1
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
2
|
Dangel ML, Dettmann JC, Haßelbarth S, Krogull M, Schakat M, Kreikemeyer B, Fiedler T. The 5'-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes. PLoS One 2019; 14:e0211074. [PMID: 30703118 PMCID: PMC6354987 DOI: 10.1371/journal.pone.0211074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/04/2022] Open
Abstract
5’-nucleotidases are widespread among all domains of life. The enzymes hydrolyze phosphate residues from nucleotides and nucleotide derivatives. In some pathobiontic bacteria, 5’-nucleotidases contribute to immune evasion by dephosphorylating adenosine mono-, di-, or tri-phosphates, thereby either decreasing the concentration of pro-inflammatory ATP or increasing the concentration of anti-inflammatory adenosine, both acting on purinergic receptors of phagocytic cells. The strict human pathogen Streptococcus pyogenes expresses a surface-associated 5’-nucleotidase (S5nA) under infection conditions that has previously been discussed as a potential virulence factor. Here we show that deletion of the S5nA gene does not significantly affect growth in human blood, evasion of phagocytosis by neutrophils, formation of biofilms and virulence in an infection model with larvae of the greater wax moth Galleria mellonella in S. pyogenes serotypes M6, M18 and M49. Hence, the surface-associated 5’-nucleotidase S5nA seems dispensable for evasion of phagocytosis and biofilm formation in S. pyogenes.
Collapse
Affiliation(s)
- Marcel-Lino Dangel
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Johann-Christoph Dettmann
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Steffi Haßelbarth
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Martin Krogull
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Miriam Schakat
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Bernd Kreikemeyer
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Tomas Fiedler
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
- * E-mail:
| |
Collapse
|
3
|
Wang W, Song Y, Liu L, Zhang Y, Wang T, Zhang W, Li K, Qi X, Gao Y, Gao L, Liu C, Zhang Y, Wang Y, Pan Q, He G, Wang X, Cui H. Neutralizing-antibody-mediated protection of chickens against infectious bursal disease via one-time vaccination with inactivated recombinant Lactococcus lactis expressing a fusion protein constructed from the RCK protein of Salmonella enterica and VP2 of infectious bursal disease virus. Microb Cell Fact 2019; 18:21. [PMID: 30704494 PMCID: PMC6357496 DOI: 10.1186/s12934-019-1061-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Infectious bursal disease (IBD) is an acute contagious immunosuppressive disease which lead to acute bursal injury and immune dysfunction in poultry. It has caused heavy economic losses in the commercial poultry industry for many years in worldwide. Attenuated live vaccine has widely used in poultry showing some promising signs against IBDV infection. But it has defects such as generating enhanced virulence and immunosuppression prohibits. Therefore, the development of mucosal vaccines using the food-grade lactic acid bacterium is necessary. Here, we construct a recombinant Lactococcus co-expressing the major IBDV antigens VP2 and RCK protein of Salmonella enterica to prevent IBD. Results The recombinant fusion protein VP2-RCK was expressed in a soluble and stable form in the cytoplasm of the recombinant Lactococcus lactis. Animal experiments showed that: (1) the survival rates of the injected immunization inactivated recombinant LAB group and oral immunization live recombinant LAB group were 100% and 80%, respectively; (2) ELISA titers of all serum samples from all experimental groups were negative, but high amounts of specific neutralizing antibodies were detected (1:210 to 1:212); and (3) the bursas of the injected immunization inactivated recombinant LAB group did not suffer damage, as confirmed by clinical observation and bursal histopathological examination. Our results indicate that r-L. lactis-OptiVP2-RCK induces a specific neutralizing-antibody-mediated immune response that confers full protection against very-virulent IBDV (vvIBDV) challenge. Conclusion Lactococcus lactis NZ3900 strain and its matching plasmid pNZ8149 could express the recombinant fusion protein VP2-RCK in a soluble form in the cytoplasm. The protective efficacy of r-L. lactis-OptiVP2-RCK (100%) was better than r-L. lactis-OptiVP2 (0%) which prove RCK protein played its unique role. The neutralizing antibodies titers against infectious bursal disease virus via one-time vaccination with inactivated r-L. lactis-OptiVP2-RCK could reach 1:210 to 1:212, but ELISA titers of all serum samples were negative. For this phenomenon, perhaps because of the change of delivery pathway or the spatial structure of fusion protein. We need further study to test these hypotheses.
Collapse
Affiliation(s)
- Wenqian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuxin Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Linlin Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Tingting Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Kai Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaole Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yulong Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Changjun Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongqiang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Qing Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Gaoming He
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiaomei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
4
|
Lindsay DSJ, Brown AW, Scott KJ, Denham B, Thom L, Rundell G, Ure R, Jones B, Smith AJ. Circulating emm types of Streptococcus pyogenes in Scotland: 2011–2015. J Med Microbiol 2016; 65:1229-1231. [DOI: 10.1099/jmm.0.000335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Diane S. J. Lindsay
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Alistair W. Brown
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Kevin J. Scott
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Barbara Denham
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Louise Thom
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Gillian Rundell
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Roisin Ure
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Brian Jones
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
| | - Andrew J. Smith
- Scottish Haemophilus Legionella Meningococcus Pneumococcus Reference Laboratory, New Lister Building , Glasgow G31 2ER, Scotland, UK
- College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| |
Collapse
|
5
|
Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I. Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus. Nanomedicine (Lond) 2016; 11:1223-36. [DOI: 10.2217/nnm.16.36] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To develop an oral nanovaccine delivery system for lipopeptide-based vaccine candidate against group A Streptococcus. Materials & methods: Lipid-core peptide-1-loaded nanoliposomes were prepared as a template and coated with opposite-charged polyelectrolytes to produce particles with size <200 nm. Efficacy of this oral nanovaccine delivery system was evaluated in mice model. Results: Polymer-coated liposomes produced significantly higher antigen-specific mucosal IgA and systemic IgG titers in comparison to vaccine formulated with a strong mucosal adjuvant upon oral immunization in mice. Moreover, high levels of systemic antibody titers were retained even at day 185 postprimary immunization. Conclusion: Efficient oral delivery platform for lipopeptide-based vaccines has been developed.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ashwini K Giddam
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Khairunnisa A Ghaffar
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Reglinski M, Gierula M, Lynskey NN, Edwards RJ, Sriskandan S. Identification of the Streptococcus pyogenes surface antigens recognised by pooled human immunoglobulin. Sci Rep 2015; 5:15825. [PMID: 26508447 PMCID: PMC4623672 DOI: 10.1038/srep15825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022] Open
Abstract
Immunity to common bacteria requires the generation of antibodies that promote opsonophagocytosis and neutralise toxins. Pooled human immunoglobulin is widely advocated as an adjunctive treatment for clinical Streptococcus pyogenes infection however, the protein targets of the reagent remain ill defined. Affinity purification of the anti-streptococcal antibodies present within pooled immunoglobulin resulted in the generation of an IgG preparation that promoted opsonophagocytic killing of S. pyogenes in vitro and provided passive immunity in vivo. Isolation of the streptococcal surface proteins recognised by pooled human immunoglobulin permitted identification and ranking of 94 protein antigens, ten of which were reproducibly identified across four contemporary invasive S. pyogenes serotypes (M1, M3, M12 and M89). The data provide novel insight into the action of pooled human immunoglobulin during invasive S. pyogenes infection, and demonstrate a potential route to enhance the efficacy of antibody based therapies.
