1
|
Ahmad A, Mohammed NI, Joof F, Affara M, Jawara M, Abubakar I, Okebe J, Ceesay S, Hamid-Adiamoh M, Bradley J, Amambua-Ngwa A, Nwakanma D, D'Alessandro U. Asymptomatic Plasmodium falciparum carriage and clinical disease: a 5-year community-based longitudinal study in The Gambia. Malar J 2023; 22:82. [PMID: 36882754 PMCID: PMC9993664 DOI: 10.1186/s12936-023-04519-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Carriers of persistent asymptomatic Plasmodium falciparum infections constitute an infectious reservoir that maintains malaria transmission. Understanding the extent of carriage and characteristics of carriers specific to endemic areas could guide use of interventions to reduce infectious reservoir. METHODS In eastern Gambia, an all-age cohort from four villages was followed up from 2012 to 2016. Each year, cross-sectional surveys were conducted at the end of the malaria transmission season (January) and just before the start of the next one (June) to determine asymptomatic P. falciparum carriage. Passive case detection was conducted during each transmission season (August to January) to determine incidence of clinical malaria. Association between carriage at the end of the season and at start of the next one and the risk factors for this were assessed. Effect of carriage before start of the season on risk of clinical malaria during the season was also examined. RESULTS A total of 1403 individuals-1154 from a semi-urban village and 249 from three rural villages were enrolled; median age was 12 years (interquartile range [IQR] 6, 30) and 12 years (IQR 7, 27) respectively. In adjusted analysis, asymptomatic P. falciparum carriage at the end of a transmission season and carriage just before start of the next one were strongly associated (adjusted odds ratio [aOR] = 19.99; 95% CI 12.57-31.77, p < 0.001). The odds of persistent carriage (i.e. infected both in January and in June) were higher in rural villages (aOR = 13.0; 95% CI 6.33-26.88, p < 0.001) and in children aged 5-15 years (aOR = 5.03; 95% CI 2.47-10.23, p = < 0.001). In the rural villages, carriage before start of the season was associated with a lower risk of clinical malaria during the season (incidence risk ratio [IRR] 0.48, 95% CI 0.27-0.81, p = 0.007). CONCLUSIONS Asymptomatic P. falciparum carriage at the end of a transmission season strongly predicted carriage just before start of the next one. Interventions that clear persistent asymptomatic infections when targeted at the subpopulation with high risk of carriage may reduce the infectious reservoir responsible for launching seasonal transmission.
Collapse
Affiliation(s)
- Abdullahi Ahmad
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia.
- Global Health Institute, University of Antwerp, Gouverneur Kinsbergencentrum, Campus Drie Eiken, Doornstraat 331, 2610, Wilrijk, Belgium.
| | - Nuredin Ibrahim Mohammed
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Muna Affara
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Musa Jawara
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Ismaela Abubakar
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Joseph Okebe
- International Public Health Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Serign Ceesay
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Majidah Hamid-Adiamoh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia.
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| |
Collapse
|
2
|
Arambepola R, Bérubé S, Freedman B, Taylor SM, Prudhomme O’Meara W, Obala AA, Wesolowski A. Exploring how space, time, and sampling impact our ability to measure genetic structure across Plasmodium falciparum populations. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1058871. [PMID: 38516334 PMCID: PMC10956351 DOI: 10.3389/fepid.2023.1058871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2024]
Abstract
A primary use of malaria parasite genomics is identifying highly related infections to quantify epidemiological, spatial, or temporal factors associated with patterns of transmission. For example, spatial clustering of highly related parasites can indicate foci of transmission and temporal differences in relatedness can serve as evidence for changes in transmission over time. However, for infections in settings of moderate to high endemicity, understanding patterns of relatedness is compromised by complex infections, overall high forces of infection, and a highly diverse parasite population. It is not clear how much these factors limit the utility of using genomic data to better understand transmission in these settings. In particular, further investigation is required to determine which patterns of relatedness we expect to see with high quality, densely sampled genomic data in a high transmission setting and how these observations change under different study designs, missingness, and biases in sample collection. Here we investigate two identity-by-state measures of relatedness and apply them to amplicon deep sequencing data collected as part of a longitudinal cohort in Western Kenya that has previously been analysed to identify individual-factors associated with sharing parasites with infected mosquitoes. With these data we use permutation tests, to evaluate several hypotheses about spatiotemporal patterns of relatedness compared to a null distribution. We observe evidence of temporal structure, but not of fine-scale spatial structure in the cohort data. To explore factors associated with the lack of spatial structure in these data, we construct a series of simplified simulation scenarios using an agent based model calibrated to entomological, epidemiological and genomic data from this cohort study to investigate whether the lack of spatial structure observed in the cohort could be due to inherent power limitations of this analytical method. We further investigate how our hypothesis testing behaves under different sampling schemes, levels of completely random and systematic missingness, and different transmission intensities.
Collapse
Affiliation(s)
- Rohan Arambepola
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| | - Sophie Bérubé
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| | - Betsy Freedman
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
| | - Steve M. Taylor
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Durham, NC, United States
| | - Wendy Prudhomme O’Meara
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Durham, NC, United States
| | | | - Amy Wesolowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| |
Collapse
|
3
|
Ochwedo KO, Omondi CJ, Magomere EO, Olumeh JO, Debrah I, Onyango SA, Orondo PW, Ondeto BM, Atieli HE, Ogolla SO, Githure J, Otieno ACA, Githeko AK, Kazura JW, Mukabana WR, Guiyan Y. Hyper-prevalence of submicroscopic Plasmodium falciparum infections in a rural area of western Kenya with declining malaria cases. Malar J 2021; 20:472. [PMID: 34930283 PMCID: PMC8685826 DOI: 10.1186/s12936-021-04012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetectable infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a rural area of western Kenya. METHODS A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consistent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential determinants of submicroscopic infections. RESULTS Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 individuals, 95% CI 28.9-42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6-30.8). The risk of submicroscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48). CONCLUSION Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. falciparum parasites to local mosquito vectors.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Collince J. Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Edwin O. Magomere
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Julius O. Olumeh
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Isaiah Debrah
- West Africa Centre for Cell Biology of Infectious Pathogen, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Benyl M. Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH USA
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Yan Guiyan
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
| |
Collapse
|
4
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
5
|
Eldh M, Hammar U, Arnot D, Beck HP, Garcia A, Liljander A, Mercereau-Puijalon O, Migot-Nabias F, Mueller I, Ntoumi F, Ross A, Smith T, Sondén K, Vafa Homann M, Yman V, Felger I, Färnert A. Multiplicity of Asymptomatic Plasmodium falciparum Infections and Risk of Clinical Malaria: A Systematic Review and Pooled Analysis of Individual Participant Data. J Infect Dis 2020; 221:775-785. [PMID: 31585009 PMCID: PMC7026891 DOI: 10.1093/infdis/jiz510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum holds an extensive genetic polymorphism. In this pooled analysis, we investigate how the multiplicity in asymptomatic P. falciparum infections-that is, the number of coinfecting clones-affects the subsequent risk of clinical malaria in populations living under different levels of transmission. METHODS A systematic search of the literature was performed to identify studies in which P. falciparum infections were genotyped in asymptomatic individuals who were followed up prospectively regarding the incidence of clinical malaria. Individual participant data were pooled from 15 studies (n = 3736 individuals). RESULTS Multiclonal asymptomatic infections were associated with a somewhat increased subsequent risk of clinical malaria in the youngest children, followed by an initial declining risk with age irrespective of transmission intensity. At approximately 5 years of age, the risk continued the gradual decline with age in high-transmission settings. However, in older children in moderate-, low-, and seasonal-transmission settings, multiclonal infections were either not significantly associated with the risk of subsequent febrile malaria or were associated with an increased risk. CONCLUSIONS The number of clones in asymptomatic P. falciparum infections is associated with different risks of subsequent clinical malaria depending on age and transmission intensity.
Collapse
Affiliation(s)
- Martina Eldh
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hammar
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Arnot
- Zhejiang-Edinburgh Institute, Zhejiang University Medical School, International Campus of Zhejiang University, Haining, People's Republic of China
| | - Hans-Peter Beck
- Molecular Diagnostics, Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - André Garcia
- MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, France.,Cerpage, Cotonou, Bénin
| | - Anne Liljander
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Ivo Mueller
- Institut Pasteur, Parasites and Insect Vectors Department, Paris, France
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale and Faculty of Sciences and Technology University Marien Ngouabi Brazzaville, Republic of Congo.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Amanda Ross
- University of Basel, Basel, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical Institute, Basel, Switzerland
| | - Thomas Smith
- University of Basel, Basel, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical Institute, Basel, Switzerland
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Felger
- Molecular Diagnostics, Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Kumari P, Sinha S, Gahtori R, Yadav CP, Pradhan MM, Rahi M, Pande V, Anvikar AR. Prevalence of Asymptomatic Malaria Parasitemia in Odisha, India: A Challenge to Malaria Elimination. Am J Trop Med Hyg 2020; 103:1510-1516. [PMID: 32783792 DOI: 10.4269/ajtmh.20-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prevalence of malaria in India is decreasing, but it remains a major concern for public health administration. The role of submicroscopic malaria and asymptomatic malaria parasitemia and their persistence is being explored. A cross-sectional survey was conducted in the Kandhamal district of Odisha (India) during May-June 2017. Blood samples were collected from 1897 individuals for screening of asymptomatic parasitemia. Samples were screened using rapid diagnostic tests (RDTs) and examined microscopically for Plasmodium species. Approximately 30% of randomly selected samples (n = 586) were analyzed using real-time PCR (qPCR), and the genetic diversity of Plasmodium falciparum was analyzed. The prevalence of Plasmodium species among asymptomatic individuals detected using qPCR was 18%, which was significantly higher than that detected by microscopy examination (5.5%) or RDT (7.3%). Of these, 37% had submicroscopic malaria. The species-specific prevalence among asymptomatic malaria-positive cases for P. falciparum, Plasmodium vivax, and mixed infection (P. falciparum and P. vivax) by qPCR was 57%, 29%, and 14%, respectively. The multiplicity of infection was 1.6 and 1.2 for the merozoite surface protein-1 gene (msp1) and (msp2), respectively. Expected heterozygosity was 0.64 and 0.47 for msp1 and msp2, respectively. A significant proportion of the study population, 105/586 (18%), was found to be a reservoir for malaria infection, and identification of this group will help in the development of elimination strategies.
