1
|
Takahashi Y. Isolation of hitherto-uncultivated microorganisms- Application of radical scavengers. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38417898 DOI: 10.2323/jgam.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The culture filtrates of the predominant bacterial strains isolated from soil samples have been shown to increase the microbial colony counts on agar plates used for the isolation of uncultured bacteria. One of the factors in the culture filtrates responsible for this increase was identified to be superoxide dismutase (SOD). The generation of reactive oxygen species (O2-, H2O2, and ・OH) was detected from conventional laboratory agar media. The use of agar media supplemented with radical scavengers (SOD, catalase, ascorbic acid, or rutin) effectively increased the colony counts and kinds of microbial strains that grew from soil samples. Taxonomical studies on these isolates revealed new taxa for phylum Actinomycetota; one family, three genera, and nine species were newly described. One of the strains, Patulibacter minatonensis KV-614T belonging to the new family Patulibacteraceae, was isolated on agar medium supplemented with SOD. P. minatonensis KV-614T represents a novel lineage within the phylum Actinomycetota. A polymerase chain reaction (PCR) study using specific primers for the detection of strains related to the genus Patulibacter, order Solirubrobacterales, showed a high distribution frequency, with detection in over 70% of the soil samples tested. These data suggest that the use of radical scavengers may facilitate the isolation of some hitherto-uncultivated microorganisms widely distributed in soil.
Collapse
|
2
|
Chandra H, Gupta MK, Lam YW, Yadav JS. Predominantly Orphan Secretome in the Lung Pathogen Mycobacterium abscessus Revealed by a Multipronged Growth-Phase-Driven Strategy. Microorganisms 2024; 12:378. [PMID: 38399782 PMCID: PMC10892769 DOI: 10.3390/microorganisms12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emerging lung pathogen Mycobacterium abscessus is understudied for its virulence determinants and molecular targets for diagnosis and therapeutics. Here, we report a comprehensive secretome (600 proteins) of this species, which was identified using a multipronged strategy based on genetic/genomic, proteomic, and bioinformatic approaches. In-solution digested bottom-up proteomics from various growth phases identified a total of 517 proteins, while 2D-GE proteomics identified 33 proteins. A reporter-gene-fusion-based genomic library that was custom-generated in this study enabled the detection of 23 secretory proteins. A genome-wide survey for N-terminal signal sequences using bioinformatic tools (Psortb 2.0 and SignalP 3.0) combined with a strategy of the subtraction of lipoproteins and proteins containing multiple transmembrane domains yielded 116 secretory proteins. A homology search against the M. tuberculosis database identified nine additional secretory protein homologs that lacked a secretory signal sequence. Considering the little overlap (80 proteins) among the different approaches used, this study emphasized the importance of using a multipronged strategy for a comprehensive understanding of the secretome. Notably, the majority of the secreted proteins identified (over 50%) turned out to be "orphans" (those with no known functional homologs). The revelation of these species-specific orphan proteins offers a hitherto unexplored repertoire of potential targets for diagnostic, therapeutic, and vaccine research in this emerging lung pathogen.
Collapse
Affiliation(s)
- Harish Chandra
- Pulmonary/Microbial Pathogenesis Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (H.C.)
| | - Manish K. Gupta
- Pulmonary/Microbial Pathogenesis Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (H.C.)
| | - Ying-Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Jagjit S. Yadav
- Pulmonary/Microbial Pathogenesis Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (H.C.)
| |
Collapse
|
3
|
Identification of Concomitant Inhibitors against Glutamine Synthetase and Isocitrate Lyase in Mycobacterium tuberculosis from Natural Sources. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4661491. [PMID: 36225979 PMCID: PMC9550479 DOI: 10.1155/2022/4661491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Tuberculosis (T.B.) is a disease that occurs due to infection by the bacterium, Mycobacterium tuberculosis (Mtb), which is responsible for millions of deaths every year. Due to the emergence of multidrug and extensive drug-resistant Mtb strains, there is an urgent need to develop more powerful drugs for inclusion in the current tuberculosis treatment regime. In this study, 1778 molecules from four medicinal plants, Azadirachta indica, Camellia sinensis, Adhatoda vasica, and Ginkgo biloba, were selected and docked against two chosen drug targets, namely, Glutamine Synthetase (G.S.) and Isocitrate Lyase (I.C.L.). Molecular Docking was performed using the Glide module of the Schrӧdinger suite to identify the best-performing ligands; the complexes formed by the best-performing ligands were further investigated for their binding stability via Molecular Dynamics Simulation of 100 ns. The present study suggests that Azadiradione from Azadirachta indica possesses the potential to inhibit Glutamine Synthetase and Isocitrate Lyase of M. tuberculosis concomitantly. The excellent docking score of the ligand and the stability of receptor-ligand complexes, coupled with the complete pharmacokinetic profile of Azadiradione, support the proposal of the small molecule, Azadiradione as a novel antitubercular agent. Further, wet lab analysis of Azadiradione may lead to the possible discovery of a novel antitubercular drug.
Collapse
|
4
|
Role of a Putative Alkylhydroperoxidase Rv2159c in the Oxidative Stress Response and Virulence of Mycobacterium tuberculosis. Pathogens 2022; 11:pathogens11060684. [PMID: 35745538 PMCID: PMC9227533 DOI: 10.3390/pathogens11060684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, is one of the leading infectious agents worldwide with a high rate of mortality. Following aerosol inhalation, M. tuberculosis primarily infects the alveolar macrophages, which results in a host immune response that gradually activates various antimicrobial mechanisms, including the production of reactive oxygen species (ROS), within the phagocytes to neutralize the bacteria. OxyR is the master regulator of oxidative stress response in several bacterial species. However, due to the absence of a functional oxyR locus in M. tuberculosis, the peroxidase stress is controlled by alkylhydroperoxidases. M. tuberculosis expresses alkylhydroperoxide reductase to counteract the toxic effects of ROS. In the current study, we report the functional characterization of an orthologue of alkylhydroperoxidase family member, Rv2159c, a conserved protein with putative peroxidase activity, during stress response and virulence of M. tuberculosis. We generated a gene knockout mutant of M. tuberculosis Rv2159c (MtbΔ2159) by specialized transduction. The MtbΔ2159 was sensitive to oxidative stress and exposure to toxic transition metals. In a human monocyte (THP-1) cell infection model, MtbΔ2159 showed reduced uptake and intracellular survival and increased expression of pro-inflammatory molecules, including IL-1β, IP-10, and MIP-1α, compared to the wild type M. tuberculosis and Rv2159c-complemented MtbΔ2159 strains. Similarly, in a guinea pig model of pulmonary infection, MtbΔ2159 displayed growth attenuation in the lungs, compared to the wild type M. tuberculosis and Rv2159c-complemented MtbΔ2159 strains. Our study suggests that Rv2159c has a significant role in maintaining the cellular homeostasis during stress and virulence of M. tuberculosis.
Collapse
|
5
|
Piergallini TJ, Scordo JM, Pino PA, Schlesinger LS, Torrelles JB, Turner J. Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiol Spectr 2021; 9:e0001621. [PMID: 34232086 PMCID: PMC8552513 DOI: 10.1128/spectrum.00016-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the control of Mycobacterium tuberculosis infection. In this study, we demonstrate that an inflammatory pulmonary environment at the time of infection mediated by lipopolysaccharide treatment in mice confers enhanced protection against M. tuberculosis for up to 6 months postinfection. This early and transient inflammatory environment was associated with a neutrophil and CD11b+ cell influx and increased inflammatory cytokines. In vitro infection demonstrated that neutrophils from lipopolysaccharide-treated mice exhibited increased association with M. tuberculosis and had a greater innate capacity for killing M. tuberculosis. Finally, partial depletion of neutrophils in lipopolysaccharide-treated mice showed an increase in M. tuberculosis burden, suggesting neutrophils played a part in the protection observed in lipopolysaccharide-treated mice. These results indicate a positive role for an inflammatory environment in the initial stages of M. tuberculosis infection and suggest that acute inflammation at the time of M. tuberculosis infection can positively alter disease outcome. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis disease, is estimated to infect one-fourth of the world's population and is one of the leading causes of death due to an infectious disease worldwide. The high-level variability in tuberculosis disease responses in the human populace may be linked to immune processes related to inflammation. In many cases, inflammation appears to exasperate tuberculosis responses; however, some evidence suggests inflammatory processes improve control of M. tuberculosis infection. Here, we show an acute inflammatory stimulus in mice provides protection against M. tuberculosis for up to 6 months, suggesting acute inflammation can positively affect M. tuberculosis infection outcome.