Collapse
Affiliation(s)
- Mark Reglinski
- Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Magdalena Gierula
- Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Nicola N Lynskey
- Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Robert J Edwards
- Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Shiranee Sriskandan
- Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, United Kingdom
| |
Collapse
|
7
|
Chamcha V, Jones A, Quigley BR, Scott JR, Amara RR. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut. THE JOURNAL OF IMMUNOLOGY 2015; 195:5025-34. [PMID: 26482408 DOI: 10.4049/jimmunol.1501243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV.
Collapse
Affiliation(s)
- Venkateswarlu Chamcha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and
| | - Andrew Jones
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and
| | - Bernard R Quigley
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| | - June R Scott
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| |
Collapse
|
8
|
Zhou Y, Hanks TS, Feng W, Li J, Liu G, Liu M, Lei B. The sagA/pel locus does not regulate the expression of the M protein of the M1T1 lineage of group A Streptococcus. Virulence 2013; 4:698-706. [PMID: 24121654 DOI: 10.4161/viru.26413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Altered expression of Group A Streptococcus (GAS) virulence factors, including the M protein, can result as a consequence of spontaneous genetic changes that occur during laboratory and animal passage. Occurrence of such secondary mutations during targeted gene deletion could confound the interpretation of effects attributable to the function of the gene being investigated. Contradicting reports on whether the sagA/pel locus regulates the M protein-encoding emm might be due to inconsistent occurrence of mutations unrelated with sagA. This study examined the possibility that altered emm expression observed in association with sagA/pel deletion mutants is artifactual. sagA deletion mutants (MGAS2221ΔsagA) of M1T1 isolate MGAS2221 obtained using liquid broth for GAS growth during the deletion process had diminished emm transcription and no detectable M protein production. In contrast, a ΔsagA mutant of another closely genetically related M1T1 isolate had normal emm expression. The sagB gene does not regulate emm; however, one of three MGAS2221ΔsagB mutants had diminished emm expression. The emm regulator mga was downregulated in these M protein expression-negative strains. These results argue that sagA deletion does not directly cause the downregulation of emm expression. Indeed, two MGAS2221ΔsagA mutants obtained using agar plates for GAS growth during the deletion process both had normal emm expression. We conclude that the sagA/pel locus does not regulate emm expression in the M1T1 lineage and provide a protocol for targeted gene deletion that we find less prone to the generation of mutants exhibiting downregulation in emm expression.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan, P.R. China; Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Tracey S Hanks
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Wenchao Feng
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan, P.R. China; Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Guanghui Liu
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Mengyao Liu
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Benfang Lei
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| |
Collapse
|
9
|
Abstract
Streptococcus pyogenes (Group A Streptococcus or GAS) is a Gram-positive bacterial pathogen that has shown complex modes of regulation of its virulence factors to cause diverse diseases. Bacterial small RNAs are regarded as novel widespread regulators of gene expression in response to environmental signals. Recent studies have revealed that several small RNAs (sRNAs) have an important role in S. pyogenes physiology and pathogenesis by regulating gene expression at the translational level. To search for new sRNAs in S. pyogenes, we performed a genomewide analysis through computational prediction followed by experimental verification. To overcome the limitation of low accuracy in computational prediction, we employed a combination of three different computational algorithms (sRNAPredict, eQRNA and RNAz). A total of 45 candidates were chosen based on the computational analysis, and their transcription was analyzed by reverse-transcriptase PCR and Northern blot. Through this process, we discovered 7 putative novel trans-acting sRNAs. Their abundance varied between different growth phases, suggesting that their expression is influenced by environmental or internal signals. Further, to screen target mRNAs of an sRNA, we employed differential RNA sequencing analysis. This study provides a significant resource for future study of small RNAs and their roles in physiology and pathogenesis of S. pyogenes.
