs and Rvs are endogenous lipid mediators that enhance resolution of inflammation, and their actions on primary human m responses toward GNB are largely uncharacterized. Here, we report that LXA(4), LXB(4), and RvD1, tested at 0.1-1 μM, inhibited LPS-induced TNF production from primary human m, with ATL and 17(R)-RvD1, demonstrating potent inhibition at 0.1 μM. In addition, 17(R)-RvD1 inhibited LPS-induced primary human m production of IL-7, IL-12p70, GM-CSF, IL-8, CCL2, and MIP-1α without reducing that of IL-6 or IL-10. Remarkably, when stimulated with live Escherichia coli, m treated with 17(R)-RvD1 demonstrated increased TNF production and enhanced internalization and killing of the bacteria. 17(R)-RvD1-enhanced TNF, internalization, and killing were not evident for an lpxM mutant of E. coli expressing hypoacylated LPS with reduced inflammatory activity. Furthermore, 17(R)-RvD1-enhanced, E. coli-induced TNF production was evident in WT but not TLR4-deficient murine m. Thus, Rvs differentially modulate primary human m responses to E. coli in an LPS- and TLR4-dependent manner, such that this Rv could promote resolution of GNB/LPS-driven inflammation by reducing m proinflammatory responses to isolated LPS and increasing m responses important for clearance of infection.
Collapse
|
8
|
Stich AN, DeClue AE. Pathogen associated molecular pattern-induced TNF, IL-1β, IL-6 and CXCL-8 production from feline whole blood culture. Res Vet Sci 2010; 90:59-63. [PMID: 20493505 DOI: 10.1016/j.rvsc.2010.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/05/2010] [Accepted: 04/13/2010] [Indexed: 11/19/2022]
Abstract
Whole blood culture (C(wb)) is a method to evaluate leukocyte response to stimuli. We used C(wb) to evaluate the inflammatory response to pathogen associated molecular patterns (PAMPs) in cats. Blood was collected from diluted with RPMI and stimulated with various concentrations of lipopolysaccharide (LPS), lipoteichoic acid (LTA), peptidoglycan (PG) or control (PBS). Multiple concentrations of LPS, LTA and PG significantly stimulated tumor necrosis factor (TNF), interleukin (IL)-1β and CXC chemokine ligand (CXCL)-8 in feline C(wb). All PAMPs failed to stimulate IL-6 production and PG failed to stimulate CXCL-8 production. Lipopolysaccharide was a more potent inducer of IL-1β and CXCL-8 than LTA or PG and LTA is a more potent inducer of CXCL-8 than PG. Based on these data, PAMPs from gram positive and negative bacteria induce TNF, IL-1β and CXCL-8 production in feline whole blood. Cats appear to be relatively more sensitive to gram negative compared to gram positive bacteria.
Collapse
Affiliation(s)
- Ashley N Stich
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 E. Campus Drive, Columbia, MO 65211, United States
| | | |
Collapse
|
9
|
Eyngor M, Lublin A, Shapira R, Hurvitz A, Zlotkin A, Tekoah Y, Eldar A. A pivotal role for theStreptococcus iniaeextracellular polysaccharide in triggering proinflammatory cytokines transcription and inducing death in rainbow trout. FEMS Microbiol Lett 2010; 305:109-20. [DOI: 10.1111/j.1574-6968.2010.01919.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Polyakov LM, Sumenkova DV, Panin LE. Effect of Plasma Lipoproteins and Their Complexes with Polysaccharides on Interleukin-1β Concentration in Macrophages of Mice with HA-1 Ascitic Hepatoma. Bull Exp Biol Med 2009; 147:466-8. [DOI: 10.1007/s10517-009-0557-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lipoprotein lipase and hydrofluoric acid deactivate both bacterial lipoproteins and lipoteichoic acids, but platelet-activating factor-acetylhydrolase degrades only lipoteichoic acids. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1187-95. [PMID: 19553557 DOI: 10.1128/cvi.00115-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To identify the Toll-like receptor 2 ligand critically involved in infections with gram-positive bacteria, lipoprotein lipase (LPL) or hydrogen peroxide (H(2)O(2)) is often used to selectively inactivate lipoproteins, and hydrofluoric acid (HF) or platelet-activating factor-acetylhydrolase (PAF-AH) is used to selectively inactivate lipoteichoic acid (LTA). However, the specificities of these chemical reactions are unknown. We investigated the reaction specificities by using two synthetic lipoproteins (Pam(3)CSK(4) and FSL-1) and LTAs from pneumococci and staphylococci. Changes in the structures of the two synthetic proteins and the LTAs were monitored by mass spectrometry, and