Collapse
Affiliation(s)
- Preeti Kumari
- Kumaun University, Nainital, India.,ICMR - National Institute of Malaria Research, New Delhi, India
| | - Swati Sinha
- Kumaun University, Nainital, India.,ICMR - National Institute of Malaria Research, New Delhi, India
| | - Renuka Gahtori
- Kumaun University, Nainital, India.,ICMR - National Institute of Malaria Research, New Delhi, India
| | | | | | - Manju Rahi
- Indian Council of Medical Research, New Delhi, India
| | | | | |
Collapse
|
7
|
Björkman A, Morris U. Why Asymptomatic Plasmodium falciparum Infections Are Common in Low-Transmission Settings. Trends Parasitol 2020; 36:898-905. [PMID: 32855077 DOI: 10.1016/j.pt.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum infections in low-transmission settings are often asymptomatic with low parasite densities despite low herd immunity. Based on studies in Zanzibar, this may be due to parasitic (nonvirulence) rather than host (immunity) factors. In high-transmission settings, high replication rate and virulence represents a competitive advantage, whereas in low-transmission settings nonvirulent parasites escape both competition and treatment. Such parasites also survive longer in low-transmission settings due to lower host immunity response and less frequent indirect drug exposure. This has major implications for optimal malaria control and elimination strategies.
Collapse
|
8
|
Development of Nested PCR-Heteroduplex Mobility Assay for Determination of Genetic Diversity in the Block 2 Region of the Plasmodium falciparum Merozoite Surface Protein 1 Gene. J Parasitol Res 2020; 2020:9520326. [PMID: 32328299 PMCID: PMC7168720 DOI: 10.1155/2020/9520326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022] Open
Abstract
Genetic diversity of Plasmodium parasite has significantly related to malaria control and vaccine development. The P. falciparum merozoite surface protein 1 (Pfmsp1) gene is a commonly used molecular marker to differentiate genetic diversity. This study is aimed at developing a nested PCR-Heteroduplex Mobility Assay (nPCR-HMA) for determination of the block 2 of the Pfmsp1 gene. The MAD20 family allele of P. falciparum was used as a control for optimization of the annealing and polyacrylamide gel electrophoresis conditions. In order to evaluate the developed nPCR-HMA, 8 clinical P. falciparum isolates were examined for allelic variants. The results revealed 9 allelic variants. Our study indicated that the successful nPCR-HMA with good precision and accuracy offers a more rapid, efficient, and cheap method for large-scale molecular epidemiological studies as compared to nucleotide sequencing.
Collapse
|
9
|
Mayengue PI, Kouhounina Batsimba D, Niama RF, Ibara Ottia R, Malonga-Massanga A, Fila-Fila GPU, Ahombo G, Kobawila SC, Parra HJ. Variation of prevalence of malaria, parasite density and the multiplicity of Plasmodium falciparum infection throughout the year at three different health centers in Brazzaville, Republic of Congo. BMC Infect Dis 2020; 20:190. [PMID: 32131754 PMCID: PMC7057455 DOI: 10.1186/s12879-020-4913-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Background In the Republic of Congo, hot temperature and seasons distortions observed may impact the development of malaria parasites. We investigate the variation of malaria cases, parasite density and the multiplicity of Plasmodium falciparum infection throughout the year in Brazzaville. Methods From May 2015 to May 2016, suspected patients with uncomplicated malaria were enrolled at the Hôpital de Mfilou, CSI « Maman Mboualé», and the Laboratoire National de Santé Publique. For each patient, thick blood was examined and parasite density was calculated. After DNA isolation, MSP1 and MSP2 genes were genotyped. Results A total of 416, 259 and 131 patients with suspected malaria were enrolled at the CSI «Maman Mboualé», Hôpital de Mfilou and the Laboratoire National de Santé Publique respectively. Proportion of malaria cases and geometric mean parasite density were higher at the CSI «Maman Mboualé» compared to over sites (P-value <0.001). However the multiplicity of infection was higher at the Hôpital de Mfilou (P-value <0.001). At the Laboratoire National de Santé Publique, malaria cases and multiplicity of infection were not influenced by different seasons. However, variation of the mean parasite density was statistically significant (P-value <0.01). Higher proportions of malaria cases were found at the end of main rainy season either the beginning of the main dry season at the Hôpital de Mfilou and the CSI «Maman Mboualé»; while, lowest proportions were observed in September and January and in September and March respectively. Higher mean parasite densities were found at the end of rainy seasons with persistence at the beginning of dry seasons. The lowest mean parasite densities were found during dry seasons, with persistence at the beginning of rainy seasons. Fluctuation of the multiplicity of infection throughout the year was observed without significance between seasons. Conclusion The current study suggests that malaria transmission is still variable between the north and south parts of Brazzaville. Seasonal fluctuations of malaria cases and mean parasite densities were observed with some extension to different seasons. Thus, both meteorological and entomological studies are needed to update the season’s periods as well as malaria transmission intensity in Brazzaville.
Collapse
Affiliation(s)
- Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo. .,Laboratoire National de Santé Publique, Brazzaville, BP 120, République du Congo. .,Centre de Recherche et d'Initiation des Projets de Technologie, Brazzaville, BP 2499, République du Congo.
| | - Dezi Kouhounina Batsimba
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Roch Fabien Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo.,Laboratoire National de Santé Publique, Brazzaville, BP 120, République du Congo
| | - Reyna Ibara Ottia
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Alida Malonga-Massanga
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | | | - Gabriel Ahombo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Simon Charles Kobawila
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, BP 69, République du Congo
| | - Henri Joseph Parra
- Laboratoire National de Santé Publique, Brazzaville, BP 120, République du Congo
| |
Collapse
|
10
|
Geographic Plasmodium falciparum sarcoplasmic reticulum Ca2+ ATPase (PfSERCA) genotype diversity in India. Acta Trop 2020; 202:105095. [PMID: 31323193 DOI: 10.1016/j.actatropica.2019.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/18/2018] [Accepted: 07/15/2019] [Indexed: 11/22/2022]
Abstract
Plasmodium falciparum sarcoplasmic reticulum Ca2+ ATPase (PfSERCA) is sarcoplasmic reticulum membrane bound transporter to regulate cytosol Ca2+ ions. Ca2+ act as secondary messenger and play important role in differentiation of parasite during its life cycle. Present study is epidemiological surveillance of PfSERCA (Pf3D7_0106300) gene fragment harboring 263, 402, 431 codon to look for its single nucleotide polymorphism which is well documented to be associated with Artemisinin tolerance. Filter paper with finger pricked blood samples for Plasmodium falciparum infected uncomplicated malaria patients were obtained for region as diverse as down the longitude from east to west of India i.e. Mizoram, Tripura, Meghalaya, Jharkhand, Odhisa. There observed no mutation for codon 263 at all study sites. Mizoram showed highest PfSERCA diversity with well known SNPs of L402 V, E431 K, A438 V and novel mutations as well i.e. A338 V, S357Y, S379Y. Tripura reported highest proportion of Plasmodium isolates (18.5%) with E431 K single nucleotide polymorphism. Moving towards the west i.e. Meghalaya, Jharkhand, Odhisa showed no occurrence of most prevalent PfSERCA 431, 402 polymorphism worldwide but some novel mutations and its haplotypes. In present study, significantly increased proportion of novel PfSERCA polymorphism among children suggests the susceptibility of these Plasmodium falciparum strains to acquired immunity. Mizoram, sharing open international border with south east asia, demonstrated highest PfSERCA diversity. Spatial PfSERCA diversity from far north east India to moving towards west implies its association with antimalarial susceptibility.
Collapse
|
11
|
Low genetic diversity and complexity of submicroscopic Plasmodium falciparum infections among febrile patients in low transmission areas in Senegal. PLoS One 2019; 14:e0215755. [PMID: 31022221 PMCID: PMC6483351 DOI: 10.1371/journal.pone.0215755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Submicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal. This study investigates the genetic diversity and complexity of submicroscopic P. falciparum infections among febrile patients in low transmission areas in Senegal. MATERIALS AND METHODS Hundred and fifty blood samples were collected from febrile individuals living in Dielmo and Ndiop (Senegal) between August 2014 and January 2015, tested for microscopic and sub-microscopic P. falciparum infections and characterized for their genetic diversity and complexity of infections using msp-1 and msp-2 genotyping. RESULTS Submicroscopic P. falciparum infections were 19.6% and 25% in Dielmo and Ndiop, respectively. K1 and 3D7 were the predominant msp-1 and msp-2 allelic types with respective frequencies of 67.36% and 67.10% in microscopic isolates and 58.24% and 78% in submicroscopic ones. Frequencies of msp-1 allelic types were statistically comparable between the studied groups (p>0.05), and were respectively 93.54% vs 87.5% for K1, 60% vs 54.83% for MAD20 and 41.93% vs 22.5% for RO33 while frequencies of msp-2 allelic types were significantly highest in the microscopy group for FC27 (41.93% vs 10%, Fisher's Exact Test, p = 0.001) and 3D7 (61.29% vs 32.5%, Fisher's Exact Test, p = 0.02). Multiplicities of infection were lowest in submicroscopic P. falciparum isolates. CONCLUSIONS The study revealed a high submicroscopic P. falciparum carriage among patients in the study areas, and that submicroscopic P. falciparum isolates had a lower genetic diversity and complexity of malaria infections.
Collapse
|
12
|
Slater HC, Ross A, Felger I, Hofmann NE, Robinson L, Cook J, Gonçalves BP, Björkman A, Ouedraogo AL, Morris U, Msellem M, Koepfli C, Mueller I, Tadesse F, Gadisa E, Das S, Domingo G, Kapulu M, Midega J, Owusu-Agyei S, Nabet C, Piarroux R, Doumbo O, Doumbo SN, Koram K, Lucchi N, Udhayakumar V, Mosha J, Tiono A, Chandramohan D, Gosling R, Mwingira F, Sauerwein R, Paul R, Riley EM, White NJ, Nosten F, Imwong M, Bousema T, Drakeley C, Okell LC. The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nat Commun 2019; 10:1433. [PMID: 30926893 PMCID: PMC6440965 DOI: 10.1038/s41467-019-09441-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings. The role of subpatent infections for malaria transmission and elimination is unclear. Here, Slater et al. analyse several malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK.
| | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Ingrid Felger
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Natalie E Hofmann
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Leanne Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea.,Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, 3004, VIC, Australia
| | - Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Andre Lin Ouedraogo
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso.,Institute for Disease Modeling, Intellectual Ventures, Bellevue, 98005, Washington, USA
| | - Ulrika Morris
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mwinyi Msellem
- Department of Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Melbourne, 3052, Victoria, Australia.,Department of Biological Sciences, University of Notre Dame, Indiana, 46556, USA
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, 75015, France.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Fitsum Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Smita Das
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Gonzalo Domingo
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Janet Midega
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Seth Owusu-Agyei
- Institute of Health, University of Health and Allied Sciences, Hohoe, PMB 31, Ghana
| | - Cécile Nabet
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Renaud Piarroux
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Safiatou Niare Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Naomi Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Jacklin Mosha
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alfred Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso
| | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, 94158, CA, United States
| | - Felista Mwingira
- Biological Sciences Department, Dar es Salaam University College of Education, P. O. Box 2329, Dar es Salaam, Tanzania
| | - Robert Sauerwein
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Richard Paul
- Institut Pasteur de Dakar, Laboratoire d'Entomologie Médicale, Dakar, Senegal
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
13
|
Ghoshal S, Gajendra P, Datta Kanjilal S, Mitra M, Sengupta S. Diversity analysis of MSP1 identifies conserved epitope organization in block 2 amidst high sequence variability in Indian Plasmodium falciparum isolates. Malar J 2018; 17:447. [PMID: 30509263 PMCID: PMC6276175 DOI: 10.1186/s12936-018-2592-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023] Open
Abstract
Background Despite its immunogenicity, the polymorphic nature of merozoite surface protein 1, an important vaccine candidate for Plasmodium falciparum malaria, remains a concern. This study analyses the impact of genetic variability and parasite population structure on epitope organization of different MSP1 segments. Methods Altogether 98 blood samples collected from P. falciparum infected mild and severe malaria patients of Chhattisgarh and West Bengal were used to sequence regions encoding block 2 and MSP1-19 of msp1. Sequences were analysed using MEGA7, DnaSPv5, Arlequin3.5 and BepiPred. Results All three major MSP1 block 2 allele families namely K1, MAD20 and RO33 were detected in the samples and they together resulted in 41 indel variants. Chhattisgarh samples displayed an average MOI of 2.07 ± 1.59 which was higher in mild malaria and in age group < 18 years. Ultra-structure of block 2 alleles revealed that mutation and repeat expansion were two major mechanisms responsible for allelic variability of K1 and MAD20. Regions flanking block 2 were highly variable in Chhattisgarh with average mismatch differences (k) ranging from 1.198 to 5.156 for three families. In contrast, region encompassing MSP1-19 exhibited limited heterogeneity (kChhattisgarh = 1.45, kWest Bengal = 1.363). Of the 50 possible B cell linear epitopes predicted from block 2 variants, 94.9% (131 of 138) of the parasites could be represented by three conserved antigens. Conclusions Present data indicates that natural selection and transmission intensity jointly play a role in controlling allelic diversity of MSP1 in Indian parasite isolates. Despite remarkable genetic variability, a limited number of predominant and conserved epitopes are present in Indian parasite isolates reinstating the importance of MSP1 as a promising malaria vaccine candidate. Electronic supplementary material The online version of this article (10.1186/s12936-018-2592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharmistha Ghoshal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Pragya Gajendra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Mitashree Mitra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India.
| |
Collapse
|
14
|
Zhong D, Lo E, Wang X, Yewhalaw D, Zhou G, Atieli HE, Githeko A, Hemming-Schroeder E, Lee MC, Afrane Y, Yan G. Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malar J 2018; 17:185. [PMID: 29720181 PMCID: PMC5932820 DOI: 10.1186/s12936-018-2337-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Methods Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. Results A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44–65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. Conclusions The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections. Electronic supplementary material The online version of this article (10.1186/s12936-018-2337-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Harrysone E Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
15
|
Huang B, Tuo F, Liang Y, Wu W, Wu G, Huang S, Zhong Q, Su XZ, Zhang H, Li M, Bacar A, Abdallah KS, Mliva AMSA, Wang Q, Yang Z, Zheng S, Xu Q, Song J, Deng C. Temporal changes in genetic diversity of msp-1, msp-2, and msp-3 in Plasmodium falciparum isolates from Grande Comore Island after introduction of ACT. Malar J 2018; 17:83. [PMID: 29458365 PMCID: PMC5819244 DOI: 10.1186/s12936-018-2227-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Malaria is still one of the serious public health problems in Grande Comore Island, although the number of annual cases has been greatly reduced in recent years. A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate temporal changes in genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) in Grande Comore 10 years after introduction of ACT. Methods A total of 232 P. falciparum clinical isolates were collected from the Grande Comore Island during two sampling periods (118 for 2006‒2007 group, and 114 for 2013‒2016 group). Parasite isolates were characterized for genetic diversity and complexity of infection by genotyping polymorphic regions in merozoite surface protein gene 1 (msp-1), msp-2, and msp-3 using nested PCR and DNA sequencing. Results Three msp-1 alleles (K1, MAD20, and RO33), two msp-2 alleles (FC27 and 3D7), and two msp-3 alleles (K1 and 3D7) were detected in parasites of both sampling periods. The RO33 allele of msp-1 (84.8%), 3D7 allele of msp-2 (90.8%), and K1 allele of msp-3 (66.7%) were the predominant allelic types in isolates from 2006–2007 group. In contrast, the RO33 allele of msp-1 (63.4%), FC27 allele of msp-2 (91.1%), and 3D7 allele of msp-3 (53.5%) were the most prevalent among isolates from the 2013–2016 group. Compared with the 2006‒2007 group, polyclonal infection rates of msp-1 (from 76.7 to 29.1%, P < 0.01) and msp-2 (from 62.4 to 28.3%, P < 0.01) allelic types were significantly decreased in those from 2013‒2016 group. Similarly, the MOIs for both msp-1 and msp-2 were higher in P. falciparum isolates in the 2006–2007 group than those in 2013–2016 group (MOI = 3.11 vs 1.63 for msp-1; MOI = 2.75 vs 1.35 for msp-2). DNA sequencing analyses also revealed reduced numbers of distinct sequence variants in the three genes from 2006‒2007 to 2013‒2016: msp-1, from 32 to 23 (about 28% decline); msp-2 from 29 to 21 (about 28% decline), and msp-3 from 11 to 3 (about 72% decline). Conclusions The present data showed dramatic reduction in genetic diversity and MOI among Grande Comore P. falciparum populations over the course of the study, suggesting a trend of decreasing malaria transmission intensity and genetic diversity in Grande Comore Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Fei Tuo
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Yuan Liang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Wanting Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Guangchao Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qirun Zhong
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Mingqiang Li
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Affane Bacar
- National Malaria Control Programme, BP 500, Moroni, Comoros
| | | | | | - Qi Wang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Zhaoli Yang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jianping Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| | - Changsheng Deng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Modeling the genetic relatedness of Plasmodium falciparum parasites following meiotic recombination and cotransmission. PLoS Comput Biol 2018; 14:e1005923. [PMID: 29315306 PMCID: PMC5777656 DOI: 10.1371/journal.pcbi.1005923] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 12/12/2017] [Indexed: 11/26/2022] Open
Abstract
Unlike in most pathogens, multiple-strain (polygenomic) infections of P. falciparum are frequently composed of genetic siblings. These genetic siblings are the result of sexual reproduction and can coinfect the same host when cotransmitted by the same mosquito. The degree with which coinfecting strains are related varies among infections and populations. Because sexual recombination occurs within the mosquito, the relatedness of cotransmitted strains could depend on transmission dynamics, but little is actually known of the factors that influence the relatedness of cotransmitted strains. Part of the uncertainty stems from an incomplete understanding of how within-host and within-vector dynamics affect cotransmission. Cotransmission is difficult to examine experimentally but can be explored using a computational model. We developed a malaria transmission model that simulates sexual reproduction in order to understand what determines the relatedness of cotransmitted strains. This study highlights how the relatedness of cotransmitted strains depends on both within-host and within-vector dynamics including the complexity of infection. We also used our transmission model to analyze the genetic relatedness of polygenomic infections following a series of multiple transmission events and examined the effects of superinfection. Understanding the factors that influence the relatedness of cotransmitted strains could lead to a better understanding of the population-genetic correlates of transmission and therefore be important for public health. Genomic studies of P. falciparum reveal that multi-strain infections can include genetically related strains. P. falciparum must reproduce sexually in the mosquito vector. One consequence of sexual reproduction is that parasites cotransmitted by the same mosquito are related to one another. The degree of genetic relatedness of these parasites can be as great as that of full-siblings. However, our understanding of the cotransmission process is incomplete, and little is known of the role of cotransmission in influencing population genomic processes. To help bridge this gap, we developed a simulation model to determine which of the steps involved in transmission have the greatest impact on the relatedness of parasites cotransmitted by a mosquito vector. The primary goal of this study is to characterize the outcomes of cotransmission following single or multiple transmission events. Our model yields new insights into the cotransmission process, which we believe will be useful for understanding the results from more complicated population models and epidemiological conditions. Such an understanding is important for the use of population genomics to inform public health decisions as well as for understanding of parasite evolution.
Collapse
|
17
|
Miller RH, Hathaway NJ, Kharabora O, Mwandagalirwa K, Tshefu A, Meshnick SR, Taylor SM, Juliano JJ, Stewart VA, Bailey JA. A deep sequencing approach to estimate Plasmodium falciparum complexity of infection (COI) and explore apical membrane antigen 1 diversity. Malar J 2017; 16:490. [PMID: 29246158 PMCID: PMC5732508 DOI: 10.1186/s12936-017-2137-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplotypes identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and Mali. RESULTS A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between parasite populations in the DRC and Mali. CONCLUSIONS Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse markers under balancing selection may perform well for understanding COI, they may offer little geographic or temporal discrimination between parasite populations.
Collapse
Affiliation(s)
- Robin H Miller
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA
| | - Oksana Kharabora
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Kashamuka Mwandagalirwa
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Antoinette Tshefu
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Steven R Meshnick
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University Medical Center, 303 Research Drive, Durham, NC, USA
| | - Jonathan J Juliano
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - V Ann Stewart
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA.
| |
Collapse
|
18
|
Niang M, Thiam LG, Loucoubar C, Sow A, Sadio BD, Diallo M, Sall AA, Toure-Balde A. Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal. Parasit Vectors 2017; 10:33. [PMID: 28103905 PMCID: PMC5244544 DOI: 10.1186/s13071-017-1976-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic analyses of the malaria parasite population and its temporal and spatial dynamics could provide an assessment of the effectiveness of disease control strategies. The genetic diversity of Plasmodium falciparum has been poorly documented in Senegal, and limited data are available from the Kedougou Region. This study examines the spatial and temporal variation of the genetic diversity and complexity of P. falciparum infections in acute febrile patients in Kedougou, southeastern Senegal. A total of 263 sera from patients presenting with acute febrile illness and attending Kedougou health facilities between July 2009 and July 2013 were obtained from a collection established as part of arbovirus surveillance in Kedougou. Samples identified as P. falciparum by nested PCR were characterized for their genetic diversity and complexity using msp-1 and msp-2 polymorphic markers. RESULTS Samples containing only P. falciparum accounted for 60.83% (160/263) of the examined samples. All three msp-1 allelic families (K1, MAD20 and RO33) and two msp-2 allelic families (FC27 and 3D7) were detected in all villages investigated over the 5-year collection period. The average genotype per allelic family was comparable between villages. Frequencies of msp-1 and msp-2 allelic types showed no correlation with age (Fisher's exact test, P = 0.59) or gender (Fisher's exact test, P = 0.973), and were similarly distributed throughout the 5-year sampling period (Fisher's exact test, P = 0.412) and across villages (Fisher's exact test, P = 0.866). Mean multiplicity of infection (MOI) for both msp-1 and msp-2 was highest in Kedougou village (2.25 and 2.21, respectively) and among younger patients aged ≤ 15 years (2.12 and 2.00, respectively). The mean MOI was highest in 2009 and decreased progressively onward. CONCLUSION Characterization of the genetic diversity and complexity of P. falciparum infections in Kedougou revealed no spatio-temporal variation in the genetic diversity of P. falciparum isolates. However, mean MOI varied with time of sera collection and decreased over the course of the study (July 2009 to July 2013). This suggests a slow progressive decrease of malaria transmission intensity in Kedougou Region despite the limited impact of preventive and control measures implemented by the National Malaria Control Programme on malaria morbidity and mortality.