Collapse
Affiliation(s)
- Tucker J. Piergallini
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Julia M. Scordo
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- The Barshop Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Paula A. Pino
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
6
|
Kirykowicz AM, Woodward JD. Shotgun EM of mycobacterial protein complexes during stationary phase stress. Curr Res Struct Biol 2020; 2:204-212. [PMID: 34235480 PMCID: PMC8244302 DOI: 10.1016/j.crstbi.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 10/27/2022] Open
Abstract
There is little structural information about the protein complexes conferring resistance in Mycobacterium tuberculosis (Mtb) to anti-microbial oxygen and nitrogen radicals in the phagolysosome. Here, we expose the model Mycobacterium, Mycobacterium smegmatis, to simulated oxidative-stress conditions and apply a shotgun EM method for the structural detection of the resulting protein assemblies. We identified: glutamine synthetase I, essential for Mtb virulence; bacterioferritin A, critical for Mtb iron regulation; aspartyl aminopeptidase M18, a protease; and encapsulin, which produces a cage-like structure to enclose cargo proteins. After further investigation, we found that encapsulin carries dye-decolourising peroxidase, a protein antioxidant, as its primary cargo under the conditions tested.
Collapse
Affiliation(s)
- Angela M. Kirykowicz
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge, CB2 1GA, UK
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Jeremy D. Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa
- Structural Biology Research Unit, University of Cape Town, South Africa
| |
Collapse
|
7
|
Identification of Mycobacterium tuberculosis Peptides in Serum Extracellular Vesicles from Persons with Latent Tuberculosis Infection. J Clin Microbiol 2020; 58:JCM.00393-20. [PMID: 32245831 PMCID: PMC7269374 DOI: 10.1128/jcm.00393-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022] Open
Abstract
Identification of biomarkers for latent Mycobacterium tuberculosis infection and risk of progression to tuberculosis (TB) disease are needed to better identify individuals to target for preventive therapy, predict disease risk, and potentially predict preventive therapy efficacy. Our group developed multiple reaction monitoring mass spectrometry (MRM-MS) assays that detected M. tuberculosis peptides in serum extracellular vesicles from TB patients. We subsequently optimized this MRM-MS assay to selectively identify 40 M. tuberculosis peptides from 19 proteins that most commonly copurify with serum vesicles of patients with TB. Here, we used this technology to evaluate if M. tuberculosis peptides can also be detected in individuals with latent TB infection (LTBI). Serum extracellular vesicles from 74 individuals presumed to have latent M. tuberculosis infection (LTBI) based on close contact with a household member with TB or a recent tuberculin skin test (TST) conversion were included in this study. Twenty-nine samples from individuals with no evidence of TB infection by TST and no known exposure to TB were used as controls to establish a threshold to account for nonspecific/background signal. We identified at least one of the 40 M. tuberculosis peptides in 70 (95%) individuals with LTBI. A single peptide from the glutamine synthetase (GlnA1) enzyme was identified in 61/74 (82%) individuals with LTBI, suggesting peptides from M. tuberculosis proteins involved in nitrogen metabolism might be candidates for pathogen-specific biomarkers for detection of LTBI. The detection of M. tuberculosis peptides in serum extracellular vesicles from persons with LTBI represents a potential advance in the diagnosis of LTBI.
Collapse
|
8
|
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 2020; 15:e0221837. [PMID: 32126063 PMCID: PMC7053730 DOI: 10.1371/journal.pone.0221837] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.
Collapse
Affiliation(s)
- Paula Tucci
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Rivas Chetto
- Departamento de Laboratorio, Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Centro de Referencia Nacional para Micobacterias, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Universidad de la Republica Uruguay, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Principle and potential applications of the non-classical protein secretory pathway in bacteria. Appl Microbiol Biotechnol 2019; 104:953-965. [PMID: 31853566 DOI: 10.1007/s00253-019-10285-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
In addition to the extracellular proteins secreted by known secretory pathways, a number of cytoplasmic proteins without predicable or known signal sequences or secretory motifs have been found in the extracellular milieu, and were consequently classified as non-classically secreted proteins. Non-classical protein secretion is considered to be a general, conserved cellular phenomenon in both eukaryotes and prokaryotes. There are several research hotspots on the non-classical protein secretory pathway, and the most important two of them are the recognition principle of substrate proteins and possible secretory mechanisms. To date, researchers have made some progress in understanding the characteristics of these proteins. For example, it was discovered that many non-classically secreted proteins exist and are secreted in multimeric form. Some of these proteins prefer to be clustered and exported at the poles and the septum of the cell. The majority of these proteins play different functions when they are in the intra- and extracellular environments, and several of their functions are related to survival and pathogenicity. Furthermore, non-classically secreted proteins can be used as leading proteins to guide a POI (protein of interest) out of the cells, which provides a novel strategy for protein secretion with potential applications in the industry. Summarizing these findings, this review emphasizes the hot spots related to non-classically secreted proteins in bacteria, lists the most important hypotheses on the selection and secretion mechanisms of non-classically secreted proteins, and put forward their potential applications.
Collapse
|
10
|
Díaz C, Pérez del Palacio J, Valero-Guillén PL, Mena García P, Pérez I, Vicente F, Martín C, Genilloud O, Sánchez Pozo A, Gonzalo-Asensio J. Comparative Metabolomics between Mycobacterium tuberculosis and the MTBVAC Vaccine Candidate. ACS Infect Dis 2019; 5:1317-1326. [PMID: 31099236 DOI: 10.1021/acsinfecdis.9b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MTBVAC is a live attenuated M. tuberculosis vaccine constructed by genetic deletions in the phoP and fadD26 virulence genes. The MTBVAC vaccine is currently in phase 2 clinical trials with newborns and adults in South Africa, one of the countries with the highest incidence. Although MTBVAC has been extensively characterized by genomics, transcriptomics, lipidomics, and proteomics, its metabolomic profile is yet unknown. Accordingly, in this study we aim to identify differential metabolites between M. tuberculosis and MTBVAC. To this end, an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry was implemented in order to explore the main metabolic differences between M. tuberculosis and MTBVAC. As an outcome, we identified a set of 34 metabolites involved in diverse bacterial biosynthetic pathways. A consistent increase in the phosphatidylinositol species was observed in the vaccine candidate relative to its parental strain. This phenotype resulted in an increased production of phosphatidylinositol mannosides, a novel PhoP-regulated phenotype in the most widespread lineages of M. tuberculosis. This study represents a step ahead in our understanding of the MTBVAC vaccine, and some of the differential metabolites identified in this work might be used as potential vaccination biomarkers.