Collapse
|
10
|
Patenge N, Billion A, Raasch P, Normann J, Wisniewska-Kucper A, Retey J, Boisguérin V, Hartsch T, Hain T, Kreikemeyer B. Identification of novel growth phase- and media-dependent small non-coding RNAs in Streptococcus pyogenes M49 using intergenic tiling arrays. BMC Genomics 2012; 13:550. [PMID: 23062031 PMCID: PMC3542284 DOI: 10.1186/1471-2164-13-550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Small non-coding RNAs (sRNAs) have attracted attention as a new class of gene regulators in both eukaryotes and bacteria. Genome-wide screening methods have been successfully applied in Gram-negative bacteria to identify sRNA regulators. Many sRNAs are well characterized, including their target mRNAs and mode of action. In comparison, little is known about sRNAs in Gram-positive pathogens. In this study, we identified novel sRNAs in the exclusively human pathogen Streptococcus pyogenes M49 (Group A Streptococcus, GAS M49), employing a whole genome intergenic tiling array approach. GAS is an important pathogen that causes diseases ranging from mild superficial infections of the skin and mucous membranes of the naso-pharynx, to severe toxic and invasive diseases. RESULTS We identified 55 putative sRNAs in GAS M49 that were expressed during growth. Of these, 42 were novel. Some of the newly-identified sRNAs belonged to one of the common non-coding RNA families described in the Rfam database. Comparison of the results of our screen with the outcome of two recently published bioinformatics tools showed a low level of overlap between putative sRNA genes. Previously, 40 potential sRNAs have been reported to be expressed in a GAS M1T1 serotype, as detected by a whole genome intergenic tiling array approach. Our screen detected 12 putative sRNA genes that were expressed in both strains. Twenty sRNA candidates appeared to be regulated in a medium-dependent fashion, while eight sRNA genes were regulated throughout growth in chemically defined medium. Expression of candidate genes was verified by reverse transcriptase-qPCR. For a subset of sRNAs, the transcriptional start was determined by 5' rapid amplification of cDNA ends-PCR (RACE-PCR) analysis. CONCLUSIONS In accord with the results of previous studies, we found little overlap between different screening methods, which underlines the fact that a comprehensive analysis of sRNAs expressed by a given organism requires the complementary use of different methods and the investigation of several environmental conditions. Despite a high conservation of sRNA genes within streptococci, the expression of sRNAs appears to be strain specific.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology and Hospital Hygiene, University of Rostock, Schillingallee 70, 18057, Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Patenge N, Fiedler T, Kreikemeyer B. Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 2012; 368:111-53. [PMID: 23242855 DOI: 10.1007/82_2012_295] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptococcal species are a diverse group of bacteria which can be found in animals and humans. Their interactions with host organisms can vary from commensal to pathogenic. Many of the pathogenic species are causative agents of severe, invasive infections in their hosts, accounting for a high burden of morbidity and mortality, associated with high economic costs in industry and health care. Among them, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus suis are discussed here. An environmentally stimulated and tightly controlled expression of their virulence factors is of utmost importance for their pathogenic potential. Thus, the most universal and widespread regulators from the classes of stand-alone transcriptional regulators, two-component signal transduction systems (TCS), eukaryotic-like serine/threonine kinases, and small noncoding RNAs are the topic of this chapter. The regulatory levels are reviewed with respect to function, activity, and their role in pathogenesis. Understanding of and interfering with transcriptional regulation mechanisms and networks is a promising basis for the development of novel anti-infective therapies.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
12
|
Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 2011; 9:670-81. [PMID: 21822292 DOI: 10.1038/nrmicro2624] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor that is produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS is just one of an extended family of post-translationally modified virulence factors (the SLS-like peptides) that are produced by some streptococci and other Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review, we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs).
Collapse
Affiliation(s)
- Evelyn M Molloy
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
13
|
Dmitriev A, Mohapatra SS, Chong P, Neely M, Biswas S, Biswas I. CovR-controlled global regulation of gene expression in Streptococcus mutans. PLoS One 2011; 6:e20127. [PMID: 21655290 PMCID: PMC3105014 DOI: 10.1371/journal.pone.0020127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/13/2011] [Indexed: 12/15/2022] Open
Abstract
CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus.
Collapse
Affiliation(s)
- Alexander Dmitriev
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Saswat S. Mohapatra
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patrick Chong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Melody Neely
- Department of Microbiology and Immunology, Wayne State School of Medicine, Detroit, Michigan, United States of America
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sumitomo T, Nakata M, Higashino M, Jin Y, Terao Y, Fujinaga Y, Kawabata S. Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. J Biol Chem 2010; 286:2750-61. [PMID: 21084306 DOI: 10.1074/jbc.m110.171504] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Group A Streptococcus pyogenes (GAS) is a human pathogen that causes local suppurative infections and severe invasive diseases. Systemic dissemination of GAS is initiated by bacterial penetration of the epithelial barrier of the pharynx or damaged skin. To gain insight into the mechanism by which GAS penetrates the epithelial barrier, we sought to identify both bacterial and host factors involved in the process. Screening of a transposon mutant library of a clinical GAS isolate recovered from an invasive episode allowed identification of streptolysin S (SLS) as a novel factor that facilitates the translocation of GAS. Of note, the wild type strain efficiently translocated across the epithelial monolayer, accompanied by a decrease in transepithelial electrical resistance and cleavage of transmembrane junctional proteins, including occludin and E-cadherin. Loss of integrity of intercellular junctions was inhibited after infection with a deletion mutant of the sagA gene encoding SLS, as compared with those infected with the wild type strain. Interestingly, following GAS infection, calpain was recruited to the plasma membrane along with E-cadherin. Moreover, bacterial translocation and destabilization of the junctions were partially inhibited by a pharmacological calpain inhibitor or genetic interference with calpain. Our data indicate a potential function of SLS that facilitates GAS invasion into deeper tissues via degradation of epithelial intercellular junctions in concert with the host cysteine protease calpain.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine. Infect Immun 2010; 78:4051-67. [PMID: 20624906 DOI: 10.1128/iai.00295-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.
Collapse
|
16
|
A foreign protein incorporated on the Tip of T3 pili in Lactococcus lactis elicits systemic and mucosal immunity. Infect Immun 2009; 78:1294-303. [PMID: 20028807 DOI: 10.1128/iai.01037-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of Lactococcus lactis to deliver a chosen antigen to the mucosal surface has been shown to elicit an immune response in mice and is a possible method of vaccination in humans. The recent discovery on Gram-positive bacteria of pili that are covalently attached to the bacterial surface and the elucidation of the residues linking the major and minor subunits of such pili suggests that the presentation of an antigen on the tip of pili external to the surface of L. lactis might constitute a successful vaccine strategy. As a proof of principle, we have fused a foreign protein (the Escherichia coli maltose-binding protein) to the C-terminal region of the native tip protein (Cpa) of the T3 pilus derived from Streptococcus pyogenes and expressed this fusion protein (MBP*) in L. lactis. We find that MBP* is incorporated into pili in this foreign host, as shown by Western blot analyses of cell wall proteins and by immunogold electron microscopy. Furthermore, since the MBP* on these pili retains its native biological activity, it appears to retain its native structure. Mucosal immunization of mice with this L. lactis strain expressing pilus-linked MBP* results in production of both a systemic and a mucosal response (IgG and IgA antibodies) against the MBP antigen. We suggest that this type of mucosal vaccine delivery system, which we term UPTOP (for unhindered presentation on tips of pili), may provide an inexpensive and stable alternative to current mechanisms of immunization for many serious human pathogens.