Collapse
Affiliation(s)
- Makhtar Niang
- Institut Pasteur Dakar, Immunology Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Laty G Thiam
- Institut Pasteur Dakar, Immunology Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal.,Department of Animal Biology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur Dakar, Biostatistics, Bioinformatics and Modeling Group, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Abdourahmane Sow
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Bacary D Sadio
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mawlouth Diallo
- Institut Pasteur Dakar, Medical Entomology Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Amadou A Sall
- Institut Pasteur Dakar, Arbovirus and Viral Hemorrhagic Fevers Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aissatou Toure-Balde
- Institut Pasteur Dakar, Immunology Unit, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| |
Collapse
|
19
|
Chang HH, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, Dorsey G, Murphy M, Neafsey DE, Jeffreys AE, Hubbart C, Rockett KA, Amato R, Kwiatkowski DP, Buckee CO, Greenhouse B. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput Biol 2017; 13:e1005348. [PMID: 28125584 PMCID: PMC5300274 DOI: 10.1371/journal.pcbi.1005348] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/09/2017] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Colin J. Worby
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Adoke Yeka
- Makerere University School of Public Health, College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Daniel E. Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts, United States
| | - Anna E. Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
20
|
Muhindo Mavoko H, Kalabuanga M, Delgado-Ratto C, Maketa V, Mukele R, Fungula B, Inocêncio da Luz R, Rosanas-Urgell A, Lutumba P, Van geertruyden JP. Uncomplicated Clinical Malaria Features, the Efficacy of Artesunate-Amodiaquine and Their Relation with Multiplicity of Infection in the Democratic Republic of Congo. PLoS One 2016; 11:e0157074. [PMID: 27280792 PMCID: PMC4900589 DOI: 10.1371/journal.pone.0157074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/24/2016] [Indexed: 02/03/2023] Open
Abstract
Background In the Democratic Republic of Congo, artesunate-amodiaquine (ASAQ) is the first-line medication recommended for uncomplicated malaria treatment. We conducted a study in Kinshasa to describe the clinical features of the disease and assess the efficacy of ASAQ and its impact on the multiplicity of infection in children with uncomplicated malaria. Methods Children aged 12 to 59 months with uncomplicated P. falciparum malaria were treated with ASAQ and followed up passively for 42 days. To distinguish new infections from recrudescent parasites, samples were genotyped using a stepwise strategy with three molecular markers (GLURP, MSP2 and MSP1). We then assessed PCR-corrected and -uncorrected day-42 cure rates and multiplicity of infection (MOI). Results In total, 2,796 patients were screened and 865 enrolled in the study. Clinical features were characterized by history of fever (100%), coryza (59.9%) and weakness (59.4%). The crude and PCR-corrected efficacies of ASAQ were 55.3% (95%CI: 51.8–58.8) and 92.8% (95%CI: 91.0–94.6) respectively, as 83.6% (95%CI: 79.1–87.2) of the recurrences were new infections. Compared to monoclonal infections, polyclonal infections were more frequent at enrollment (88.1%) and in recurrences (80.1%; p = 0.005; OR: 1.8, 95%CI: 1.20–2.8). The median MOI at enrollment (MOI = 3.7; IQR: 0.7–6.7) decreased to 3 (IQR: 1–5) in the recurrent samples (p<0.001). Patients infected with a single haplotype on day 0 had no recrudescence; the risk of recrudescence increased by 28% with each additional haplotype (HR: 1.3, 95%CI: 1.24–1.44). Conclusion The PCR-corrected efficacy of ASAQ at day 42 was 92.8%, but crude efficacy was relatively poor due to high reinfection rates. Treatment outcomes were positively correlated with MOI. Continued monitoring of the efficacy of ACTs—ASAQ, in this case—is paramount. Trial Registration ClinicalTrials.gov NCT01374581
Collapse
Affiliation(s)
- Hypolite Muhindo Mavoko
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Global Health Institute, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Marion Kalabuanga
- Outpatients Department, Lisungi Health Center, Kinshasa, Democratic Republic of Congo
| | | | - Vivi Maketa
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Rodin Mukele
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Blaise Fungula
- Outpatients Department, Lisungi Health Center, Kinshasa, Democratic Republic of Congo
| | | | | | - Pascal Lutumba
- Tropical Medicine Department, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|
21
|
Kateera F, Nsobya SL, Tukwasibwe S, Mens PF, Hakizimana E, Grobusch MP, Mutesa L, Kumar N, van Vugt M. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda. Malar J 2016; 15:237. [PMID: 27113354 PMCID: PMC4845397 DOI: 10.1186/s12936-016-1287-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Malaria remains a public health challenge in sub-Saharan Africa with Plasmodiumfalciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity—a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. Methods In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P.falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected. Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Results Patients’ variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P.falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. Conclusions In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used interventions, and in proper interpretation of malaria vaccine studies.
Collapse
Affiliation(s)
- Fredrick Kateera
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda. .,Division of Internal Medicine, Department of Infectious Diseases, Centre of Tropical Medicine and Travel Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Sam L Nsobya
- Molecular Research Laboratory, Infectious Disease Research Collaboration, New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda.,Department of Pathology, School Biomedical Science, College of Health Science, Makerere University, PO Box 7072, Kampala, Uganda
| | - Stephen Tukwasibwe
- Molecular Research Laboratory, Infectious Disease Research Collaboration, New Mulago Hospital Complex, PO Box 7051, Kampala, Uganda
| | - Petra F Mens
- Division of Internal Medicine, Department of Infectious Diseases, Centre of Tropical Medicine and Travel Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.,Royal Tropical Institute/Koninklijk Instituutvoor de Tropen, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands
| | - Emmanuel Hakizimana
- Medical Research Centre Division, Rwanda Biomedical Centre, PO Box 7162, Kigali, Rwanda
| | - Martin P Grobusch
- Division of Internal Medicine, Department of Infectious Diseases, Centre of Tropical Medicine and Travel Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Leon Mutesa
- School of Medicine, College of Medicine and Health Sciences, University of Rwanda, PO Box 3286, Kigali, Rwanda
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne Infectious Disease Research Centre, Tulane University, 333 S Liberty Street, Mail code 8317, New Orleans, LA, 70112, USA
| | - Michele van Vugt
- Division of Internal Medicine, Department of Infectious Diseases, Centre of Tropical Medicine and Travel Medicine, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Niang M, Loucoubar C, Sow A, Diagne MM, Faye O, Faye O, Diallo M, Toure-Balde A, Sall AA. Genetic diversity of Plasmodium falciparum isolates from concurrent malaria and arbovirus co-infections in Kedougou, southeastern Senegal. Malar J 2016; 15:155. [PMID: 26969623 PMCID: PMC4788873 DOI: 10.1186/s12936-016-1208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background Concurrent malaria and arbovirus infections are common and represent an important public health concern in regions where both diseases are endemic. The present study investigates the genetic diversity and complexity of Plasmodium falciparum infection in concurrent malaria-arbovirus infections in Kedougou region, southeastern Senegal. Methods Parasite DNA was extracted from 60 to 27 sera samples collected from P. falciparum isolates of malaria and concurrent malaria-arbovirus infected patients, respectively, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block3) allelic families. Results The mean number of genotype per allelic family was comparable between the two groups. K1 was the predominant msp-1 allelic type both in malaria (94.91 %) and arbovirus-malaria (92.59 %) groups, whereas IC/3D7 was the most prevalent msp-2 allelic type in malaria (94.91 %) and arbovirus-malaria (96.29 %) groups. Frequencies of msp-1 and msp-2 allelic types were statistically comparable between the two groups (Fisher exact test, P > 0.05) and were not associated with age. FC27 was strikingly the least prevalent in both groups and was absent in children under 5 years of age. The proportions of P. falciparum isolates from malaria-infected patients carrying the three msp-1 allelic types (67.44 %) or the two msp-2 allelic types (76.47 %) were significantly higher than those from arbovirus-malaria co-infected patients (Exact binomial test, P < 0.05). The multiplicities of infection (MOI) were low and comparable for msp-1 (1.19 vs 1.22) and msp-2 (1.11 vs 1.10), respectively between malaria and arbovirus-malaria groups. Conclusion The study showed no difference in the genetic diversity between P. falciparum isolates from malaria and concurrent malaria-arbovirus infected patients in Kedougou. The MOI was low despite intense malaria transmission in Kedougou. The overall results suggest a limited or no influence of arbovirus infections on P. falciparum diversity and complexity of malaria infection.
Collapse
Affiliation(s)
- Makhtar Niang
- Immunology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal.
| | - Cheikh Loucoubar
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Abdourahmane Sow
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Moussa Moise Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | | | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| |
Collapse
|
23
|
Influence of Sickle Cell Gene on the Allelic Diversity at the msp-1 locus of Plasmodium falciparum in Adult Patients with Severe Malaria. Mediterr J Hematol Infect Dis 2015; 7:e2015050. [PMID: 26401239 PMCID: PMC4560258 DOI: 10.4084/mjhid.2015.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/15/2015] [Indexed: 01/23/2023] Open
Abstract
Although several studies have supported that sickle cell trait (HbAS) protects against falciparum malaria, the exact mechanism by which sickle gene confers protection is unclear. Further, there is no information on the influence of the sickle gene on the parasitic diversity of P. falciparum population in severe symptomatic malaria. This study was undertaken to assess the effect of the sickle gene on the parasite densities and diversities in hospitalized adult patients with severe falciparum malaria. The study was carried out in 166 adults hospitalized subjects with severe falciparum malaria at Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Odisha, India. They were divided into three groups on the basis of hemoglobin variants HbAA (n=104), HbAS (n=30) and HbSS (n=32). The msp-1 loci were genotyped using a PCR-based methodology. The parasite densities were significantly high in HbAA compared to HbAS and HbSS. The multiplicity of infection (MOI) and multi-clonality for msp-1 were significantly low in HbSS and HbAS compared to HbAA. The prevalence of K1 (p<0 .0001) and MAD20 (p=0.0003) alleles were significantly high in HbAA. The RO33 allele was detected at a higher frequency in HbSS and HbAS, compared to K1 and MAD20. Sickle gene was found to reduce both the parasite densities and diversity of P. falciparum in adults with severe malaria.