Collapse
Affiliation(s)
- Caridad Díaz
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Pedro Luis Valero-Guillén
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Espinardo, 30100 Murcia, Spain
| | - Patricia Mena García
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Irene Pérez
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS Aragón,
C/Domingo Miral s/n, 50019 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS Aragón,
C/Domingo Miral s/n, 50019 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Paseo Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Antonio Sánchez Pozo
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS Aragón,
C/Domingo Miral s/n, 50019 Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), C/Mariano Esquillor, Edificio I + D, Campus Río Ebro, 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Moliva JI, Duncan MA, Olmo-Fontánez A, Akhter A, Arnett E, Scordo JM, Ault R, Sasindran SJ, Azad AK, Montoya MJ, Reinhold-Larsson N, Rajaram MVS, Merrit RE, Lafuse WP, Zhang L, Wang SH, Beamer G, Wang Y, Proud K, Maselli DJ, Peters J, Weintraub ST, Turner J, Schlesinger LS, Torrelles JB. The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. J Infect Dis 2019; 220:514-523. [PMID: 30923818 PMCID: PMC6603975 DOI: 10.1093/infdis/jiz138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
As we age, there is an increased risk for the development of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection. Few studies consider that age-associated changes in the alveolar lining fluid (ALF) may increase susceptibility by altering soluble mediators of innate immunity. We assessed the impact of adult or elderly human ALF during Mtb infection in vitro and in vivo. We identified amplification of pro-oxidative and proinflammatory pathways in elderly ALF and decreased binding capability of surfactant-associated surfactant protein A (SP-A) and surfactant protein D (SP-D) to Mtb. Human macrophages infected with elderly ALF-exposed Mtb had reduced control and fewer phagosome-lysosome fusion events, which was reversed when elderly ALF was replenished with functional SP-A/SP-D. In vivo, exposure to elderly ALF exacerbated Mtb infection in young mice. Our studies demonstrate how the pulmonary environment changes as we age and suggest that Mtb may benefit from declining host defenses in the lung mucosa of the elderly.
Collapse
Affiliation(s)
| | - Michael A Duncan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | | | | | | | | | - Russell Ault
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Smitha J Sasindran
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio
| | | | | | | | | | - William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus
| | - Shu-Hua Wang
- Department of Internal Medicine, The Ohio State University, Columbus
| | - Gillian Beamer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio
| | - Kevin Proud
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | | | - Jay Peters
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Larry S Schlesinger
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Jordi B Torrelles
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| |
Collapse
|
12
|
Selective delipidation of Mycobacterium bovis BCG enables direct pulmonary vaccination and enhances protection against Mycobacterium tuberculosis. Mucosal Immunol 2019; 12:805-815. [PMID: 30778118 PMCID: PMC6462255 DOI: 10.1038/s41385-019-0148-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/02/2019] [Accepted: 01/27/2019] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the leading killer due to an infectious organism. Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only vaccine approved against TB, however, its efficacy against pulmonary TB is poor. While BCG is currently inoculated intradermally, the natural route of M.tb infection is through the lung. Excessive lung pathology caused by pulmonary inoculation of BCG has prevented the use of this immunization route. Here, we show that selective chemical treatment of BCG with petroleum ether removes inflammatory lipids from the bacterial surface while keeping BCG viable. Pulmonary vaccination using this modified BCG attenuated inflammatory responses, prevented immunopathology of the lung, and significantly increased protection against M.tb infection in mice. We further directly linked IL-17A as the responsible contributor of improved immunity against M.tb infection. These results provide evidence that selective removal of cytotoxic lipids from the BCG surface attenuates inflammation and offers a safer and superior vaccine against TB causing less damage post-infectious challenge with M.tb.
Collapse
|
13
|
Bourdeaux F, Hammer CA, Vogt S, Schweighöfer F, Nöll G, Wachtveitl J, Grininger M. Flavin Storage and Sequestration by Mycobacterium tuberculosis Dodecin. ACS Infect Dis 2018; 4:1082-1092. [PMID: 29608272 DOI: 10.1021/acsinfecdis.7b00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dodecins are small flavin binding proteins occurring in archaea and bacteria. They are remarkable for binding dimers of flavins with their functional relevant aromatic isoalloxazine rings deeply covered. Bacterial dodecins are widely spread and found in a large variety of pathogens, among them Pseudomonas aeruginosa, Streptococcus pneumonia, Ralstonia solanacearum, and Mycobacterium tuberculosis ( M. tuberculosis). In this work, we seek to understand the function of dodecins from M. tuberculosis dodecin. We describe flavin binding in thermodynamic and kinetic properties and achieve mechanistic insight in dodecin function by applying spectroscopic and electrochemical methods. Intriguingly, we reveal a significant pH dependence in the affinity and specificity of flavin binding. Our data give insight in M. tuberculosis dodecin function and advance the current understanding of dodecins as flavin storage and sequestering proteins. We suggest that the dodecin in M. tuberculosis may specifically be important for flavin homeostasis during the elaborate lifestyle of this organism, which calls for the evaluation of this protein as drug target.
Collapse
Affiliation(s)
- Florian Bourdeaux
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Christopher A. Hammer
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Stephan Vogt
- Nöll Junior Research Group, Organic Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Felix Schweighöfer
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Gilbert Nöll
- Nöll Junior Research Group, Organic Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Stent A, Every AL, Chionh YT, Ng GZ, Sutton P. Superoxide dismutase from Helicobacter pylori suppresses the production of pro-inflammatory cytokines during in vivo infection. Helicobacter 2018; 23. [PMID: 29235197 DOI: 10.1111/hel.12459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori has undergone considerable adaptation to allow chronic persistence within the gastric environment. While H. pylori-associated diseases are driven by an excessive inflammation, severe gastritis is detrimental to colonization by this pathogen. Hence, H. pylori has developed strategies to minimize the severity of gastritis it triggers in its host. Superoxide dismutase (SOD) is well known for its role in protecting against oxidative attack; less recognized is its ability to inhibit immunity, shown for SOD from mammalian sources and those of some bacterial species. This study examined whether H. pylori SOD (HpSOD) has the ability to inhibit the host immune response to these bacteria. MATERIALS AND METHODS The ability of recombinant HpSOD to modify the response to LPS was measured using mouse macrophages. A monoclonal antibody against HpSOD was generated and injected into H. pylori-infected mice. RESULTS Addition of HpSOD to cultures of mouse macrophages significantly inhibited the pro-inflammatory cytokine response to LPS stimulation. A monoclonal antibody was generated that was specific for SOD from H. pylori. When injected into mice infected with H. pylori for 3 months, this antibody was readily detected in both sera and gastric tissues 5 days later. While treatment with anti-HpSOD had no effect on H. pylori colonization at this time point, it significantly increased the levels of a range of pro-inflammatory cytokines in the gastric tissues. This did not occur with antibodies against other antioxidant enzymes. CONCLUSIONS SOD from H. pylori can inhibit the production of pro-inflammatory cytokine during in vivo infection.
Collapse
Affiliation(s)
- Andrew Stent
- School of Veterinary and Agricultural Science, Centre for Animal Biotechnology, University of Melbourne, Parkville, Vic., Australia
| | - Alison L Every
- School of Veterinary and Agricultural Science, Centre for Animal Biotechnology, University of Melbourne, Parkville, Vic., Australia
| | - Yok T Chionh
- School of Veterinary and Agricultural Science, Centre for Animal Biotechnology, University of Melbourne, Parkville, Vic., Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | - Garrett Z Ng
- School of Veterinary and Agricultural Science, Centre for Animal Biotechnology, University of Melbourne, Parkville, Vic., Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | - Philip Sutton
- School of Veterinary and Agricultural Science, Centre for Animal Biotechnology, University of Melbourne, Parkville, Vic., Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
15
|
de Oliveira Viana J, Scotti MT, Scotti L. Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Abstract
Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the in vivo diet of Mycobacterium tuberculosis, with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.
Collapse
|
17
|
Yue J, Fu G, Zhang D, Wen J. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnol Lett 2017; 39:1237-1244. [PMID: 28527120 DOI: 10.1007/s10529-017-2357-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. RESULTS An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. CONCLUSIONS A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.