Collapse
|
17
|
Perez N, Treviño J, Liu Z, Ho SCM, Babitzke P, Sumby P. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS One 2009; 4:e7668. [PMID: 19888332 PMCID: PMC2765633 DOI: 10.1371/journal.pone.0007668] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/12/2009] [Indexed: 12/25/2022] Open
Abstract
The coordinated regulation of gene expression is essential for pathogens to infect and cause disease. A recently appreciated mechanism of regulation is that afforded by small regulatory RNA (sRNA) molecules. Here, we set out to assess the prevalence of sRNAs in the human bacterial pathogen group A Streptococcus (GAS). Genome-wide identification of candidate GAS sRNAs was performed through a tiling Affymetrix microarray approach and identified 40 candidate sRNAs within the M1T1 GAS strain MGAS2221. Together with a previous bioinformatic approach this brings the number of novel candidate sRNAs in GAS to 75, a number that approximates the number of GAS transcription factors. Transcripts were confirmed by Northern blot analysis for 16 of 32 candidate sRNAs tested, and the abundance of several of these sRNAs were shown to be temporally regulated. Six sRNAs were selected for further study and the promoter, transcriptional start site, and Rho-independent terminator identified for each. Significant variation was observed between the six sRNAs with respect to their stability during growth, and with respect to their inter- and/or intra-serotype-specific levels of abundance. To start to assess the contribution of sRNAs to gene regulation in M1T1 GAS we deleted the previously described sRNA PEL from four clinical isolates. Data from genome-wide expression microarray, quantitative RT-PCR, and Western blot analyses are consistent with PEL having no regulatory function in M1T1 GAS. The finding that candidate sRNA molecules are prevalent throughout the GAS genome provides significant impetus to the study of this fundamental gene-regulatory mechanism in an important human pathogen.
Collapse
Affiliation(s)
- Nataly Perez
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jeanette Treviño
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Zhuyun Liu
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Siu Chun Michael Ho
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paul Sumby
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Turner CE, Kurupati P, Jones MD, Edwards RJ, Sriskandan S. Emerging role of the interleukin-8 cleaving enzyme SpyCEP in clinical Streptococcus pyogenes infection. J Infect Dis 2009; 200:555-63. [PMID: 19591574 DOI: 10.1086/603541] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophil chemoattractant interleukin (IL)-8 is cleaved and inactivated by the Streptococcus pyogenes cell envelope protease SpyCEP. A range of clinical S. pyogenes strains of differing emm type demonstrated SpyCEP activity, although transcription of the SpyCEP gene cepA differed 1000-fold between isolates. Disruption of the 2-component regulatory system covR/S in pharyngeal isolates increased cepA transcription 100-fold; this finding is consistent with endogenous CovR/S-mediated repression of cepA being responsible for low SpyCEP expression in some S. pyogenes strains associated with pharyngitis. Among patients with invasive S. pyogenes infection, disease severity and outcome were associated with the SpyCEP activity of the isolate. Lethal invasive isolate H292 (emm81) expressed more cepA than did other tested isolates. This strain carried a unique covR mutation that impaired binding to the cepA promoter. CovR/S sequence comparison in other clinical isolates revealed community-wide dissemination of covS mutations but not covR mutations. The results highlight a potential hazard and underline the importance of continuing molecular epidemiological surveillance for community-wide dissemination of CovR/S mutant hyperinvasive strains.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Infectious Diseases and Immunity, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Turner CE, Kurupati P, Wiles S, Edwards RJ, Sriskandan S. Impact of immunization against SpyCEP during invasive disease with two streptococcal species: Streptococcus pyogenes and Streptococcus equi. Vaccine 2009; 27:4923-9. [PMID: 19563892 PMCID: PMC2759039 DOI: 10.1016/j.vaccine.2009.06.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 11/19/2022]
Abstract
Currently there is no licensed vaccine against the human pathogen Streptococcus pyogenes. The highly conserved IL-8 cleaving S. pyogenes cell envelope proteinase SpyCEP is surface expressed and is a potential vaccine candidate. A recombinant N-terminal part of SpyCEP (CEP) was expressed and purified. AntiCEP antibodies were found to neutralize the IL-8 cleaving activity of SpyCEP. CEP-immunized mice had reduced bacterial dissemination from focal S. pyogenes intramuscular infection and intranasal infection. We also identified a functional SpyCEP-homolog protease SeCEP, expressed by the equine pathogen Streptococcus equi, which was able to cleave both human and equine IL-8. CEP-immunized mice also demonstrated reduced bacterial dissemination from S. equi intramuscular infection. Therefore immunization against SpyCEP may provide protection against other streptococci species with homologous proteases.