biological activity changes were evaluated by measuring tumor necrosis factor alpha production by mouse macrophage cells (RAW 264.7) following stimulation. PAF-AH inactivated LTA without reducing the biological activities of Pam(3)CSK(4) and FSL-1. Mass spectroscopy confirmed that PAF-AH monodeacylated pneumococcal LTA but did not alter the structure of either Pam(3)CSK(4) or FSL-1. As expected, HF treatment reduced the biological activity of LTA by more than 80% and degraded LTA. HF treatment not only deacylated Pam(3)CSK(4) and FSL-1 but also reduced the activities of the lipoproteins by more than 60%. Treatment with LPL decreased the biological activities by more than 80%. LPL also removed an acyl chain from the LTA and reduced its activity. Our results indicate that treatment with 1% H(2)O(2) for 6 h at 37 degrees C inactivates Pam(3)CSK(4), FSL-1, and LTA by more than 80%. Although HF, LPL, and H(2)O(2) treatments degrade and inactivate both lipopeptides and LTA, PAF-AH selectively inactivated LTA with no effect on the biological and structural properties of the two lipopeptides. Also, the ability of PAF-AH to reduce the inflammatory activities of cell wall extracts from gram-positive bacteria suggests LTA to be essential in inflammatory responses to gram-positive bacteria.
Collapse
|
12
|
Hutchens MA, Luker KE, Sonstein J, Núñez G, Curtis JL, Luker GD. Protective effect of Toll-like receptor 4 in pulmonary vaccinia infection. PLoS Pathog 2008; 4:e1000153. [PMID: 18802464 PMCID: PMC2529451 DOI: 10.1371/journal.ppat.1000153] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/13/2008] [Indexed: 12/25/2022] Open
Abstract
Innate immune responses are essential for controlling poxvirus infection. The threat of a bioterrorist attack using Variola major, the smallpox virus, or zoonotic transmission of other poxviruses has renewed interest in understanding interactions between these viruses and their hosts. We recently determined that TLR3 regulates a detrimental innate immune response that enhances replication, morbidity, and mortality in mice in response to vaccinia virus, a model pathogen for studies of poxviruses. To further investigate Toll-like receptor signaling in vaccinia infection, we first focused on TRIF, the only known adapter protein for TLR3. Unexpectedly, bioluminescence imaging showed that mice lacking TRIF are more susceptible to vaccinia infection than wild-type mice. We then focused on TLR4, the other Toll-like receptor that signals through TRIF. Following respiratory infection with vaccinia, mice lacking TLR4 signaling had greater viral replication, hypothermia, and mortality than control animals. The mechanism of TLR4-mediated protection was not due to increased release of proinflammatory cytokines or changes in total numbers of immune cells recruited to the lung. Challenge of primary bone marrow macrophages isolated from TLR4 mutant and control mice suggested that TLR4 recognizes a viral ligand rather than an endogenous ligand. These data establish that TLR4 mediates a protective innate immune response against vaccinia virus, which informs development of new vaccines and therapeutic agents targeted against poxviruses. Toll-like receptors are a class of transmembrane proteins that detect the presence of infectious organisms and activate host innate and adaptive immune responses. Vaccinia virus is the prototypic poxvirus, and it is used as both a model and a vaccine for the virus that causes smallpox. We recently reported that Toll-like receptor 3 (TLR3), which recognizes double-stranded RNA, acts in vaccinia infection in a way that is detrimental to the host. TLR3 relays its signal to the nucleus using the adaptor protein TRIF. In this paper, we report that mice lacking TRIF are more susceptible to vaccinia infection than wild-type controls. TLR4 also uses TRIF to relay its signals. We report our findings that TLR4 has a protective effect in vaccinia infection. Mice with a nonfunctional mutant version of TLR4 are more susceptible to vaccinia infection than wild-type controls. The protection that TLR4 affords is not due to effects on secretion of proinflammatory cytokines or type I interferon, and the receptor also does not uniquely regulate recruitment of white blood cells to the site of infection. Rather, TLR4 recognizes a molecule in or on vaccinia virus to bring about a protective response that may be due to an ability to diminish the degree of inflammation caused by vaccinia infection.