Collapse
Affiliation(s)
- Jie Yue
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Gang Fu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- Key Laboratories of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Jianping Wen
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
18
|
Zhao L, Chen J, Sun J, Zhang D. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Sci Rep 2017; 7:44023. [PMID: 28276482 PMCID: PMC5343618 DOI: 10.1038/srep44023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway.
Collapse
Affiliation(s)
- Liuqun Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jingqi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, P. R. China
| |
Collapse
|
19
|
Moreira C, Ramos MJ, Fernandes PA. Reaction Mechanism ofMycobacterium TuberculosisGlutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations. Chemistry 2016; 22:9218-25. [DOI: 10.1002/chem.201600305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Cátia Moreira
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Pedro Alexandrino Fernandes
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| |
Collapse
|
20
|
Spatially distinct and metabolically active membrane domain in mycobacteria. Proc Natl Acad Sci U S A 2016; 113:5400-5. [PMID: 27114527 DOI: 10.1073/pnas.1525165113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protected from host immune attack and antibiotic penetration by their unique cell envelope, mycobacterial pathogens cause devastating human diseases such as tuberculosis. Seamless coordination of cell growth with cell envelope elongation at the pole maintains this barrier. Unraveling this spatiotemporal regulation is a potential strategy for controlling mycobacterial infections. Our biochemical analysis previously revealed two functionally distinct membrane fractions in Mycobacterium smegmatis cell lysates: plasma membrane tightly associated with the cell wall (PM-CW) and a distinct fraction of pure membrane free of cell wall components (PMf). To provide further insight into the functions of these membrane fractions, we took the approach of comparative proteomics and identified more than 300 proteins specifically associated with the PMf, including essential enzymes involved in cell envelope synthesis such as a mannosyltransferase, Ppm1, and a galactosyltransferase, GlfT2. Furthermore, comparative lipidomics revealed the distinct lipid composition of the PMf, with specific association of key cell envelope biosynthetic precursors. Live-imaging fluorescence microscopy visualized the PMf as patches of membrane spatially distinct from the PM-CW and notably enriched in the pole of the growing cells. Taken together, our study provides the basis for assigning the PMf as a spatiotemporally distinct and metabolically active membrane domain involved in cell envelope biogenesis.
Collapse
|
21
|
Sangal V, Blom J, Sutcliffe IC, von Hunolstein C, Burkovski A, Hoskisson PA. Adherence and invasive properties of Corynebacterium diphtheriae strains correlates with the predicted membrane-associated and secreted proteome. BMC Genomics 2015; 16:765. [PMID: 26452736 PMCID: PMC4600297 DOI: 10.1186/s12864-015-1980-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Non-toxigenic Corynebacterium diphtheriae strains are emerging as a major cause of severe pharyngitis and tonsillitis as well as invasive diseases such as endocarditis, septic arthritis, splenic abscesses and osteomyelitis. C. diphtheriae strains have been reported to vary in their ability to adhere and invade different cell lines. To identify the genetic basis of variation in the degrees of pathogenicity, we sequenced the genomes of four strains of C. diphtheriae (ISS 3319, ISS 4060, ISS 4746 and ISS 4749) that are well characterised in terms of their ability to adhere and invade mammalian cells. RESULTS Comparative analyses of 20 C. diphtheriae genome sequences, including 16 publicly available genomes, revealed a pan-genome comprising 3,989 protein coding sequences that include 1,625 core genes and 2,364 accessory genes. Most of the genomic variation between these strains relates to uncharacterised genes encoding hypothetical proteins or transposases. Further analyses of protein sequences using an array of bioinformatic tools predicted most of the accessory proteome to be located in the cytoplasm. The membrane-associated and secreted proteins are generally involved in adhesion and virulence characteristics. The genes encoding membrane-associated proteins, especially the number and organisation of the pilus gene clusters (spa) including the number of genes encoding surface proteins with LPXTG motifs differed between different strains. Other variations were among the genes encoding extracellular proteins, especially substrate binding proteins of different functional classes of ABC transport systems and 'non-classical' secreted proteins. CONCLUSIONS The structure and organisation of the spa gene clusters correlates with differences in the ability of C. diphtheriae strains to adhere and invade the host cells. Furthermore, differences in the number of genes encoding membrane-associated proteins, e.g., additional proteins with LPXTG motifs could also result in variation in the adhesive properties between different strains. The variation in the secreted proteome may be associated with the degree of pathogenesis. While the role of the 'non-classical' secretome in virulence remains unclear, differences in the substrate binding proteins of various ABC transport systems and cytoplasmic proteins potentially suggest strain variation in nutritional requirements or a differential ability to utilize various carbon sources.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jochen Blom
- Heinrich-Buff-Ring 58, Justus-Liebig-Universität, 35392, Gießen, Germany.
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
22
|
Tripathi D, Kant S, Garg R, Bhatnagar R. Low expression level of glnA1 accounts for absence of cell wall associated poly-l-glutamate/glutamine in Mycobacterium smegmatis. Biochem Biophys Res Commun 2015; 458:240-5. [PMID: 25637529 DOI: 10.1016/j.bbrc.2015.01.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 11/28/2022]
Abstract
Cell wall associated poly-l-glutamine (PLG) layer synthesis is directly linked to glutamine synthetase (GS) encoded by glnA1 in tuberculosis causing mycobacteria. Avirulent Mycobacterium smegmatis (M. smegmatis) despite of having a glnA1 homolog lacks cell wall associated PLG layer. In the present study, we complemented a ΔglnA1 mutant of Mycobacterium bovis (lack PLG in cell wall) with M. smegmatis glnA1 cloned under M. bovis glnA1 promoter. PLG synthesis was restored in the cell wall of complemented strain. The complemented strain also showed increased resistance to physical stresses such as lysozyme, SDS and increased survival in THP-1 macrophages in comparison to the knockout. Further, in β-galactosidase reporter assay M. smegmatis glnA1 promoter showed ten times less activity as compared to M. bovis glnA1 promoter. GACT-8-11 → TGAC mutations in the M. smegmatis glnA1 promoter restored its activity by 60% as compared to the activity of glnA1 promoter of M. bovis. This mutation also showed increased GS expression and produced cell wall associated PLG in M. smegmatis. The results of this study demonstrate that glnA1 promoter of M. smegmatis accounts for low expression level of GS and apparently responsible for absence of cell wall associated PLG layer.
Collapse
Affiliation(s)
- Deeksha Tripathi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sashi Kant
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajni Garg
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
23
|
Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis. Molecules 2014; 19:13161-76. [PMID: 25162957 PMCID: PMC6271674 DOI: 10.3390/molecules190913161] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6-9 months) and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.