Collapse
Affiliation(s)
- Claire E. Turner
- Department of Infectious Diseases & Immunity, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| | - Prathiba Kurupati
- Department of Infectious Diseases & Immunity, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| | - Siouxsie Wiles
- Department of Infectious Diseases & Immunity, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| | - Robert J. Edwards
- Department of Experimental Medicine & Toxicology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Diseases & Immunity, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| |
Collapse
|
20
|
Inactivation of DltA modulates virulence factor expression in Streptococcus pyogenes. PLoS One 2009; 4:e5366. [PMID: 19401780 PMCID: PMC2671602 DOI: 10.1371/journal.pone.0005366] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND D-alanylated lipoteichoic acid is a virtually ubiquitous component of gram-positive cell walls. Mutations in the dltABCD operon of numerous species exhibit pleiotropic effects, including reduced virulence, which has been attributed to increased binding of cationic antimicrobial peptides to the more negatively charged cell surface. In this study, we have further investigated the effects that mutating dltA has on virulence factor expression in Streptococcus pyogenes. METHODOLOGY/PRINCIPAL FINDINGS Isogenic Delta dltA mutants had previously been created in two distinct M1T1 isolates of S. pyogenes. Immunoblots, flow cytometry, and immunofluorescence were used to quantitate M protein levels in these strains, as well as to assess their ability to bind complement. Bacteria were tested for their ability to interact with human PMN and to grow in whole human blood. Message levels for emm, sic, and various regulatory elements were assessed by quantitative RT-PCR. Cell walls of Delta dltA mutants contained much less M protein than cell walls of parent strains and this correlated with reduced levels of emm transcripts, increased deposition of complement, increased association of bacteria with polymorphonuclear leukocytes, and reduced bacterial growth in whole human blood. Transcription of at least one other gene of the mga regulon, sic, which encodes a protein that inactivates antimicrobial peptides, was also dramatically reduced in Delta dltA mutants. Concomitantly, ccpA and rofA were unaffected, while rgg and arcA were up-regulated. CONCLUSIONS/SIGNIFICANCE This study has identified a novel mechanism for the reduced virulence of dltA mutants of Streptococcus pyogenes in which gene regulatory networks somehow sense and respond to the loss of DltA and lack of D-alanine esterification of lipoteichoic acid. The mechanism remains to be determined, but the data indicate that the status of D-alanine-lipoteichoic acid can significantly influence the expression of at least some streptococcal virulence factors and provide further impetus to targeting the dlt operon of gram-positive pathogens in the search for novel antimicrobial compounds.
Collapse
|
21
|
Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ Microbiol 2009; 11:483-93. [PMID: 19196278 DOI: 10.1111/j.1462-2920.2008.01788.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The light organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis, but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like haemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host's environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by haemocytes from uncured animals to the level observed for haemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting that they produce a factor that complements the mutant's defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting indicated that once binding to haemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of haemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host haemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association.
Collapse
Affiliation(s)
- Spencer V Nyholm
- Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
22
|
A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 2008; 76:978-85. [PMID: 18174342 DOI: 10.1128/iai.01354-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Circumvention of the host innate immune response is critical for bacterial pathogens to infect and cause disease. Here we demonstrate that the group A Streptococcus (GAS; Streptococcus pyogenes) protease SpyCEP (S. pyogenes cell envelope protease) cleaves granulocyte chemotactic protein 2 (GCP-2) and growth-related oncogene alpha (GROalpha), two potent chemokines made abundantly in human tonsils. Cleavage of GCP-2 and GROalpha by SpyCEP abrogated their abilities to prime neutrophils for activation, detrimentally altering the innate immune response. SpyCEP expression is negatively regulated by the signal transduction system CovR/S. Purified recombinant CovR bound the spyCEP gene promoter region in vitro, indicating direct regulation. Immunoreactive SpyCEP protein was present in the culture supernatants of covR/S mutant GAS strains but not in supernatants from wild-type strains. However, wild-type GAS strains do express SpyCEP, where it is localized to the cell wall. Strain MGAS2221, an organism representative of the highly virulent and globally disseminated M1T1 GAS clone, differed significantly from its isogenic spyCEP mutant derivative strain in a mouse soft tissue infection model. Interestingly, and in contrast to previous studies, the isogenic mutant strain generated lesions of larger size than those formed following infection with the parent strain. The data indicate that SpyCEP contributes to GAS virulence in a strain- and disease-dependent manner.
Collapse
|
23
|
Salim KY, de Azavedo JC, Bast DJ, Cvitkovitch DG. Role for sagA and siaA in quorum sensing and iron regulation in Streptococcus pyogenes. Infect Immun 2007; 75:5011-7. [PMID: 17635862 PMCID: PMC2044554 DOI: 10.1128/iai.01824-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes is a ubiquitous and versatile pathogen that causes a variety of infections with a wide range of severity. The versatility of this organism is due in part to its capacity to regulate virulence gene expression in response to the many environments that it encounters during an infection. We analyzed the expression of two potential virulence factors, sagA and siaA (also referred to as pel and htsA, respectively), in response to conditions of varying cell densities and iron concentrations. The sagA gene was up-regulated in conditioned medium from a wild-type strain but not from sagA-deficient mutants, and the gene was also up-regulated in the presence of streptolysin S (SLS), the gene product of sagA, thus indicating that this gene or its product is involved in density-dependent regulation of S. pyogenes. By comparison, siaA responded in a manner consistent with a role in iron acquisition since it was up-regulated under iron-restricted conditions. Although siaA expression was also up-regulated in the presence of SLS and in conditioned media from both wild-type and sagA-deficient mutants, this up-regulation was not growth phase dependent. We conclude that sagA encodes a quorum-sensing signaling molecule, likely SLS, and further support the notion that siaA is likely involved in iron acquisition.
Collapse
Affiliation(s)
- Kowthar Y Salim
- University of Toronto, Dental Research Institute, Department of Microbiology, Toronto, Ontario, Canada M5G 1G6
| | | | | | | |
Collapse
|
24
|
Biswas S, Biswas I. Regulation of the glucosyltransferase (gtfBC) operon by CovR in Streptococcus mutans. J Bacteriol 2006; 188:988-98. [PMID: 16428403 PMCID: PMC1347363 DOI: 10.1128/jb.188.3.988-998.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/13/2005] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is an important etiological agent of dental caries in humans. The extracellular polysaccharides synthesized by cell-associated glucosyltransferases (encoded by gtfBC) from sucrose have been recognized as one of the important virulence factors that promote cell aggregation and adherence to teeth, leading to dental plaque formation. In this study, we have characterized the effect of CovR, a global response regulator, on glucosyltransferase expression. Inactivation of covR in strain UA159 resulted in a marked increase in the GtfB and GtfC proteins, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With the use of a transcriptional reporter system of a single chromosomal copy of the PgtfB-gusA and PgtfC-gusA fusions, we confirmed the transcriptional regulation of these promoters by CovR. By in vitro electrophoretic mobility shift assays with purified CovR protein, we showed that CovR regulates these promoters directly. DNase I footprinting analyses suggest that CovR binds to large regions on these promoters near the transcription start sites. Taken together, our results indicate that CovR negatively regulates the expression of the gtfB and gtfC genes by directly binding to the promoter region.