Collapse
Affiliation(s)
- Martha A Hutchens
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | |
Collapse
|
13
|
Wang Y, Lu Y, Yu D, Wang Y, Chen F, Yang H, Zheng SJ. Enhanced resistance of restraint-stressed mice to sepsis. THE JOURNAL OF IMMUNOLOGY 2008; 181:3441-8. [PMID: 18714016 DOI: 10.4049/jimmunol.181.5.3441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis remains a major health concern across the world. The effects of stress on host resistance to sepsis are still not very clear. To explore the effects of chronic stress on sepsis(') we examined the impact of restraint stress on the resistance of mice to sepsis. Interestingly, it was found that restraint stress enhanced the antisepsis resistance of mice and the concentrations of the proinflammatory cytokines IL-1, IL-6, IL-12, and TNF-alpha in the blood of stressed mice were dramatically reduced post Escherichia coli infection or LPS treatment as compared with that of controls (p < 0.05). In addition, the mRNA expressions of glucocorticoid-induced leucine zipper (GILZ) were up-regulated in the spleen and peritoneal macrophages of mice receiving restraint stress or dexamethasone treatment. These results demonstrate that restraint stress enhances the resistance of mice to sepsis, supporting corticotherapy for sepsis and proposing restraint-stressed mouse as an animal model to elucidate mechanisms of stress-associated, antisepsis resistance.
Collapse
Affiliation(s)
- Yu Wang
- College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Cole N, Hume EB, Khan S, Garthwaite L, Schubert T, Reeve V, Willcox MDP. The corneal response to infection withStaphylococcus aureusin the absence of interleukin‐4. Immunol Cell Biol 2007; 85:333-7. [PMID: 17389870 DOI: 10.1038/sj.icb.7100043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-4 (IL-4) has previously been implicated in a protective response to Staphylococcus aureus corneal infection. Consequently, the specific role of IL-4 during S. aureus corneal infection was investigated using IL-4 gene knockout mice. The eyes of IL-4-/- mice and wild-type mice were challenged topically with S. aureus and examined at 24 h post-infection. Keratitis was examined clinically and histologically. Bacterial and polymorphonuclear leucocytes (PMN) numbers were enumerated and cytokine and chemokine levels determined by enzyme-linked immunosorbent assay. Exogenous IL-4 was administered to both IL-4-/- and wild-type mice and clinical parameters were determined. A lack of IL-4 resulted in a significant increase in clinical scores, pathology, bacterial load and neutrophil numbers. The absence of IL-4 also resulted in an upregulation of interferon (IFN)-gamma and a downregulation of IL-6, IL-10 and the chemokines KC and macrophage inflammatory protein-2. Administration of exogenous IL-4 to IL-4-/- mice was protective but time-dependent. This study highlights the protective role of IL-4 during S. aureus infection and emphasizes the balance between IL-4 and IFN-gamma in achieving bacterial control and maintaining the integrity of the cornea. This information may lead to the development of novel therapeutic strategies potentially improving the prognosis for infection of this unique avascular site.
Collapse
Affiliation(s)
- Nerida Cole
- Institute for Eye Research, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Van Amersfoort ES, Van Berkel TJC, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 2003; 16:379-414. [PMID: 12857774 PMCID: PMC164216 DOI: 10.1128/cmr.16.3.379-414.2003] [Citation(s) in RCA: 511] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.