Collapse
|
24
|
Reha-Krantz LJ, Woodgate S, Goodman MF. Engineering processive DNA polymerases with maximum benefit at minimum cost. Front Microbiol 2014; 5:380. [PMID: 25136334 PMCID: PMC4120765 DOI: 10.3389/fmicb.2014.00380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases need to be engineered to achieve optimal performance for biotechnological applications, which often require high fidelity replication when using modified nucleotides and when replicating difficult DNA sequences. These tasks are achieved for the bacteriophage T4 DNA polymerase by replacing leucine with methionine in the highly conserved Motif A sequence (L412M). The costs are minimal. Although base substitution errors increase moderately, accuracy is maintained for templates with mono- and dinucleotide repeats while replication efficiency is enhanced. The L412M substitution increases intrinsic processivity and addition of phage T4 clamp and single-stranded DNA binding proteins further enhance the ability of the phage T4 L412M-DNA polymerase to replicate all types of difficult DNA sequences. Increased pyrophosphorolysis is a drawback of increased processivity, but pyrophosphorolysis is curbed by adding an inorganic pyrophosphatase or divalent metal cations, Mn2+ or Ca2+. In the absence of pyrophosphorolysis inhibitors, the T4 L412M-DNA polymerase catalyzed sequence-dependent pyrophosphorolysis under DNA sequencing conditions. The sequence specificity of the pyrophosphorolysis reaction provides insights into how the T4 DNA polymerase switches between nucleotide incorporation, pyrophosphorolysis and proofreading pathways. The L-to-M substitution was also tested in the yeast DNA polymerases delta and alpha. Because the mutant DNA polymerases displayed similar characteristics, we propose that amino acid substitutions in Motif A have the potential to increase processivity and to enhance performance in biotechnological applications. An underlying theme in this chapter is the use of genetic methods to identify mutant DNA polymerases with potential for use in current and future biotechnological applications.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | | | | |
Collapse
|
25
|
Canan CH, Gokhale NS, Carruthers B, Lafuse WP, Schlesinger LS, Torrelles JB, Turner J. Characterization of lung inflammation and its impact on macrophage function in aging. J Leukoc Biol 2014; 96:473-80. [PMID: 24935957 DOI: 10.1189/jlb.4a0214-093rr] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Systemic inflammation that occurs with increasing age (inflammaging) is thought to contribute to the increased susceptibility of the elderly to several disease states. The elderly are at significant risk for developing pulmonary disorders and infectious diseases, but the contribution of inflammation in the pulmonary environment has received little attention. In this study, we demonstrate that the lungs of old mice have elevated levels of proinflammatory cytokines and a resident population of highly activated pulmonary macrophages that are refractory to further activation by IFN-γ. The impact of this inflammatory state on macrophage function was determined in vitro in response to infection with M.tb. Macrophages from the lungs of old mice secreted more proinflammatory cytokines in response to M.tb infection than similar cells from young mice and also demonstrated enhanced M.tb uptake and P-L fusion. Supplementation of mouse chow with the NSAID ibuprofen led to a reversal of lung and macrophage inflammatory signatures. These data indicate that the pulmonary environment becomes inflammatory with increasing age and that this inflammatory environment can be reversed with ibuprofen.
Collapse
Affiliation(s)
- Cynthia H Canan
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| | - Nandan S Gokhale
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| | - Bridget Carruthers
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| | - William P Lafuse
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, and Center for Microbial Interface Biology, The Ohio State University, Columbus Ohio, USA
| |
Collapse
|
26
|
Wang G, Chen H, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Zhang H, Chen W. How are the Non-classically Secreted Bacterial Proteins Released into the Extracellular Milieu? Curr Microbiol 2013; 67:688-95. [DOI: 10.1007/s00284-013-0422-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022]
|
27
|
Mendez JA, Soares NC, Mateos J, Gayoso C, Rumbo C, Aranda J, Tomas M, Bou G. Extracellular Proteome of a Highly Invasive Multidrug-resistant Clinical Strain of Acinetobacter baumannii. J Proteome Res 2012; 11:5678-94. [DOI: 10.1021/pr300496c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jose Antonio Mendez
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| | - Nelson C. Soares
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| | - Jesús Mateos
- Unidad de Proteómica, INIBIC, As Xubias s/n, La Coruña, Spain
| | - Carmen Gayoso
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| | - Carlos Rumbo
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| | - Jesús Aranda
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| | - Maria Tomas
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| | - Germán Bou
- Laboratório de Microbiología,
Instituto de Investigación Biomédica de A Coruña
(INIBIC), Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña (CHUAC),
As Xubias s/n, La Coruña, Spain
| |
Collapse
|
28
|
Zijnge V, Kieselbach T, Oscarsson J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 2012; 7:e41662. [PMID: 22848560 PMCID: PMC3405016 DOI: 10.1371/journal.pone.0041662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/18/2023] Open
Abstract
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
Collapse
Affiliation(s)
- Vincent Zijnge
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
29
|
Bergamini G, Di Silvestre D, Mauri P, Cigana C, Bragonzi A, De Palma A, Benazzi L, Döring G, Assael BM, Melotti P, Sorio C. MudPIT analysis of released proteins in Pseudomonas aeruginosa laboratory and clinical strains in relation to pro-inflammatory effects. Integr Biol (Camb) 2012; 4:270-9. [PMID: 22298109 DOI: 10.1039/c2ib00127f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa (Pa) is the most common virulent pathogen contributing to the pathogenesis of cystic fibrosis (CF). During bacterial lung colonization, the products of its metabolism are released in the extracellular space contributing to the pathogenic events associated with its presence. To gain insights on the mechanisms involved in the Pa pathogenesis we focused our attention on proteins released by Pa using a MudPIT approach combined with cell biology assays. Conditioned medium (CM) collected under aerobic and microaerobic conditions from Pa clinical strains (in early and late colonization), unlike the laboratory strain, induced expression of IL-8 mRNA in CF airway epithelial cells. We have identified proteins released by clinically relevant Pa strains, focusing on the pro-inflammatory effects as metalloproteases (MMPs). In fact, their expression pattern was associated with the highest pro-inflammatory activity measured in the early clinically isolated strain. The relation was further supported by the result of the analysis of a larger and independent set of Pa isolates derived from sporadically and chronically infected CF patients: 76% of sporadic samples expressed protease activity (n = 44), while only 27% scored positive in the chronically infected individuals (n = 38, p < 0.0001, Fisher's exact test). Finally, looking for a possible mechanism of action of bacterial MMPs, we found that CM from early clinical isolates can cleave CXCR1 on the surface of human neutrophils, suggesting a potential role for the bacterially released MMPs in the protection of the pathogen from the host's response.
Collapse
Affiliation(s)
- Gabriella Bergamini
- Cystic Fibrosis Center - Azienda Ospedaliera Universitaria Integrata di Verona, piazzale Stefani, 1-37126 Verona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zarrella TM, Singh A, Bitsaktsis C, Rahman T, Sahay B, Feustel PJ, Gosselin EJ, Sellati TJ, Hazlett KRO. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 2011; 6:e22335. [PMID: 21799828 PMCID: PMC3142145 DOI: 10.1371/journal.pone.0022335] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anju Singh
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karsten R. O. Hazlett
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
31
|
Carroll P, Faray-Kele MC, Parish T. Identifying vulnerable pathways in Mycobacterium tuberculosis by using a knockdown approach. Appl Environ Microbiol 2011; 77:5040-3. [PMID: 21642404 PMCID: PMC3147394 DOI: 10.1128/aem.02880-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/21/2011] [Indexed: 11/20/2022] Open
Abstract
We constructed recombinant strains of Mycobacterium tuberculosis in which expression of specific genes was downregulated to identify vulnerable drug targets. Growth phenotypes in macrophages and culture were used to rank targets: the dprE1, clpP1, and fadD32 operons were the best targets and glnA1, glnE, pknL, regX3, and senX3 were poor targets.
Collapse
Affiliation(s)
- Paul Carroll
- Queen Mary University of London, Barts and the London, London E1 2AT, United Kingdom
| | | | - Tanya Parish
- Queen Mary University of London, Barts and the London, London E1 2AT, United Kingdom
- Infectious Disease Research Institute, Seattle, Washington 98104
| |
Collapse
|
32
|
Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2011; 2:105. [PMID: 21734908 PMCID: PMC3119406 DOI: 10.3389/fmicb.2011.00105] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/27/2011] [Indexed: 02/06/2023] Open
Abstract
The bacteriostatic and bactericidal effects and the transcriptional response of Mycobacterium tuberculosis to representative oxidative and nitrosative stresses were investigated by growth and survival studies and whole genome expression analysis. The M. tuberculosis reaction to a range of hydrogen peroxide (H2O2) concentrations fell into three distinct categories: (1) low level exposure resulted in induction of a few highly sensitive H2O2-responsive genes, (2) intermediate exposure resulted in massive transcriptional changes without an effect on growth or survival, and (3) high exposure resulted in a muted transcriptional response and eventual death. M. tuberculosis appears highly resistant to DNA damage-dependent, mode-one killing caused by low millimolar levels of H2O2 and only succumbs to overwhelming levels of oxidative stress observed in mode-two killing. Nitric oxide (NO) exposure initiated much the same transcriptional response as H2O2. However, unlike H2O2 exposure, NO exposure induced dormancy-related genes and caused dose-dependent bacteriostatic activity without killing. Included in the large shared response to H2O2 and NO was the induction of genes encoding iron–sulfur cluster repair functions including iron acquisition. Stress regulons controlled by IdeR, Sigma H, Sigma E, and FurA comprised a large portion of the response to both stresses. Expression of several oxidative stress defense genes was constitutive, or increased moderately from an already elevated constitutive level, suggesting that bacilli are continually primed for oxidative stress defense.