Collapse
Affiliation(s)
- Saswati Biswas
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Lee Medical Building, 414 East Clark Street, Vermillion, SD 57069.
| | | |
Collapse
|
25
|
Biswas S, Biswas I. Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect Immun 2005; 73:6923-34. [PMID: 16177372 PMCID: PMC1230926 DOI: 10.1128/iai.73.10.6923-6934.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/16/2005] [Accepted: 06/01/2005] [Indexed: 11/20/2022] Open
Abstract
The HtrA surface protease in gram-positive bacteria is involved in the processing and maturation of extracellular proteins and degradation of abnormal or misfolded proteins. Inactivation of htrA has been shown to affect the tolerance to thermal and environmental stress and to reduce virulence. We found that inactivation of Streptococcus mutans htrA by gene-replacement also resulted in a reduced ability to withstand exposure to low and high temperatures, low pH, and oxidative and DNA damaging agents. The htrA mutation affected surface expression of several extracellular proteins including glucan-binding protein B (GbpB), glucosyltransferases, and fructosyltransferase. In addition, htrA mutation also altered the surface expression of enolase and glyceraldehyde-3-phosphate dehydrogenease, two glycolytic enzymes that are known to be present on the streptococcal cell surface. As expected, microscopic analysis of in vitro grown biofilm structure revealed that the htrA deficient biofilms adopted a much more granular patchy appearance, rather than the relatively smooth confluent layer normally seen in the wild type. These results suggest that HtrA plays an important role in the biogenesis of extracellular proteins including surface associated glycolytic enzymes and in biofilm formation of S. mutans.
Collapse
Affiliation(s)
- Saswati Biswas
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, 57069-2390, USA.
| | | |
Collapse
|
26
|
Wei L, Pandiripally V, Gregory E, Clymer M, Cue D. Impact of the SpeB protease on binding of the complement regulatory proteins factor H and factor H-like protein 1 by Streptococcus pyogenes. Infect Immun 2005; 73:2040-50. [PMID: 15784545 PMCID: PMC1087456 DOI: 10.1128/iai.73.4.2040-2050.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial pathogens often exploit human complement regulatory proteins such as factor H (FH) and factor H-like protein 1 (FHL-1) for immune evasion. Fba is an FH and FHL-1 binding protein expressed on the surface of the human pathogenic bacterium Streptococcus pyogenes, a common agent of pharyngeal, skin, and soft-tissue infections. Fba has been shown to contribute to phagocytosis resistance, intracellular invasion, and virulence in mice. Here, we look at the role of Fba in recruitment of FH and FHL-1 by five serotype M1 isolates of streptococci. Inactivation of fba greatly inhibited binding of FH and FHL-1 by all isolates, indicating that Fba is a major FH and FHL-1 binding factor of serotype M1 streptococci. For three isolates, FH binding was significantly reduced in stationary-phase cultures and correlated with high levels of protease activity and SpeB (an extracellular cysteine protease) protein in culture supernatants. Analysis of a speB mutant confirmed that SpeB accounts for the loss of Fba from the cell surface, suggesting that the protease may modulate FH and FHL-1 recruitment during infection. Comparisons of fba DNA sequences revealed that the FH and FHL-1 binding site in Fba is conserved among the M1 isolates. Although the ligand binding site is not strictly conserved in Fba from a serotype M49 isolate, the M49 Fba protein was found to bind both FH and FHL-1. Collectively, these data indicate that binding of FH and FHL-1 is a conserved function of Fba while modulation of Fba function by SpeB is variable.
Collapse
Affiliation(s)
- Lin Wei
- Department of Microbiology, Molecular Genetics and Immunology, Mail Stop 3029, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
27
|
Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, Kotb M, Nizet V. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 2005; 56:681-95. [PMID: 15819624 DOI: 10.1111/j.1365-2958.2005.04583.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathogen group A Streptococcus (GAS) produces a wide spectrum of infections including necrotizing fasciitis (NF). Streptolysin S (SLS) produces the hallmark beta-haemolytic phenotype produced by GAS. The nine-gene GAS locus (sagA-sagI) resembling a bacteriocin biosynthetic operon is necessary and sufficient for SLS production. Using precise, in-frame allelic exchange mutagenesis and single-gene complementation, we show sagA, sagB, sagC, sagD, sagE, sagF and sagG are each individually required for SLS production, and that sagE may further serve an immunity function. Limited site-directed mutagenesis of specific amino acids in the SagA prepropeptide supports the designation of SLS as a bacteriocin-like toxin. No significant pleotrophic effects of sagA deletion were observed on M protein, capsule or cysteine protease production. In a murine model of NF, the SLS-negative M1T1 GAS mutant was markedly diminished in its ability to produce necrotic skin ulcers and spread to the systemic circulation. The SLS toxin impaired phagocytic clearance and promoted epithelial cell cytotoxicity, the latter phenotype being enhanced by the effects of M protein and streptolysin O. We conclude that all genetic components of the sag operon are required for expression of functional SLS, an important virulence factor in the pathogenesis of invasive M1T1 GAS infection.
Collapse
Affiliation(s)
- Vivekanand Datta
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mangold M, Siller M, Roppenser B, Vlaminckx BJM, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 2005; 53:1515-27. [PMID: 15387826 DOI: 10.1111/j.1365-2958.2004.04222.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The capacity of pathogens to cause disease depends strictly on the regulated expression of their virulence factors. In this study, we demonstrate that the untranslated mRNA of the recently described streptococcal pleiotropic effect locus (pel), which incidentally contains sagA, the structural gene for streptolysin S, is an effector of virulence factor expression in group A beta-haemolytic streptococci (GAS). Our data suggest that the regulation by pel RNA occurs at both transcriptional (e.g. emm, sic, nga) and post-transcriptional (e.g. SpeB) levels. We could exclude the possibility that the pel phenotype was linked to a polar effect on downstream genes (sagB-I). Remarkably, the RNA effector is regulated in a growth phase-dependent fashion and we provide evidence that pel RNA expression is induced by conditioned media.