Collapse
|
24
|
Apinjoh TO, Tata RB, Anchang-Kimbi JK, Chi HF, Fon EM, Mugri RN, Tangoh DA, Nyingchu RV, Ghogomu SM, Nkuo-Akenji T, Achidi EA. Plasmodium falciparum merozoite surface protein 1 block 2 gene polymorphism in field isolates along the slope of mount Cameroon: a cross - sectional study. BMC Infect Dis 2015; 15:309. [PMID: 26242307 PMCID: PMC4526171 DOI: 10.1186/s12879-015-1066-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a major global health burden despite the intensification of control efforts, due partly to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a major impediment to vaccine development efforts and is limited in some endemic settings. The present study characterized diversity by investigating msp1 block 2 polymorphisms and the relationship between the allele families with ethnodemographic indices and clinical phenotype. METHOD Individuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural, semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the parasite DNA genotyped by nested PCR. RESULTS Length polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of individuals harbored more than one parasite clone, with a significant proportion (p = 0.009) in rural compared to other settings. AP individuals had higher (p = 0.007) K1 allele frequencies but lower (p = 0.003) mean multiplicity of genotypes per infection (2.00 ± 0.98 vs. 2.56 ± 1.17) compared to UM patients. CONCLUSIONS These results indicate enormous diversity of P. falciparum in the area and suggests that allele specificity and complexity may be relevant for the progression to symptomatic disease.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Rolland B Tata
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | | | - Hanesh F Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Eleanor M Fon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Regina N Mugri
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Delphine A Tangoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. .,Department of Medical Laboratory Science, University of Buea, Buea, Cameroon.
| | - Robert V Nyingchu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. .,Department of Medical Laboratory Science, University of Buea, Buea, Cameroon.
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
| | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| |
Collapse
|
25
|
Sondén K, Doumbo S, Hammar U, Vafa Homann M, Ongoiba A, Traoré B, Bottai M, Crompton PD, Färnert A. Asymptomatic Multiclonal Plasmodium falciparum Infections Carried Through the Dry Season Predict Protection Against Subsequent Clinical Malaria. J Infect Dis 2015; 212:608-16. [PMID: 25712968 DOI: 10.1093/infdis/jiv088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Immunity to the antigenically diverse parasite Plasmodium falciparum is acquired gradually after repeated exposure. Studies in areas of high malaria transmission have shown that asymptomatic individuals infected with multiclonal infections are at reduced risk of febrile malaria during follow-up. METHODS We assessed the relationship between the genetic diversity of clones in P. falciparum infections that persist through the dry season and the subsequent risk of febrile malaria in 225 individuals aged 2-25 years in Mali, where the 6-month malaria and dry seasons are sharply demarcated. Polymerase chain reaction-based genotyping of the highly polymorphic merozoite surface protein 2 gene was performed on blood samples collected at 5 cross-sectional surveys. RESULTS In an age-adjusted analysis, individuals with multiclonal P. falciparum infections before the rainy season were at reduced risk of febrile malaria, compared with individuals who were uninfected (hazard ratio [HR], 0.28; 95% confidence interval [CI], .11-.69). In contrast, there was no significant association between risk of malaria and having 1 clone at baseline (HR, 0.71; 95% CI, .36-1.40). CONCLUSIONS The results suggest that persistent multiclonal infections carried through the dry season contribute to protection against subsequent febrile malaria, possibly by maintaining protective immune responses that depend on ongoing parasite infection.
Collapse
Affiliation(s)
- Klara Sondén
- Unit of Infectious Diseases, Department of Medicine Solna
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako
| | - Ulf Hammar
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aissata Ongoiba
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden Mali International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako
| | - Boubacar Traoré
- Mali International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako
| | - Matteo Bottai
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine Solna
| |
Collapse
|
26
|
COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malar J 2015; 14:4. [PMID: 25599890 PMCID: PMC4417311 DOI: 10.1186/1475-2875-14-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022] Open
Abstract
Background Complex malaria infections are defined as those containing more than one genetically distinct lineage of Plasmodium parasite. Complexity of infection (COI) is a useful parameter to estimate from patient blood samples because it is associated with clinical outcome, epidemiology and disease transmission rate. This manuscript describes a method for estimating COI using likelihood, called COIL, from a panel of bi-allelic genotyping assays. Methods COIL assumes that distinct parasite lineages in complex infections are unrelated and that genotyped loci do not exhibit significant linkage disequilibrium. Using the population minor allele frequency (MAF) of the genotyped loci, COIL uses the binomial distribution to estimate the likelihood of a COI level given the prevalence of observed monomorphic or polymorphic genotypes within each sample. Results COIL reliably estimates COI up to a level of three or five with at least 24 or 96 unlinked genotyped loci, respectively, as determined by in silico simulation and empirical validation. Evaluation of COI levels greater than five in patient samples may require a very large collection of genotype data, making sequencing a more cost-effective approach for evaluating COI under conditions when disease transmission is extremely high. Performance of the method is positively correlated with the MAF of the genotyped loci. COI estimates from existing SNP genotype datasets create a more detailed portrait of disease than analyses based simply on the number of polymorphic genotypes observed within samples. Conclusions The capacity to reliably estimate COI from a genome-wide panel of SNP genotypes provides a potentially more accurate alternative to methods relying on PCR amplification of a small number of loci for estimating COI. This approach will also increase the number of applications of SNP genotype data, providing additional motivation to employ SNP barcodes for studies of disease epidemiology or control measure efficacy. The COIL program is available for download from GitHub, and users may also upload their SNP genotype data to a web interface for simple and efficient determination of sample COI. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-14-4) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Dynamics of clonal diversity in natural infections of the malaria parasite Plasmodium mexicanum in its free-ranging lizard host. Parasitol Res 2014; 113:2059-67. [PMID: 24647987 DOI: 10.1007/s00436-014-3854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Within mixed-genotype infections of malaria parasites (Plasmodium), the number of genetic clones present is associated with variation in important life history traits of the infection, including virulence. Although the number of clones present is important, how the proportion of those clones varies over time is poorly known. Clonal proportions of the lizard malaria parasite, Plasmodium mexicanum, were assessed in naturally infected free-ranging lizards followed in a mark-recapture program over as long as two warm seasons, the typical life span of the lizard. Clonal proportions were determined by amplifying two microsatellite markers, a method previously verified for accuracy. Most blood samples had been stored for over a decade, so a verification test determined that these samples had not degraded. Although the environment experienced by the parasite (its host) varies over the seasons and transmission occurs over the entire warm season, 68% of infections were stable over time, harboring a single clone (37% of infections) or multiple clones changing only 1-12% maximum comparing any two samples (31% of infections). The maximum change seen in any infection (comparing any two sample periods) was only 30%. A new clone entered three infections (only once successfully), and a clone was lost in only three infections. These results mirror those seen for a previous study of experimentally induced infections that showed little change in relative proportions over time. The results of this study, the first look at how clonal proportions vary over time for any malaria parasite of a nonhuman vertebrate host for natural infections, were surprising because experimental studies show clones of P. mexicanum appear to interact, yet relative proportions of clones typically remain constant over time.
Collapse
|
28
|
Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi. Sci Rep 2014; 4:3741. [PMID: 24434689 PMCID: PMC3894552 DOI: 10.1038/srep03741] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/20/2013] [Indexed: 01/24/2023] Open
Abstract
Endemic Burkitt lymphoma (eBL) has been linked to Plasmodium falciparum (Pf) malaria infection, but the contribution of infection with multiple Pf genotypes is uncertain. We studied 303 eBL (cases) and 274 non eBL-related cancers (controls) in Malawi using a sensitive and specific molecular-barcode array of 24 independently segregating Pf single nucleotide polymorphisms. Cases had a higher Pf malaria prevalence than controls (64.7% versus 45.3%; odds ratio [OR] 2.1, 95% confidence interval (CI): 1.5 to 3.1). Cases and controls were similar in terms of Pf density (4.9 versus 4.5 log copies, p = 0.28) and having ≥3 non-clonal calls (OR 2.7, 95% CI: 0.7-9.9, P = 0.14). However, cases were more likely to have a higher Pf genetic diversity score (153.9 versus 133.1, p = 0.036), which measures a combination of clonal and non-clonal calls, than controls. Further work is needed to evaluate the possible role of Pf genetic diversity in the pathogenesis of endemic BL.
Collapse
|
29
|
Delgado-Ratto C, Soto-Calle VE, Van den Eede P, Gamboa D, Rosas A, Abatih EN, Rodriguez Ferrucci H, Llanos-Cuentas A, Van Geertruyden JP, Erhart A, D'Alessandro U. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar J 2014; 13:8. [PMID: 24393454 PMCID: PMC3893378 DOI: 10.1186/1475-2875-13-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background Despite the large burden of Plasmodium vivax, little is known about its transmission dynamics. This study explored the population structure and spatio-temporal dynamics of P. vivax recurrent infections after radical cure in a two-year cohort study carried out in a rural community of the Peruvian Amazon. Methods A total of 37 P. vivax participants recruited in San Carlos community (Peru) between April and December 2008 were treated radically with chloroquine and primaquine and followed up monthly for two years with systematic blood sampling. All samples were screened for malaria parasites and subsequently all P. vivax infections genotyped using 15 microsatellites. Parasite population structure and dynamics were determined by computing different genetic indices and using spatio-temporal statistics. Results After radical cure, 76% of the study participants experienced one or more recurrent P. vivax infections, most of them sub-patent and asymptomatic. The parasite population displayed limited genetic diversity (He = 0.49) and clonal structure, with most infections (84%) being monoclonal. Spatio-temporal clusters of specific haplotypes were found throughout the study and persistence of highly frequent haplotypes were observed over several months within the same participants/households. Conclusions In San Carlos community, P. vivax recurrences were commonly observed after radical treatment, and characterized by asymptomatic, sub-patent and clustered infections (within and between individuals from a few neighbouring households). Moreover low genetic diversity as well as parasite inbreeding are likely to define a clonal parasite population which has important implications on the malaria epidemiology of the study area.