Collapse
Affiliation(s)
- Martin I Voskuil
- Department of Microbiology, School of Medicine, University of Colorado Denver Aurora, CO, USA
| | | | | | | |
Collapse
|
33
|
Berrêdo-Pinho M, Kalume DE, Correa PR, Gomes LHF, Pereira MP, da Silva RF, Castello-Branco LRR, Degrave WM, Mendonça-Lima L. Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bovis BCG Pasteur. BMC Microbiol 2011; 11:80. [PMID: 21507239 PMCID: PMC3094199 DOI: 10.1186/1471-2180-11-80] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/20/2011] [Indexed: 01/07/2023] Open
Abstract
Background Bacille Calmette-Guerin (BCG) is currently the only available vaccine against tuberculosis (TB) and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO) affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE) and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs) from M. bovis BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection. Results The 2DE proteomic map of M. bovis BCG Moreau CFPs in the pH range 3 - 8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa), Rv1926c (BCG1965c, Mpb63) and Rv1886c (BCG1923c, Ag85B) in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2) and Rv0350 (BCG0389, DnaK), show the opposite pattern. Conclusions Here we report the detailed 2DE profile of CFPs from M. bovis BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.
Collapse
Affiliation(s)
- Marcia Berrêdo-Pinho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, 4365, Manguinhos, CEP 21040 -900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shi L, Sohaskey CD, Pheiffer C, Pfeiffer C, Datta P, Parks M, McFadden J, North RJ, Gennaro ML. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 2010; 78:1199-215. [PMID: 21091505 DOI: 10.1111/j.1365-2958.2010.07399.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hallmark of the Mycobacterium tuberculosis life cycle is the pathogen's ability to switch between replicative and non-replicative states in response to host immunity. Transcriptional profiling by qPCR of ∼ 50 M. tuberculosis genes involved in central and lipid metabolism revealed a re-routing of carbon flow associated with bacterial growth arrest during mouse lung infection. Carbon rerouting was marked by a switch from metabolic pathways generating energy and biosynthetic precursors in growing bacilli to pathways for storage compound synthesis during growth arrest. Results of flux balance analysis using an in silico metabolic network were consistent with the transcript abundance data obtained in vivo. Similar transcriptional changes were seen in vitro when M. tuberculosis cultures were treated with bacteriostatic stressors under different nutritional conditions. Thus, altered expression of key metabolic genes reflects growth rate changes rather than changes in substrate availability. A model describing carbon flux rerouting was formulated that (i) provides a coherent interpretation of the adaptation of M. tuberculosis metabolism to immunity-induced stress and (ii) identifies features common to mycobacterial dormancy and stress responses of other organisms.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Harper CJ, Hayward D, Kidd M, Wiid I, van Helden P. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis. BMC Microbiol 2010; 10:138. [PMID: 20459763 PMCID: PMC2881912 DOI: 10.1186/1471-2180-10-138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/11/2010] [Indexed: 11/21/2022] Open
Abstract
Background The assimilation of nitrogen is an essential process in all prokaryotes, yet a relatively limited amount of information is available on nitrogen metabolism in the mycobacteria. The physiological role and pathogenic properties of glutamine synthetase (GS) have been extensively investigated in Mycobacterium tuberculosis. However, little is known about this enzyme in other mycobacterial species, or the role of an additional nitrogen assimilatory pathway via glutamate dehydrogenase (GDH), in the mycobacteria as a whole. We investigated specific enzyme activity and transcription of GS and as well as both possible isoforms of GDH (NAD+- and NADP+-specific GDH) under varying conditions of nitrogen availability in Mycobacterium smegmatis as a model for the mycobacteria. Results It was found that the specific activity of the aminating NADP+-GDH reaction and the deaminating NAD+-GDH reaction did not change appreciably in response to nitrogen availability. However, GS activity as well as the deaminating NADP+-GDH and aminating NAD+-GDH reactions were indeed significantly altered in response to exogenous nitrogen concentrations. Transcription of genes encoding for GS and the GDH isoforms were also found to be regulated under our experimental conditions. Conclusions The physiological role and regulation of GS in M. smegmatis was similar to that which has been described for other mycobacteria, however, in our study the regulation of both NADP+- and NAD+-GDH specific activity in M. smegmatis appeared to be different to that of other Actinomycetales. It was found that NAD+-GDH played an important role in nitrogen assimilation rather than glutamate catabolism as was previously thought, and is it's activity appeared to be regulated in response to nitrogen availability. Transcription of the genes encoding for NAD+-GDH enzymes seem to be regulated in M. smegmatis under the conditions tested and may contribute to the changes in enzyme activity observed, however, our results indicate that an additional regulatory mechanism may be involved. NADP+-GDH seemed to be involved in nitrogen assimilation due to a constitutive aminating activity. The deaminating reaction, however was observed to change in response to varying ammonium concentrations which suggests that NADP+-GDH is also regulated in response to nitrogen availability. The regulation of NADP+-GDH activity was not reflected at the level of gene transcription thereby implicating post-transcriptional modification as a regulatory mechanism in response to nitrogen availability.
Collapse
Affiliation(s)
- Catriona J Harper
- DST/NRF Centre of Excellence for Biomedical TB Research, Department of Molecular Biology and Human Genetics, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, South Africa.
| | | | | | | | | |
Collapse
|
36
|
Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother 2010; 54:2806-13. [PMID: 20421401 DOI: 10.1128/aac.00400-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans causes Buruli ulcer, an emerging infectious disease for which antimicrobial therapy has only recently proven to be beneficial. The discovery and development of new drugs against M. ulcerans are severely impeded by its very slow growth. Recombinant bioluminescent strains have proven useful in drug development for other mycobacterial infections, but the ability of such strains to discriminate bacteriostatic from bactericidal activity has not been well demonstrated. We engineered recombinant M. ulcerans strains to express luxAB from Vibrio harveyi. In drug susceptibility tests employing a wide range of antimicrobial agents and concentrations, the relative light unit (RLU) count measured in real time was a reliable surrogate marker for CFU counts available 3 months later, indicating utility for the rapid determination of drug susceptibility and discrimination of bacteriostatic and bactericidal effects. A second important finding of this study is that the addition of subinhibitory concentrations of the ATP-binding cassette transporter inhibitor reserpine increases the susceptibility of M. ulcerans to tetracycline and erythromycin, indicating that drug efflux may explain at least part of the intrinsic resistance of M. ulcerans to these agents.
Collapse
|
37
|
Amon J, Titgemeyer F, Burkovski A. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010; 34:588-605. [PMID: 20337720 DOI: 10.1111/j.1574-6976.2010.00216.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
Collapse
Affiliation(s)
- Johannes Amon
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
38
|
Abstract
Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship.