Collapse
Affiliation(s)
- Monika Mangold
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Microbiology and Genetics, University of Vienna, Dr Bohrgasse 9/4, Vienna A-1030, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Barnett TC, Patel AR, Scott JR. A novel sortase, SrtC2, from Streptococcus pyogenes anchors a surface protein containing a QVPTGV motif to the cell wall. J Bacteriol 2004; 186:5865-75. [PMID: 15317792 PMCID: PMC516832 DOI: 10.1128/jb.186.17.5865-5875.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
30
|
Lau SKP, Woo PCY, Yim TC, To APC, Yuen KY. Molecular characterization of a strain of group a streptococcus isolated from a patient with a psoas abscess. J Clin Microbiol 2004; 41:4888-91. [PMID: 14532252 PMCID: PMC254351 DOI: 10.1128/jcm.41.10.4888-4891.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first case of a primary group A streptococcus (GAS) psoas abscess in a 31-year-old woman. The psoas abscess was preceded by an episode of acute pharyngitis. The M-protein gene (emm) and streptolysin S structural gene (sagA) were present in the isolate, with no significant amino acid differences from previously described sequences of M1 GAS isolates. Multilocus sequence typing (MLST) showed that the isolate belonged to MLST sequence type (MLST-ST) 28, the predominant MLST-ST associated with invasive disease caused by M1 isolates.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
31
|
Fontaine MC, Lee JJ, Kehoe MA. Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo. Infect Immun 2003; 71:3857-65. [PMID: 12819070 PMCID: PMC162000 DOI: 10.1128/iai.71.7.3857-3865.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptolysin O (SLO) and streptolysin S (SLS) are potent cytolytic toxins produced by almost all clinical isolates of group A streptococci (GAS). Allele-replacement mutagenesis was used to construct nonpolar (in-frame) deletion mutations in the slo and sagB genes of the serotype M5 GAS strain Manfredo, producing isogenic single and double SLO- and SLS-defective mutants. In contrast to recent reports on SLS-defective insertion mutants (I. Biswas, P. Germon, K. McDade, and J. Scott, Infect. Immun. 69:7029-7038, 2001; Z. Li, D. Sledjeski, B. Kreikemeyer, A.Podbielski, and M. Boyle, J. Bacteriol. 181:6019-6027, 1999), none of the mutants described here had notable pleiotropic effects on the expression of other virulence factors examined. Comparison of isogenic parent and mutant strains in various virulence models revealed no differences in their abilities to multiply in human blood or in their 50% lethal doses (LD(50)s) upon intraperitoneal infection of BALB/c mice. A single log unit difference in the LD(50)s of the parent and SLS-defective mutant strains was observed upon infection by the subcutaneous (s.c.) route. Comparisons over a range of infective doses showed that both SLO and SLS contributed to the early stages of infection and to the induction of necrotic lesions in the murine s.c. model. Individually, each toxin made an incremental contribution to virulence that was not apparent at higher infective doses, although the absence of both toxins reduced virulence over the entire dose range examined. Interestingly, in some cases, the contribution of SLO to virulence was clear only from an analysis of the double-mutant strain, highlighting the value of not confining virulence studies to mutant strains defective in the expression of only single virulence factors.
Collapse
Affiliation(s)
- Michael C Fontaine
- School of Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
32
|
Biswas I, Scott JR. Identification of rocA, a positive regulator of covR expression in the group A streptococcus. J Bacteriol 2003; 185:3081-90. [PMID: 12730168 PMCID: PMC154078 DOI: 10.1128/jb.185.10.3081-3090.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the group A streptococcus (GAS; Streptococcus pyogenes), a two-component system known as CovRS (or CsrRS) regulates about 15% of the genes, including several important virulence factors like the hyaluronic acid capsule. Most of these genes, including covR itself, are negatively regulated by CovR. We have isolated two independent ISS1 insertions in an open reading frame (ORF) that increases CovR expression as measured by a Pcov-gusA reporter fusion in single copy in the GAS chromosome. This ORF, named rocA for "regulator of Cov," activates covR transcription about threefold. As expected, a rocA mutant is mucoid and produces more transcript from the has promoter since this promoter is repressed by CovR. This effect is dependent on the presence of a wild-type covR gene. In contrast to its activation of Pcov, RocA negatively regulates its own expression. This autoregulation is not dependent on the presence of the covR gene. All the phenotypes of the rocA mutant were complemented by the presence of the rocA gene on a plasmid. The rocA gene is present in strains of all nine M serotypes of GAS tested and is absent from strains representing 11 other groups of streptococci and related bacteria, including strains of the closely related group C and G streptococci. It seems likely that rocA plays an important role in the pathogenesis of GAS since it affects expression of the global regulator CovR.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
33
|
Sierig G, Cywes C, Wessels MR, Ashbaugh CD. Cytotoxic effects of streptolysin o and streptolysin s enhance the virulence of poorly encapsulated group a streptococci. Infect Immun 2003; 71:446-55. [PMID: 12496195 PMCID: PMC143243 DOI: 10.1128/iai.71.1.446-455.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the toxicity of streptolysin O (SLO) and streptolysin S (SLS) in purified group A streptococci (GAS) has been established, the effect of these molecules in natural infection is not well understood. To identify whether biologically relevant concentrations of SLO and SLS were cytotoxic to epithelial and phagocytic cells that the bacteria would typically encounter during human infection and to characterize the influence of cell injury on bacterial pathogenesis, we derived GAS strains deficient in SLO or SLS in the background of an invasive GAS M3 isolate and determined their virulence in in vitro and in vivo models of human disease. Whereas bacterial production of SLO resulted in lysis of both human keratinocytes and polymorphonuclear leukocytes, GAS expression of SLS was associated only with keratinocyte injury. Expression of SLO but not SLS impaired polymorphonuclear leukocyte killing of GAS in vitro, but this effect could only be demonstrated in the background of acapsular organisms. In mouse invasive soft-tissue infection, neither SLO or SLS expression significantly influenced mouse survival. By contrast, in a mouse model of bacterial sepsis after intraperitoneal inoculation of GAS, SLO expression enhanced the virulence of both encapsulated and acapsular GAS, whereas SLS expression increased the virulence only of acapsular GAS. We conclude that the cytotoxic effects of SLO protect GAS from phagocytic killing and enhance bacterial virulence, particularly of strains that may be relatively deficient in hyaluronic acid capsule. Compared to SLO, SLS in this strain background has a more modest influence on GAS pathogenicity and the effect does not appear to involve bacterial resistance to phagocytosis.