Collapse
Affiliation(s)
- Christopher Delgado-Ratto
- Unit of International Health, ESOC Department, Faculty of Medicine, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ndungu FM, Lundblom K, Rono J, Illingworth J, Eriksson S, Färnert A. Long-lived Plasmodium falciparum specific memory B cells in naturally exposed Swedish travelers. Eur J Immunol 2013; 43:2919-29. [PMID: 23881859 PMCID: PMC4114544 DOI: 10.1002/eji.201343630] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/07/2013] [Accepted: 07/18/2013] [Indexed: 01/08/2023]
Abstract
Antibodies (Abs) are critical for immunity to malaria. However, Plasmodium falciparum specific Abs decline rapidly in absence of reinfection, suggesting impaired immunological memory. This study determines whether residents of Sweden that were treated for malaria following international travel maintained long‐lasting malaria‐specific Abs and memory B cells (MBCs). We compared levels of malaria‐specific Abs and MBCs between 47 travelers who had been admitted with malaria at the Karolinska University Hospital between 1 and 16 years previously, eight malaria‐naïve adult Swedes without histories of travel, and 14 malaria‐immune adult Kenyans. Plasmodium falciparum‐lysate‐specific Ab levels were above naïve control levels in 30% of the travelers, whereas AMA‐1, merozoite surface protein‐142, and merozoite surface protein‐3‐specific Ab levels were similar. In contrast, 78% of travelers had IgG‐MBCs specific for at least one malaria antigen (59, 45, and 28% for apical merozoite antigen‐1, merozoite surface protein‐1, and merozoite surface protein‐3, respectively) suggesting that malaria‐specific MBCs are maintained for longer than the cognate serum Abs in the absence of re‐exposure to parasites. Five travelers maintained malaria antigen‐specific MBC responses for up to 16 years since the diagnosis of the index episode (and had not traveled to malaria‐endemic regions in the intervening time). Thus P. falciparum can induce long‐lasting MBCs, maintained for up to 16 years without reexposure.
Collapse
Affiliation(s)
- Francis M Ndungu
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya; Centres for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
31
|
Rono J, Osier FHA, Olsson D, Montgomery S, Mhoja L, Rooth I, Marsh K, Färnert A. Breadth of anti-merozoite antibody responses is associated with the genetic diversity of asymptomatic Plasmodium falciparum infections and protection against clinical malaria. Clin Infect Dis 2013; 57:1409-16. [PMID: 23983244 DOI: 10.1093/cid/cit556] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Elucidating the mechanisms of naturally acquired immunity to Plasmodium falciparum infections would be highly valuable for malaria vaccine development. Asymptomatic multiclonal infections have been shown to predict protection from clinical malaria in a transmission-dependent manner, but the mechanisms underlying this are unclear. We assessed the breadth of antibody responses to several vaccine candidate merozoite antigens in relation to the infecting parasite population and clinical immunity. METHODS In a cohort study in Tanzania, 320 children aged 1-16 years who were asymptomatic at baseline were included. We genotyped P. falciparum infections by targeting the msp2 gene using polymerase chain reaction and capillary electrophoresis and measured antibodies to 7 merozoite antigens using a multiplex assay. We assessed the correlation between the number of clones and the breadth of the antibody response, and examined their effects on the risk of malaria during 40 weeks of follow-up using age-adjusted multivariate regression models. RESULTS The antibody breadth was positively correlated with the number of clones (RR [risk ratio], 1.63; 95% confidence interval [CI], 1.32-2.02). Multiclonal infections were associated with a nonsignificant reduction in the risk of malaria in the absence of antibodies (RR, 0.83; 95% CI, .29-2.34). The breadth of the antibody response was significantly associated with a reduced risk of malaria in the absence of infections (RR, 0.25; 95% CI, .09-.66). In combination, these factors were associated with a lower risk of malaria than they were individually (RR, 0.14; 95% CI, .04-.48). CONCLUSIONS These data suggest that malaria vaccines mimicking naturally acquired immunity should ideally induce antibody responses that can be boosted by natural infections.
Collapse
Affiliation(s)
- Josea Rono
- Infectious Diseases Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hicks ND, Schall JJ. Establishment efficiency among clones of the malaria parasite, Plasmodium mexicanum, for mixed-clone infections in its natural lizard host. J Parasitol 2013; 99:1050-5. [PMID: 23841469 DOI: 10.1645/12-72.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Within genetically diverse infections of malaria parasites ( Plasmodium spp.), the relative proportions of genetic clones in the vertebrate host's blood can influence clonal competition, transmission success, gametocyte sex ratio, and virulence. Clonal proportions depend on establishment success of each clone when they enter a new host and on subsequent differences in rates of asexual replication and clearance. Both of these life history traits could be influenced by clone genotype. To assess genetic (clonal) influences on both establishment success and later changes in relative proportion for the lizard malaria parasite Plasmodium mexicanum , 7 naturally infected fence lizards harboring a single clone of P. mexicanum served as donors to initiate replicate experimental infections containing each of the clones and combinations of 2 clones. Measured were relative establishment success of each clone, change in relative proportions over time, and rate of increase of parasite density and total parasitemia. Relative clonal proportions were determined using microsatellite markers. Rates of increase in the parasitemia and degree of change in relative proportions were not correlated, so both rapidly and slowly growing infections could show either little or substantial change in clonal proportions over time. There was a significant clone effect on establishment efficiency but not on later changes in relative proportions. These results argue for a combination of genetic and environmental (host) effects on the success of P. mexicanum clones in genetically complex infections. The maintenance of genetic variation for establishment success, but not subsequent replication rate or shifts in relative proportion, suggests trade-offs between these traits during life history evolution of malaria parasites.
Collapse
Affiliation(s)
- Nathan D Hicks
- Department of Biology, University of Vermont, Burlington, Vermont 05405
| | | |
Collapse
|
33
|
Chuquiyauri R, Peñataro P, Brouwer KC, Fasabi M, Calderon M, Torres S, Gilman RH, Kosek M, Vinetz JM. Microgeographical differences of Plasmodium vivax relapse and re-infection in the Peruvian Amazon. Am J Trop Med Hyg 2013; 89:326-38. [PMID: 23836566 DOI: 10.4269/ajtmh.13-0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To determine the magnitude of Plasmodium vivax relapsing malaria in rural Amazonia, we carried out a study in four sites in northeastern Peru. Polymerase chain reaction-restriction fragment length polymorphism of PvMSP-3α and tandem repeat (TR) markers were compared for their ability to distinguish relapse versus reinfection. Of 1,507 subjects with P. vivax malaria, 354 developed > 1 episode during the study; 97 of 354 (27.5%) were defined as relapse using Pvmsp-3α alone. The addition of TR polymorphism analysis significantly reduced the number of definitively defined relapses to 26 of 354 (7.4%) (P < 0.05). Multivariate logistic regression modeling showed that the probability of having > 1 infection was associated with the following: subjects in Mazan (odds ratio [OR] = 2.56; 95% confidence interval [CI] 1.87, 3.51), 15-44 years of age (OR = 1.49; 95% CI 1.03, 2.15), traveling for job purposes (OR = 1.45; 95%CI 1.03, 2.06), and travel within past month (OR = 1.46; 95% CI 1.0, 2.14). The high discriminatory capacity of the molecular tools shown here is useful for understanding the micro-geography of malaria transmission.
Collapse
Affiliation(s)
- Raul Chuquiyauri
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California 92093-0741, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Acquired antibodies to merozoite antigens in children from Uganda with uncomplicated or severe Plasmodium falciparum malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1170-80. [PMID: 23740926 DOI: 10.1128/cvi.00156-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria can present itself as an uncomplicated or severe disease. We have here studied the quantity and quality of antibody responses against merozoite antigens, as well as multiplicity of infection (MOI), in children from Uganda. We found higher levels of IgG antibodies toward erythrocyte-binding antigen EBA181, MSP2 of Plasmodium falciparum 3D7 and FC27 (MSP2-3D7/FC27), and apical membrane antigen 1 (AMA1) in patients with uncomplicated malaria by enzyme-linked immunosorbent assay (ELISA) but no differences against EBA140, EBA175, MSP1, and reticulocyte-binding protein homologues Rh2 and Rh4 or for IgM against MSP2-3D7/FC27.Patients with uncomplicated malaria were also shown to have higher antibody affinities for AMA1 by surface plasmon resonance (SPR). Decreased invasion of two clinical P. falciparum isolates in the presence of patient plasma correlated with lower initial parasitemia in the patients, in contrast to comparisons of parasitemia to ELISA values or antibody affinities, which did not show any correlations. Analysis of the heterogeneity of the infections revealed a higher MOI in patients with uncomplicated disease, with the P. falciparum K1 MSP1 (MSP1-K1) and MSP2-3D7 being the most discriminative allelic markers. Higher MOIs also correlated positively with higher antibody levels in several of the ELISAs. In conclusion, certain antibody responses and MOIs were associated with differences between uncomplicated and severe malaria. When different assays were combined, some antibodies, like those against AMA1, seemed particularly discriminative. However, only decreased invasion correlated with initial parasitemia in the patient, signaling the importance of functional assays in understanding development of immunity against malaria and in evaluating vaccine candidates.
Collapse
|
35
|
Lundblom K, Murungi L, Nyaga V, Olsson D, Rono J, Osier F, Ogada E, Montgomery S, Scott JAG, Marsh K, Färnert A. Plasmodium falciparum infection patterns since birth and risk of severe malaria: a nested case-control study in children on the coast of Kenya. PLoS One 2013; 8:e56032. [PMID: 23418502 PMCID: PMC3572150 DOI: 10.1371/journal.pone.0056032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/04/2013] [Indexed: 01/27/2023] Open
Abstract
Children in malaria endemic areas acquire immunity to severe malaria faster than to mild malaria. Only a minority of children suffers from severe malaria and it is not known what determines this. The aim of this study was to establish how P. falciparum infections during the first years of life affect the risk of severe malaria. A matched case-control study was nested within a large birth cohort set up to study the immunoepidemiology of pneumococci on the Kenyan coast. Infection patterns in three-monthly blood samples in cohort children admitted to hospital with severe malaria were compared to controls matched on age, residential location and time of sampling. P. falciparum detected at least once from birth conferred an increased risk of severe malaria and particularly if multiclonal infections, as characterized by genotyping of a polymorphic antigen gene, were ever detected. The results show for the first time that children with severe malaria have more infections early in life compared to community controls. These findings provide important insights on the immunity to severe disease, knowledge essential for the development of a vaccine against severe malaria.
Collapse
Affiliation(s)
- Klara Lundblom
- Unit of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bharti PK, Shukla MM, Sharma YD, Singh N. Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India. Malar J 2012; 11:78. [PMID: 22439658 PMCID: PMC3324372 DOI: 10.1186/1475-2875-11-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/22/2012] [Indexed: 12/04/2022] Open
Abstract
Background Malaria continues to be a significant health problem in India. Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic. The genetic diversity of P. falciparum merozoite surface protein-1 (MSP-1) has been extensively studied from various parts of the world. However, limited data are available from India. The aim of the present study was a molecular characterization of block 2 region of MSP-1 gene from the tribal-dominated, forested region of Madhya Pradesh. Methods DNA sequencing analysis was carried out in 71 field isolates collected between July 2005 to November 2005 and in 98 field isolates collected from July 2009 to December 2009. Alleles identified by DNA sequencing were aligned with the strain 3D7 and polymorphism analysis was done by using Edit Sequence tool (DNASTAR). Results The malaria positivity was 26% in 2005, which rose to 29% in 2009 and P. falciparum prevalence was also increased from 72% in 2005 to 81% in 2009. The overall allelic prevalence was higher in K1 (51%) followed by MAD20 (28%) and RO33 (21%) in 2005 while in 2009, RO33 was highest (40%) followed by K1 (36%) and MAD20 (24%). Conclusions The present study reports extensive genetic variations and dynamic evolution of block 2 region of MSP-1 in central India. Characterization of antigenic diversity in vaccine candidate antigens are valuable for future vaccine trials as well as understanding the population dynamics of P. falciparum parasites in this area.