Collapse
|
39
|
Molecular analysis of antioxidant genes in the extremohalophile marine bacterium Exiguobacterium sp. CNU020. Biotechnol Lett 2009; 31:1245-51. [PMID: 19404744 DOI: 10.1007/s10529-009-0008-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Exiguobacterium sp. CNU020, an alkaliphile and extremohalophile bacterium, is resistant to 20 mM H(2)O(2), a concentration that is lethal to most bacteria. Representative antioxidant genes of catalase and superoxide dismutase (SOD), obtained by PCR amplification of the genomic DNA, were characterized: the 252-bp catalase gene shared 77% similarity in the deduced amino acid sequence to that of E. oxidotolerans T-2-2(T). The 420-bp SOD gene had the closest similarity (94.3%) to the manganese-SOD of E. sibiricum 255-15. Through activity-staining analysis, stain CNU020 had at least four catalase isoforms: C1, C2, C3 and C4. Expression of each catalase isoform was dependent on the growth phase and oxidants but two catalases (C3 and C4) were always induced and expressed at a similar rate, indicating that they were constitutively expressed. RT-PCR-based expression analysis at the transcriptional level suggested that the catalase gene is strongly expressed in response to 2 mM H(2)O(2), 0.2 mM Paraquat and 0.2 mM menadione. However, the SOD gene exhibited no observable expression pattern with 2 mM H(2)O(2) despite its strong expression when exposed to Paraquat and menadione.
Collapse
|
40
|
Harper C, Hayward D, Wiid I, van Helden P. Regulation of nitrogen metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB Life 2008; 60:643-50. [PMID: 18493948 DOI: 10.1002/iub.100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms governing the regulation of nitrogen metabolism in Corynebacterium glutamicum and Streptomyces coelicolor have been extensively studied. These Actinomycetales are closely related to the Mycobacterium genus and may therefore serve as a models to elucidate the cascade of nitrogen signalling in other mycobacteria. Some factors involved in nitrogen metabolism in Mycobacterium tuberculosis have been described, including glutamine synthetase and its adenylyltransferase, but not much data concerning the other components involved in the signalling cascade is available. In this review a comparative study of factors involved in nitrogen metabolism in C. glutamicum and S. coelicolor is made to identify similarities with M. tuberculosis on both a genomic and proteomic level. This may provide insight into a potential global mechanism of nitrogen control in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Catriona Harper
- Molecular Biology and Human Genetics, University of Stellenbosch, Tygerberg, Cape Town, Western Cape 7505, South Africa.
| | | | | | | |
Collapse
|
41
|
Schulte C, Arenskötter M, Berekaa MM, Arenskötter Q, Priefert H, Steinbüchel A. Possible involvement of an extracellular superoxide dismutase (SodA) as a radical scavenger in poly(cis-1,4-isoprene) degradation. Appl Environ Microbiol 2008; 74:7643-53. [PMID: 18952871 PMCID: PMC2607186 DOI: 10.1128/aem.01490-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/20/2008] [Indexed: 11/20/2022] Open
Abstract
Gordonia westfalica Kb1 and Gordonia polyisoprenivorans VH2 induce the formation of an extracellular superoxide dismutase (SOD) during poly(cis-1,4-isoprene) degradation. To investigate the function of this enzyme in G. polyisoprenivorans VH2, the sodA gene was disrupted. The mutants exhibited reduced growth in liquid mineral salt media containing poly(cis-1,4-isoprene) as the sole carbon and energy source, and no SOD activity was detectable in the supernatants of the cultures. Growth experiments revealed that SodA activity is required for optimal growth on poly(cis-1,4-isoprene), whereas this enzyme has no effect on aerobic growth in the presence of water-soluble substrates like succinate, acetate, and propionate. This was detected by activity staining, and proof of expression was by antibody detection of SOD. When SodA from G. westfalica Kb1 was heterologously expressed in the sodA sodB double mutant Escherichia coli QC779, the recombinant mutant exhibited increased resistance to paraquat, thereby indicating the functionality of the G. westfalica Kb1 SodA and indirectly protection of G. westfalica cells by SodA from oxidative damage. Both sodA from G. polyisoprenivorans VH2 and sodA from G. westfalica Kb1 coded for polypeptides comprising 209 amino acids and having approximately 90% and 70% identical amino acids, respectively, to the SodA from Mycobacterium smegmatis strain MC(2) 155 and Micrococcus luteus NCTC 2665. As revealed by activity staining experiments with the wild type and the disruption mutant of G. polyisoprenivorans, this bacterium harbors only one active SOD belonging to the manganese family. The N-terminal sequences of the extracellular SodA proteins of both Gordonia species showed no evidence of leader peptides for the mature proteins, like the intracellular SodA protein of G. polyisoprenivorans VH2, which was purified under native conditions from the cells. In G. westfalica Kb1 and G. polyisoprenivorans VH2, SodA probably provides protection against reactive oxygen intermediates which occur during degradation of poly(cis-1,4-isoprene).
Collapse
Affiliation(s)
- Carina Schulte
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Correnstrasse 3, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
42
|
A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun 2008; 76:5200-14. [PMID: 18725418 DOI: 10.1128/iai.00434-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is the leading cause of death in AIDS patients, yet the current tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is contraindicated for immunocompromised individuals, including human immunodeficiency virus-positive persons, because it can cause disseminated disease; moreover, its efficacy is suboptimal. To address these problems, we have engineered BCG mutants that grow normally in vitro in the presence of a supplement, are preloadable with supplement to allow limited growth in vivo, and express the highly immunoprotective Mycobacterium tuberculosis 30-kDa major secretory protein. The limited replication in vivo renders these vaccines safer than BCG in SCID mice yet is sufficient to induce potent cell-mediated and protective immunity in the outbred guinea pig model of pulmonary tuberculosis. In the case of one vaccine, rBCG(mbtB)30, protection was superior to that with BCG (0.3-log fewer CFU of M. tuberculosis in the lung [P < 0.04] and 0.6-log fewer CFU in the spleen [P = 0.001] in aerosol-challenged animals [means for three experiments]); hence, rBCG(mbtB)30 is the first live mycobacterial vaccine that is both more attenuated than BCG in the SCID mouse and more potent than BCG in the guinea pig. Our study demonstrates the feasibility of developing safer and more potent vaccines against tuberculosis. The novel approach of engineering a replication-limited vaccine expressing a recombinant immunoprotective antigen and preloading it with a required nutrient, such as iron, that is capable of being stored should be generally applicable to other live vaccine vectors targeting intracellular pathogens.
Collapse
|
43
|
Diagnosis of bovine paratuberculosis by a novel enzyme-linked immunosorbent assay based on early secreted antigens of Mycobacterium avium subsp. paratuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1277-81. [PMID: 18550730 DOI: 10.1128/cvi.00105-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that protein antigens of serodiagnostic potential were more abundant in culture filtrates than cellular extracts from liquid cultures of Mycobacterium avium subsp. paratuberculosis (D. Cho and M. T. Collins, Clin. Vaccine Immunol. 13:1155-1161, 2006). Based on this observation, a novel enzyme-linked immunosorbent assay (ELISA) using antigens secreted by young (early- to mid-log-phase) cultures of M. avium subsp. paratuberculosis JTC303 (a low-passage isolate originating from the ileum of a Holstein bull) in mycobactin-supplemented Watson-Reid medium (pH 6.0) was developed and evaluated using a previously described panel of bovine sera (M. T. Collins et al., Clin. Diagn. Lab. Immunol. 12:685-692, 2005) that included 444 paratuberculosis cases and 412 controls. The new assay, called JTC-ELISA, had a significantly higher diagnostic sensitivity and an equivalent specificity compared to those of five commercial paratuberculosis ELISA kits. By receiver-operating characteristic analysis, the JTC-ELISA had the highest area under the curve of the six assays evaluated. The JTC-ELISA was particularly sensitive at detecting low-level fecal shedders of Mavium subsp. paratuberculosis (40%; the sensitivity of the commercial kits was 20%). The JTC-ELISA works effectively on both serum and milk samples for the detection of cattle with subclinical M. avium subsp. paratuberculosis infections, providing a cost-effective diagnostic tool to support paratuberculosis control programs in cattle herds.