Collapse
Affiliation(s)
- Gabriele Sierig
- Channing Laboratory and Division of Infectious Diseases, Brigham and Women's Hospital, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
34
|
Abstract
A zone of beta-hemolysis surrounding colonies on blood-agar media is a hallmark phenotypic feature of the pathogens group A Streptococcus (GAS) and group B Streptococcus (GBS). In each case, lysis of red blood cells reflects the action of a potent protein exotoxin. Although these toxins have been the subjects of numerous investigations over the years, their purification and molecular identification have proven elusive. These difficulties reflect the instability of hemolytic activity, as both toxins function only in the context of the bacterial surface or certain high molecular weight 'stabilizer' molecules. This review highlights the recent discoveries of two markedly distinct genetic loci, necessary and sufficient for the beta-hemolytic phenotypes of GAS and GBS, respectively. The generation of isogenic GAS and GBS beta-hemolysin-deficient mutants and their analysis using in vitro and in vivo model systems has shown that both toxins function as virulence factors in the pathogenesis of invasive infections.
Collapse
Affiliation(s)
- Victor Nizet
- Division of Pediatric Infectious Diseases, University of California, San Diego, 9500 Gilman Drive, MC 0672, La Jolla 92093, USA.
| |
Collapse
|
35
|
Fuller JD, Camus AC, Duncan CL, Nizet V, Bast DJ, Thune RL, Low DE, De Azavedo JCS. Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect Immun 2002; 70:5730-9. [PMID: 12228303 PMCID: PMC128303 DOI: 10.1128/iai.70.10.5730-5739.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus iniae causes meningoencephalitis and death in cultured fish species and soft-tissue infection in humans. We recently reported that S. iniae is responsible for local tissue necrosis and bacteremia in a murine subcutaneous infection model. The ability to cause bacteremia in this model is associated with a genetic profile unique to strains responsible for disease in fish and humans (J. D. Fuller, D. J. Bast, V. Nizet, D. E. Low, and J. C. S. de Azavedo, Infect. Immun. 69:1994-2000, 2001). S. iniae produces a cytolysin that confers a hemolytic phenotype on blood agar media. In this study, we characterized the genomic region responsible for S. iniae cytolysin production and assessed its contribution to virulence. Transposon (Tn917) mutant libraries of commensal and disease-associated S. iniae strains were generated and screened for loss of hemolytic activity. Analysis of two nonhemolytic mutants identified a chromosomal locus comprising 9 genes with 73% homology to the group A streptococcus (GAS) sag operon for streptolysin S (SLS) biosynthesis. Confirmation that the S. iniae cytolysin is a functional homologue of SLS was achieved by PCR ligation mutagenesis, complementation of an SLS-negative GAS mutant, and use of the SLS inhibitor trypan blue. SLS-negative sagB mutants were compared to their wild-type S. iniae parent strains in the murine model and in human whole-blood killing assays. These studies demonstrated that S. iniae SLS expression is required for local tissue necrosis but does not contribute to the establishment of bacteremia or to resistance to phagocytic clearance.
Collapse
Affiliation(s)
- Jeffrey D Fuller
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Barnett TC, Scott JR. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 2002; 184:2181-91. [PMID: 11914350 PMCID: PMC134975 DOI: 10.1128/jb.184.8.2181-2191.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
37
|
Eberhard TH, Sledjeski DD, Boyle MDP. Mouse skin passage of a Streptococcus pyogenes Tn917 mutant of sagA/pel restores virulence, beta-hemolysis and sagA/pel expression without altering the position or sequence of the transposon. BMC Microbiol 2001; 1:33. [PMID: 11801184 PMCID: PMC64569 DOI: 10.1186/1471-2180-1-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 12/17/2001] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Streptolysin S (SLS), the oxygen-stable hemolysin of Streptococcus pyogenes, has recently been shown to be encoded by the sagA/pel gene. Mutants lacking expression of this gene were less virulent in a dermonecrotic mouse infection model. Inactivation of the sagA/pel gene affect the expression of a variety of virulence factors in addition to the hemolysin. Insertion of a Tn917 transposon into the promoter region of the sagA/pel gene of S. pyogenes isolate CS101 eliminated expression of SLS, as well as decreased expression of the streptococcal pyrogenic exotoxin B, streptokinase and M protein. RESULTS In this study a mouse skin air sac model was utilized to analyze the effect of biological pressures on expression of SLS and other sagA/pel regulated gene products. The insertion delayed the lethal effect of S. pyogenes in a mouse skin infection model. Despite this, bacteria could be cultured from the kidneys 72 hours post infection. These kidney-recovered isolates were beta-hemolytic despite the transposon being present in its original location and had equivalent virulence to the wild type isolate when re-injected into naive mice. Northern blot analysis of the kidney-recovered isolates confirmed that transcription of sagA/pel was restored; however the expression of all sagA/pel regulated genes was not restored to wild type levels. CONCLUSIONS These results show that biological pressure present in the mouse can select for variants with altered expression of key virulence factor genes in S. pyogenes.
Collapse
Affiliation(s)
- Thomas H Eberhard
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, 43614, USA
| | - Darren D Sledjeski
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, 43614, USA
| | - Michael DP Boyle
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, 43614, USA
| |
Collapse
|