Collapse
Affiliation(s)
- Praveen K Bharti
- Regional Medical Research Centre for Tribals, Garha, Jabalpur 482003, Madhya Pradesh, India
| | | | | | | |
Collapse
|
37
|
Quantification of Plasmodium falciparum malaria from complex infections in the Peruvian Amazon using quantitative PCR of the merozoite surface protein 1, block 2 (PfMSP1-B2): in vitro dynamics reveal density-dependent interactions. Parasitology 2012; 139:701-8. [PMID: 22339946 DOI: 10.1017/s0031182011002393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections.
Collapse
|
38
|
Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, Joshi H. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar J 2012; 11:29. [PMID: 22289302 PMCID: PMC3342920 DOI: 10.1186/1475-2875-11-29] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted.
Collapse
Affiliation(s)
- Dolie D Laishram
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory. Infect Immun 2012; 80:1583-92. [PMID: 22252876 DOI: 10.1128/iai.05961-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP1(19)). After observing a more robust antibody response to MSP1(19), we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP1(19) IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19(+) CD27(+) CD38(high)) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.
Collapse
|
40
|
Genetic diversity in the merozoite surface protein 1 and 2 genes of Plasmodium falciparum from the Artibonite Valley of Haiti. Acta Trop 2012; 121:6-12. [PMID: 21982798 DOI: 10.1016/j.actatropica.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 09/10/2011] [Accepted: 09/13/2011] [Indexed: 11/23/2022]
Abstract
Describing genetic diversity of the Plasmodium falciparum parasite provides important information about the local epidemiology of malaria. In this study, we examined the genetic diversity of P. falciparum isolates from the Artibonite Valley in Haiti using the allelic families of merozoite surface protein 1 and 2 genes (msp-1 and msp-2). The majority of study subjects infected with P. falciparum had a single parasite genotype (56% for msp-1 and 69% for msp-2: n=79); 9 distinct msp-1 genotypes were identified by size differences on agarose gels. K1 was the most polymorphic allelic family with 5 genotypes (amplicons from 100 to 300 base pairs [bp]); RO33 was the least polymorphic, with a single genotype (120-bp). Although both msp-2 alleles (3D7/IC1, FC27) had similar number of genotypes (n=4), 3D7/IC1 was more frequent (85% vs. 26%). All samples were screened for the presence of the K76T mutation on the P. falciparum chloroquine resistance transporter (pfcrt) gene with 10 of 79 samples positive. Of the 2 (out of 10) samples from individuals follow-up for 21 days, P. falciparum parasites were present through day 7 after treatment with chloroquine. No parasites were found on day 21. Our results suggest that the level of genetic diversity is low in this area of Haiti, which is consistent with an area of low transmission.
Collapse
|
41
|
Dassé R, Lefranc D, Dubucquoi S, Dussart P, Dutoit-Lefevre V, Sendid B, Sombo Mambo F, Vermersch P, Prin L. Changes Related to Age in Natural and Acquired Systemic Self-IgG Responses in Malaria. Interdiscip Perspect Infect Dis 2011; 2011:462767. [PMID: 22253622 PMCID: PMC3255176 DOI: 10.1155/2011/462767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/23/2011] [Indexed: 01/22/2023] Open
Abstract
Background. Absence of acquired protective immunity in endemic areas children leads to higher susceptibility to severe malaria. To investigate the involvement of regulatory process related to self-reactivity, we evaluated potent changes in auto-antibody reactivity profiles in children and older subjects living in malaria-endemic zones comparatively to none-exposed healthy controls. Methods. Analysis of IgG self-reactive footprints was performed using Western blotting against healthy brain antigens. Plasmas of 102 malaria exposed individuals (MEIs) from endemic zone, with or without cerebral malaria (CM) were compared to plasmas from non-endemic controls (NECs). Using linear discriminant and principal component analysis, immune footprints were compared by counting the number, the presence or absence of reactive bands. We identified the most discriminant bands with respect to age and clinical status. Results. A higher number of bands were recognized by IgG auto-antibodies in MEI than in NEC. Characteristic changes in systemic self-IgG-reactive repertoire were found with antigenic bands that discriminate Plasmodium falciparum infections with or without CM according to age. 8 antigenic bands distributed in MEI compared with NEC were identified while 6 other antigenic bands were distributed within MEI according to the age and clinical status. Such distortion might be due to evolutionary processes leading to pathogenic/protective events.
Collapse
Affiliation(s)
- Romuald Dassé
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
- Laboratoire d'Immunologie et Hématologie du CHU-Cocody, Abidjan, Cote D'Ivoire
| | - Didier Lefranc
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Sylvain Dubucquoi
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Patricia Dussart
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Virginie Dutoit-Lefevre
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Boualem Sendid
- Laboratoire de Parasitologie et de Mycologie, Institute de Biologie et Pathologie, CHRU de Lille 59037 Lille, France
| | | | - Patrick Vermersch
- Service de Neurologie D, Hôpital Roger Salengro, 59037 Lille Cedex, France
| | - Lionel Prin
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
42
|
Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM, Surin J. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes. Parasit Vectors 2011; 4:233. [PMID: 22166488 PMCID: PMC3264521 DOI: 10.1186/1756-3305-4-233] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia. METHODS Seventy-five P. falciparum isolates were genotyped by using nested-PCR of MSP-1 (block 2) and MSP-2 (block 3). RESULTS MSP-1 and MSP-2 allelic families were identified in 65 blood samples. RO33 was the predominant MSP-1 allelic family identified in 80.0% (52/65) of the samples while K1 family had the least frequency. Of the MSP-2 allelic families, 3D7 showed higher frequency (76.0%) compared to FC27 (20.0%). The multiplicity of P. falciparum infection (MOI) was 1.37 and 1.20 for MSP-1 and MSP-2, respectively. A total of seven alleles were detected; of which three MSP-1 allelic families (RO33, MAD20 and K1) were monomorphic in terms of size while MSP-2 alleles were polymorphic (two 3D7 and two FC27). Heterozygosity (HE) was 0.57 and 0.55 for MSP-1 and MSP-2, respectively. CONCLUSIONS The study showed that the MOI of P. falciparum is low, reflected the low intensity of malaria transmission in Pahang, Malaysia; RO33 and 3D7 were the most predominant circulating allelic families. The findings showed that P. falciparum has low allelic diversity with a high frequency of alleles. As a result, antimalarial drug efficacy trials based on MSP genotyping should be carefully interpreted.
Collapse
Affiliation(s)
- Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | | | | | | | | | | |
Collapse
|
43
|
Sexual recombination is a signature of a persisting malaria epidemic in Peru. Malar J 2011; 10:329. [PMID: 22039962 PMCID: PMC3231964 DOI: 10.1186/1475-2875-10-329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/31/2011] [Indexed: 11/22/2022] Open
Abstract
Background The aim of this study was to consider the impact that multi-clone, complex infections have on a parasite population structure in a low transmission setting. In general, complexity of infection (minimum number of clones within an infection) and the overall population level diversity is expected to be minimal in low transmission settings. Additionally, the parasite population structure is predicted to be clonal, rather than sexual due to infrequent parasite inoculation and lack of recombination between genetically distinct clones. However, in this low transmission of the Peruvian Amazon, complex infections are becoming more frequent, in spite of decreasing infection prevalence. In this study, it was hypothesized that sexual recombination between distinct clonal lineages of Plasmodium falciparum parasites were altering the subpopulation structure and effectively maintaining the population-level diversity. Methods Fourteen microsatellite markers were chosen to describe the genetic diversity in 313 naturally occurring P. falciparum infections from Peruvian Amazon. The population and subpopulation structure was characterized by measuring: clusteredness, expected heterozygosity (He), allelic richness, private allelic richness, and linkage disequilibrium. Next, microsatellite haplotypes and alleles were correlated with P. falciparum merozoite surface protein 1 Block 2 (Pfmsp1-B2) to examine the presence of recombinant microsatellite haplotypes. Results The parasite population structure consists of six genetically diverse subpopulations of clones, called "clusters". Clusters 1, 3, 4, and 6 have unique haplotypes that exceed 70% of the total number of clones within each cluster, while Clusters 2 and 5 have a lower proportion of unique haplotypes, but still exceed 46%. By measuring the He, allelic richness, and private allelic richness within each of the six subpopulations, relatively low levels of genetic diversity within each subpopulation (except Cluster 4) are observed. This indicated that the number of alleles, and not the combination of alleles, are limited. Next, the standard index of association (IAS) was measured, which revealed a significant decay in linkage disequilibrium (LD) associated with Cluster 6, which is indicative of independent assortment of alleles. This decay in LD is a signature of this subpopulation approaching linkage equilibrium by undergoing sexual recombination. To trace possible recombination events, the two most frequent microsatellite haplotypes observed over time (defined by either a K1 or Mad20) were selected as the progenitors and then potential recombinants were identified in within the natural population. Conclusions Contrary to conventional low transmission models, this study provides evidence of a parasite population structure that is superficially defined by a clonal backbone. Sexual recombination does occur and even arguably is responsible for maintaining the substructure of this population.
Collapse
|
44
|
Liljander A, Bejon P, Mwacharo J, Kai O, Ogada E, Peshu N, Marsh K, Färnert A. Clearance of asymptomatic P. falciparum Infections Interacts with the number of clones to predict the risk of subsequent malaria in Kenyan children. PLoS One 2011; 6:e16940. [PMID: 21383984 PMCID: PMC3044709 DOI: 10.1371/journal.pone.0016940] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/17/2011] [Indexed: 12/20/2022] Open
Abstract
Background Protective immunity to malaria is acquired after repeated infections in endemic areas. Asymptomatic multiclonal P. falciparum infections are common and may predict host protection. Here, we have investigated the effect of clearing asymptomatic infections on the risk of clinical malaria. Methods Malaria episodes were continuously monitored in 405 children (1–6 years) in an area of moderate transmission, coastal Kenya. Blood samples collected on four occasions were assessed by genotyping the polymorphic P. falciparum merozoite surface protein 2 using fluorescent PCR and capillary electrophoresis. Following the second survey, asymptomatic infections were cleared with a full course of dihydroartemisinin. Results Children who were parasite negative by PCR had a lower risk of subsequent malaria regardless of whether treatment had been given. Children with ≥2 clones had a reduced risk of febrile malaria compared with 1 clone after clearance of asymptomatic infections, but not if asymptomatic infections were not cleared. Multiclonal infection was associated with an increased risk of re-infection after drug treatment. However, among the children who were re-infected, multiclonal infections were associated with a shift from clinical malaria to asymptomatic parasitaemia. Conclusion The number of clones was associated with exposure as well as blood stage immunity. These effects were distinguished by clearing asymptomatic infection with anti-malarials. Exposure to multiple P. falciparum infections is associated with protective immunity, but there appears to be an additional effect in untreated multiclonal infections that offsets this protective effect.