Collapse
Affiliation(s)
- Edwin S Van Amersfoort
- Division of Biopharmaceutics, Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
16
|
Silverstein R, Johnson DC. Endogenous versus exogenous glucocorticoid responses to experimental bacterial sepsis. J Leukoc Biol 2003; 73:417-27. [PMID: 12660216 DOI: 10.1189/jlb.0702379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although lack of adrenals dramatically reduces resistance against sepsis generally, the value of glucocorticoid levels above those normally produced by stress remains controversial. An early and long-held concept is that glucocorticoid protection against lipopolysaccharides in animal models is important. Supporting this concept, C3H/HeJ mice, lacking Toll-like receptor-4 (TLR-4), and consequently, endotoxin hyporesponsive, have recently been shown to be resistant to glucocorticoid protection against live Escherichia coli. Effective antibiotic intervention, as an additional parameter and with concomitant administration of glucocorticoid, not only allows for expected antibiotic protection but also for glucocorticoid protection against E. coli or Staphylococcus aureus of mice sensitized to tumor necrosis factor alpha, regardless of the status of the TLR-4 receptor. TLRs, including but not limited to TLR-2, may be involved in glucocorticoid protective efficacy against Gram-positive and Gram-negative sepsis. Overlapping and possibly endotoxin-independent signaling may become important considerations.
Collapse
Affiliation(s)
- Richard Silverstein
- Department of Biochemistry, University of Kansas School of Medicine, Kansas City, USA.
| | | |
Collapse
|
17
|
Prendergast BJ, Hotchkiss AK, Bilbo SD, Kinsey SG, Nelson RJ. Photoperiodic adjustments in immune function protect Siberian hamsters from lethal endotoxemia. J Biol Rhythms 2003; 18:51-62. [PMID: 12568244 DOI: 10.1177/0748730402239676] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Seasonal changes in day length enhance or suppress components of immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) exhibit multiple changes in neuroendocrine, reproductive, and immune function after exposure to short days. The manner in which these changes are integrated into the host response to pathogens is not well understood. The present experiments tested the hypothesis that short-day changes in immune function alter the pathogenesis of septic shock and survival after challenge with endotoxin. Male and female Siberian hamsters raised in long-day photoperiods were transferred as adults to short days or remained in their natal photoperiod. Six to 8 weeks later, hamsters were injected i.p. with 0, 1, 2.5, 10, 25, or 50 mg/kg bacterial lipopolysaccharide (LPS) (the biologically active constituent of endotoxin), and survival was monitored for 96 h. Short days significantly improved survival of male hamsters treated with 10 or 25 mg/kg LPS and improved survival in females treated with 50 mg/kg LPS. Transfer from long to short days shifted the LD50 in males by approximately 90%, from 5.3 to 9.9 mg/kg, and in females from 11.1 to 15.0 mg/kg (+35%). Long-day females were more resistant than were males to lethal endotoxemia. In vitro production of the proinflammatory cytokine TNFalpha in response to LPS stimulation was significantly lower in macrophages extracted from short-day relative to long-day hamsters, as were circulating concentrations of TNFalpha in vivo after i.p. administration of LPS, suggesting that diminished cytokine responses to LPS in short days may mitigate the lethality of endotoxemia. Adaptation to short days induces changes in immune parameters that affect survival in the face of immune challenges.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
18
|
Leem JG, Bove GM. Mid-axonal tumor necrosis factor-alpha induces ectopic activity in a subset of slowly conducting cutaneous and deep afferent neurons. THE JOURNAL OF PAIN 2002; 3:45-9. [PMID: 14622853 DOI: 10.1054/jpai.2002.27138] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After injuries to the musculoskeletal system, peripheral nerve axons are exposed to numerous inflammatory mediators, including tumor necrosis factor-alpha (TNF). Exposure of sensory axons to TNF can cause behavioral hypersensitivity in the peripheral innervation territory of the affected axons. The hypothesis that TNF activates nociceptor axons was tested by using teased fiber techniques in the rat. Recordings were made of single nociceptors innervating both deep and cutaneous receptive fields supplied by the sciatic nerve. The axons proximal to the receptive field were exposed to ascending concentrations of TNF (0.01 to 1 ng/mL). In 21% of cutaneous and 9% of deep neurons, TNF rapidly evoked a transient response. There was no difference between deep and cutaneous nociceptors in the incidence of TNF responses. The majority of neurons responded to TNF injected into their receptive fields. Our data support that TNF can induce ectopic electrogenesis in a minority of nociceptor axons that innervate both deep and cutaneous tissues. This activity may correlate to the human perception of radiating pain that often accompanies neuritis.
Collapse
Affiliation(s)
- Jeong-Gill Leem
- Department of Anesthesiology, Asan Medical Center, University of Ulsan, Seoul, Korea
| | | |
Collapse
|