Collapse
|
44
|
Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog 2008; 4:e1000081. [PMID: 18535659 PMCID: PMC2390761 DOI: 10.1371/journal.ppat.1000081] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 05/01/2008] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis has evolved many strategies to evade elimination by the host immune system, including the selective repression of macrophage IL-12p40 production. To identify the M. tuberculosis genes responsible for this aspect of immune evasion, we used a macrophage cell line expressing a reporter for IL-12p40 transcription to screen a transposon library of M. tuberculosis for mutants that lacked this function. This approach led to the identification of the mmaA4 gene, which encodes a methyl transferase required for introducing the distal oxygen-containing modifications of mycolic acids, as a key locus involved in the repression of IL-12p40. Mutants in which mmaA4 (hma) was inactivated stimulated macrophages to produce significantly more IL-12p40 and TNF-alpha than wild-type M. tuberculosis and were attenuated for virulence. This attenuation was not seen in IL-12p40-deficient mice, consistent with a direct linkage between enhanced stimulation of IL-12p40 by the mutant and its reduced virulence. Treatment of macrophages with trehalose dimycolate (TDM) purified from the DeltammaA4 mutant stimulated increased IL-12p40, similar to the increase observed from DeltammaA4 mutant-infected macrophages. In contrast, purified TDM isolated from wild-type M. tuberculosis inhibited production of IL-12p40 by macrophages. These findings strongly suggest that M. tuberculosis has evolved mmaA4-derived mycolic acids, including those incorporated into TDM to manipulate IL-12-mediated immunity and virulence.
Collapse
|
45
|
Functional analysis of GlnE, an essential adenylyl transferase in Mycobacterium tuberculosis. J Bacteriol 2008; 190:4894-902. [PMID: 18469098 DOI: 10.1128/jb.00166-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine synthetase (GS) plays an important role in nitrogen assimilation. The major GS of Mycobacterium tuberculosis is GlnA1, a type I GS whose activity is controlled by posttranscriptional modification by GlnE. GlnE is an adenylyl transferase comprised of an adenylylating domain and a deadenylylating domain which modulate GS activity. We previously demonstrated that GlnE is essential in M. tuberculosis in normal growth medium. In this study, we further show that GlnE is required under multiple medium conditions, including in nitrogen-limited medium. We demonstrate that adenylylation is the critical activity for M. tuberculosis survival, since we were able to delete the deadenylylation domain with no apparent effect on growth or GS activity. Furthermore, we identified a critical aspartate residue in the proposed nucleotidyltransferase motif. Temperature-sensitive mutants of GlnE were generated and shown to have a defect in growth and GS activity in nitrogen-limited medium. Finally, we were able to generate a GlnE null mutant in the presence of L-methionine sulfoximine, a GS inhibitor, and glutamine supplementation. In the presence of these supplements, the null mutant was able to grow similarly to the wild type. Surprisingly, the GlnE mutant was able to survive and grow for extended periods in liquid medium, but not on solid medium, in the absence of GS inhibition. Thus, we have confirmed that the unusual requirement of M. tuberculosis for GlnE adenylylation activity is linked to the activity of GS in the cell.
Collapse
|
46
|
Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2008; 88:526-44. [PMID: 18439872 DOI: 10.1016/j.tube.2008.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/08/2008] [Accepted: 02/18/2008] [Indexed: 01/03/2023]
Abstract
The cell wall of mycobacteria includes an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the beta-barrel structure, the absence of hydrophobic alpha-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the beta-strand content and the amphiphilicity of the beta-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with beta-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis.
Collapse
Affiliation(s)
- Houhui Song
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
47
|
Antioxidative effect of Bacteroides thetaiotaomicron extracts: superoxide dismutase identification. Anal Bioanal Chem 2008; 391:415-23. [DOI: 10.1007/s00216-008-1993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
|
48
|
Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 2008; 76:1825-36. [PMID: 18250176 DOI: 10.1128/iai.01396-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion of effector molecules is one of the major mechanisms by which the intracellular human pathogen Legionella pneumophila interacts with host cells during infection. Specific secretion machineries which are responsible for the subfraction of secreted proteins (soluble supernatant proteins [SSPs]) and the production of bacterial outer membrane vesicles (OMVs) both contribute to the protein composition of the extracellular milieu of this lung pathogen. Here we present comprehensive proteome reference maps for both SSPs and OMVs. Protein identification and assignment analyses revealed a total of 181 supernatant proteins, 107 of which were specific to the SSP fraction and 33 of which were specific to OMVs. A functional classification showed that a large proportion of the identified OMV proteins are involved in the pathogenesis of Legionnaires' disease. Zymography and enzyme assays demonstrated that the SSP and OMV fractions possess proteolytic and lipolytic enzyme activities which may contribute to the destruction of the alveolar lining during infection. Furthermore, it was shown that OMVs do not kill host cells but specifically modulate their cytokine response. Binding of immunofluorescently stained OMVs to alveolar epithelial cells, as visualized by confocal laser scanning microscopy, suggested that there is delivery of a large and complex group of proteins and lipids in the infected tissue in association with OMVs. On the basis of these new findings, we discuss the relevance of protein sorting and compartmentalization of virulence factors, as well as environmental aspects of the vesicle-mediated secretion.
Collapse
|
49
|
Shi L, Sohaskey CD, North RJ, Gennaro ML. Transcriptional characterization of the antioxidant response of Mycobacterium tuberculosis in vivo and during adaptation to hypoxia in vitro. Tuberculosis (Edinb) 2007; 88:1-6. [PMID: 17928268 DOI: 10.1016/j.tube.2007.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 08/01/2007] [Accepted: 08/27/2007] [Indexed: 12/26/2022]
Abstract
Transcriptional profiling of antioxidant genes of Mycobacterium tuberculosis was performed by real-time RT-PCR during mouse lung infection and during adaptation to gradual oxygen depletion in vitro. M. tuberculosis genes involved in major detoxification pathways of oxidative stress were not up-regulated during chronic mouse lung infection, which is established in response to expression of host adaptive immunity. This result suggests that a major function of bacterial antioxidant enzymes is to protect from oxidants generated during the early, acute phase of infection. In vivo transcription profiles of bacterial antioxidant enzymes differed from those seen under adaptation to low oxygen in vitro, indicating differences between growth arrest in vivo and that induced by hypoxia in vitro.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, 225 Warren Street Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
50
|
Revol A, Espinoza-Ruiz M, Medina-Villanueva I, Salinas-Carmona MC. Expression of Nocardia brasiliensis superoxide dismutase during the early infection of murine peritoneal macrophages. Can J Microbiol 2007; 52:1255-60. [PMID: 17473895 DOI: 10.1139/w06-075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nocardia brasiliensis is the main agent of actinomycetoma in Mexico, but little is known about its virulence and molecular pathogenic pathways. These facultative intracellular bacteria are able to survive and divide within the host phagocytic cells, in part by neutralizing the reactive oxygen intermediates. Superoxide dismutase (SOD) participates in the intracellular survival of several bacterial species and, in particular, constitutes one of Nocardia asteroides virulence factors. To clarify SOD participation in the N. brasiliensis early infective process, we report its isolation and the consequent comparison of its transcript level. A 630 bp polymerase chain reaction fragment that included most of the coding sequence of N. brasiliensis sodA was cloned. A competitive assay was developed, allowing comparison of bacterial sod expression in exponential culture and 1 h after infecting peritoneal macrophages from BALB/c mice. At that time, there were viable bacteria in the macrophages. The intracellular bacteria presented a clear decrease in their sod transcript amount, although their 16S rRNA (used as an internal control) and hsp levels were maintained or slightly increased, respectively. These results indicate that sodA transcription is not maintained within the SOS bacterial response induced by phagosomal conditions. Further kinetics will be necessary to precisely define sod transcriptional regulation during N. brasiliensis intra-macrophage growth.
Collapse
Affiliation(s)
- Agnès Revol
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | | |
Collapse
|