Collapse
Affiliation(s)
- Anne Liljander
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Philip Bejon
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jedidah Mwacharo
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Oscar Kai
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Edna Ogada
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Norbert Peshu
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Geographical Medicine Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna Färnert
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
45
|
Liljander A, Chandramohan D, Kweku M, Olsson D, Montgomery SM, Greenwood B, Färnert A. Influences of intermittent preventive treatment and persistent multiclonal Plasmodium falciparum infections on clinical malaria risk. PLoS One 2010; 5:e13649. [PMID: 21048970 PMCID: PMC2965101 DOI: 10.1371/journal.pone.0013649] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment (IPT) of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria. MATERIAL AND METHODS The study included 2227 Ghanaian children (3-59 months) who were given sulphadoxine-pyrimethamine (SP) bimonthly, artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up. RESULTS Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment. CONCLUSION Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that persistence of antigenically diverse P. falciparum infections is important for the maintenance of protective malaria immunity in high transmission settings.
Collapse
Affiliation(s)
- Anne Liljander
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Chandramohan
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Margaret Kweku
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Ghana Health Service, University of Ghana, Accra, Ghana
| | - Daniel Olsson
- Medical Statistics Unit, Department of Learning Informatics Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Scott M. Montgomery
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Clinical Epidemiology and Biostatistics Unit, Örebro University Hospital, Örebro, Sweden
- Department of Primary Care and Social Medicine, Charing Cross Hospital, Imperial College, London, United Kingdom
| | - Brian Greenwood
- Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anna Färnert
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
46
|
Sutton PL, Neyra V, Hernandez JN, Branch OH. Plasmodium falciparum and Plasmodium vivax infections in the Peruvian Amazon: propagation of complex, multiple allele-type infections without super-infection. Am J Trop Med Hyg 2010; 81:950-60. [PMID: 19996422 DOI: 10.4269/ajtmh.2009.09-0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Outcrossing potential between Plasmodium parasites is defined by the population-level diversity (PLD) and complexity of infection (COI). There have been few studies of PLD and COI in low transmission regions. Since the 1995-1998 Peruvian Amazon epidemic, there has been sustained transmission with < 0.5 P. falciparum and < 1.6 P. vivax infections/person/year. Using weekly active case detection, we described PLD by heterozygosity (H(e)) and COI using P. falciparum Pfmsp1-B2 and P. vivax Pvmsp3alpha. Not being homologous genes, we limited comparisons to within species. P. falciparum (N = 293) had low (H(e) = 0.581) and P. vivax (N = 186) had high (H(e) = 0.845) PLD. A total of 9.5% P. falciparum infections and 26.3% P. vivax infections had COI > 1. Certain allele types were in more mixed infections than expected by chance. The few appearances of new alleles could be explained by stochastic polymerase chain reaction detection or synchronization/sequestration. The results suggest propagation of mixed infections by multiple inocula, not super-infection, implying decade-long opportunity for outcrossing in these mixed infections.
Collapse
Affiliation(s)
- Patrick L Sutton
- Department of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
47
|
Sutton PL, Clark EH, Silva C, Branch OH. The Plasmodium falciparum merozoite surface protein-1 19 KD antibody response in the Peruvian Amazon predominantly targets the non-allele specific, shared sites of this antigen. Malar J 2010; 9:3. [PMID: 20047674 PMCID: PMC2818648 DOI: 10.1186/1475-2875-9-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum re-emerged in Iquitos, Peru in 1994 and is now hypoendemic (< 0.5 infections/person/year). Purportedly non-immune individuals with discrete (non-overlapping) P. falciparum infections can be followed using this population dynamic. Previous work demonstrated a strong association between this population's antibody response to PfMSP1-19KD and protection against febrile illness and parasitaemia. Therefore, some selection for PfMSP1-19KD allelic diversity would be expected if the protection is to allele-specific sites of PfMSP1-19KD. Here, the potential for allele-specific polymorphisms in this population is investigated, and the allele-specificity of antibody responses to PfMSP1-19KD are determined. Methods The 42KD region in PfMSP1 was genotyped from 160 individual infections collected between 2003 and 2007. Additionally, the polymorphic block 2 region of Pfmsp1 (Pfmsp1-B2) was genotyped in 781 infection-months to provide a baseline for population-level diversity. To test whether PfMSP1-19KD genetic diversity had any impact on antibody responses, ELISAs testing IgG antibody response were performed on individuals using all four allele-types of PfMSP1-19KD. An antibody depletion ELISA was used to test the ability of antibodies to cross-react between allele-types. Results Despite increased diversity in Pfmsp1-B2, limited diversity within Pfmsp1-42KD was observed. All 160 infections genotyped were Mad20-like at the Pfmsp1-33KD locus. In the Pfmsp1-19KD locus, 159 (99.4%) were the Q-KSNG-F haplotype and 1 (0.6%) was the E-KSNG-L haplotype. Antibody responses in 105 individuals showed that Q-KNG and Q-TSR alleles generated the strongest immune responses, while Q-KNG and E-KNG responses were more concordant with each other than with those from Q-TSR and E-TSR, and vice versa. The immuno-depletion ELISAs showed all samples responded to the antigenic sites shared amongst all allelic forms of PfMSP1-19KD. Conclusions A non-allele specific antibody response in PfMSP1-19KD may explain why other allelic forms have not been maintained or evolved in this population. This has important implications for the use of PfMSP1-19KD as a vaccine candidate. It is possible that Peruvians have increased antibody responses to the shared sites of PfMSP1-19KD, either due to exposure/parasite characteristics or due to a human-genetic predisposition. Alternatively, these allelic polymorphisms are not immune-specific even in other geographic regions, implying these polymorphisms may be less important in immune evasion that previous studies suggest.
Collapse
|
48
|
Färnert A, Williams TN, Mwangi TW, Ehlin A, Fegan G, Macharia A, Lowe BS, Montgomery SM, Marsh K. Transmission-dependent tolerance to multiclonal Plasmodium falciparum infection. J Infect Dis 2009; 200:1166-75. [PMID: 19702508 DOI: 10.1086/605652] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Whether the number of concurrent clones in asymptomatic Plasmodium falciparum infections reflects the degree of host protection was investigated in children living in areas with different levels of transmission on the coast of Kenya. The number of concurrent clones was determined on the basis of polymorphism in msp2, which encodes the vaccine candidate antigen merozoite surface protein 2. In a low-transmission area, most children had monoclonal infections, and diversity did not predict a risk of clinical malaria. In an area of moderate transmission, asymptomatic infections with 2 clones were, compared with 1 clone, associated with an increased risk of subsequent malaria. In a comparative assessment in a high-transmission area in Tanzania, multiclonal infections conferred a reduced risk. The different nonlinear associations between the number of clones and malaria morbidity suggest that levels of tolerance to multiclonal infections are transmission dependent as a result of cumulative exposure to antigenically diverse P. falciparum infections.
Collapse
Affiliation(s)
- Anna Färnert
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Relationship between immunoglobulin isotype response to Plasmodium falciparum blood stage antigens and parasitological indexes as well as splenomegaly in sympatric ethnic groups living in Mali. Acta Trop 2009; 109:12-6. [PMID: 18831954 DOI: 10.1016/j.actatropica.2008.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/19/2008] [Accepted: 09/03/2008] [Indexed: 11/22/2022]
Abstract
This study aimed to assess correlations between anti-malarial antibody levels and differences in malariometric characteristics, seen between two sympatric ethnic groups, the Fulani and the Dogon, living in Mali. Plasma levels of anti-malarial IgE, IgG, IgG1-4 and total IgE were determined in asymptomatic individuals, of the above mentioned groups, and were correlated to malariometric indexes. Significantly higher levels of anti-malarial IgE, IgG, IgG1-3 and total IgE were detected in the Fulani individuals as compared to the Dogon. No difference in plasma levels of malaria specific IgG4 was noted between the two groups. Within the Fulani, an increase in total IgE levels was associated with the presence of infection. As the IgG4 level increased, the number of clones decreased in the Fulani individuals. A positive correlation between elevated levels of anti-malarial IgG and IgG3 and splenomegaly was noted only within the Fulani group. No other correlations between antibody levels and parasite prevalence, clone numbers or spleen rates were observed in any of the communities. These results suggest that the magnitude of antibody response against Plasmodium falciparum may not be as important as it is believed to be. Instead, the fine specificity or function of the response might be more critical in protection against malaria disease.
Collapse
|
50
|
Le Port A, Cot M, Etard JF, Gaye O, Migot-Nabias F, Garcia A. Relation between Plasmodium falciparum asymptomatic infection and malaria attacks in a cohort of Senegalese children. Malar J 2008; 7:193. [PMID: 18823542 PMCID: PMC2567330 DOI: 10.1186/1475-2875-7-193] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/29/2008] [Indexed: 11/25/2022] Open
Abstract
Background It is important to establish whether or not the presence of malaria parasites in peripheral blood of asymptomatic individuals is a predictor of future clinical mild malaria attacks (MMA). The aim of this study was to determine how an asymptomatic positive thick blood smear could be related to the occurrence of a MMA during the nine following days. Methods The study was conducted in a cohort of 569 Senegalese children, who were investigated for Plasmodium falciparum asymptomatic carriage at two different times of the transmission season, the beginning (September) and the end (November). The occurrence of MMA was investigated in asymptomatic carriers and non-carriers, every three days for nine consecutive days. Survival analysis was performed and risk estimates were calculated by Cox proportional hazards model. Results At the beginning of the transmission season, 27.8% (147/529) of the children were asymptomatic carriers (ACs) and 5.4% (8/147) of MMA occurred among these, versus 1% (4/382) among non-carriers (RR = 5.32; IC = [1.56–18.15], p = 0.008). At the end of the transmission season, the frequency of asymptomatic carriers was similar to that observed at the beginning of the season (31.9%, p = 0.15), but no MMA was detected during this period. Conclusion A significant association between P. falciparum asymptomatic carriage and the occurrence of MMA at the beginning of the transmission season was demonstrated, with a five-fold increase in the risk of developing a MMA in ACs. In the context of a possible distribution of IPTc in the future, drug strategies may have dramatic consequences due to the existence of ACs (both long term and short term), as they seem to play an important role in the individual protection to malaria, in the most exposed age groups.
Collapse
Affiliation(s)
- Agnès Le Port
- Institut de Recherche pour le Développement (IRD), Unité de Recherche 010: Santé de la mère et de l'enfant en milieu tropical, Laboratoire de Parasitologie, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|